]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/forcedeth.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.64"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/sched.h>
53 #include <linux/spinlock.h>
54 #include <linux/ethtool.h>
55 #include <linux/timer.h>
56 #include <linux/skbuff.h>
57 #include <linux/mii.h>
58 #include <linux/random.h>
59 #include <linux/init.h>
60 #include <linux/if_vlan.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/slab.h>
63
64 #include <asm/irq.h>
65 #include <asm/io.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68
69 #if 0
70 #define dprintk printk
71 #else
72 #define dprintk(x...) do { } while (0)
73 #endif
74
75 #define TX_WORK_PER_LOOP 64
76 #define RX_WORK_PER_LOOP 64
77
78 /*
79 * Hardware access:
80 */
81
82 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
83 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
84 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
85 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
86 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
87 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
88 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
89 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
90 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
91 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
92 #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
93 #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
94 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
95 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
96 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
97 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
98 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
99 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
100 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
101 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
102 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
103 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
104 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
105 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
106 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
107
108 enum {
109 NvRegIrqStatus = 0x000,
110 #define NVREG_IRQSTAT_MIIEVENT 0x040
111 #define NVREG_IRQSTAT_MASK 0x83ff
112 NvRegIrqMask = 0x004,
113 #define NVREG_IRQ_RX_ERROR 0x0001
114 #define NVREG_IRQ_RX 0x0002
115 #define NVREG_IRQ_RX_NOBUF 0x0004
116 #define NVREG_IRQ_TX_ERR 0x0008
117 #define NVREG_IRQ_TX_OK 0x0010
118 #define NVREG_IRQ_TIMER 0x0020
119 #define NVREG_IRQ_LINK 0x0040
120 #define NVREG_IRQ_RX_FORCED 0x0080
121 #define NVREG_IRQ_TX_FORCED 0x0100
122 #define NVREG_IRQ_RECOVER_ERROR 0x8200
123 #define NVREG_IRQMASK_THROUGHPUT 0x00df
124 #define NVREG_IRQMASK_CPU 0x0060
125 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
126 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
127 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
128
129 NvRegUnknownSetupReg6 = 0x008,
130 #define NVREG_UNKSETUP6_VAL 3
131
132 /*
133 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
134 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
135 */
136 NvRegPollingInterval = 0x00c,
137 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
138 #define NVREG_POLL_DEFAULT_CPU 13
139 NvRegMSIMap0 = 0x020,
140 NvRegMSIMap1 = 0x024,
141 NvRegMSIIrqMask = 0x030,
142 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
143 NvRegMisc1 = 0x080,
144 #define NVREG_MISC1_PAUSE_TX 0x01
145 #define NVREG_MISC1_HD 0x02
146 #define NVREG_MISC1_FORCE 0x3b0f3c
147
148 NvRegMacReset = 0x34,
149 #define NVREG_MAC_RESET_ASSERT 0x0F3
150 NvRegTransmitterControl = 0x084,
151 #define NVREG_XMITCTL_START 0x01
152 #define NVREG_XMITCTL_MGMT_ST 0x40000000
153 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
154 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
155 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
156 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
157 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
158 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
159 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
160 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
161 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
162 #define NVREG_XMITCTL_DATA_START 0x00100000
163 #define NVREG_XMITCTL_DATA_READY 0x00010000
164 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
165 NvRegTransmitterStatus = 0x088,
166 #define NVREG_XMITSTAT_BUSY 0x01
167
168 NvRegPacketFilterFlags = 0x8c,
169 #define NVREG_PFF_PAUSE_RX 0x08
170 #define NVREG_PFF_ALWAYS 0x7F0000
171 #define NVREG_PFF_PROMISC 0x80
172 #define NVREG_PFF_MYADDR 0x20
173 #define NVREG_PFF_LOOPBACK 0x10
174
175 NvRegOffloadConfig = 0x90,
176 #define NVREG_OFFLOAD_HOMEPHY 0x601
177 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
178 NvRegReceiverControl = 0x094,
179 #define NVREG_RCVCTL_START 0x01
180 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
181 NvRegReceiverStatus = 0x98,
182 #define NVREG_RCVSTAT_BUSY 0x01
183
184 NvRegSlotTime = 0x9c,
185 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
186 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
187 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
188 #define NVREG_SLOTTIME_HALF 0x0000ff00
189 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
190 #define NVREG_SLOTTIME_MASK 0x000000ff
191
192 NvRegTxDeferral = 0xA0,
193 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
194 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
195 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
196 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
197 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
198 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
199 NvRegRxDeferral = 0xA4,
200 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
201 NvRegMacAddrA = 0xA8,
202 NvRegMacAddrB = 0xAC,
203 NvRegMulticastAddrA = 0xB0,
204 #define NVREG_MCASTADDRA_FORCE 0x01
205 NvRegMulticastAddrB = 0xB4,
206 NvRegMulticastMaskA = 0xB8,
207 #define NVREG_MCASTMASKA_NONE 0xffffffff
208 NvRegMulticastMaskB = 0xBC,
209 #define NVREG_MCASTMASKB_NONE 0xffff
210
211 NvRegPhyInterface = 0xC0,
212 #define PHY_RGMII 0x10000000
213 NvRegBackOffControl = 0xC4,
214 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
215 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
216 #define NVREG_BKOFFCTRL_SELECT 24
217 #define NVREG_BKOFFCTRL_GEAR 12
218
219 NvRegTxRingPhysAddr = 0x100,
220 NvRegRxRingPhysAddr = 0x104,
221 NvRegRingSizes = 0x108,
222 #define NVREG_RINGSZ_TXSHIFT 0
223 #define NVREG_RINGSZ_RXSHIFT 16
224 NvRegTransmitPoll = 0x10c,
225 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
226 NvRegLinkSpeed = 0x110,
227 #define NVREG_LINKSPEED_FORCE 0x10000
228 #define NVREG_LINKSPEED_10 1000
229 #define NVREG_LINKSPEED_100 100
230 #define NVREG_LINKSPEED_1000 50
231 #define NVREG_LINKSPEED_MASK (0xFFF)
232 NvRegUnknownSetupReg5 = 0x130,
233 #define NVREG_UNKSETUP5_BIT31 (1<<31)
234 NvRegTxWatermark = 0x13c,
235 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
236 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
237 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
238 NvRegTxRxControl = 0x144,
239 #define NVREG_TXRXCTL_KICK 0x0001
240 #define NVREG_TXRXCTL_BIT1 0x0002
241 #define NVREG_TXRXCTL_BIT2 0x0004
242 #define NVREG_TXRXCTL_IDLE 0x0008
243 #define NVREG_TXRXCTL_RESET 0x0010
244 #define NVREG_TXRXCTL_RXCHECK 0x0400
245 #define NVREG_TXRXCTL_DESC_1 0
246 #define NVREG_TXRXCTL_DESC_2 0x002100
247 #define NVREG_TXRXCTL_DESC_3 0xc02200
248 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
249 #define NVREG_TXRXCTL_VLANINS 0x00080
250 NvRegTxRingPhysAddrHigh = 0x148,
251 NvRegRxRingPhysAddrHigh = 0x14C,
252 NvRegTxPauseFrame = 0x170,
253 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
254 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
255 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
256 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
257 NvRegTxPauseFrameLimit = 0x174,
258 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
259 NvRegMIIStatus = 0x180,
260 #define NVREG_MIISTAT_ERROR 0x0001
261 #define NVREG_MIISTAT_LINKCHANGE 0x0008
262 #define NVREG_MIISTAT_MASK_RW 0x0007
263 #define NVREG_MIISTAT_MASK_ALL 0x000f
264 NvRegMIIMask = 0x184,
265 #define NVREG_MII_LINKCHANGE 0x0008
266
267 NvRegAdapterControl = 0x188,
268 #define NVREG_ADAPTCTL_START 0x02
269 #define NVREG_ADAPTCTL_LINKUP 0x04
270 #define NVREG_ADAPTCTL_PHYVALID 0x40000
271 #define NVREG_ADAPTCTL_RUNNING 0x100000
272 #define NVREG_ADAPTCTL_PHYSHIFT 24
273 NvRegMIISpeed = 0x18c,
274 #define NVREG_MIISPEED_BIT8 (1<<8)
275 #define NVREG_MIIDELAY 5
276 NvRegMIIControl = 0x190,
277 #define NVREG_MIICTL_INUSE 0x08000
278 #define NVREG_MIICTL_WRITE 0x00400
279 #define NVREG_MIICTL_ADDRSHIFT 5
280 NvRegMIIData = 0x194,
281 NvRegTxUnicast = 0x1a0,
282 NvRegTxMulticast = 0x1a4,
283 NvRegTxBroadcast = 0x1a8,
284 NvRegWakeUpFlags = 0x200,
285 #define NVREG_WAKEUPFLAGS_VAL 0x7770
286 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
287 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
288 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
289 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
290 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
291 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
292 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
293 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
294 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
295 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
296
297 NvRegMgmtUnitGetVersion = 0x204,
298 #define NVREG_MGMTUNITGETVERSION 0x01
299 NvRegMgmtUnitVersion = 0x208,
300 #define NVREG_MGMTUNITVERSION 0x08
301 NvRegPowerCap = 0x268,
302 #define NVREG_POWERCAP_D3SUPP (1<<30)
303 #define NVREG_POWERCAP_D2SUPP (1<<26)
304 #define NVREG_POWERCAP_D1SUPP (1<<25)
305 NvRegPowerState = 0x26c,
306 #define NVREG_POWERSTATE_POWEREDUP 0x8000
307 #define NVREG_POWERSTATE_VALID 0x0100
308 #define NVREG_POWERSTATE_MASK 0x0003
309 #define NVREG_POWERSTATE_D0 0x0000
310 #define NVREG_POWERSTATE_D1 0x0001
311 #define NVREG_POWERSTATE_D2 0x0002
312 #define NVREG_POWERSTATE_D3 0x0003
313 NvRegMgmtUnitControl = 0x278,
314 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
315 NvRegTxCnt = 0x280,
316 NvRegTxZeroReXmt = 0x284,
317 NvRegTxOneReXmt = 0x288,
318 NvRegTxManyReXmt = 0x28c,
319 NvRegTxLateCol = 0x290,
320 NvRegTxUnderflow = 0x294,
321 NvRegTxLossCarrier = 0x298,
322 NvRegTxExcessDef = 0x29c,
323 NvRegTxRetryErr = 0x2a0,
324 NvRegRxFrameErr = 0x2a4,
325 NvRegRxExtraByte = 0x2a8,
326 NvRegRxLateCol = 0x2ac,
327 NvRegRxRunt = 0x2b0,
328 NvRegRxFrameTooLong = 0x2b4,
329 NvRegRxOverflow = 0x2b8,
330 NvRegRxFCSErr = 0x2bc,
331 NvRegRxFrameAlignErr = 0x2c0,
332 NvRegRxLenErr = 0x2c4,
333 NvRegRxUnicast = 0x2c8,
334 NvRegRxMulticast = 0x2cc,
335 NvRegRxBroadcast = 0x2d0,
336 NvRegTxDef = 0x2d4,
337 NvRegTxFrame = 0x2d8,
338 NvRegRxCnt = 0x2dc,
339 NvRegTxPause = 0x2e0,
340 NvRegRxPause = 0x2e4,
341 NvRegRxDropFrame = 0x2e8,
342 NvRegVlanControl = 0x300,
343 #define NVREG_VLANCONTROL_ENABLE 0x2000
344 NvRegMSIXMap0 = 0x3e0,
345 NvRegMSIXMap1 = 0x3e4,
346 NvRegMSIXIrqStatus = 0x3f0,
347
348 NvRegPowerState2 = 0x600,
349 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
350 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
351 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
352 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
353 };
354
355 /* Big endian: should work, but is untested */
356 struct ring_desc {
357 __le32 buf;
358 __le32 flaglen;
359 };
360
361 struct ring_desc_ex {
362 __le32 bufhigh;
363 __le32 buflow;
364 __le32 txvlan;
365 __le32 flaglen;
366 };
367
368 union ring_type {
369 struct ring_desc* orig;
370 struct ring_desc_ex* ex;
371 };
372
373 #define FLAG_MASK_V1 0xffff0000
374 #define FLAG_MASK_V2 0xffffc000
375 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
376 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
377
378 #define NV_TX_LASTPACKET (1<<16)
379 #define NV_TX_RETRYERROR (1<<19)
380 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
381 #define NV_TX_FORCED_INTERRUPT (1<<24)
382 #define NV_TX_DEFERRED (1<<26)
383 #define NV_TX_CARRIERLOST (1<<27)
384 #define NV_TX_LATECOLLISION (1<<28)
385 #define NV_TX_UNDERFLOW (1<<29)
386 #define NV_TX_ERROR (1<<30)
387 #define NV_TX_VALID (1<<31)
388
389 #define NV_TX2_LASTPACKET (1<<29)
390 #define NV_TX2_RETRYERROR (1<<18)
391 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
392 #define NV_TX2_FORCED_INTERRUPT (1<<30)
393 #define NV_TX2_DEFERRED (1<<25)
394 #define NV_TX2_CARRIERLOST (1<<26)
395 #define NV_TX2_LATECOLLISION (1<<27)
396 #define NV_TX2_UNDERFLOW (1<<28)
397 /* error and valid are the same for both */
398 #define NV_TX2_ERROR (1<<30)
399 #define NV_TX2_VALID (1<<31)
400 #define NV_TX2_TSO (1<<28)
401 #define NV_TX2_TSO_SHIFT 14
402 #define NV_TX2_TSO_MAX_SHIFT 14
403 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
404 #define NV_TX2_CHECKSUM_L3 (1<<27)
405 #define NV_TX2_CHECKSUM_L4 (1<<26)
406
407 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
408
409 #define NV_RX_DESCRIPTORVALID (1<<16)
410 #define NV_RX_MISSEDFRAME (1<<17)
411 #define NV_RX_SUBSTRACT1 (1<<18)
412 #define NV_RX_ERROR1 (1<<23)
413 #define NV_RX_ERROR2 (1<<24)
414 #define NV_RX_ERROR3 (1<<25)
415 #define NV_RX_ERROR4 (1<<26)
416 #define NV_RX_CRCERR (1<<27)
417 #define NV_RX_OVERFLOW (1<<28)
418 #define NV_RX_FRAMINGERR (1<<29)
419 #define NV_RX_ERROR (1<<30)
420 #define NV_RX_AVAIL (1<<31)
421 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
422
423 #define NV_RX2_CHECKSUMMASK (0x1C000000)
424 #define NV_RX2_CHECKSUM_IP (0x10000000)
425 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
426 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
427 #define NV_RX2_DESCRIPTORVALID (1<<29)
428 #define NV_RX2_SUBSTRACT1 (1<<25)
429 #define NV_RX2_ERROR1 (1<<18)
430 #define NV_RX2_ERROR2 (1<<19)
431 #define NV_RX2_ERROR3 (1<<20)
432 #define NV_RX2_ERROR4 (1<<21)
433 #define NV_RX2_CRCERR (1<<22)
434 #define NV_RX2_OVERFLOW (1<<23)
435 #define NV_RX2_FRAMINGERR (1<<24)
436 /* error and avail are the same for both */
437 #define NV_RX2_ERROR (1<<30)
438 #define NV_RX2_AVAIL (1<<31)
439 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
440
441 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
442 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
443
444 /* Miscelaneous hardware related defines: */
445 #define NV_PCI_REGSZ_VER1 0x270
446 #define NV_PCI_REGSZ_VER2 0x2d4
447 #define NV_PCI_REGSZ_VER3 0x604
448 #define NV_PCI_REGSZ_MAX 0x604
449
450 /* various timeout delays: all in usec */
451 #define NV_TXRX_RESET_DELAY 4
452 #define NV_TXSTOP_DELAY1 10
453 #define NV_TXSTOP_DELAY1MAX 500000
454 #define NV_TXSTOP_DELAY2 100
455 #define NV_RXSTOP_DELAY1 10
456 #define NV_RXSTOP_DELAY1MAX 500000
457 #define NV_RXSTOP_DELAY2 100
458 #define NV_SETUP5_DELAY 5
459 #define NV_SETUP5_DELAYMAX 50000
460 #define NV_POWERUP_DELAY 5
461 #define NV_POWERUP_DELAYMAX 5000
462 #define NV_MIIBUSY_DELAY 50
463 #define NV_MIIPHY_DELAY 10
464 #define NV_MIIPHY_DELAYMAX 10000
465 #define NV_MAC_RESET_DELAY 64
466
467 #define NV_WAKEUPPATTERNS 5
468 #define NV_WAKEUPMASKENTRIES 4
469
470 /* General driver defaults */
471 #define NV_WATCHDOG_TIMEO (5*HZ)
472
473 #define RX_RING_DEFAULT 512
474 #define TX_RING_DEFAULT 256
475 #define RX_RING_MIN 128
476 #define TX_RING_MIN 64
477 #define RING_MAX_DESC_VER_1 1024
478 #define RING_MAX_DESC_VER_2_3 16384
479
480 /* rx/tx mac addr + type + vlan + align + slack*/
481 #define NV_RX_HEADERS (64)
482 /* even more slack. */
483 #define NV_RX_ALLOC_PAD (64)
484
485 /* maximum mtu size */
486 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
487 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
488
489 #define OOM_REFILL (1+HZ/20)
490 #define POLL_WAIT (1+HZ/100)
491 #define LINK_TIMEOUT (3*HZ)
492 #define STATS_INTERVAL (10*HZ)
493
494 /*
495 * desc_ver values:
496 * The nic supports three different descriptor types:
497 * - DESC_VER_1: Original
498 * - DESC_VER_2: support for jumbo frames.
499 * - DESC_VER_3: 64-bit format.
500 */
501 #define DESC_VER_1 1
502 #define DESC_VER_2 2
503 #define DESC_VER_3 3
504
505 /* PHY defines */
506 #define PHY_OUI_MARVELL 0x5043
507 #define PHY_OUI_CICADA 0x03f1
508 #define PHY_OUI_VITESSE 0x01c1
509 #define PHY_OUI_REALTEK 0x0732
510 #define PHY_OUI_REALTEK2 0x0020
511 #define PHYID1_OUI_MASK 0x03ff
512 #define PHYID1_OUI_SHFT 6
513 #define PHYID2_OUI_MASK 0xfc00
514 #define PHYID2_OUI_SHFT 10
515 #define PHYID2_MODEL_MASK 0x03f0
516 #define PHY_MODEL_REALTEK_8211 0x0110
517 #define PHY_REV_MASK 0x0001
518 #define PHY_REV_REALTEK_8211B 0x0000
519 #define PHY_REV_REALTEK_8211C 0x0001
520 #define PHY_MODEL_REALTEK_8201 0x0200
521 #define PHY_MODEL_MARVELL_E3016 0x0220
522 #define PHY_MARVELL_E3016_INITMASK 0x0300
523 #define PHY_CICADA_INIT1 0x0f000
524 #define PHY_CICADA_INIT2 0x0e00
525 #define PHY_CICADA_INIT3 0x01000
526 #define PHY_CICADA_INIT4 0x0200
527 #define PHY_CICADA_INIT5 0x0004
528 #define PHY_CICADA_INIT6 0x02000
529 #define PHY_VITESSE_INIT_REG1 0x1f
530 #define PHY_VITESSE_INIT_REG2 0x10
531 #define PHY_VITESSE_INIT_REG3 0x11
532 #define PHY_VITESSE_INIT_REG4 0x12
533 #define PHY_VITESSE_INIT_MSK1 0xc
534 #define PHY_VITESSE_INIT_MSK2 0x0180
535 #define PHY_VITESSE_INIT1 0x52b5
536 #define PHY_VITESSE_INIT2 0xaf8a
537 #define PHY_VITESSE_INIT3 0x8
538 #define PHY_VITESSE_INIT4 0x8f8a
539 #define PHY_VITESSE_INIT5 0xaf86
540 #define PHY_VITESSE_INIT6 0x8f86
541 #define PHY_VITESSE_INIT7 0xaf82
542 #define PHY_VITESSE_INIT8 0x0100
543 #define PHY_VITESSE_INIT9 0x8f82
544 #define PHY_VITESSE_INIT10 0x0
545 #define PHY_REALTEK_INIT_REG1 0x1f
546 #define PHY_REALTEK_INIT_REG2 0x19
547 #define PHY_REALTEK_INIT_REG3 0x13
548 #define PHY_REALTEK_INIT_REG4 0x14
549 #define PHY_REALTEK_INIT_REG5 0x18
550 #define PHY_REALTEK_INIT_REG6 0x11
551 #define PHY_REALTEK_INIT_REG7 0x01
552 #define PHY_REALTEK_INIT1 0x0000
553 #define PHY_REALTEK_INIT2 0x8e00
554 #define PHY_REALTEK_INIT3 0x0001
555 #define PHY_REALTEK_INIT4 0xad17
556 #define PHY_REALTEK_INIT5 0xfb54
557 #define PHY_REALTEK_INIT6 0xf5c7
558 #define PHY_REALTEK_INIT7 0x1000
559 #define PHY_REALTEK_INIT8 0x0003
560 #define PHY_REALTEK_INIT9 0x0008
561 #define PHY_REALTEK_INIT10 0x0005
562 #define PHY_REALTEK_INIT11 0x0200
563 #define PHY_REALTEK_INIT_MSK1 0x0003
564
565 #define PHY_GIGABIT 0x0100
566
567 #define PHY_TIMEOUT 0x1
568 #define PHY_ERROR 0x2
569
570 #define PHY_100 0x1
571 #define PHY_1000 0x2
572 #define PHY_HALF 0x100
573
574 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
575 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
576 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
577 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
578 #define NV_PAUSEFRAME_RX_REQ 0x0010
579 #define NV_PAUSEFRAME_TX_REQ 0x0020
580 #define NV_PAUSEFRAME_AUTONEG 0x0040
581
582 /* MSI/MSI-X defines */
583 #define NV_MSI_X_MAX_VECTORS 8
584 #define NV_MSI_X_VECTORS_MASK 0x000f
585 #define NV_MSI_CAPABLE 0x0010
586 #define NV_MSI_X_CAPABLE 0x0020
587 #define NV_MSI_ENABLED 0x0040
588 #define NV_MSI_X_ENABLED 0x0080
589
590 #define NV_MSI_X_VECTOR_ALL 0x0
591 #define NV_MSI_X_VECTOR_RX 0x0
592 #define NV_MSI_X_VECTOR_TX 0x1
593 #define NV_MSI_X_VECTOR_OTHER 0x2
594
595 #define NV_MSI_PRIV_OFFSET 0x68
596 #define NV_MSI_PRIV_VALUE 0xffffffff
597
598 #define NV_RESTART_TX 0x1
599 #define NV_RESTART_RX 0x2
600
601 #define NV_TX_LIMIT_COUNT 16
602
603 #define NV_DYNAMIC_THRESHOLD 4
604 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
605
606 /* statistics */
607 struct nv_ethtool_str {
608 char name[ETH_GSTRING_LEN];
609 };
610
611 static const struct nv_ethtool_str nv_estats_str[] = {
612 { "tx_bytes" },
613 { "tx_zero_rexmt" },
614 { "tx_one_rexmt" },
615 { "tx_many_rexmt" },
616 { "tx_late_collision" },
617 { "tx_fifo_errors" },
618 { "tx_carrier_errors" },
619 { "tx_excess_deferral" },
620 { "tx_retry_error" },
621 { "rx_frame_error" },
622 { "rx_extra_byte" },
623 { "rx_late_collision" },
624 { "rx_runt" },
625 { "rx_frame_too_long" },
626 { "rx_over_errors" },
627 { "rx_crc_errors" },
628 { "rx_frame_align_error" },
629 { "rx_length_error" },
630 { "rx_unicast" },
631 { "rx_multicast" },
632 { "rx_broadcast" },
633 { "rx_packets" },
634 { "rx_errors_total" },
635 { "tx_errors_total" },
636
637 /* version 2 stats */
638 { "tx_deferral" },
639 { "tx_packets" },
640 { "rx_bytes" },
641 { "tx_pause" },
642 { "rx_pause" },
643 { "rx_drop_frame" },
644
645 /* version 3 stats */
646 { "tx_unicast" },
647 { "tx_multicast" },
648 { "tx_broadcast" }
649 };
650
651 struct nv_ethtool_stats {
652 u64 tx_bytes;
653 u64 tx_zero_rexmt;
654 u64 tx_one_rexmt;
655 u64 tx_many_rexmt;
656 u64 tx_late_collision;
657 u64 tx_fifo_errors;
658 u64 tx_carrier_errors;
659 u64 tx_excess_deferral;
660 u64 tx_retry_error;
661 u64 rx_frame_error;
662 u64 rx_extra_byte;
663 u64 rx_late_collision;
664 u64 rx_runt;
665 u64 rx_frame_too_long;
666 u64 rx_over_errors;
667 u64 rx_crc_errors;
668 u64 rx_frame_align_error;
669 u64 rx_length_error;
670 u64 rx_unicast;
671 u64 rx_multicast;
672 u64 rx_broadcast;
673 u64 rx_packets;
674 u64 rx_errors_total;
675 u64 tx_errors_total;
676
677 /* version 2 stats */
678 u64 tx_deferral;
679 u64 tx_packets;
680 u64 rx_bytes;
681 u64 tx_pause;
682 u64 rx_pause;
683 u64 rx_drop_frame;
684
685 /* version 3 stats */
686 u64 tx_unicast;
687 u64 tx_multicast;
688 u64 tx_broadcast;
689 };
690
691 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
692 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
693 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
694
695 /* diagnostics */
696 #define NV_TEST_COUNT_BASE 3
697 #define NV_TEST_COUNT_EXTENDED 4
698
699 static const struct nv_ethtool_str nv_etests_str[] = {
700 { "link (online/offline)" },
701 { "register (offline) " },
702 { "interrupt (offline) " },
703 { "loopback (offline) " }
704 };
705
706 struct register_test {
707 __u32 reg;
708 __u32 mask;
709 };
710
711 static const struct register_test nv_registers_test[] = {
712 { NvRegUnknownSetupReg6, 0x01 },
713 { NvRegMisc1, 0x03c },
714 { NvRegOffloadConfig, 0x03ff },
715 { NvRegMulticastAddrA, 0xffffffff },
716 { NvRegTxWatermark, 0x0ff },
717 { NvRegWakeUpFlags, 0x07777 },
718 { 0,0 }
719 };
720
721 struct nv_skb_map {
722 struct sk_buff *skb;
723 dma_addr_t dma;
724 unsigned int dma_len:31;
725 unsigned int dma_single:1;
726 struct ring_desc_ex *first_tx_desc;
727 struct nv_skb_map *next_tx_ctx;
728 };
729
730 /*
731 * SMP locking:
732 * All hardware access under netdev_priv(dev)->lock, except the performance
733 * critical parts:
734 * - rx is (pseudo-) lockless: it relies on the single-threading provided
735 * by the arch code for interrupts.
736 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
737 * needs netdev_priv(dev)->lock :-(
738 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
739 */
740
741 /* in dev: base, irq */
742 struct fe_priv {
743 spinlock_t lock;
744
745 struct net_device *dev;
746 struct napi_struct napi;
747
748 /* General data:
749 * Locking: spin_lock(&np->lock); */
750 struct nv_ethtool_stats estats;
751 int in_shutdown;
752 u32 linkspeed;
753 int duplex;
754 int autoneg;
755 int fixed_mode;
756 int phyaddr;
757 int wolenabled;
758 unsigned int phy_oui;
759 unsigned int phy_model;
760 unsigned int phy_rev;
761 u16 gigabit;
762 int intr_test;
763 int recover_error;
764 int quiet_count;
765
766 /* General data: RO fields */
767 dma_addr_t ring_addr;
768 struct pci_dev *pci_dev;
769 u32 orig_mac[2];
770 u32 events;
771 u32 irqmask;
772 u32 desc_ver;
773 u32 txrxctl_bits;
774 u32 vlanctl_bits;
775 u32 driver_data;
776 u32 device_id;
777 u32 register_size;
778 int rx_csum;
779 u32 mac_in_use;
780 int mgmt_version;
781 int mgmt_sema;
782
783 void __iomem *base;
784
785 /* rx specific fields.
786 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
787 */
788 union ring_type get_rx, put_rx, first_rx, last_rx;
789 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
790 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
791 struct nv_skb_map *rx_skb;
792
793 union ring_type rx_ring;
794 unsigned int rx_buf_sz;
795 unsigned int pkt_limit;
796 struct timer_list oom_kick;
797 struct timer_list nic_poll;
798 struct timer_list stats_poll;
799 u32 nic_poll_irq;
800 int rx_ring_size;
801
802 /* media detection workaround.
803 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
804 */
805 int need_linktimer;
806 unsigned long link_timeout;
807 /*
808 * tx specific fields.
809 */
810 union ring_type get_tx, put_tx, first_tx, last_tx;
811 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
812 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
813 struct nv_skb_map *tx_skb;
814
815 union ring_type tx_ring;
816 u32 tx_flags;
817 int tx_ring_size;
818 int tx_limit;
819 u32 tx_pkts_in_progress;
820 struct nv_skb_map *tx_change_owner;
821 struct nv_skb_map *tx_end_flip;
822 int tx_stop;
823
824 /* vlan fields */
825 struct vlan_group *vlangrp;
826
827 /* msi/msi-x fields */
828 u32 msi_flags;
829 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
830
831 /* flow control */
832 u32 pause_flags;
833
834 /* power saved state */
835 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
836
837 /* for different msi-x irq type */
838 char name_rx[IFNAMSIZ + 3]; /* -rx */
839 char name_tx[IFNAMSIZ + 3]; /* -tx */
840 char name_other[IFNAMSIZ + 6]; /* -other */
841 };
842
843 /*
844 * Maximum number of loops until we assume that a bit in the irq mask
845 * is stuck. Overridable with module param.
846 */
847 static int max_interrupt_work = 4;
848
849 /*
850 * Optimization can be either throuput mode or cpu mode
851 *
852 * Throughput Mode: Every tx and rx packet will generate an interrupt.
853 * CPU Mode: Interrupts are controlled by a timer.
854 */
855 enum {
856 NV_OPTIMIZATION_MODE_THROUGHPUT,
857 NV_OPTIMIZATION_MODE_CPU,
858 NV_OPTIMIZATION_MODE_DYNAMIC
859 };
860 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
861
862 /*
863 * Poll interval for timer irq
864 *
865 * This interval determines how frequent an interrupt is generated.
866 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
867 * Min = 0, and Max = 65535
868 */
869 static int poll_interval = -1;
870
871 /*
872 * MSI interrupts
873 */
874 enum {
875 NV_MSI_INT_DISABLED,
876 NV_MSI_INT_ENABLED
877 };
878 static int msi = NV_MSI_INT_ENABLED;
879
880 /*
881 * MSIX interrupts
882 */
883 enum {
884 NV_MSIX_INT_DISABLED,
885 NV_MSIX_INT_ENABLED
886 };
887 static int msix = NV_MSIX_INT_ENABLED;
888
889 /*
890 * DMA 64bit
891 */
892 enum {
893 NV_DMA_64BIT_DISABLED,
894 NV_DMA_64BIT_ENABLED
895 };
896 static int dma_64bit = NV_DMA_64BIT_ENABLED;
897
898 /*
899 * Crossover Detection
900 * Realtek 8201 phy + some OEM boards do not work properly.
901 */
902 enum {
903 NV_CROSSOVER_DETECTION_DISABLED,
904 NV_CROSSOVER_DETECTION_ENABLED
905 };
906 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
907
908 /*
909 * Power down phy when interface is down (persists through reboot;
910 * older Linux and other OSes may not power it up again)
911 */
912 static int phy_power_down = 0;
913
914 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
915 {
916 return netdev_priv(dev);
917 }
918
919 static inline u8 __iomem *get_hwbase(struct net_device *dev)
920 {
921 return ((struct fe_priv *)netdev_priv(dev))->base;
922 }
923
924 static inline void pci_push(u8 __iomem *base)
925 {
926 /* force out pending posted writes */
927 readl(base);
928 }
929
930 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
931 {
932 return le32_to_cpu(prd->flaglen)
933 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
934 }
935
936 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
937 {
938 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
939 }
940
941 static bool nv_optimized(struct fe_priv *np)
942 {
943 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
944 return false;
945 return true;
946 }
947
948 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
949 int delay, int delaymax, const char *msg)
950 {
951 u8 __iomem *base = get_hwbase(dev);
952
953 pci_push(base);
954 do {
955 udelay(delay);
956 delaymax -= delay;
957 if (delaymax < 0) {
958 if (msg)
959 printk("%s", msg);
960 return 1;
961 }
962 } while ((readl(base + offset) & mask) != target);
963 return 0;
964 }
965
966 #define NV_SETUP_RX_RING 0x01
967 #define NV_SETUP_TX_RING 0x02
968
969 static inline u32 dma_low(dma_addr_t addr)
970 {
971 return addr;
972 }
973
974 static inline u32 dma_high(dma_addr_t addr)
975 {
976 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
977 }
978
979 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
980 {
981 struct fe_priv *np = get_nvpriv(dev);
982 u8 __iomem *base = get_hwbase(dev);
983
984 if (!nv_optimized(np)) {
985 if (rxtx_flags & NV_SETUP_RX_RING) {
986 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
987 }
988 if (rxtx_flags & NV_SETUP_TX_RING) {
989 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
990 }
991 } else {
992 if (rxtx_flags & NV_SETUP_RX_RING) {
993 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
994 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
995 }
996 if (rxtx_flags & NV_SETUP_TX_RING) {
997 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
998 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
999 }
1000 }
1001 }
1002
1003 static void free_rings(struct net_device *dev)
1004 {
1005 struct fe_priv *np = get_nvpriv(dev);
1006
1007 if (!nv_optimized(np)) {
1008 if (np->rx_ring.orig)
1009 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1010 np->rx_ring.orig, np->ring_addr);
1011 } else {
1012 if (np->rx_ring.ex)
1013 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1014 np->rx_ring.ex, np->ring_addr);
1015 }
1016 if (np->rx_skb)
1017 kfree(np->rx_skb);
1018 if (np->tx_skb)
1019 kfree(np->tx_skb);
1020 }
1021
1022 static int using_multi_irqs(struct net_device *dev)
1023 {
1024 struct fe_priv *np = get_nvpriv(dev);
1025
1026 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1027 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1028 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1029 return 0;
1030 else
1031 return 1;
1032 }
1033
1034 static void nv_txrx_gate(struct net_device *dev, bool gate)
1035 {
1036 struct fe_priv *np = get_nvpriv(dev);
1037 u8 __iomem *base = get_hwbase(dev);
1038 u32 powerstate;
1039
1040 if (!np->mac_in_use &&
1041 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1042 powerstate = readl(base + NvRegPowerState2);
1043 if (gate)
1044 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1045 else
1046 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1047 writel(powerstate, base + NvRegPowerState2);
1048 }
1049 }
1050
1051 static void nv_enable_irq(struct net_device *dev)
1052 {
1053 struct fe_priv *np = get_nvpriv(dev);
1054
1055 if (!using_multi_irqs(dev)) {
1056 if (np->msi_flags & NV_MSI_X_ENABLED)
1057 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1058 else
1059 enable_irq(np->pci_dev->irq);
1060 } else {
1061 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1062 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1063 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1064 }
1065 }
1066
1067 static void nv_disable_irq(struct net_device *dev)
1068 {
1069 struct fe_priv *np = get_nvpriv(dev);
1070
1071 if (!using_multi_irqs(dev)) {
1072 if (np->msi_flags & NV_MSI_X_ENABLED)
1073 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1074 else
1075 disable_irq(np->pci_dev->irq);
1076 } else {
1077 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1078 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1079 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1080 }
1081 }
1082
1083 /* In MSIX mode, a write to irqmask behaves as XOR */
1084 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1085 {
1086 u8 __iomem *base = get_hwbase(dev);
1087
1088 writel(mask, base + NvRegIrqMask);
1089 }
1090
1091 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1092 {
1093 struct fe_priv *np = get_nvpriv(dev);
1094 u8 __iomem *base = get_hwbase(dev);
1095
1096 if (np->msi_flags & NV_MSI_X_ENABLED) {
1097 writel(mask, base + NvRegIrqMask);
1098 } else {
1099 if (np->msi_flags & NV_MSI_ENABLED)
1100 writel(0, base + NvRegMSIIrqMask);
1101 writel(0, base + NvRegIrqMask);
1102 }
1103 }
1104
1105 static void nv_napi_enable(struct net_device *dev)
1106 {
1107 #ifdef CONFIG_FORCEDETH_NAPI
1108 struct fe_priv *np = get_nvpriv(dev);
1109
1110 napi_enable(&np->napi);
1111 #endif
1112 }
1113
1114 static void nv_napi_disable(struct net_device *dev)
1115 {
1116 #ifdef CONFIG_FORCEDETH_NAPI
1117 struct fe_priv *np = get_nvpriv(dev);
1118
1119 napi_disable(&np->napi);
1120 #endif
1121 }
1122
1123 #define MII_READ (-1)
1124 /* mii_rw: read/write a register on the PHY.
1125 *
1126 * Caller must guarantee serialization
1127 */
1128 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1129 {
1130 u8 __iomem *base = get_hwbase(dev);
1131 u32 reg;
1132 int retval;
1133
1134 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1135
1136 reg = readl(base + NvRegMIIControl);
1137 if (reg & NVREG_MIICTL_INUSE) {
1138 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1139 udelay(NV_MIIBUSY_DELAY);
1140 }
1141
1142 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1143 if (value != MII_READ) {
1144 writel(value, base + NvRegMIIData);
1145 reg |= NVREG_MIICTL_WRITE;
1146 }
1147 writel(reg, base + NvRegMIIControl);
1148
1149 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1150 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1151 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1152 dev->name, miireg, addr);
1153 retval = -1;
1154 } else if (value != MII_READ) {
1155 /* it was a write operation - fewer failures are detectable */
1156 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1157 dev->name, value, miireg, addr);
1158 retval = 0;
1159 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1160 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1161 dev->name, miireg, addr);
1162 retval = -1;
1163 } else {
1164 retval = readl(base + NvRegMIIData);
1165 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1166 dev->name, miireg, addr, retval);
1167 }
1168
1169 return retval;
1170 }
1171
1172 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1173 {
1174 struct fe_priv *np = netdev_priv(dev);
1175 u32 miicontrol;
1176 unsigned int tries = 0;
1177
1178 miicontrol = BMCR_RESET | bmcr_setup;
1179 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1180 return -1;
1181 }
1182
1183 /* wait for 500ms */
1184 msleep(500);
1185
1186 /* must wait till reset is deasserted */
1187 while (miicontrol & BMCR_RESET) {
1188 msleep(10);
1189 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1190 /* FIXME: 100 tries seem excessive */
1191 if (tries++ > 100)
1192 return -1;
1193 }
1194 return 0;
1195 }
1196
1197 static int phy_init(struct net_device *dev)
1198 {
1199 struct fe_priv *np = get_nvpriv(dev);
1200 u8 __iomem *base = get_hwbase(dev);
1201 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1202
1203 /* phy errata for E3016 phy */
1204 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1205 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1206 reg &= ~PHY_MARVELL_E3016_INITMASK;
1207 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1208 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1209 return PHY_ERROR;
1210 }
1211 }
1212 if (np->phy_oui == PHY_OUI_REALTEK) {
1213 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1214 np->phy_rev == PHY_REV_REALTEK_8211B) {
1215 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1216 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1217 return PHY_ERROR;
1218 }
1219 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1220 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1221 return PHY_ERROR;
1222 }
1223 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1224 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1225 return PHY_ERROR;
1226 }
1227 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1228 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1229 return PHY_ERROR;
1230 }
1231 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1232 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1233 return PHY_ERROR;
1234 }
1235 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1236 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1237 return PHY_ERROR;
1238 }
1239 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1240 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1241 return PHY_ERROR;
1242 }
1243 }
1244 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1245 np->phy_rev == PHY_REV_REALTEK_8211C) {
1246 u32 powerstate = readl(base + NvRegPowerState2);
1247
1248 /* need to perform hw phy reset */
1249 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1250 writel(powerstate, base + NvRegPowerState2);
1251 msleep(25);
1252
1253 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1254 writel(powerstate, base + NvRegPowerState2);
1255 msleep(25);
1256
1257 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1258 reg |= PHY_REALTEK_INIT9;
1259 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1260 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1261 return PHY_ERROR;
1262 }
1263 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1264 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1265 return PHY_ERROR;
1266 }
1267 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1268 if (!(reg & PHY_REALTEK_INIT11)) {
1269 reg |= PHY_REALTEK_INIT11;
1270 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1271 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1272 return PHY_ERROR;
1273 }
1274 }
1275 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1276 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1277 return PHY_ERROR;
1278 }
1279 }
1280 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1281 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1282 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1283 phy_reserved |= PHY_REALTEK_INIT7;
1284 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1285 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1286 return PHY_ERROR;
1287 }
1288 }
1289 }
1290 }
1291
1292 /* set advertise register */
1293 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1294 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1295 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1296 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1297 return PHY_ERROR;
1298 }
1299
1300 /* get phy interface type */
1301 phyinterface = readl(base + NvRegPhyInterface);
1302
1303 /* see if gigabit phy */
1304 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1305 if (mii_status & PHY_GIGABIT) {
1306 np->gigabit = PHY_GIGABIT;
1307 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1308 mii_control_1000 &= ~ADVERTISE_1000HALF;
1309 if (phyinterface & PHY_RGMII)
1310 mii_control_1000 |= ADVERTISE_1000FULL;
1311 else
1312 mii_control_1000 &= ~ADVERTISE_1000FULL;
1313
1314 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1315 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1316 return PHY_ERROR;
1317 }
1318 }
1319 else
1320 np->gigabit = 0;
1321
1322 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1323 mii_control |= BMCR_ANENABLE;
1324
1325 if (np->phy_oui == PHY_OUI_REALTEK &&
1326 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1327 np->phy_rev == PHY_REV_REALTEK_8211C) {
1328 /* start autoneg since we already performed hw reset above */
1329 mii_control |= BMCR_ANRESTART;
1330 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1331 printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1332 return PHY_ERROR;
1333 }
1334 } else {
1335 /* reset the phy
1336 * (certain phys need bmcr to be setup with reset)
1337 */
1338 if (phy_reset(dev, mii_control)) {
1339 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1340 return PHY_ERROR;
1341 }
1342 }
1343
1344 /* phy vendor specific configuration */
1345 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1346 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1347 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1348 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1349 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1350 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1351 return PHY_ERROR;
1352 }
1353 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1354 phy_reserved |= PHY_CICADA_INIT5;
1355 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1356 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1357 return PHY_ERROR;
1358 }
1359 }
1360 if (np->phy_oui == PHY_OUI_CICADA) {
1361 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1362 phy_reserved |= PHY_CICADA_INIT6;
1363 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1364 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1365 return PHY_ERROR;
1366 }
1367 }
1368 if (np->phy_oui == PHY_OUI_VITESSE) {
1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1370 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1371 return PHY_ERROR;
1372 }
1373 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1374 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1375 return PHY_ERROR;
1376 }
1377 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1378 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1379 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1380 return PHY_ERROR;
1381 }
1382 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1383 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1384 phy_reserved |= PHY_VITESSE_INIT3;
1385 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1386 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1387 return PHY_ERROR;
1388 }
1389 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1390 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1391 return PHY_ERROR;
1392 }
1393 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1394 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1395 return PHY_ERROR;
1396 }
1397 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1398 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1399 phy_reserved |= PHY_VITESSE_INIT3;
1400 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1401 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1402 return PHY_ERROR;
1403 }
1404 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1405 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1406 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1407 return PHY_ERROR;
1408 }
1409 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1410 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1411 return PHY_ERROR;
1412 }
1413 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1414 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1415 return PHY_ERROR;
1416 }
1417 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1418 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1419 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1420 return PHY_ERROR;
1421 }
1422 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1423 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1424 phy_reserved |= PHY_VITESSE_INIT8;
1425 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1426 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1427 return PHY_ERROR;
1428 }
1429 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1430 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1431 return PHY_ERROR;
1432 }
1433 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1434 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1435 return PHY_ERROR;
1436 }
1437 }
1438 if (np->phy_oui == PHY_OUI_REALTEK) {
1439 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1440 np->phy_rev == PHY_REV_REALTEK_8211B) {
1441 /* reset could have cleared these out, set them back */
1442 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1443 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1444 return PHY_ERROR;
1445 }
1446 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1447 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1448 return PHY_ERROR;
1449 }
1450 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1451 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1452 return PHY_ERROR;
1453 }
1454 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1455 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1456 return PHY_ERROR;
1457 }
1458 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1459 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1460 return PHY_ERROR;
1461 }
1462 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1463 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1464 return PHY_ERROR;
1465 }
1466 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1467 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1468 return PHY_ERROR;
1469 }
1470 }
1471 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1472 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1473 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1474 phy_reserved |= PHY_REALTEK_INIT7;
1475 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1476 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1477 return PHY_ERROR;
1478 }
1479 }
1480 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1481 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1482 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1483 return PHY_ERROR;
1484 }
1485 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1486 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1487 phy_reserved |= PHY_REALTEK_INIT3;
1488 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1489 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1490 return PHY_ERROR;
1491 }
1492 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1493 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1494 return PHY_ERROR;
1495 }
1496 }
1497 }
1498 }
1499
1500 /* some phys clear out pause advertisment on reset, set it back */
1501 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1502
1503 /* restart auto negotiation, power down phy */
1504 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1505 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1506 if (phy_power_down) {
1507 mii_control |= BMCR_PDOWN;
1508 }
1509 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1510 return PHY_ERROR;
1511 }
1512
1513 return 0;
1514 }
1515
1516 static void nv_start_rx(struct net_device *dev)
1517 {
1518 struct fe_priv *np = netdev_priv(dev);
1519 u8 __iomem *base = get_hwbase(dev);
1520 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1521
1522 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1523 /* Already running? Stop it. */
1524 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1525 rx_ctrl &= ~NVREG_RCVCTL_START;
1526 writel(rx_ctrl, base + NvRegReceiverControl);
1527 pci_push(base);
1528 }
1529 writel(np->linkspeed, base + NvRegLinkSpeed);
1530 pci_push(base);
1531 rx_ctrl |= NVREG_RCVCTL_START;
1532 if (np->mac_in_use)
1533 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1534 writel(rx_ctrl, base + NvRegReceiverControl);
1535 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1536 dev->name, np->duplex, np->linkspeed);
1537 pci_push(base);
1538 }
1539
1540 static void nv_stop_rx(struct net_device *dev)
1541 {
1542 struct fe_priv *np = netdev_priv(dev);
1543 u8 __iomem *base = get_hwbase(dev);
1544 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1545
1546 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1547 if (!np->mac_in_use)
1548 rx_ctrl &= ~NVREG_RCVCTL_START;
1549 else
1550 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1551 writel(rx_ctrl, base + NvRegReceiverControl);
1552 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1553 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1554 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1555
1556 udelay(NV_RXSTOP_DELAY2);
1557 if (!np->mac_in_use)
1558 writel(0, base + NvRegLinkSpeed);
1559 }
1560
1561 static void nv_start_tx(struct net_device *dev)
1562 {
1563 struct fe_priv *np = netdev_priv(dev);
1564 u8 __iomem *base = get_hwbase(dev);
1565 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1566
1567 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1568 tx_ctrl |= NVREG_XMITCTL_START;
1569 if (np->mac_in_use)
1570 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1571 writel(tx_ctrl, base + NvRegTransmitterControl);
1572 pci_push(base);
1573 }
1574
1575 static void nv_stop_tx(struct net_device *dev)
1576 {
1577 struct fe_priv *np = netdev_priv(dev);
1578 u8 __iomem *base = get_hwbase(dev);
1579 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1580
1581 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1582 if (!np->mac_in_use)
1583 tx_ctrl &= ~NVREG_XMITCTL_START;
1584 else
1585 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1586 writel(tx_ctrl, base + NvRegTransmitterControl);
1587 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1588 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1589 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1590
1591 udelay(NV_TXSTOP_DELAY2);
1592 if (!np->mac_in_use)
1593 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1594 base + NvRegTransmitPoll);
1595 }
1596
1597 static void nv_start_rxtx(struct net_device *dev)
1598 {
1599 nv_start_rx(dev);
1600 nv_start_tx(dev);
1601 }
1602
1603 static void nv_stop_rxtx(struct net_device *dev)
1604 {
1605 nv_stop_rx(dev);
1606 nv_stop_tx(dev);
1607 }
1608
1609 static void nv_txrx_reset(struct net_device *dev)
1610 {
1611 struct fe_priv *np = netdev_priv(dev);
1612 u8 __iomem *base = get_hwbase(dev);
1613
1614 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1615 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1616 pci_push(base);
1617 udelay(NV_TXRX_RESET_DELAY);
1618 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1619 pci_push(base);
1620 }
1621
1622 static void nv_mac_reset(struct net_device *dev)
1623 {
1624 struct fe_priv *np = netdev_priv(dev);
1625 u8 __iomem *base = get_hwbase(dev);
1626 u32 temp1, temp2, temp3;
1627
1628 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1629
1630 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1631 pci_push(base);
1632
1633 /* save registers since they will be cleared on reset */
1634 temp1 = readl(base + NvRegMacAddrA);
1635 temp2 = readl(base + NvRegMacAddrB);
1636 temp3 = readl(base + NvRegTransmitPoll);
1637
1638 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1639 pci_push(base);
1640 udelay(NV_MAC_RESET_DELAY);
1641 writel(0, base + NvRegMacReset);
1642 pci_push(base);
1643 udelay(NV_MAC_RESET_DELAY);
1644
1645 /* restore saved registers */
1646 writel(temp1, base + NvRegMacAddrA);
1647 writel(temp2, base + NvRegMacAddrB);
1648 writel(temp3, base + NvRegTransmitPoll);
1649
1650 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1651 pci_push(base);
1652 }
1653
1654 static void nv_get_hw_stats(struct net_device *dev)
1655 {
1656 struct fe_priv *np = netdev_priv(dev);
1657 u8 __iomem *base = get_hwbase(dev);
1658
1659 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1660 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1661 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1662 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1663 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1664 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1665 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1666 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1667 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1668 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1669 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1670 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1671 np->estats.rx_runt += readl(base + NvRegRxRunt);
1672 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1673 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1674 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1675 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1676 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1677 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1678 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1679 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1680 np->estats.rx_packets =
1681 np->estats.rx_unicast +
1682 np->estats.rx_multicast +
1683 np->estats.rx_broadcast;
1684 np->estats.rx_errors_total =
1685 np->estats.rx_crc_errors +
1686 np->estats.rx_over_errors +
1687 np->estats.rx_frame_error +
1688 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1689 np->estats.rx_late_collision +
1690 np->estats.rx_runt +
1691 np->estats.rx_frame_too_long;
1692 np->estats.tx_errors_total =
1693 np->estats.tx_late_collision +
1694 np->estats.tx_fifo_errors +
1695 np->estats.tx_carrier_errors +
1696 np->estats.tx_excess_deferral +
1697 np->estats.tx_retry_error;
1698
1699 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1700 np->estats.tx_deferral += readl(base + NvRegTxDef);
1701 np->estats.tx_packets += readl(base + NvRegTxFrame);
1702 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1703 np->estats.tx_pause += readl(base + NvRegTxPause);
1704 np->estats.rx_pause += readl(base + NvRegRxPause);
1705 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1706 }
1707
1708 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1709 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1710 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1711 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1712 }
1713 }
1714
1715 /*
1716 * nv_get_stats: dev->get_stats function
1717 * Get latest stats value from the nic.
1718 * Called with read_lock(&dev_base_lock) held for read -
1719 * only synchronized against unregister_netdevice.
1720 */
1721 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1722 {
1723 struct fe_priv *np = netdev_priv(dev);
1724
1725 /* If the nic supports hw counters then retrieve latest values */
1726 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1727 nv_get_hw_stats(dev);
1728
1729 /* copy to net_device stats */
1730 dev->stats.tx_bytes = np->estats.tx_bytes;
1731 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1732 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1733 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1734 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1735 dev->stats.rx_errors = np->estats.rx_errors_total;
1736 dev->stats.tx_errors = np->estats.tx_errors_total;
1737 }
1738
1739 return &dev->stats;
1740 }
1741
1742 /*
1743 * nv_alloc_rx: fill rx ring entries.
1744 * Return 1 if the allocations for the skbs failed and the
1745 * rx engine is without Available descriptors
1746 */
1747 static int nv_alloc_rx(struct net_device *dev)
1748 {
1749 struct fe_priv *np = netdev_priv(dev);
1750 struct ring_desc* less_rx;
1751
1752 less_rx = np->get_rx.orig;
1753 if (less_rx-- == np->first_rx.orig)
1754 less_rx = np->last_rx.orig;
1755
1756 while (np->put_rx.orig != less_rx) {
1757 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1758 if (skb) {
1759 np->put_rx_ctx->skb = skb;
1760 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1761 skb->data,
1762 skb_tailroom(skb),
1763 PCI_DMA_FROMDEVICE);
1764 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1765 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1766 wmb();
1767 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1768 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1769 np->put_rx.orig = np->first_rx.orig;
1770 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1771 np->put_rx_ctx = np->first_rx_ctx;
1772 } else {
1773 return 1;
1774 }
1775 }
1776 return 0;
1777 }
1778
1779 static int nv_alloc_rx_optimized(struct net_device *dev)
1780 {
1781 struct fe_priv *np = netdev_priv(dev);
1782 struct ring_desc_ex* less_rx;
1783
1784 less_rx = np->get_rx.ex;
1785 if (less_rx-- == np->first_rx.ex)
1786 less_rx = np->last_rx.ex;
1787
1788 while (np->put_rx.ex != less_rx) {
1789 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1790 if (skb) {
1791 np->put_rx_ctx->skb = skb;
1792 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1793 skb->data,
1794 skb_tailroom(skb),
1795 PCI_DMA_FROMDEVICE);
1796 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1797 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1798 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1799 wmb();
1800 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1801 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1802 np->put_rx.ex = np->first_rx.ex;
1803 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1804 np->put_rx_ctx = np->first_rx_ctx;
1805 } else {
1806 return 1;
1807 }
1808 }
1809 return 0;
1810 }
1811
1812 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1813 #ifdef CONFIG_FORCEDETH_NAPI
1814 static void nv_do_rx_refill(unsigned long data)
1815 {
1816 struct net_device *dev = (struct net_device *) data;
1817 struct fe_priv *np = netdev_priv(dev);
1818
1819 /* Just reschedule NAPI rx processing */
1820 napi_schedule(&np->napi);
1821 }
1822 #else
1823 static void nv_do_rx_refill(unsigned long data)
1824 {
1825 struct net_device *dev = (struct net_device *) data;
1826 struct fe_priv *np = netdev_priv(dev);
1827 int retcode;
1828
1829 if (!using_multi_irqs(dev)) {
1830 if (np->msi_flags & NV_MSI_X_ENABLED)
1831 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1832 else
1833 disable_irq(np->pci_dev->irq);
1834 } else {
1835 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1836 }
1837 if (!nv_optimized(np))
1838 retcode = nv_alloc_rx(dev);
1839 else
1840 retcode = nv_alloc_rx_optimized(dev);
1841 if (retcode) {
1842 spin_lock_irq(&np->lock);
1843 if (!np->in_shutdown)
1844 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1845 spin_unlock_irq(&np->lock);
1846 }
1847 if (!using_multi_irqs(dev)) {
1848 if (np->msi_flags & NV_MSI_X_ENABLED)
1849 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1850 else
1851 enable_irq(np->pci_dev->irq);
1852 } else {
1853 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1854 }
1855 }
1856 #endif
1857
1858 static void nv_init_rx(struct net_device *dev)
1859 {
1860 struct fe_priv *np = netdev_priv(dev);
1861 int i;
1862
1863 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1864
1865 if (!nv_optimized(np))
1866 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1867 else
1868 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1869 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1870 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1871
1872 for (i = 0; i < np->rx_ring_size; i++) {
1873 if (!nv_optimized(np)) {
1874 np->rx_ring.orig[i].flaglen = 0;
1875 np->rx_ring.orig[i].buf = 0;
1876 } else {
1877 np->rx_ring.ex[i].flaglen = 0;
1878 np->rx_ring.ex[i].txvlan = 0;
1879 np->rx_ring.ex[i].bufhigh = 0;
1880 np->rx_ring.ex[i].buflow = 0;
1881 }
1882 np->rx_skb[i].skb = NULL;
1883 np->rx_skb[i].dma = 0;
1884 }
1885 }
1886
1887 static void nv_init_tx(struct net_device *dev)
1888 {
1889 struct fe_priv *np = netdev_priv(dev);
1890 int i;
1891
1892 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1893
1894 if (!nv_optimized(np))
1895 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1896 else
1897 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1898 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1899 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1900 np->tx_pkts_in_progress = 0;
1901 np->tx_change_owner = NULL;
1902 np->tx_end_flip = NULL;
1903 np->tx_stop = 0;
1904
1905 for (i = 0; i < np->tx_ring_size; i++) {
1906 if (!nv_optimized(np)) {
1907 np->tx_ring.orig[i].flaglen = 0;
1908 np->tx_ring.orig[i].buf = 0;
1909 } else {
1910 np->tx_ring.ex[i].flaglen = 0;
1911 np->tx_ring.ex[i].txvlan = 0;
1912 np->tx_ring.ex[i].bufhigh = 0;
1913 np->tx_ring.ex[i].buflow = 0;
1914 }
1915 np->tx_skb[i].skb = NULL;
1916 np->tx_skb[i].dma = 0;
1917 np->tx_skb[i].dma_len = 0;
1918 np->tx_skb[i].dma_single = 0;
1919 np->tx_skb[i].first_tx_desc = NULL;
1920 np->tx_skb[i].next_tx_ctx = NULL;
1921 }
1922 }
1923
1924 static int nv_init_ring(struct net_device *dev)
1925 {
1926 struct fe_priv *np = netdev_priv(dev);
1927
1928 nv_init_tx(dev);
1929 nv_init_rx(dev);
1930
1931 if (!nv_optimized(np))
1932 return nv_alloc_rx(dev);
1933 else
1934 return nv_alloc_rx_optimized(dev);
1935 }
1936
1937 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1938 {
1939 if (tx_skb->dma) {
1940 if (tx_skb->dma_single)
1941 pci_unmap_single(np->pci_dev, tx_skb->dma,
1942 tx_skb->dma_len,
1943 PCI_DMA_TODEVICE);
1944 else
1945 pci_unmap_page(np->pci_dev, tx_skb->dma,
1946 tx_skb->dma_len,
1947 PCI_DMA_TODEVICE);
1948 tx_skb->dma = 0;
1949 }
1950 }
1951
1952 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1953 {
1954 nv_unmap_txskb(np, tx_skb);
1955 if (tx_skb->skb) {
1956 dev_kfree_skb_any(tx_skb->skb);
1957 tx_skb->skb = NULL;
1958 return 1;
1959 }
1960 return 0;
1961 }
1962
1963 static void nv_drain_tx(struct net_device *dev)
1964 {
1965 struct fe_priv *np = netdev_priv(dev);
1966 unsigned int i;
1967
1968 for (i = 0; i < np->tx_ring_size; i++) {
1969 if (!nv_optimized(np)) {
1970 np->tx_ring.orig[i].flaglen = 0;
1971 np->tx_ring.orig[i].buf = 0;
1972 } else {
1973 np->tx_ring.ex[i].flaglen = 0;
1974 np->tx_ring.ex[i].txvlan = 0;
1975 np->tx_ring.ex[i].bufhigh = 0;
1976 np->tx_ring.ex[i].buflow = 0;
1977 }
1978 if (nv_release_txskb(np, &np->tx_skb[i]))
1979 dev->stats.tx_dropped++;
1980 np->tx_skb[i].dma = 0;
1981 np->tx_skb[i].dma_len = 0;
1982 np->tx_skb[i].dma_single = 0;
1983 np->tx_skb[i].first_tx_desc = NULL;
1984 np->tx_skb[i].next_tx_ctx = NULL;
1985 }
1986 np->tx_pkts_in_progress = 0;
1987 np->tx_change_owner = NULL;
1988 np->tx_end_flip = NULL;
1989 }
1990
1991 static void nv_drain_rx(struct net_device *dev)
1992 {
1993 struct fe_priv *np = netdev_priv(dev);
1994 int i;
1995
1996 for (i = 0; i < np->rx_ring_size; i++) {
1997 if (!nv_optimized(np)) {
1998 np->rx_ring.orig[i].flaglen = 0;
1999 np->rx_ring.orig[i].buf = 0;
2000 } else {
2001 np->rx_ring.ex[i].flaglen = 0;
2002 np->rx_ring.ex[i].txvlan = 0;
2003 np->rx_ring.ex[i].bufhigh = 0;
2004 np->rx_ring.ex[i].buflow = 0;
2005 }
2006 wmb();
2007 if (np->rx_skb[i].skb) {
2008 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
2009 (skb_end_pointer(np->rx_skb[i].skb) -
2010 np->rx_skb[i].skb->data),
2011 PCI_DMA_FROMDEVICE);
2012 dev_kfree_skb(np->rx_skb[i].skb);
2013 np->rx_skb[i].skb = NULL;
2014 }
2015 }
2016 }
2017
2018 static void nv_drain_rxtx(struct net_device *dev)
2019 {
2020 nv_drain_tx(dev);
2021 nv_drain_rx(dev);
2022 }
2023
2024 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2025 {
2026 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2027 }
2028
2029 static void nv_legacybackoff_reseed(struct net_device *dev)
2030 {
2031 u8 __iomem *base = get_hwbase(dev);
2032 u32 reg;
2033 u32 low;
2034 int tx_status = 0;
2035
2036 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2037 get_random_bytes(&low, sizeof(low));
2038 reg |= low & NVREG_SLOTTIME_MASK;
2039
2040 /* Need to stop tx before change takes effect.
2041 * Caller has already gained np->lock.
2042 */
2043 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2044 if (tx_status)
2045 nv_stop_tx(dev);
2046 nv_stop_rx(dev);
2047 writel(reg, base + NvRegSlotTime);
2048 if (tx_status)
2049 nv_start_tx(dev);
2050 nv_start_rx(dev);
2051 }
2052
2053 /* Gear Backoff Seeds */
2054 #define BACKOFF_SEEDSET_ROWS 8
2055 #define BACKOFF_SEEDSET_LFSRS 15
2056
2057 /* Known Good seed sets */
2058 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2059 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2060 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2061 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2062 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2063 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2064 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2065 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2066 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2067
2068 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2069 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2070 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2071 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2072 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2073 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2074 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2075 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2076 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2077
2078 static void nv_gear_backoff_reseed(struct net_device *dev)
2079 {
2080 u8 __iomem *base = get_hwbase(dev);
2081 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2082 u32 temp, seedset, combinedSeed;
2083 int i;
2084
2085 /* Setup seed for free running LFSR */
2086 /* We are going to read the time stamp counter 3 times
2087 and swizzle bits around to increase randomness */
2088 get_random_bytes(&miniseed1, sizeof(miniseed1));
2089 miniseed1 &= 0x0fff;
2090 if (miniseed1 == 0)
2091 miniseed1 = 0xabc;
2092
2093 get_random_bytes(&miniseed2, sizeof(miniseed2));
2094 miniseed2 &= 0x0fff;
2095 if (miniseed2 == 0)
2096 miniseed2 = 0xabc;
2097 miniseed2_reversed =
2098 ((miniseed2 & 0xF00) >> 8) |
2099 (miniseed2 & 0x0F0) |
2100 ((miniseed2 & 0x00F) << 8);
2101
2102 get_random_bytes(&miniseed3, sizeof(miniseed3));
2103 miniseed3 &= 0x0fff;
2104 if (miniseed3 == 0)
2105 miniseed3 = 0xabc;
2106 miniseed3_reversed =
2107 ((miniseed3 & 0xF00) >> 8) |
2108 (miniseed3 & 0x0F0) |
2109 ((miniseed3 & 0x00F) << 8);
2110
2111 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2112 (miniseed2 ^ miniseed3_reversed);
2113
2114 /* Seeds can not be zero */
2115 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2116 combinedSeed |= 0x08;
2117 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2118 combinedSeed |= 0x8000;
2119
2120 /* No need to disable tx here */
2121 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2122 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2123 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2124 writel(temp,base + NvRegBackOffControl);
2125
2126 /* Setup seeds for all gear LFSRs. */
2127 get_random_bytes(&seedset, sizeof(seedset));
2128 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2129 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2130 {
2131 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2132 temp |= main_seedset[seedset][i-1] & 0x3ff;
2133 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2134 writel(temp, base + NvRegBackOffControl);
2135 }
2136 }
2137
2138 /*
2139 * nv_start_xmit: dev->hard_start_xmit function
2140 * Called with netif_tx_lock held.
2141 */
2142 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2143 {
2144 struct fe_priv *np = netdev_priv(dev);
2145 u32 tx_flags = 0;
2146 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2147 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2148 unsigned int i;
2149 u32 offset = 0;
2150 u32 bcnt;
2151 u32 size = skb->len-skb->data_len;
2152 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2153 u32 empty_slots;
2154 struct ring_desc* put_tx;
2155 struct ring_desc* start_tx;
2156 struct ring_desc* prev_tx;
2157 struct nv_skb_map* prev_tx_ctx;
2158 unsigned long flags;
2159
2160 /* add fragments to entries count */
2161 for (i = 0; i < fragments; i++) {
2162 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2163 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2164 }
2165
2166 spin_lock_irqsave(&np->lock, flags);
2167 empty_slots = nv_get_empty_tx_slots(np);
2168 if (unlikely(empty_slots <= entries)) {
2169 netif_stop_queue(dev);
2170 np->tx_stop = 1;
2171 spin_unlock_irqrestore(&np->lock, flags);
2172 return NETDEV_TX_BUSY;
2173 }
2174 spin_unlock_irqrestore(&np->lock, flags);
2175
2176 start_tx = put_tx = np->put_tx.orig;
2177
2178 /* setup the header buffer */
2179 do {
2180 prev_tx = put_tx;
2181 prev_tx_ctx = np->put_tx_ctx;
2182 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2183 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2184 PCI_DMA_TODEVICE);
2185 np->put_tx_ctx->dma_len = bcnt;
2186 np->put_tx_ctx->dma_single = 1;
2187 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2188 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2189
2190 tx_flags = np->tx_flags;
2191 offset += bcnt;
2192 size -= bcnt;
2193 if (unlikely(put_tx++ == np->last_tx.orig))
2194 put_tx = np->first_tx.orig;
2195 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2196 np->put_tx_ctx = np->first_tx_ctx;
2197 } while (size);
2198
2199 /* setup the fragments */
2200 for (i = 0; i < fragments; i++) {
2201 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2202 u32 size = frag->size;
2203 offset = 0;
2204
2205 do {
2206 prev_tx = put_tx;
2207 prev_tx_ctx = np->put_tx_ctx;
2208 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2209 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2210 PCI_DMA_TODEVICE);
2211 np->put_tx_ctx->dma_len = bcnt;
2212 np->put_tx_ctx->dma_single = 0;
2213 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2214 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2215
2216 offset += bcnt;
2217 size -= bcnt;
2218 if (unlikely(put_tx++ == np->last_tx.orig))
2219 put_tx = np->first_tx.orig;
2220 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2221 np->put_tx_ctx = np->first_tx_ctx;
2222 } while (size);
2223 }
2224
2225 /* set last fragment flag */
2226 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2227
2228 /* save skb in this slot's context area */
2229 prev_tx_ctx->skb = skb;
2230
2231 if (skb_is_gso(skb))
2232 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2233 else
2234 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2235 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2236
2237 spin_lock_irqsave(&np->lock, flags);
2238
2239 /* set tx flags */
2240 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2241 np->put_tx.orig = put_tx;
2242
2243 spin_unlock_irqrestore(&np->lock, flags);
2244
2245 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2246 dev->name, entries, tx_flags_extra);
2247 {
2248 int j;
2249 for (j=0; j<64; j++) {
2250 if ((j%16) == 0)
2251 dprintk("\n%03x:", j);
2252 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2253 }
2254 dprintk("\n");
2255 }
2256
2257 dev->trans_start = jiffies;
2258 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2259 return NETDEV_TX_OK;
2260 }
2261
2262 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2263 struct net_device *dev)
2264 {
2265 struct fe_priv *np = netdev_priv(dev);
2266 u32 tx_flags = 0;
2267 u32 tx_flags_extra;
2268 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2269 unsigned int i;
2270 u32 offset = 0;
2271 u32 bcnt;
2272 u32 size = skb->len-skb->data_len;
2273 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2274 u32 empty_slots;
2275 struct ring_desc_ex* put_tx;
2276 struct ring_desc_ex* start_tx;
2277 struct ring_desc_ex* prev_tx;
2278 struct nv_skb_map* prev_tx_ctx;
2279 struct nv_skb_map* start_tx_ctx;
2280 unsigned long flags;
2281
2282 /* add fragments to entries count */
2283 for (i = 0; i < fragments; i++) {
2284 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2285 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2286 }
2287
2288 spin_lock_irqsave(&np->lock, flags);
2289 empty_slots = nv_get_empty_tx_slots(np);
2290 if (unlikely(empty_slots <= entries)) {
2291 netif_stop_queue(dev);
2292 np->tx_stop = 1;
2293 spin_unlock_irqrestore(&np->lock, flags);
2294 return NETDEV_TX_BUSY;
2295 }
2296 spin_unlock_irqrestore(&np->lock, flags);
2297
2298 start_tx = put_tx = np->put_tx.ex;
2299 start_tx_ctx = np->put_tx_ctx;
2300
2301 /* setup the header buffer */
2302 do {
2303 prev_tx = put_tx;
2304 prev_tx_ctx = np->put_tx_ctx;
2305 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2306 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2307 PCI_DMA_TODEVICE);
2308 np->put_tx_ctx->dma_len = bcnt;
2309 np->put_tx_ctx->dma_single = 1;
2310 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2311 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2312 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2313
2314 tx_flags = NV_TX2_VALID;
2315 offset += bcnt;
2316 size -= bcnt;
2317 if (unlikely(put_tx++ == np->last_tx.ex))
2318 put_tx = np->first_tx.ex;
2319 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2320 np->put_tx_ctx = np->first_tx_ctx;
2321 } while (size);
2322
2323 /* setup the fragments */
2324 for (i = 0; i < fragments; i++) {
2325 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2326 u32 size = frag->size;
2327 offset = 0;
2328
2329 do {
2330 prev_tx = put_tx;
2331 prev_tx_ctx = np->put_tx_ctx;
2332 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2333 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2334 PCI_DMA_TODEVICE);
2335 np->put_tx_ctx->dma_len = bcnt;
2336 np->put_tx_ctx->dma_single = 0;
2337 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2338 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2339 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2340
2341 offset += bcnt;
2342 size -= bcnt;
2343 if (unlikely(put_tx++ == np->last_tx.ex))
2344 put_tx = np->first_tx.ex;
2345 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2346 np->put_tx_ctx = np->first_tx_ctx;
2347 } while (size);
2348 }
2349
2350 /* set last fragment flag */
2351 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2352
2353 /* save skb in this slot's context area */
2354 prev_tx_ctx->skb = skb;
2355
2356 if (skb_is_gso(skb))
2357 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2358 else
2359 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2360 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2361
2362 /* vlan tag */
2363 if (likely(!np->vlangrp)) {
2364 start_tx->txvlan = 0;
2365 } else {
2366 if (vlan_tx_tag_present(skb))
2367 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2368 else
2369 start_tx->txvlan = 0;
2370 }
2371
2372 spin_lock_irqsave(&np->lock, flags);
2373
2374 if (np->tx_limit) {
2375 /* Limit the number of outstanding tx. Setup all fragments, but
2376 * do not set the VALID bit on the first descriptor. Save a pointer
2377 * to that descriptor and also for next skb_map element.
2378 */
2379
2380 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2381 if (!np->tx_change_owner)
2382 np->tx_change_owner = start_tx_ctx;
2383
2384 /* remove VALID bit */
2385 tx_flags &= ~NV_TX2_VALID;
2386 start_tx_ctx->first_tx_desc = start_tx;
2387 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2388 np->tx_end_flip = np->put_tx_ctx;
2389 } else {
2390 np->tx_pkts_in_progress++;
2391 }
2392 }
2393
2394 /* set tx flags */
2395 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2396 np->put_tx.ex = put_tx;
2397
2398 spin_unlock_irqrestore(&np->lock, flags);
2399
2400 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2401 dev->name, entries, tx_flags_extra);
2402 {
2403 int j;
2404 for (j=0; j<64; j++) {
2405 if ((j%16) == 0)
2406 dprintk("\n%03x:", j);
2407 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2408 }
2409 dprintk("\n");
2410 }
2411
2412 dev->trans_start = jiffies;
2413 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2414 return NETDEV_TX_OK;
2415 }
2416
2417 static inline void nv_tx_flip_ownership(struct net_device *dev)
2418 {
2419 struct fe_priv *np = netdev_priv(dev);
2420
2421 np->tx_pkts_in_progress--;
2422 if (np->tx_change_owner) {
2423 np->tx_change_owner->first_tx_desc->flaglen |=
2424 cpu_to_le32(NV_TX2_VALID);
2425 np->tx_pkts_in_progress++;
2426
2427 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2428 if (np->tx_change_owner == np->tx_end_flip)
2429 np->tx_change_owner = NULL;
2430
2431 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2432 }
2433 }
2434
2435 /*
2436 * nv_tx_done: check for completed packets, release the skbs.
2437 *
2438 * Caller must own np->lock.
2439 */
2440 static int nv_tx_done(struct net_device *dev, int limit)
2441 {
2442 struct fe_priv *np = netdev_priv(dev);
2443 u32 flags;
2444 int tx_work = 0;
2445 struct ring_desc* orig_get_tx = np->get_tx.orig;
2446
2447 while ((np->get_tx.orig != np->put_tx.orig) &&
2448 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2449 (tx_work < limit)) {
2450
2451 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2452 dev->name, flags);
2453
2454 nv_unmap_txskb(np, np->get_tx_ctx);
2455
2456 if (np->desc_ver == DESC_VER_1) {
2457 if (flags & NV_TX_LASTPACKET) {
2458 if (flags & NV_TX_ERROR) {
2459 if (flags & NV_TX_UNDERFLOW)
2460 dev->stats.tx_fifo_errors++;
2461 if (flags & NV_TX_CARRIERLOST)
2462 dev->stats.tx_carrier_errors++;
2463 if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2464 nv_legacybackoff_reseed(dev);
2465 dev->stats.tx_errors++;
2466 } else {
2467 dev->stats.tx_packets++;
2468 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2469 }
2470 dev_kfree_skb_any(np->get_tx_ctx->skb);
2471 np->get_tx_ctx->skb = NULL;
2472 tx_work++;
2473 }
2474 } else {
2475 if (flags & NV_TX2_LASTPACKET) {
2476 if (flags & NV_TX2_ERROR) {
2477 if (flags & NV_TX2_UNDERFLOW)
2478 dev->stats.tx_fifo_errors++;
2479 if (flags & NV_TX2_CARRIERLOST)
2480 dev->stats.tx_carrier_errors++;
2481 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2482 nv_legacybackoff_reseed(dev);
2483 dev->stats.tx_errors++;
2484 } else {
2485 dev->stats.tx_packets++;
2486 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2487 }
2488 dev_kfree_skb_any(np->get_tx_ctx->skb);
2489 np->get_tx_ctx->skb = NULL;
2490 tx_work++;
2491 }
2492 }
2493 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2494 np->get_tx.orig = np->first_tx.orig;
2495 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2496 np->get_tx_ctx = np->first_tx_ctx;
2497 }
2498 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2499 np->tx_stop = 0;
2500 netif_wake_queue(dev);
2501 }
2502 return tx_work;
2503 }
2504
2505 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2506 {
2507 struct fe_priv *np = netdev_priv(dev);
2508 u32 flags;
2509 int tx_work = 0;
2510 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2511
2512 while ((np->get_tx.ex != np->put_tx.ex) &&
2513 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2514 (tx_work < limit)) {
2515
2516 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2517 dev->name, flags);
2518
2519 nv_unmap_txskb(np, np->get_tx_ctx);
2520
2521 if (flags & NV_TX2_LASTPACKET) {
2522 if (!(flags & NV_TX2_ERROR))
2523 dev->stats.tx_packets++;
2524 else {
2525 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2526 if (np->driver_data & DEV_HAS_GEAR_MODE)
2527 nv_gear_backoff_reseed(dev);
2528 else
2529 nv_legacybackoff_reseed(dev);
2530 }
2531 }
2532
2533 dev_kfree_skb_any(np->get_tx_ctx->skb);
2534 np->get_tx_ctx->skb = NULL;
2535 tx_work++;
2536
2537 if (np->tx_limit) {
2538 nv_tx_flip_ownership(dev);
2539 }
2540 }
2541 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2542 np->get_tx.ex = np->first_tx.ex;
2543 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2544 np->get_tx_ctx = np->first_tx_ctx;
2545 }
2546 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2547 np->tx_stop = 0;
2548 netif_wake_queue(dev);
2549 }
2550 return tx_work;
2551 }
2552
2553 /*
2554 * nv_tx_timeout: dev->tx_timeout function
2555 * Called with netif_tx_lock held.
2556 */
2557 static void nv_tx_timeout(struct net_device *dev)
2558 {
2559 struct fe_priv *np = netdev_priv(dev);
2560 u8 __iomem *base = get_hwbase(dev);
2561 u32 status;
2562 union ring_type put_tx;
2563 int saved_tx_limit;
2564
2565 if (np->msi_flags & NV_MSI_X_ENABLED)
2566 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2567 else
2568 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2569
2570 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2571
2572 {
2573 int i;
2574
2575 printk(KERN_INFO "%s: Ring at %lx\n",
2576 dev->name, (unsigned long)np->ring_addr);
2577 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2578 for (i=0;i<=np->register_size;i+= 32) {
2579 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2580 i,
2581 readl(base + i + 0), readl(base + i + 4),
2582 readl(base + i + 8), readl(base + i + 12),
2583 readl(base + i + 16), readl(base + i + 20),
2584 readl(base + i + 24), readl(base + i + 28));
2585 }
2586 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2587 for (i=0;i<np->tx_ring_size;i+= 4) {
2588 if (!nv_optimized(np)) {
2589 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2590 i,
2591 le32_to_cpu(np->tx_ring.orig[i].buf),
2592 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2593 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2594 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2595 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2596 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2597 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2598 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2599 } else {
2600 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2601 i,
2602 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2603 le32_to_cpu(np->tx_ring.ex[i].buflow),
2604 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2605 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2606 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2607 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2608 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2609 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2610 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2611 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2612 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2613 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2614 }
2615 }
2616 }
2617
2618 spin_lock_irq(&np->lock);
2619
2620 /* 1) stop tx engine */
2621 nv_stop_tx(dev);
2622
2623 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2624 saved_tx_limit = np->tx_limit;
2625 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2626 np->tx_stop = 0; /* prevent waking tx queue */
2627 if (!nv_optimized(np))
2628 nv_tx_done(dev, np->tx_ring_size);
2629 else
2630 nv_tx_done_optimized(dev, np->tx_ring_size);
2631
2632 /* save current HW postion */
2633 if (np->tx_change_owner)
2634 put_tx.ex = np->tx_change_owner->first_tx_desc;
2635 else
2636 put_tx = np->put_tx;
2637
2638 /* 3) clear all tx state */
2639 nv_drain_tx(dev);
2640 nv_init_tx(dev);
2641
2642 /* 4) restore state to current HW position */
2643 np->get_tx = np->put_tx = put_tx;
2644 np->tx_limit = saved_tx_limit;
2645
2646 /* 5) restart tx engine */
2647 nv_start_tx(dev);
2648 netif_wake_queue(dev);
2649 spin_unlock_irq(&np->lock);
2650 }
2651
2652 /*
2653 * Called when the nic notices a mismatch between the actual data len on the
2654 * wire and the len indicated in the 802 header
2655 */
2656 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2657 {
2658 int hdrlen; /* length of the 802 header */
2659 int protolen; /* length as stored in the proto field */
2660
2661 /* 1) calculate len according to header */
2662 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2663 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2664 hdrlen = VLAN_HLEN;
2665 } else {
2666 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2667 hdrlen = ETH_HLEN;
2668 }
2669 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2670 dev->name, datalen, protolen, hdrlen);
2671 if (protolen > ETH_DATA_LEN)
2672 return datalen; /* Value in proto field not a len, no checks possible */
2673
2674 protolen += hdrlen;
2675 /* consistency checks: */
2676 if (datalen > ETH_ZLEN) {
2677 if (datalen >= protolen) {
2678 /* more data on wire than in 802 header, trim of
2679 * additional data.
2680 */
2681 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2682 dev->name, protolen);
2683 return protolen;
2684 } else {
2685 /* less data on wire than mentioned in header.
2686 * Discard the packet.
2687 */
2688 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2689 dev->name);
2690 return -1;
2691 }
2692 } else {
2693 /* short packet. Accept only if 802 values are also short */
2694 if (protolen > ETH_ZLEN) {
2695 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2696 dev->name);
2697 return -1;
2698 }
2699 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2700 dev->name, datalen);
2701 return datalen;
2702 }
2703 }
2704
2705 static int nv_rx_process(struct net_device *dev, int limit)
2706 {
2707 struct fe_priv *np = netdev_priv(dev);
2708 u32 flags;
2709 int rx_work = 0;
2710 struct sk_buff *skb;
2711 int len;
2712
2713 while((np->get_rx.orig != np->put_rx.orig) &&
2714 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2715 (rx_work < limit)) {
2716
2717 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2718 dev->name, flags);
2719
2720 /*
2721 * the packet is for us - immediately tear down the pci mapping.
2722 * TODO: check if a prefetch of the first cacheline improves
2723 * the performance.
2724 */
2725 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2726 np->get_rx_ctx->dma_len,
2727 PCI_DMA_FROMDEVICE);
2728 skb = np->get_rx_ctx->skb;
2729 np->get_rx_ctx->skb = NULL;
2730
2731 {
2732 int j;
2733 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2734 for (j=0; j<64; j++) {
2735 if ((j%16) == 0)
2736 dprintk("\n%03x:", j);
2737 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2738 }
2739 dprintk("\n");
2740 }
2741 /* look at what we actually got: */
2742 if (np->desc_ver == DESC_VER_1) {
2743 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2744 len = flags & LEN_MASK_V1;
2745 if (unlikely(flags & NV_RX_ERROR)) {
2746 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2747 len = nv_getlen(dev, skb->data, len);
2748 if (len < 0) {
2749 dev->stats.rx_errors++;
2750 dev_kfree_skb(skb);
2751 goto next_pkt;
2752 }
2753 }
2754 /* framing errors are soft errors */
2755 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2756 if (flags & NV_RX_SUBSTRACT1) {
2757 len--;
2758 }
2759 }
2760 /* the rest are hard errors */
2761 else {
2762 if (flags & NV_RX_MISSEDFRAME)
2763 dev->stats.rx_missed_errors++;
2764 if (flags & NV_RX_CRCERR)
2765 dev->stats.rx_crc_errors++;
2766 if (flags & NV_RX_OVERFLOW)
2767 dev->stats.rx_over_errors++;
2768 dev->stats.rx_errors++;
2769 dev_kfree_skb(skb);
2770 goto next_pkt;
2771 }
2772 }
2773 } else {
2774 dev_kfree_skb(skb);
2775 goto next_pkt;
2776 }
2777 } else {
2778 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2779 len = flags & LEN_MASK_V2;
2780 if (unlikely(flags & NV_RX2_ERROR)) {
2781 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2782 len = nv_getlen(dev, skb->data, len);
2783 if (len < 0) {
2784 dev->stats.rx_errors++;
2785 dev_kfree_skb(skb);
2786 goto next_pkt;
2787 }
2788 }
2789 /* framing errors are soft errors */
2790 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2791 if (flags & NV_RX2_SUBSTRACT1) {
2792 len--;
2793 }
2794 }
2795 /* the rest are hard errors */
2796 else {
2797 if (flags & NV_RX2_CRCERR)
2798 dev->stats.rx_crc_errors++;
2799 if (flags & NV_RX2_OVERFLOW)
2800 dev->stats.rx_over_errors++;
2801 dev->stats.rx_errors++;
2802 dev_kfree_skb(skb);
2803 goto next_pkt;
2804 }
2805 }
2806 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2807 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2808 skb->ip_summed = CHECKSUM_UNNECESSARY;
2809 } else {
2810 dev_kfree_skb(skb);
2811 goto next_pkt;
2812 }
2813 }
2814 /* got a valid packet - forward it to the network core */
2815 skb_put(skb, len);
2816 skb->protocol = eth_type_trans(skb, dev);
2817 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2818 dev->name, len, skb->protocol);
2819 #ifdef CONFIG_FORCEDETH_NAPI
2820 netif_receive_skb(skb);
2821 #else
2822 netif_rx(skb);
2823 #endif
2824 dev->stats.rx_packets++;
2825 dev->stats.rx_bytes += len;
2826 next_pkt:
2827 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2828 np->get_rx.orig = np->first_rx.orig;
2829 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2830 np->get_rx_ctx = np->first_rx_ctx;
2831
2832 rx_work++;
2833 }
2834
2835 return rx_work;
2836 }
2837
2838 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2839 {
2840 struct fe_priv *np = netdev_priv(dev);
2841 u32 flags;
2842 u32 vlanflags = 0;
2843 int rx_work = 0;
2844 struct sk_buff *skb;
2845 int len;
2846
2847 while((np->get_rx.ex != np->put_rx.ex) &&
2848 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2849 (rx_work < limit)) {
2850
2851 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2852 dev->name, flags);
2853
2854 /*
2855 * the packet is for us - immediately tear down the pci mapping.
2856 * TODO: check if a prefetch of the first cacheline improves
2857 * the performance.
2858 */
2859 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2860 np->get_rx_ctx->dma_len,
2861 PCI_DMA_FROMDEVICE);
2862 skb = np->get_rx_ctx->skb;
2863 np->get_rx_ctx->skb = NULL;
2864
2865 {
2866 int j;
2867 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2868 for (j=0; j<64; j++) {
2869 if ((j%16) == 0)
2870 dprintk("\n%03x:", j);
2871 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2872 }
2873 dprintk("\n");
2874 }
2875 /* look at what we actually got: */
2876 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2877 len = flags & LEN_MASK_V2;
2878 if (unlikely(flags & NV_RX2_ERROR)) {
2879 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2880 len = nv_getlen(dev, skb->data, len);
2881 if (len < 0) {
2882 dev_kfree_skb(skb);
2883 goto next_pkt;
2884 }
2885 }
2886 /* framing errors are soft errors */
2887 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2888 if (flags & NV_RX2_SUBSTRACT1) {
2889 len--;
2890 }
2891 }
2892 /* the rest are hard errors */
2893 else {
2894 dev_kfree_skb(skb);
2895 goto next_pkt;
2896 }
2897 }
2898
2899 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2900 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2901 skb->ip_summed = CHECKSUM_UNNECESSARY;
2902
2903 /* got a valid packet - forward it to the network core */
2904 skb_put(skb, len);
2905 skb->protocol = eth_type_trans(skb, dev);
2906 prefetch(skb->data);
2907
2908 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2909 dev->name, len, skb->protocol);
2910
2911 if (likely(!np->vlangrp)) {
2912 #ifdef CONFIG_FORCEDETH_NAPI
2913 netif_receive_skb(skb);
2914 #else
2915 netif_rx(skb);
2916 #endif
2917 } else {
2918 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2919 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2920 #ifdef CONFIG_FORCEDETH_NAPI
2921 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2922 vlanflags & NV_RX3_VLAN_TAG_MASK);
2923 #else
2924 vlan_hwaccel_rx(skb, np->vlangrp,
2925 vlanflags & NV_RX3_VLAN_TAG_MASK);
2926 #endif
2927 } else {
2928 #ifdef CONFIG_FORCEDETH_NAPI
2929 netif_receive_skb(skb);
2930 #else
2931 netif_rx(skb);
2932 #endif
2933 }
2934 }
2935
2936 dev->stats.rx_packets++;
2937 dev->stats.rx_bytes += len;
2938 } else {
2939 dev_kfree_skb(skb);
2940 }
2941 next_pkt:
2942 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2943 np->get_rx.ex = np->first_rx.ex;
2944 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2945 np->get_rx_ctx = np->first_rx_ctx;
2946
2947 rx_work++;
2948 }
2949
2950 return rx_work;
2951 }
2952
2953 static void set_bufsize(struct net_device *dev)
2954 {
2955 struct fe_priv *np = netdev_priv(dev);
2956
2957 if (dev->mtu <= ETH_DATA_LEN)
2958 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2959 else
2960 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2961 }
2962
2963 /*
2964 * nv_change_mtu: dev->change_mtu function
2965 * Called with dev_base_lock held for read.
2966 */
2967 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2968 {
2969 struct fe_priv *np = netdev_priv(dev);
2970 int old_mtu;
2971
2972 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2973 return -EINVAL;
2974
2975 old_mtu = dev->mtu;
2976 dev->mtu = new_mtu;
2977
2978 /* return early if the buffer sizes will not change */
2979 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2980 return 0;
2981 if (old_mtu == new_mtu)
2982 return 0;
2983
2984 /* synchronized against open : rtnl_lock() held by caller */
2985 if (netif_running(dev)) {
2986 u8 __iomem *base = get_hwbase(dev);
2987 /*
2988 * It seems that the nic preloads valid ring entries into an
2989 * internal buffer. The procedure for flushing everything is
2990 * guessed, there is probably a simpler approach.
2991 * Changing the MTU is a rare event, it shouldn't matter.
2992 */
2993 nv_disable_irq(dev);
2994 nv_napi_disable(dev);
2995 netif_tx_lock_bh(dev);
2996 netif_addr_lock(dev);
2997 spin_lock(&np->lock);
2998 /* stop engines */
2999 nv_stop_rxtx(dev);
3000 nv_txrx_reset(dev);
3001 /* drain rx queue */
3002 nv_drain_rxtx(dev);
3003 /* reinit driver view of the rx queue */
3004 set_bufsize(dev);
3005 if (nv_init_ring(dev)) {
3006 if (!np->in_shutdown)
3007 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3008 }
3009 /* reinit nic view of the rx queue */
3010 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3011 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3012 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3013 base + NvRegRingSizes);
3014 pci_push(base);
3015 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3016 pci_push(base);
3017
3018 /* restart rx engine */
3019 nv_start_rxtx(dev);
3020 spin_unlock(&np->lock);
3021 netif_addr_unlock(dev);
3022 netif_tx_unlock_bh(dev);
3023 nv_napi_enable(dev);
3024 nv_enable_irq(dev);
3025 }
3026 return 0;
3027 }
3028
3029 static void nv_copy_mac_to_hw(struct net_device *dev)
3030 {
3031 u8 __iomem *base = get_hwbase(dev);
3032 u32 mac[2];
3033
3034 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3035 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3036 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3037
3038 writel(mac[0], base + NvRegMacAddrA);
3039 writel(mac[1], base + NvRegMacAddrB);
3040 }
3041
3042 /*
3043 * nv_set_mac_address: dev->set_mac_address function
3044 * Called with rtnl_lock() held.
3045 */
3046 static int nv_set_mac_address(struct net_device *dev, void *addr)
3047 {
3048 struct fe_priv *np = netdev_priv(dev);
3049 struct sockaddr *macaddr = (struct sockaddr*)addr;
3050
3051 if (!is_valid_ether_addr(macaddr->sa_data))
3052 return -EADDRNOTAVAIL;
3053
3054 /* synchronized against open : rtnl_lock() held by caller */
3055 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3056
3057 if (netif_running(dev)) {
3058 netif_tx_lock_bh(dev);
3059 netif_addr_lock(dev);
3060 spin_lock_irq(&np->lock);
3061
3062 /* stop rx engine */
3063 nv_stop_rx(dev);
3064
3065 /* set mac address */
3066 nv_copy_mac_to_hw(dev);
3067
3068 /* restart rx engine */
3069 nv_start_rx(dev);
3070 spin_unlock_irq(&np->lock);
3071 netif_addr_unlock(dev);
3072 netif_tx_unlock_bh(dev);
3073 } else {
3074 nv_copy_mac_to_hw(dev);
3075 }
3076 return 0;
3077 }
3078
3079 /*
3080 * nv_set_multicast: dev->set_multicast function
3081 * Called with netif_tx_lock held.
3082 */
3083 static void nv_set_multicast(struct net_device *dev)
3084 {
3085 struct fe_priv *np = netdev_priv(dev);
3086 u8 __iomem *base = get_hwbase(dev);
3087 u32 addr[2];
3088 u32 mask[2];
3089 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3090
3091 memset(addr, 0, sizeof(addr));
3092 memset(mask, 0, sizeof(mask));
3093
3094 if (dev->flags & IFF_PROMISC) {
3095 pff |= NVREG_PFF_PROMISC;
3096 } else {
3097 pff |= NVREG_PFF_MYADDR;
3098
3099 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3100 u32 alwaysOff[2];
3101 u32 alwaysOn[2];
3102
3103 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3104 if (dev->flags & IFF_ALLMULTI) {
3105 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3106 } else {
3107 struct dev_mc_list *walk;
3108
3109 netdev_for_each_mc_addr(walk, dev) {
3110 u32 a, b;
3111 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
3112 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
3113 alwaysOn[0] &= a;
3114 alwaysOff[0] &= ~a;
3115 alwaysOn[1] &= b;
3116 alwaysOff[1] &= ~b;
3117 }
3118 }
3119 addr[0] = alwaysOn[0];
3120 addr[1] = alwaysOn[1];
3121 mask[0] = alwaysOn[0] | alwaysOff[0];
3122 mask[1] = alwaysOn[1] | alwaysOff[1];
3123 } else {
3124 mask[0] = NVREG_MCASTMASKA_NONE;
3125 mask[1] = NVREG_MCASTMASKB_NONE;
3126 }
3127 }
3128 addr[0] |= NVREG_MCASTADDRA_FORCE;
3129 pff |= NVREG_PFF_ALWAYS;
3130 spin_lock_irq(&np->lock);
3131 nv_stop_rx(dev);
3132 writel(addr[0], base + NvRegMulticastAddrA);
3133 writel(addr[1], base + NvRegMulticastAddrB);
3134 writel(mask[0], base + NvRegMulticastMaskA);
3135 writel(mask[1], base + NvRegMulticastMaskB);
3136 writel(pff, base + NvRegPacketFilterFlags);
3137 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3138 dev->name);
3139 nv_start_rx(dev);
3140 spin_unlock_irq(&np->lock);
3141 }
3142
3143 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3144 {
3145 struct fe_priv *np = netdev_priv(dev);
3146 u8 __iomem *base = get_hwbase(dev);
3147
3148 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3149
3150 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3151 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3152 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3153 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3154 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3155 } else {
3156 writel(pff, base + NvRegPacketFilterFlags);
3157 }
3158 }
3159 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3160 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3161 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3162 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3163 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3164 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3165 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3166 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3167 /* limit the number of tx pause frames to a default of 8 */
3168 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3169 }
3170 writel(pause_enable, base + NvRegTxPauseFrame);
3171 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3172 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3173 } else {
3174 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3175 writel(regmisc, base + NvRegMisc1);
3176 }
3177 }
3178 }
3179
3180 /**
3181 * nv_update_linkspeed: Setup the MAC according to the link partner
3182 * @dev: Network device to be configured
3183 *
3184 * The function queries the PHY and checks if there is a link partner.
3185 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3186 * set to 10 MBit HD.
3187 *
3188 * The function returns 0 if there is no link partner and 1 if there is
3189 * a good link partner.
3190 */
3191 static int nv_update_linkspeed(struct net_device *dev)
3192 {
3193 struct fe_priv *np = netdev_priv(dev);
3194 u8 __iomem *base = get_hwbase(dev);
3195 int adv = 0;
3196 int lpa = 0;
3197 int adv_lpa, adv_pause, lpa_pause;
3198 int newls = np->linkspeed;
3199 int newdup = np->duplex;
3200 int mii_status;
3201 int retval = 0;
3202 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3203 u32 txrxFlags = 0;
3204 u32 phy_exp;
3205
3206 /* BMSR_LSTATUS is latched, read it twice:
3207 * we want the current value.
3208 */
3209 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3210 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3211
3212 if (!(mii_status & BMSR_LSTATUS)) {
3213 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3214 dev->name);
3215 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3216 newdup = 0;
3217 retval = 0;
3218 goto set_speed;
3219 }
3220
3221 if (np->autoneg == 0) {
3222 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3223 dev->name, np->fixed_mode);
3224 if (np->fixed_mode & LPA_100FULL) {
3225 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3226 newdup = 1;
3227 } else if (np->fixed_mode & LPA_100HALF) {
3228 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3229 newdup = 0;
3230 } else if (np->fixed_mode & LPA_10FULL) {
3231 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3232 newdup = 1;
3233 } else {
3234 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3235 newdup = 0;
3236 }
3237 retval = 1;
3238 goto set_speed;
3239 }
3240 /* check auto negotiation is complete */
3241 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3242 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3243 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3244 newdup = 0;
3245 retval = 0;
3246 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3247 goto set_speed;
3248 }
3249
3250 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3251 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3252 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3253 dev->name, adv, lpa);
3254
3255 retval = 1;
3256 if (np->gigabit == PHY_GIGABIT) {
3257 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3258 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3259
3260 if ((control_1000 & ADVERTISE_1000FULL) &&
3261 (status_1000 & LPA_1000FULL)) {
3262 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3263 dev->name);
3264 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3265 newdup = 1;
3266 goto set_speed;
3267 }
3268 }
3269
3270 /* FIXME: handle parallel detection properly */
3271 adv_lpa = lpa & adv;
3272 if (adv_lpa & LPA_100FULL) {
3273 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3274 newdup = 1;
3275 } else if (adv_lpa & LPA_100HALF) {
3276 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3277 newdup = 0;
3278 } else if (adv_lpa & LPA_10FULL) {
3279 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3280 newdup = 1;
3281 } else if (adv_lpa & LPA_10HALF) {
3282 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3283 newdup = 0;
3284 } else {
3285 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3286 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3287 newdup = 0;
3288 }
3289
3290 set_speed:
3291 if (np->duplex == newdup && np->linkspeed == newls)
3292 return retval;
3293
3294 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3295 dev->name, np->linkspeed, np->duplex, newls, newdup);
3296
3297 np->duplex = newdup;
3298 np->linkspeed = newls;
3299
3300 /* The transmitter and receiver must be restarted for safe update */
3301 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3302 txrxFlags |= NV_RESTART_TX;
3303 nv_stop_tx(dev);
3304 }
3305 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3306 txrxFlags |= NV_RESTART_RX;
3307 nv_stop_rx(dev);
3308 }
3309
3310 if (np->gigabit == PHY_GIGABIT) {
3311 phyreg = readl(base + NvRegSlotTime);
3312 phyreg &= ~(0x3FF00);
3313 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3314 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3315 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3316 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3317 phyreg |= NVREG_SLOTTIME_1000_FULL;
3318 writel(phyreg, base + NvRegSlotTime);
3319 }
3320
3321 phyreg = readl(base + NvRegPhyInterface);
3322 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3323 if (np->duplex == 0)
3324 phyreg |= PHY_HALF;
3325 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3326 phyreg |= PHY_100;
3327 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3328 phyreg |= PHY_1000;
3329 writel(phyreg, base + NvRegPhyInterface);
3330
3331 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3332 if (phyreg & PHY_RGMII) {
3333 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3334 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3335 } else {
3336 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3337 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3338 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3339 else
3340 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3341 } else {
3342 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3343 }
3344 }
3345 } else {
3346 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3347 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3348 else
3349 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3350 }
3351 writel(txreg, base + NvRegTxDeferral);
3352
3353 if (np->desc_ver == DESC_VER_1) {
3354 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3355 } else {
3356 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3357 txreg = NVREG_TX_WM_DESC2_3_1000;
3358 else
3359 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3360 }
3361 writel(txreg, base + NvRegTxWatermark);
3362
3363 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3364 base + NvRegMisc1);
3365 pci_push(base);
3366 writel(np->linkspeed, base + NvRegLinkSpeed);
3367 pci_push(base);
3368
3369 pause_flags = 0;
3370 /* setup pause frame */
3371 if (np->duplex != 0) {
3372 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3373 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3374 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3375
3376 switch (adv_pause) {
3377 case ADVERTISE_PAUSE_CAP:
3378 if (lpa_pause & LPA_PAUSE_CAP) {
3379 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3380 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3381 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3382 }
3383 break;
3384 case ADVERTISE_PAUSE_ASYM:
3385 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3386 {
3387 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3388 }
3389 break;
3390 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3391 if (lpa_pause & LPA_PAUSE_CAP)
3392 {
3393 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3394 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3395 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3396 }
3397 if (lpa_pause == LPA_PAUSE_ASYM)
3398 {
3399 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3400 }
3401 break;
3402 }
3403 } else {
3404 pause_flags = np->pause_flags;
3405 }
3406 }
3407 nv_update_pause(dev, pause_flags);
3408
3409 if (txrxFlags & NV_RESTART_TX)
3410 nv_start_tx(dev);
3411 if (txrxFlags & NV_RESTART_RX)
3412 nv_start_rx(dev);
3413
3414 return retval;
3415 }
3416
3417 static void nv_linkchange(struct net_device *dev)
3418 {
3419 if (nv_update_linkspeed(dev)) {
3420 if (!netif_carrier_ok(dev)) {
3421 netif_carrier_on(dev);
3422 printk(KERN_INFO "%s: link up.\n", dev->name);
3423 nv_txrx_gate(dev, false);
3424 nv_start_rx(dev);
3425 }
3426 } else {
3427 if (netif_carrier_ok(dev)) {
3428 netif_carrier_off(dev);
3429 printk(KERN_INFO "%s: link down.\n", dev->name);
3430 nv_txrx_gate(dev, true);
3431 nv_stop_rx(dev);
3432 }
3433 }
3434 }
3435
3436 static void nv_link_irq(struct net_device *dev)
3437 {
3438 u8 __iomem *base = get_hwbase(dev);
3439 u32 miistat;
3440
3441 miistat = readl(base + NvRegMIIStatus);
3442 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3443 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3444
3445 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3446 nv_linkchange(dev);
3447 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3448 }
3449
3450 static void nv_msi_workaround(struct fe_priv *np)
3451 {
3452
3453 /* Need to toggle the msi irq mask within the ethernet device,
3454 * otherwise, future interrupts will not be detected.
3455 */
3456 if (np->msi_flags & NV_MSI_ENABLED) {
3457 u8 __iomem *base = np->base;
3458
3459 writel(0, base + NvRegMSIIrqMask);
3460 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3461 }
3462 }
3463
3464 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3465 {
3466 struct fe_priv *np = netdev_priv(dev);
3467
3468 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3469 if (total_work > NV_DYNAMIC_THRESHOLD) {
3470 /* transition to poll based interrupts */
3471 np->quiet_count = 0;
3472 if (np->irqmask != NVREG_IRQMASK_CPU) {
3473 np->irqmask = NVREG_IRQMASK_CPU;
3474 return 1;
3475 }
3476 } else {
3477 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3478 np->quiet_count++;
3479 } else {
3480 /* reached a period of low activity, switch
3481 to per tx/rx packet interrupts */
3482 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3483 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3484 return 1;
3485 }
3486 }
3487 }
3488 }
3489 return 0;
3490 }
3491
3492 static irqreturn_t nv_nic_irq(int foo, void *data)
3493 {
3494 struct net_device *dev = (struct net_device *) data;
3495 struct fe_priv *np = netdev_priv(dev);
3496 u8 __iomem *base = get_hwbase(dev);
3497 #ifndef CONFIG_FORCEDETH_NAPI
3498 int total_work = 0;
3499 int loop_count = 0;
3500 #endif
3501
3502 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3503
3504 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3505 np->events = readl(base + NvRegIrqStatus);
3506 writel(np->events, base + NvRegIrqStatus);
3507 } else {
3508 np->events = readl(base + NvRegMSIXIrqStatus);
3509 writel(np->events, base + NvRegMSIXIrqStatus);
3510 }
3511 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3512 if (!(np->events & np->irqmask))
3513 return IRQ_NONE;
3514
3515 nv_msi_workaround(np);
3516
3517 #ifdef CONFIG_FORCEDETH_NAPI
3518 if (napi_schedule_prep(&np->napi)) {
3519 /*
3520 * Disable further irq's (msix not enabled with napi)
3521 */
3522 writel(0, base + NvRegIrqMask);
3523 __napi_schedule(&np->napi);
3524 }
3525
3526 #else
3527 do
3528 {
3529 int work = 0;
3530 if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
3531 if (unlikely(nv_alloc_rx(dev))) {
3532 spin_lock(&np->lock);
3533 if (!np->in_shutdown)
3534 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3535 spin_unlock(&np->lock);
3536 }
3537 }
3538
3539 spin_lock(&np->lock);
3540 work += nv_tx_done(dev, TX_WORK_PER_LOOP);
3541 spin_unlock(&np->lock);
3542
3543 if (!work)
3544 break;
3545
3546 total_work += work;
3547
3548 loop_count++;
3549 }
3550 while (loop_count < max_interrupt_work);
3551
3552 if (nv_change_interrupt_mode(dev, total_work)) {
3553 /* setup new irq mask */
3554 writel(np->irqmask, base + NvRegIrqMask);
3555 }
3556
3557 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3558 spin_lock(&np->lock);
3559 nv_link_irq(dev);
3560 spin_unlock(&np->lock);
3561 }
3562 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3563 spin_lock(&np->lock);
3564 nv_linkchange(dev);
3565 spin_unlock(&np->lock);
3566 np->link_timeout = jiffies + LINK_TIMEOUT;
3567 }
3568 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3569 spin_lock(&np->lock);
3570 /* disable interrupts on the nic */
3571 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3572 writel(0, base + NvRegIrqMask);
3573 else
3574 writel(np->irqmask, base + NvRegIrqMask);
3575 pci_push(base);
3576
3577 if (!np->in_shutdown) {
3578 np->nic_poll_irq = np->irqmask;
3579 np->recover_error = 1;
3580 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3581 }
3582 spin_unlock(&np->lock);
3583 }
3584 #endif
3585 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3586
3587 return IRQ_HANDLED;
3588 }
3589
3590 /**
3591 * All _optimized functions are used to help increase performance
3592 * (reduce CPU and increase throughput). They use descripter version 3,
3593 * compiler directives, and reduce memory accesses.
3594 */
3595 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3596 {
3597 struct net_device *dev = (struct net_device *) data;
3598 struct fe_priv *np = netdev_priv(dev);
3599 u8 __iomem *base = get_hwbase(dev);
3600 #ifndef CONFIG_FORCEDETH_NAPI
3601 int total_work = 0;
3602 int loop_count = 0;
3603 #endif
3604
3605 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3606
3607 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3608 np->events = readl(base + NvRegIrqStatus);
3609 writel(np->events, base + NvRegIrqStatus);
3610 } else {
3611 np->events = readl(base + NvRegMSIXIrqStatus);
3612 writel(np->events, base + NvRegMSIXIrqStatus);
3613 }
3614 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3615 if (!(np->events & np->irqmask))
3616 return IRQ_NONE;
3617
3618 nv_msi_workaround(np);
3619
3620 #ifdef CONFIG_FORCEDETH_NAPI
3621 if (napi_schedule_prep(&np->napi)) {
3622 /*
3623 * Disable further irq's (msix not enabled with napi)
3624 */
3625 writel(0, base + NvRegIrqMask);
3626 __napi_schedule(&np->napi);
3627 }
3628 #else
3629 do
3630 {
3631 int work = 0;
3632 if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
3633 if (unlikely(nv_alloc_rx_optimized(dev))) {
3634 spin_lock(&np->lock);
3635 if (!np->in_shutdown)
3636 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3637 spin_unlock(&np->lock);
3638 }
3639 }
3640
3641 spin_lock(&np->lock);
3642 work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3643 spin_unlock(&np->lock);
3644
3645 if (!work)
3646 break;
3647
3648 total_work += work;
3649
3650 loop_count++;
3651 }
3652 while (loop_count < max_interrupt_work);
3653
3654 if (nv_change_interrupt_mode(dev, total_work)) {
3655 /* setup new irq mask */
3656 writel(np->irqmask, base + NvRegIrqMask);
3657 }
3658
3659 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3660 spin_lock(&np->lock);
3661 nv_link_irq(dev);
3662 spin_unlock(&np->lock);
3663 }
3664 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3665 spin_lock(&np->lock);
3666 nv_linkchange(dev);
3667 spin_unlock(&np->lock);
3668 np->link_timeout = jiffies + LINK_TIMEOUT;
3669 }
3670 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3671 spin_lock(&np->lock);
3672 /* disable interrupts on the nic */
3673 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3674 writel(0, base + NvRegIrqMask);
3675 else
3676 writel(np->irqmask, base + NvRegIrqMask);
3677 pci_push(base);
3678
3679 if (!np->in_shutdown) {
3680 np->nic_poll_irq = np->irqmask;
3681 np->recover_error = 1;
3682 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3683 }
3684 spin_unlock(&np->lock);
3685 }
3686
3687 #endif
3688 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3689
3690 return IRQ_HANDLED;
3691 }
3692
3693 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3694 {
3695 struct net_device *dev = (struct net_device *) data;
3696 struct fe_priv *np = netdev_priv(dev);
3697 u8 __iomem *base = get_hwbase(dev);
3698 u32 events;
3699 int i;
3700 unsigned long flags;
3701
3702 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3703
3704 for (i=0; ; i++) {
3705 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3706 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3707 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3708 if (!(events & np->irqmask))
3709 break;
3710
3711 spin_lock_irqsave(&np->lock, flags);
3712 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3713 spin_unlock_irqrestore(&np->lock, flags);
3714
3715 if (unlikely(i > max_interrupt_work)) {
3716 spin_lock_irqsave(&np->lock, flags);
3717 /* disable interrupts on the nic */
3718 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3719 pci_push(base);
3720
3721 if (!np->in_shutdown) {
3722 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3723 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3724 }
3725 spin_unlock_irqrestore(&np->lock, flags);
3726 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3727 break;
3728 }
3729
3730 }
3731 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3732
3733 return IRQ_RETVAL(i);
3734 }
3735
3736 #ifdef CONFIG_FORCEDETH_NAPI
3737 static int nv_napi_poll(struct napi_struct *napi, int budget)
3738 {
3739 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3740 struct net_device *dev = np->dev;
3741 u8 __iomem *base = get_hwbase(dev);
3742 unsigned long flags;
3743 int retcode;
3744 int tx_work, rx_work;
3745
3746 if (!nv_optimized(np)) {
3747 spin_lock_irqsave(&np->lock, flags);
3748 tx_work = nv_tx_done(dev, np->tx_ring_size);
3749 spin_unlock_irqrestore(&np->lock, flags);
3750
3751 rx_work = nv_rx_process(dev, budget);
3752 retcode = nv_alloc_rx(dev);
3753 } else {
3754 spin_lock_irqsave(&np->lock, flags);
3755 tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
3756 spin_unlock_irqrestore(&np->lock, flags);
3757
3758 rx_work = nv_rx_process_optimized(dev, budget);
3759 retcode = nv_alloc_rx_optimized(dev);
3760 }
3761
3762 if (retcode) {
3763 spin_lock_irqsave(&np->lock, flags);
3764 if (!np->in_shutdown)
3765 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3766 spin_unlock_irqrestore(&np->lock, flags);
3767 }
3768
3769 nv_change_interrupt_mode(dev, tx_work + rx_work);
3770
3771 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3772 spin_lock_irqsave(&np->lock, flags);
3773 nv_link_irq(dev);
3774 spin_unlock_irqrestore(&np->lock, flags);
3775 }
3776 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3777 spin_lock_irqsave(&np->lock, flags);
3778 nv_linkchange(dev);
3779 spin_unlock_irqrestore(&np->lock, flags);
3780 np->link_timeout = jiffies + LINK_TIMEOUT;
3781 }
3782 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3783 spin_lock_irqsave(&np->lock, flags);
3784 if (!np->in_shutdown) {
3785 np->nic_poll_irq = np->irqmask;
3786 np->recover_error = 1;
3787 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3788 }
3789 spin_unlock_irqrestore(&np->lock, flags);
3790 napi_complete(napi);
3791 return rx_work;
3792 }
3793
3794 if (rx_work < budget) {
3795 /* re-enable interrupts
3796 (msix not enabled in napi) */
3797 napi_complete(napi);
3798
3799 writel(np->irqmask, base + NvRegIrqMask);
3800 }
3801 return rx_work;
3802 }
3803 #endif
3804
3805 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3806 {
3807 struct net_device *dev = (struct net_device *) data;
3808 struct fe_priv *np = netdev_priv(dev);
3809 u8 __iomem *base = get_hwbase(dev);
3810 u32 events;
3811 int i;
3812 unsigned long flags;
3813
3814 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3815
3816 for (i=0; ; i++) {
3817 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3818 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3819 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3820 if (!(events & np->irqmask))
3821 break;
3822
3823 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3824 if (unlikely(nv_alloc_rx_optimized(dev))) {
3825 spin_lock_irqsave(&np->lock, flags);
3826 if (!np->in_shutdown)
3827 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3828 spin_unlock_irqrestore(&np->lock, flags);
3829 }
3830 }
3831
3832 if (unlikely(i > max_interrupt_work)) {
3833 spin_lock_irqsave(&np->lock, flags);
3834 /* disable interrupts on the nic */
3835 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3836 pci_push(base);
3837
3838 if (!np->in_shutdown) {
3839 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3840 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3841 }
3842 spin_unlock_irqrestore(&np->lock, flags);
3843 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3844 break;
3845 }
3846 }
3847 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3848
3849 return IRQ_RETVAL(i);
3850 }
3851
3852 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3853 {
3854 struct net_device *dev = (struct net_device *) data;
3855 struct fe_priv *np = netdev_priv(dev);
3856 u8 __iomem *base = get_hwbase(dev);
3857 u32 events;
3858 int i;
3859 unsigned long flags;
3860
3861 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3862
3863 for (i=0; ; i++) {
3864 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3865 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3866 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3867 if (!(events & np->irqmask))
3868 break;
3869
3870 /* check tx in case we reached max loop limit in tx isr */
3871 spin_lock_irqsave(&np->lock, flags);
3872 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3873 spin_unlock_irqrestore(&np->lock, flags);
3874
3875 if (events & NVREG_IRQ_LINK) {
3876 spin_lock_irqsave(&np->lock, flags);
3877 nv_link_irq(dev);
3878 spin_unlock_irqrestore(&np->lock, flags);
3879 }
3880 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3881 spin_lock_irqsave(&np->lock, flags);
3882 nv_linkchange(dev);
3883 spin_unlock_irqrestore(&np->lock, flags);
3884 np->link_timeout = jiffies + LINK_TIMEOUT;
3885 }
3886 if (events & NVREG_IRQ_RECOVER_ERROR) {
3887 spin_lock_irq(&np->lock);
3888 /* disable interrupts on the nic */
3889 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3890 pci_push(base);
3891
3892 if (!np->in_shutdown) {
3893 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3894 np->recover_error = 1;
3895 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3896 }
3897 spin_unlock_irq(&np->lock);
3898 break;
3899 }
3900 if (unlikely(i > max_interrupt_work)) {
3901 spin_lock_irqsave(&np->lock, flags);
3902 /* disable interrupts on the nic */
3903 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3904 pci_push(base);
3905
3906 if (!np->in_shutdown) {
3907 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3908 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3909 }
3910 spin_unlock_irqrestore(&np->lock, flags);
3911 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3912 break;
3913 }
3914
3915 }
3916 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3917
3918 return IRQ_RETVAL(i);
3919 }
3920
3921 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3922 {
3923 struct net_device *dev = (struct net_device *) data;
3924 struct fe_priv *np = netdev_priv(dev);
3925 u8 __iomem *base = get_hwbase(dev);
3926 u32 events;
3927
3928 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3929
3930 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3931 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3932 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3933 } else {
3934 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3935 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3936 }
3937 pci_push(base);
3938 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3939 if (!(events & NVREG_IRQ_TIMER))
3940 return IRQ_RETVAL(0);
3941
3942 nv_msi_workaround(np);
3943
3944 spin_lock(&np->lock);
3945 np->intr_test = 1;
3946 spin_unlock(&np->lock);
3947
3948 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3949
3950 return IRQ_RETVAL(1);
3951 }
3952
3953 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3954 {
3955 u8 __iomem *base = get_hwbase(dev);
3956 int i;
3957 u32 msixmap = 0;
3958
3959 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3960 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3961 * the remaining 8 interrupts.
3962 */
3963 for (i = 0; i < 8; i++) {
3964 if ((irqmask >> i) & 0x1) {
3965 msixmap |= vector << (i << 2);
3966 }
3967 }
3968 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3969
3970 msixmap = 0;
3971 for (i = 0; i < 8; i++) {
3972 if ((irqmask >> (i + 8)) & 0x1) {
3973 msixmap |= vector << (i << 2);
3974 }
3975 }
3976 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3977 }
3978
3979 static int nv_request_irq(struct net_device *dev, int intr_test)
3980 {
3981 struct fe_priv *np = get_nvpriv(dev);
3982 u8 __iomem *base = get_hwbase(dev);
3983 int ret = 1;
3984 int i;
3985 irqreturn_t (*handler)(int foo, void *data);
3986
3987 if (intr_test) {
3988 handler = nv_nic_irq_test;
3989 } else {
3990 if (nv_optimized(np))
3991 handler = nv_nic_irq_optimized;
3992 else
3993 handler = nv_nic_irq;
3994 }
3995
3996 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3997 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3998 np->msi_x_entry[i].entry = i;
3999 }
4000 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
4001 np->msi_flags |= NV_MSI_X_ENABLED;
4002 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
4003 /* Request irq for rx handling */
4004 sprintf(np->name_rx, "%s-rx", dev->name);
4005 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
4006 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
4007 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
4008 pci_disable_msix(np->pci_dev);
4009 np->msi_flags &= ~NV_MSI_X_ENABLED;
4010 goto out_err;
4011 }
4012 /* Request irq for tx handling */
4013 sprintf(np->name_tx, "%s-tx", dev->name);
4014 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
4015 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
4016 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
4017 pci_disable_msix(np->pci_dev);
4018 np->msi_flags &= ~NV_MSI_X_ENABLED;
4019 goto out_free_rx;
4020 }
4021 /* Request irq for link and timer handling */
4022 sprintf(np->name_other, "%s-other", dev->name);
4023 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
4024 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
4025 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
4026 pci_disable_msix(np->pci_dev);
4027 np->msi_flags &= ~NV_MSI_X_ENABLED;
4028 goto out_free_tx;
4029 }
4030 /* map interrupts to their respective vector */
4031 writel(0, base + NvRegMSIXMap0);
4032 writel(0, base + NvRegMSIXMap1);
4033 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4034 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4035 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4036 } else {
4037 /* Request irq for all interrupts */
4038 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
4039 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4040 pci_disable_msix(np->pci_dev);
4041 np->msi_flags &= ~NV_MSI_X_ENABLED;
4042 goto out_err;
4043 }
4044
4045 /* map interrupts to vector 0 */
4046 writel(0, base + NvRegMSIXMap0);
4047 writel(0, base + NvRegMSIXMap1);
4048 }
4049 }
4050 }
4051 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
4052 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
4053 np->msi_flags |= NV_MSI_ENABLED;
4054 dev->irq = np->pci_dev->irq;
4055 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
4056 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4057 pci_disable_msi(np->pci_dev);
4058 np->msi_flags &= ~NV_MSI_ENABLED;
4059 dev->irq = np->pci_dev->irq;
4060 goto out_err;
4061 }
4062
4063 /* map interrupts to vector 0 */
4064 writel(0, base + NvRegMSIMap0);
4065 writel(0, base + NvRegMSIMap1);
4066 /* enable msi vector 0 */
4067 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4068 }
4069 }
4070 if (ret != 0) {
4071 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4072 goto out_err;
4073
4074 }
4075
4076 return 0;
4077 out_free_tx:
4078 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4079 out_free_rx:
4080 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4081 out_err:
4082 return 1;
4083 }
4084
4085 static void nv_free_irq(struct net_device *dev)
4086 {
4087 struct fe_priv *np = get_nvpriv(dev);
4088 int i;
4089
4090 if (np->msi_flags & NV_MSI_X_ENABLED) {
4091 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
4092 free_irq(np->msi_x_entry[i].vector, dev);
4093 }
4094 pci_disable_msix(np->pci_dev);
4095 np->msi_flags &= ~NV_MSI_X_ENABLED;
4096 } else {
4097 free_irq(np->pci_dev->irq, dev);
4098 if (np->msi_flags & NV_MSI_ENABLED) {
4099 pci_disable_msi(np->pci_dev);
4100 np->msi_flags &= ~NV_MSI_ENABLED;
4101 }
4102 }
4103 }
4104
4105 static void nv_do_nic_poll(unsigned long data)
4106 {
4107 struct net_device *dev = (struct net_device *) data;
4108 struct fe_priv *np = netdev_priv(dev);
4109 u8 __iomem *base = get_hwbase(dev);
4110 u32 mask = 0;
4111
4112 /*
4113 * First disable irq(s) and then
4114 * reenable interrupts on the nic, we have to do this before calling
4115 * nv_nic_irq because that may decide to do otherwise
4116 */
4117
4118 if (!using_multi_irqs(dev)) {
4119 if (np->msi_flags & NV_MSI_X_ENABLED)
4120 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4121 else
4122 disable_irq_lockdep(np->pci_dev->irq);
4123 mask = np->irqmask;
4124 } else {
4125 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4126 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4127 mask |= NVREG_IRQ_RX_ALL;
4128 }
4129 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4130 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4131 mask |= NVREG_IRQ_TX_ALL;
4132 }
4133 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4134 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4135 mask |= NVREG_IRQ_OTHER;
4136 }
4137 }
4138 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4139
4140 if (np->recover_error) {
4141 np->recover_error = 0;
4142 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
4143 if (netif_running(dev)) {
4144 netif_tx_lock_bh(dev);
4145 netif_addr_lock(dev);
4146 spin_lock(&np->lock);
4147 /* stop engines */
4148 nv_stop_rxtx(dev);
4149 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4150 nv_mac_reset(dev);
4151 nv_txrx_reset(dev);
4152 /* drain rx queue */
4153 nv_drain_rxtx(dev);
4154 /* reinit driver view of the rx queue */
4155 set_bufsize(dev);
4156 if (nv_init_ring(dev)) {
4157 if (!np->in_shutdown)
4158 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4159 }
4160 /* reinit nic view of the rx queue */
4161 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4162 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4163 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4164 base + NvRegRingSizes);
4165 pci_push(base);
4166 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4167 pci_push(base);
4168 /* clear interrupts */
4169 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4170 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4171 else
4172 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4173
4174 /* restart rx engine */
4175 nv_start_rxtx(dev);
4176 spin_unlock(&np->lock);
4177 netif_addr_unlock(dev);
4178 netif_tx_unlock_bh(dev);
4179 }
4180 }
4181
4182 writel(mask, base + NvRegIrqMask);
4183 pci_push(base);
4184
4185 if (!using_multi_irqs(dev)) {
4186 np->nic_poll_irq = 0;
4187 if (nv_optimized(np))
4188 nv_nic_irq_optimized(0, dev);
4189 else
4190 nv_nic_irq(0, dev);
4191 if (np->msi_flags & NV_MSI_X_ENABLED)
4192 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4193 else
4194 enable_irq_lockdep(np->pci_dev->irq);
4195 } else {
4196 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4197 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4198 nv_nic_irq_rx(0, dev);
4199 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4200 }
4201 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4202 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4203 nv_nic_irq_tx(0, dev);
4204 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4205 }
4206 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4207 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4208 nv_nic_irq_other(0, dev);
4209 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4210 }
4211 }
4212
4213 }
4214
4215 #ifdef CONFIG_NET_POLL_CONTROLLER
4216 static void nv_poll_controller(struct net_device *dev)
4217 {
4218 nv_do_nic_poll((unsigned long) dev);
4219 }
4220 #endif
4221
4222 static void nv_do_stats_poll(unsigned long data)
4223 {
4224 struct net_device *dev = (struct net_device *) data;
4225 struct fe_priv *np = netdev_priv(dev);
4226
4227 nv_get_hw_stats(dev);
4228
4229 if (!np->in_shutdown)
4230 mod_timer(&np->stats_poll,
4231 round_jiffies(jiffies + STATS_INTERVAL));
4232 }
4233
4234 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4235 {
4236 struct fe_priv *np = netdev_priv(dev);
4237 strcpy(info->driver, DRV_NAME);
4238 strcpy(info->version, FORCEDETH_VERSION);
4239 strcpy(info->bus_info, pci_name(np->pci_dev));
4240 }
4241
4242 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4243 {
4244 struct fe_priv *np = netdev_priv(dev);
4245 wolinfo->supported = WAKE_MAGIC;
4246
4247 spin_lock_irq(&np->lock);
4248 if (np->wolenabled)
4249 wolinfo->wolopts = WAKE_MAGIC;
4250 spin_unlock_irq(&np->lock);
4251 }
4252
4253 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4254 {
4255 struct fe_priv *np = netdev_priv(dev);
4256 u8 __iomem *base = get_hwbase(dev);
4257 u32 flags = 0;
4258
4259 if (wolinfo->wolopts == 0) {
4260 np->wolenabled = 0;
4261 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4262 np->wolenabled = 1;
4263 flags = NVREG_WAKEUPFLAGS_ENABLE;
4264 }
4265 if (netif_running(dev)) {
4266 spin_lock_irq(&np->lock);
4267 writel(flags, base + NvRegWakeUpFlags);
4268 spin_unlock_irq(&np->lock);
4269 }
4270 return 0;
4271 }
4272
4273 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4274 {
4275 struct fe_priv *np = netdev_priv(dev);
4276 int adv;
4277
4278 spin_lock_irq(&np->lock);
4279 ecmd->port = PORT_MII;
4280 if (!netif_running(dev)) {
4281 /* We do not track link speed / duplex setting if the
4282 * interface is disabled. Force a link check */
4283 if (nv_update_linkspeed(dev)) {
4284 if (!netif_carrier_ok(dev))
4285 netif_carrier_on(dev);
4286 } else {
4287 if (netif_carrier_ok(dev))
4288 netif_carrier_off(dev);
4289 }
4290 }
4291
4292 if (netif_carrier_ok(dev)) {
4293 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4294 case NVREG_LINKSPEED_10:
4295 ecmd->speed = SPEED_10;
4296 break;
4297 case NVREG_LINKSPEED_100:
4298 ecmd->speed = SPEED_100;
4299 break;
4300 case NVREG_LINKSPEED_1000:
4301 ecmd->speed = SPEED_1000;
4302 break;
4303 }
4304 ecmd->duplex = DUPLEX_HALF;
4305 if (np->duplex)
4306 ecmd->duplex = DUPLEX_FULL;
4307 } else {
4308 ecmd->speed = -1;
4309 ecmd->duplex = -1;
4310 }
4311
4312 ecmd->autoneg = np->autoneg;
4313
4314 ecmd->advertising = ADVERTISED_MII;
4315 if (np->autoneg) {
4316 ecmd->advertising |= ADVERTISED_Autoneg;
4317 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4318 if (adv & ADVERTISE_10HALF)
4319 ecmd->advertising |= ADVERTISED_10baseT_Half;
4320 if (adv & ADVERTISE_10FULL)
4321 ecmd->advertising |= ADVERTISED_10baseT_Full;
4322 if (adv & ADVERTISE_100HALF)
4323 ecmd->advertising |= ADVERTISED_100baseT_Half;
4324 if (adv & ADVERTISE_100FULL)
4325 ecmd->advertising |= ADVERTISED_100baseT_Full;
4326 if (np->gigabit == PHY_GIGABIT) {
4327 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4328 if (adv & ADVERTISE_1000FULL)
4329 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4330 }
4331 }
4332 ecmd->supported = (SUPPORTED_Autoneg |
4333 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4334 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4335 SUPPORTED_MII);
4336 if (np->gigabit == PHY_GIGABIT)
4337 ecmd->supported |= SUPPORTED_1000baseT_Full;
4338
4339 ecmd->phy_address = np->phyaddr;
4340 ecmd->transceiver = XCVR_EXTERNAL;
4341
4342 /* ignore maxtxpkt, maxrxpkt for now */
4343 spin_unlock_irq(&np->lock);
4344 return 0;
4345 }
4346
4347 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4348 {
4349 struct fe_priv *np = netdev_priv(dev);
4350
4351 if (ecmd->port != PORT_MII)
4352 return -EINVAL;
4353 if (ecmd->transceiver != XCVR_EXTERNAL)
4354 return -EINVAL;
4355 if (ecmd->phy_address != np->phyaddr) {
4356 /* TODO: support switching between multiple phys. Should be
4357 * trivial, but not enabled due to lack of test hardware. */
4358 return -EINVAL;
4359 }
4360 if (ecmd->autoneg == AUTONEG_ENABLE) {
4361 u32 mask;
4362
4363 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4364 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4365 if (np->gigabit == PHY_GIGABIT)
4366 mask |= ADVERTISED_1000baseT_Full;
4367
4368 if ((ecmd->advertising & mask) == 0)
4369 return -EINVAL;
4370
4371 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4372 /* Note: autonegotiation disable, speed 1000 intentionally
4373 * forbidden - noone should need that. */
4374
4375 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4376 return -EINVAL;
4377 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4378 return -EINVAL;
4379 } else {
4380 return -EINVAL;
4381 }
4382
4383 netif_carrier_off(dev);
4384 if (netif_running(dev)) {
4385 unsigned long flags;
4386
4387 nv_disable_irq(dev);
4388 netif_tx_lock_bh(dev);
4389 netif_addr_lock(dev);
4390 /* with plain spinlock lockdep complains */
4391 spin_lock_irqsave(&np->lock, flags);
4392 /* stop engines */
4393 /* FIXME:
4394 * this can take some time, and interrupts are disabled
4395 * due to spin_lock_irqsave, but let's hope no daemon
4396 * is going to change the settings very often...
4397 * Worst case:
4398 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4399 * + some minor delays, which is up to a second approximately
4400 */
4401 nv_stop_rxtx(dev);
4402 spin_unlock_irqrestore(&np->lock, flags);
4403 netif_addr_unlock(dev);
4404 netif_tx_unlock_bh(dev);
4405 }
4406
4407 if (ecmd->autoneg == AUTONEG_ENABLE) {
4408 int adv, bmcr;
4409
4410 np->autoneg = 1;
4411
4412 /* advertise only what has been requested */
4413 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4414 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4415 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4416 adv |= ADVERTISE_10HALF;
4417 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4418 adv |= ADVERTISE_10FULL;
4419 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4420 adv |= ADVERTISE_100HALF;
4421 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4422 adv |= ADVERTISE_100FULL;
4423 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4424 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4425 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4426 adv |= ADVERTISE_PAUSE_ASYM;
4427 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4428
4429 if (np->gigabit == PHY_GIGABIT) {
4430 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4431 adv &= ~ADVERTISE_1000FULL;
4432 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4433 adv |= ADVERTISE_1000FULL;
4434 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4435 }
4436
4437 if (netif_running(dev))
4438 printk(KERN_INFO "%s: link down.\n", dev->name);
4439 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4440 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4441 bmcr |= BMCR_ANENABLE;
4442 /* reset the phy in order for settings to stick,
4443 * and cause autoneg to start */
4444 if (phy_reset(dev, bmcr)) {
4445 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4446 return -EINVAL;
4447 }
4448 } else {
4449 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4450 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4451 }
4452 } else {
4453 int adv, bmcr;
4454
4455 np->autoneg = 0;
4456
4457 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4458 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4459 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4460 adv |= ADVERTISE_10HALF;
4461 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4462 adv |= ADVERTISE_10FULL;
4463 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4464 adv |= ADVERTISE_100HALF;
4465 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4466 adv |= ADVERTISE_100FULL;
4467 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4468 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4469 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4470 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4471 }
4472 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4473 adv |= ADVERTISE_PAUSE_ASYM;
4474 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4475 }
4476 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4477 np->fixed_mode = adv;
4478
4479 if (np->gigabit == PHY_GIGABIT) {
4480 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4481 adv &= ~ADVERTISE_1000FULL;
4482 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4483 }
4484
4485 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4486 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4487 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4488 bmcr |= BMCR_FULLDPLX;
4489 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4490 bmcr |= BMCR_SPEED100;
4491 if (np->phy_oui == PHY_OUI_MARVELL) {
4492 /* reset the phy in order for forced mode settings to stick */
4493 if (phy_reset(dev, bmcr)) {
4494 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4495 return -EINVAL;
4496 }
4497 } else {
4498 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4499 if (netif_running(dev)) {
4500 /* Wait a bit and then reconfigure the nic. */
4501 udelay(10);
4502 nv_linkchange(dev);
4503 }
4504 }
4505 }
4506
4507 if (netif_running(dev)) {
4508 nv_start_rxtx(dev);
4509 nv_enable_irq(dev);
4510 }
4511
4512 return 0;
4513 }
4514
4515 #define FORCEDETH_REGS_VER 1
4516
4517 static int nv_get_regs_len(struct net_device *dev)
4518 {
4519 struct fe_priv *np = netdev_priv(dev);
4520 return np->register_size;
4521 }
4522
4523 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4524 {
4525 struct fe_priv *np = netdev_priv(dev);
4526 u8 __iomem *base = get_hwbase(dev);
4527 u32 *rbuf = buf;
4528 int i;
4529
4530 regs->version = FORCEDETH_REGS_VER;
4531 spin_lock_irq(&np->lock);
4532 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4533 rbuf[i] = readl(base + i*sizeof(u32));
4534 spin_unlock_irq(&np->lock);
4535 }
4536
4537 static int nv_nway_reset(struct net_device *dev)
4538 {
4539 struct fe_priv *np = netdev_priv(dev);
4540 int ret;
4541
4542 if (np->autoneg) {
4543 int bmcr;
4544
4545 netif_carrier_off(dev);
4546 if (netif_running(dev)) {
4547 nv_disable_irq(dev);
4548 netif_tx_lock_bh(dev);
4549 netif_addr_lock(dev);
4550 spin_lock(&np->lock);
4551 /* stop engines */
4552 nv_stop_rxtx(dev);
4553 spin_unlock(&np->lock);
4554 netif_addr_unlock(dev);
4555 netif_tx_unlock_bh(dev);
4556 printk(KERN_INFO "%s: link down.\n", dev->name);
4557 }
4558
4559 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4560 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4561 bmcr |= BMCR_ANENABLE;
4562 /* reset the phy in order for settings to stick*/
4563 if (phy_reset(dev, bmcr)) {
4564 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4565 return -EINVAL;
4566 }
4567 } else {
4568 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4569 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4570 }
4571
4572 if (netif_running(dev)) {
4573 nv_start_rxtx(dev);
4574 nv_enable_irq(dev);
4575 }
4576 ret = 0;
4577 } else {
4578 ret = -EINVAL;
4579 }
4580
4581 return ret;
4582 }
4583
4584 static int nv_set_tso(struct net_device *dev, u32 value)
4585 {
4586 struct fe_priv *np = netdev_priv(dev);
4587
4588 if ((np->driver_data & DEV_HAS_CHECKSUM))
4589 return ethtool_op_set_tso(dev, value);
4590 else
4591 return -EOPNOTSUPP;
4592 }
4593
4594 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4595 {
4596 struct fe_priv *np = netdev_priv(dev);
4597
4598 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4599 ring->rx_mini_max_pending = 0;
4600 ring->rx_jumbo_max_pending = 0;
4601 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4602
4603 ring->rx_pending = np->rx_ring_size;
4604 ring->rx_mini_pending = 0;
4605 ring->rx_jumbo_pending = 0;
4606 ring->tx_pending = np->tx_ring_size;
4607 }
4608
4609 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4610 {
4611 struct fe_priv *np = netdev_priv(dev);
4612 u8 __iomem *base = get_hwbase(dev);
4613 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4614 dma_addr_t ring_addr;
4615
4616 if (ring->rx_pending < RX_RING_MIN ||
4617 ring->tx_pending < TX_RING_MIN ||
4618 ring->rx_mini_pending != 0 ||
4619 ring->rx_jumbo_pending != 0 ||
4620 (np->desc_ver == DESC_VER_1 &&
4621 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4622 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4623 (np->desc_ver != DESC_VER_1 &&
4624 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4625 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4626 return -EINVAL;
4627 }
4628
4629 /* allocate new rings */
4630 if (!nv_optimized(np)) {
4631 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4632 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4633 &ring_addr);
4634 } else {
4635 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4636 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4637 &ring_addr);
4638 }
4639 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4640 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4641 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4642 /* fall back to old rings */
4643 if (!nv_optimized(np)) {
4644 if (rxtx_ring)
4645 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4646 rxtx_ring, ring_addr);
4647 } else {
4648 if (rxtx_ring)
4649 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4650 rxtx_ring, ring_addr);
4651 }
4652 if (rx_skbuff)
4653 kfree(rx_skbuff);
4654 if (tx_skbuff)
4655 kfree(tx_skbuff);
4656 goto exit;
4657 }
4658
4659 if (netif_running(dev)) {
4660 nv_disable_irq(dev);
4661 nv_napi_disable(dev);
4662 netif_tx_lock_bh(dev);
4663 netif_addr_lock(dev);
4664 spin_lock(&np->lock);
4665 /* stop engines */
4666 nv_stop_rxtx(dev);
4667 nv_txrx_reset(dev);
4668 /* drain queues */
4669 nv_drain_rxtx(dev);
4670 /* delete queues */
4671 free_rings(dev);
4672 }
4673
4674 /* set new values */
4675 np->rx_ring_size = ring->rx_pending;
4676 np->tx_ring_size = ring->tx_pending;
4677
4678 if (!nv_optimized(np)) {
4679 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4680 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4681 } else {
4682 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4683 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4684 }
4685 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4686 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4687 np->ring_addr = ring_addr;
4688
4689 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4690 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4691
4692 if (netif_running(dev)) {
4693 /* reinit driver view of the queues */
4694 set_bufsize(dev);
4695 if (nv_init_ring(dev)) {
4696 if (!np->in_shutdown)
4697 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4698 }
4699
4700 /* reinit nic view of the queues */
4701 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4702 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4703 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4704 base + NvRegRingSizes);
4705 pci_push(base);
4706 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4707 pci_push(base);
4708
4709 /* restart engines */
4710 nv_start_rxtx(dev);
4711 spin_unlock(&np->lock);
4712 netif_addr_unlock(dev);
4713 netif_tx_unlock_bh(dev);
4714 nv_napi_enable(dev);
4715 nv_enable_irq(dev);
4716 }
4717 return 0;
4718 exit:
4719 return -ENOMEM;
4720 }
4721
4722 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4723 {
4724 struct fe_priv *np = netdev_priv(dev);
4725
4726 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4727 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4728 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4729 }
4730
4731 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4732 {
4733 struct fe_priv *np = netdev_priv(dev);
4734 int adv, bmcr;
4735
4736 if ((!np->autoneg && np->duplex == 0) ||
4737 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4738 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4739 dev->name);
4740 return -EINVAL;
4741 }
4742 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4743 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4744 return -EINVAL;
4745 }
4746
4747 netif_carrier_off(dev);
4748 if (netif_running(dev)) {
4749 nv_disable_irq(dev);
4750 netif_tx_lock_bh(dev);
4751 netif_addr_lock(dev);
4752 spin_lock(&np->lock);
4753 /* stop engines */
4754 nv_stop_rxtx(dev);
4755 spin_unlock(&np->lock);
4756 netif_addr_unlock(dev);
4757 netif_tx_unlock_bh(dev);
4758 }
4759
4760 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4761 if (pause->rx_pause)
4762 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4763 if (pause->tx_pause)
4764 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4765
4766 if (np->autoneg && pause->autoneg) {
4767 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4768
4769 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4770 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4771 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4772 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4773 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4774 adv |= ADVERTISE_PAUSE_ASYM;
4775 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4776
4777 if (netif_running(dev))
4778 printk(KERN_INFO "%s: link down.\n", dev->name);
4779 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4780 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4781 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4782 } else {
4783 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4784 if (pause->rx_pause)
4785 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4786 if (pause->tx_pause)
4787 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4788
4789 if (!netif_running(dev))
4790 nv_update_linkspeed(dev);
4791 else
4792 nv_update_pause(dev, np->pause_flags);
4793 }
4794
4795 if (netif_running(dev)) {
4796 nv_start_rxtx(dev);
4797 nv_enable_irq(dev);
4798 }
4799 return 0;
4800 }
4801
4802 static u32 nv_get_rx_csum(struct net_device *dev)
4803 {
4804 struct fe_priv *np = netdev_priv(dev);
4805 return (np->rx_csum) != 0;
4806 }
4807
4808 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4809 {
4810 struct fe_priv *np = netdev_priv(dev);
4811 u8 __iomem *base = get_hwbase(dev);
4812 int retcode = 0;
4813
4814 if (np->driver_data & DEV_HAS_CHECKSUM) {
4815 if (data) {
4816 np->rx_csum = 1;
4817 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4818 } else {
4819 np->rx_csum = 0;
4820 /* vlan is dependent on rx checksum offload */
4821 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4822 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4823 }
4824 if (netif_running(dev)) {
4825 spin_lock_irq(&np->lock);
4826 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4827 spin_unlock_irq(&np->lock);
4828 }
4829 } else {
4830 return -EINVAL;
4831 }
4832
4833 return retcode;
4834 }
4835
4836 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4837 {
4838 struct fe_priv *np = netdev_priv(dev);
4839
4840 if (np->driver_data & DEV_HAS_CHECKSUM)
4841 return ethtool_op_set_tx_csum(dev, data);
4842 else
4843 return -EOPNOTSUPP;
4844 }
4845
4846 static int nv_set_sg(struct net_device *dev, u32 data)
4847 {
4848 struct fe_priv *np = netdev_priv(dev);
4849
4850 if (np->driver_data & DEV_HAS_CHECKSUM)
4851 return ethtool_op_set_sg(dev, data);
4852 else
4853 return -EOPNOTSUPP;
4854 }
4855
4856 static int nv_get_sset_count(struct net_device *dev, int sset)
4857 {
4858 struct fe_priv *np = netdev_priv(dev);
4859
4860 switch (sset) {
4861 case ETH_SS_TEST:
4862 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4863 return NV_TEST_COUNT_EXTENDED;
4864 else
4865 return NV_TEST_COUNT_BASE;
4866 case ETH_SS_STATS:
4867 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4868 return NV_DEV_STATISTICS_V3_COUNT;
4869 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4870 return NV_DEV_STATISTICS_V2_COUNT;
4871 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4872 return NV_DEV_STATISTICS_V1_COUNT;
4873 else
4874 return 0;
4875 default:
4876 return -EOPNOTSUPP;
4877 }
4878 }
4879
4880 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4881 {
4882 struct fe_priv *np = netdev_priv(dev);
4883
4884 /* update stats */
4885 nv_do_stats_poll((unsigned long)dev);
4886
4887 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4888 }
4889
4890 static int nv_link_test(struct net_device *dev)
4891 {
4892 struct fe_priv *np = netdev_priv(dev);
4893 int mii_status;
4894
4895 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4896 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4897
4898 /* check phy link status */
4899 if (!(mii_status & BMSR_LSTATUS))
4900 return 0;
4901 else
4902 return 1;
4903 }
4904
4905 static int nv_register_test(struct net_device *dev)
4906 {
4907 u8 __iomem *base = get_hwbase(dev);
4908 int i = 0;
4909 u32 orig_read, new_read;
4910
4911 do {
4912 orig_read = readl(base + nv_registers_test[i].reg);
4913
4914 /* xor with mask to toggle bits */
4915 orig_read ^= nv_registers_test[i].mask;
4916
4917 writel(orig_read, base + nv_registers_test[i].reg);
4918
4919 new_read = readl(base + nv_registers_test[i].reg);
4920
4921 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4922 return 0;
4923
4924 /* restore original value */
4925 orig_read ^= nv_registers_test[i].mask;
4926 writel(orig_read, base + nv_registers_test[i].reg);
4927
4928 } while (nv_registers_test[++i].reg != 0);
4929
4930 return 1;
4931 }
4932
4933 static int nv_interrupt_test(struct net_device *dev)
4934 {
4935 struct fe_priv *np = netdev_priv(dev);
4936 u8 __iomem *base = get_hwbase(dev);
4937 int ret = 1;
4938 int testcnt;
4939 u32 save_msi_flags, save_poll_interval = 0;
4940
4941 if (netif_running(dev)) {
4942 /* free current irq */
4943 nv_free_irq(dev);
4944 save_poll_interval = readl(base+NvRegPollingInterval);
4945 }
4946
4947 /* flag to test interrupt handler */
4948 np->intr_test = 0;
4949
4950 /* setup test irq */
4951 save_msi_flags = np->msi_flags;
4952 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4953 np->msi_flags |= 0x001; /* setup 1 vector */
4954 if (nv_request_irq(dev, 1))
4955 return 0;
4956
4957 /* setup timer interrupt */
4958 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4959 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4960
4961 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4962
4963 /* wait for at least one interrupt */
4964 msleep(100);
4965
4966 spin_lock_irq(&np->lock);
4967
4968 /* flag should be set within ISR */
4969 testcnt = np->intr_test;
4970 if (!testcnt)
4971 ret = 2;
4972
4973 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4974 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4975 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4976 else
4977 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4978
4979 spin_unlock_irq(&np->lock);
4980
4981 nv_free_irq(dev);
4982
4983 np->msi_flags = save_msi_flags;
4984
4985 if (netif_running(dev)) {
4986 writel(save_poll_interval, base + NvRegPollingInterval);
4987 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4988 /* restore original irq */
4989 if (nv_request_irq(dev, 0))
4990 return 0;
4991 }
4992
4993 return ret;
4994 }
4995
4996 static int nv_loopback_test(struct net_device *dev)
4997 {
4998 struct fe_priv *np = netdev_priv(dev);
4999 u8 __iomem *base = get_hwbase(dev);
5000 struct sk_buff *tx_skb, *rx_skb;
5001 dma_addr_t test_dma_addr;
5002 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
5003 u32 flags;
5004 int len, i, pkt_len;
5005 u8 *pkt_data;
5006 u32 filter_flags = 0;
5007 u32 misc1_flags = 0;
5008 int ret = 1;
5009
5010 if (netif_running(dev)) {
5011 nv_disable_irq(dev);
5012 filter_flags = readl(base + NvRegPacketFilterFlags);
5013 misc1_flags = readl(base + NvRegMisc1);
5014 } else {
5015 nv_txrx_reset(dev);
5016 }
5017
5018 /* reinit driver view of the rx queue */
5019 set_bufsize(dev);
5020 nv_init_ring(dev);
5021
5022 /* setup hardware for loopback */
5023 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5024 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5025
5026 /* reinit nic view of the rx queue */
5027 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5028 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5029 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5030 base + NvRegRingSizes);
5031 pci_push(base);
5032
5033 /* restart rx engine */
5034 nv_start_rxtx(dev);
5035
5036 /* setup packet for tx */
5037 pkt_len = ETH_DATA_LEN;
5038 tx_skb = dev_alloc_skb(pkt_len);
5039 if (!tx_skb) {
5040 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
5041 " of %s\n", dev->name);
5042 ret = 0;
5043 goto out;
5044 }
5045 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5046 skb_tailroom(tx_skb),
5047 PCI_DMA_FROMDEVICE);
5048 pkt_data = skb_put(tx_skb, pkt_len);
5049 for (i = 0; i < pkt_len; i++)
5050 pkt_data[i] = (u8)(i & 0xff);
5051
5052 if (!nv_optimized(np)) {
5053 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5054 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5055 } else {
5056 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5057 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5058 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5059 }
5060 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5061 pci_push(get_hwbase(dev));
5062
5063 msleep(500);
5064
5065 /* check for rx of the packet */
5066 if (!nv_optimized(np)) {
5067 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5068 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5069
5070 } else {
5071 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5072 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5073 }
5074
5075 if (flags & NV_RX_AVAIL) {
5076 ret = 0;
5077 } else if (np->desc_ver == DESC_VER_1) {
5078 if (flags & NV_RX_ERROR)
5079 ret = 0;
5080 } else {
5081 if (flags & NV_RX2_ERROR) {
5082 ret = 0;
5083 }
5084 }
5085
5086 if (ret) {
5087 if (len != pkt_len) {
5088 ret = 0;
5089 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
5090 dev->name, len, pkt_len);
5091 } else {
5092 rx_skb = np->rx_skb[0].skb;
5093 for (i = 0; i < pkt_len; i++) {
5094 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5095 ret = 0;
5096 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
5097 dev->name, i);
5098 break;
5099 }
5100 }
5101 }
5102 } else {
5103 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
5104 }
5105
5106 pci_unmap_single(np->pci_dev, test_dma_addr,
5107 (skb_end_pointer(tx_skb) - tx_skb->data),
5108 PCI_DMA_TODEVICE);
5109 dev_kfree_skb_any(tx_skb);
5110 out:
5111 /* stop engines */
5112 nv_stop_rxtx(dev);
5113 nv_txrx_reset(dev);
5114 /* drain rx queue */
5115 nv_drain_rxtx(dev);
5116
5117 if (netif_running(dev)) {
5118 writel(misc1_flags, base + NvRegMisc1);
5119 writel(filter_flags, base + NvRegPacketFilterFlags);
5120 nv_enable_irq(dev);
5121 }
5122
5123 return ret;
5124 }
5125
5126 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5127 {
5128 struct fe_priv *np = netdev_priv(dev);
5129 u8 __iomem *base = get_hwbase(dev);
5130 int result;
5131 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5132
5133 if (!nv_link_test(dev)) {
5134 test->flags |= ETH_TEST_FL_FAILED;
5135 buffer[0] = 1;
5136 }
5137
5138 if (test->flags & ETH_TEST_FL_OFFLINE) {
5139 if (netif_running(dev)) {
5140 netif_stop_queue(dev);
5141 nv_napi_disable(dev);
5142 netif_tx_lock_bh(dev);
5143 netif_addr_lock(dev);
5144 spin_lock_irq(&np->lock);
5145 nv_disable_hw_interrupts(dev, np->irqmask);
5146 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
5147 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5148 } else {
5149 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5150 }
5151 /* stop engines */
5152 nv_stop_rxtx(dev);
5153 nv_txrx_reset(dev);
5154 /* drain rx queue */
5155 nv_drain_rxtx(dev);
5156 spin_unlock_irq(&np->lock);
5157 netif_addr_unlock(dev);
5158 netif_tx_unlock_bh(dev);
5159 }
5160
5161 if (!nv_register_test(dev)) {
5162 test->flags |= ETH_TEST_FL_FAILED;
5163 buffer[1] = 1;
5164 }
5165
5166 result = nv_interrupt_test(dev);
5167 if (result != 1) {
5168 test->flags |= ETH_TEST_FL_FAILED;
5169 buffer[2] = 1;
5170 }
5171 if (result == 0) {
5172 /* bail out */
5173 return;
5174 }
5175
5176 if (!nv_loopback_test(dev)) {
5177 test->flags |= ETH_TEST_FL_FAILED;
5178 buffer[3] = 1;
5179 }
5180
5181 if (netif_running(dev)) {
5182 /* reinit driver view of the rx queue */
5183 set_bufsize(dev);
5184 if (nv_init_ring(dev)) {
5185 if (!np->in_shutdown)
5186 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5187 }
5188 /* reinit nic view of the rx queue */
5189 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5190 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5191 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5192 base + NvRegRingSizes);
5193 pci_push(base);
5194 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5195 pci_push(base);
5196 /* restart rx engine */
5197 nv_start_rxtx(dev);
5198 netif_start_queue(dev);
5199 nv_napi_enable(dev);
5200 nv_enable_hw_interrupts(dev, np->irqmask);
5201 }
5202 }
5203 }
5204
5205 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5206 {
5207 switch (stringset) {
5208 case ETH_SS_STATS:
5209 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5210 break;
5211 case ETH_SS_TEST:
5212 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5213 break;
5214 }
5215 }
5216
5217 static const struct ethtool_ops ops = {
5218 .get_drvinfo = nv_get_drvinfo,
5219 .get_link = ethtool_op_get_link,
5220 .get_wol = nv_get_wol,
5221 .set_wol = nv_set_wol,
5222 .get_settings = nv_get_settings,
5223 .set_settings = nv_set_settings,
5224 .get_regs_len = nv_get_regs_len,
5225 .get_regs = nv_get_regs,
5226 .nway_reset = nv_nway_reset,
5227 .set_tso = nv_set_tso,
5228 .get_ringparam = nv_get_ringparam,
5229 .set_ringparam = nv_set_ringparam,
5230 .get_pauseparam = nv_get_pauseparam,
5231 .set_pauseparam = nv_set_pauseparam,
5232 .get_rx_csum = nv_get_rx_csum,
5233 .set_rx_csum = nv_set_rx_csum,
5234 .set_tx_csum = nv_set_tx_csum,
5235 .set_sg = nv_set_sg,
5236 .get_strings = nv_get_strings,
5237 .get_ethtool_stats = nv_get_ethtool_stats,
5238 .get_sset_count = nv_get_sset_count,
5239 .self_test = nv_self_test,
5240 };
5241
5242 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5243 {
5244 struct fe_priv *np = get_nvpriv(dev);
5245
5246 spin_lock_irq(&np->lock);
5247
5248 /* save vlan group */
5249 np->vlangrp = grp;
5250
5251 if (grp) {
5252 /* enable vlan on MAC */
5253 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5254 } else {
5255 /* disable vlan on MAC */
5256 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5257 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5258 }
5259
5260 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5261
5262 spin_unlock_irq(&np->lock);
5263 }
5264
5265 /* The mgmt unit and driver use a semaphore to access the phy during init */
5266 static int nv_mgmt_acquire_sema(struct net_device *dev)
5267 {
5268 struct fe_priv *np = netdev_priv(dev);
5269 u8 __iomem *base = get_hwbase(dev);
5270 int i;
5271 u32 tx_ctrl, mgmt_sema;
5272
5273 for (i = 0; i < 10; i++) {
5274 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5275 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5276 break;
5277 msleep(500);
5278 }
5279
5280 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5281 return 0;
5282
5283 for (i = 0; i < 2; i++) {
5284 tx_ctrl = readl(base + NvRegTransmitterControl);
5285 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5286 writel(tx_ctrl, base + NvRegTransmitterControl);
5287
5288 /* verify that semaphore was acquired */
5289 tx_ctrl = readl(base + NvRegTransmitterControl);
5290 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5291 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5292 np->mgmt_sema = 1;
5293 return 1;
5294 }
5295 else
5296 udelay(50);
5297 }
5298
5299 return 0;
5300 }
5301
5302 static void nv_mgmt_release_sema(struct net_device *dev)
5303 {
5304 struct fe_priv *np = netdev_priv(dev);
5305 u8 __iomem *base = get_hwbase(dev);
5306 u32 tx_ctrl;
5307
5308 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5309 if (np->mgmt_sema) {
5310 tx_ctrl = readl(base + NvRegTransmitterControl);
5311 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5312 writel(tx_ctrl, base + NvRegTransmitterControl);
5313 }
5314 }
5315 }
5316
5317
5318 static int nv_mgmt_get_version(struct net_device *dev)
5319 {
5320 struct fe_priv *np = netdev_priv(dev);
5321 u8 __iomem *base = get_hwbase(dev);
5322 u32 data_ready = readl(base + NvRegTransmitterControl);
5323 u32 data_ready2 = 0;
5324 unsigned long start;
5325 int ready = 0;
5326
5327 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5328 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5329 start = jiffies;
5330 while (time_before(jiffies, start + 5*HZ)) {
5331 data_ready2 = readl(base + NvRegTransmitterControl);
5332 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5333 ready = 1;
5334 break;
5335 }
5336 schedule_timeout_uninterruptible(1);
5337 }
5338
5339 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5340 return 0;
5341
5342 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5343
5344 return 1;
5345 }
5346
5347 static int nv_open(struct net_device *dev)
5348 {
5349 struct fe_priv *np = netdev_priv(dev);
5350 u8 __iomem *base = get_hwbase(dev);
5351 int ret = 1;
5352 int oom, i;
5353 u32 low;
5354
5355 dprintk(KERN_DEBUG "nv_open: begin\n");
5356
5357 /* power up phy */
5358 mii_rw(dev, np->phyaddr, MII_BMCR,
5359 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5360
5361 nv_txrx_gate(dev, false);
5362 /* erase previous misconfiguration */
5363 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5364 nv_mac_reset(dev);
5365 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5366 writel(0, base + NvRegMulticastAddrB);
5367 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5368 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5369 writel(0, base + NvRegPacketFilterFlags);
5370
5371 writel(0, base + NvRegTransmitterControl);
5372 writel(0, base + NvRegReceiverControl);
5373
5374 writel(0, base + NvRegAdapterControl);
5375
5376 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5377 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5378
5379 /* initialize descriptor rings */
5380 set_bufsize(dev);
5381 oom = nv_init_ring(dev);
5382
5383 writel(0, base + NvRegLinkSpeed);
5384 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5385 nv_txrx_reset(dev);
5386 writel(0, base + NvRegUnknownSetupReg6);
5387
5388 np->in_shutdown = 0;
5389
5390 /* give hw rings */
5391 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5392 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5393 base + NvRegRingSizes);
5394
5395 writel(np->linkspeed, base + NvRegLinkSpeed);
5396 if (np->desc_ver == DESC_VER_1)
5397 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5398 else
5399 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5400 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5401 writel(np->vlanctl_bits, base + NvRegVlanControl);
5402 pci_push(base);
5403 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5404 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5405 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5406 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5407
5408 writel(0, base + NvRegMIIMask);
5409 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5410 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5411
5412 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5413 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5414 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5415 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5416
5417 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5418
5419 get_random_bytes(&low, sizeof(low));
5420 low &= NVREG_SLOTTIME_MASK;
5421 if (np->desc_ver == DESC_VER_1) {
5422 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5423 } else {
5424 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5425 /* setup legacy backoff */
5426 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5427 } else {
5428 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5429 nv_gear_backoff_reseed(dev);
5430 }
5431 }
5432 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5433 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5434 if (poll_interval == -1) {
5435 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5436 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5437 else
5438 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5439 }
5440 else
5441 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5442 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5443 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5444 base + NvRegAdapterControl);
5445 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5446 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5447 if (np->wolenabled)
5448 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5449
5450 i = readl(base + NvRegPowerState);
5451 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5452 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5453
5454 pci_push(base);
5455 udelay(10);
5456 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5457
5458 nv_disable_hw_interrupts(dev, np->irqmask);
5459 pci_push(base);
5460 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5461 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5462 pci_push(base);
5463
5464 if (nv_request_irq(dev, 0)) {
5465 goto out_drain;
5466 }
5467
5468 /* ask for interrupts */
5469 nv_enable_hw_interrupts(dev, np->irqmask);
5470
5471 spin_lock_irq(&np->lock);
5472 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5473 writel(0, base + NvRegMulticastAddrB);
5474 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5475 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5476 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5477 /* One manual link speed update: Interrupts are enabled, future link
5478 * speed changes cause interrupts and are handled by nv_link_irq().
5479 */
5480 {
5481 u32 miistat;
5482 miistat = readl(base + NvRegMIIStatus);
5483 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5484 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5485 }
5486 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5487 * to init hw */
5488 np->linkspeed = 0;
5489 ret = nv_update_linkspeed(dev);
5490 nv_start_rxtx(dev);
5491 netif_start_queue(dev);
5492 nv_napi_enable(dev);
5493
5494 if (ret) {
5495 netif_carrier_on(dev);
5496 } else {
5497 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5498 netif_carrier_off(dev);
5499 }
5500 if (oom)
5501 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5502
5503 /* start statistics timer */
5504 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5505 mod_timer(&np->stats_poll,
5506 round_jiffies(jiffies + STATS_INTERVAL));
5507
5508 spin_unlock_irq(&np->lock);
5509
5510 return 0;
5511 out_drain:
5512 nv_drain_rxtx(dev);
5513 return ret;
5514 }
5515
5516 static int nv_close(struct net_device *dev)
5517 {
5518 struct fe_priv *np = netdev_priv(dev);
5519 u8 __iomem *base;
5520
5521 spin_lock_irq(&np->lock);
5522 np->in_shutdown = 1;
5523 spin_unlock_irq(&np->lock);
5524 nv_napi_disable(dev);
5525 synchronize_irq(np->pci_dev->irq);
5526
5527 del_timer_sync(&np->oom_kick);
5528 del_timer_sync(&np->nic_poll);
5529 del_timer_sync(&np->stats_poll);
5530
5531 netif_stop_queue(dev);
5532 spin_lock_irq(&np->lock);
5533 nv_stop_rxtx(dev);
5534 nv_txrx_reset(dev);
5535
5536 /* disable interrupts on the nic or we will lock up */
5537 base = get_hwbase(dev);
5538 nv_disable_hw_interrupts(dev, np->irqmask);
5539 pci_push(base);
5540 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5541
5542 spin_unlock_irq(&np->lock);
5543
5544 nv_free_irq(dev);
5545
5546 nv_drain_rxtx(dev);
5547
5548 if (np->wolenabled || !phy_power_down) {
5549 nv_txrx_gate(dev, false);
5550 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5551 nv_start_rx(dev);
5552 } else {
5553 /* power down phy */
5554 mii_rw(dev, np->phyaddr, MII_BMCR,
5555 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5556 nv_txrx_gate(dev, true);
5557 }
5558
5559 /* FIXME: power down nic */
5560
5561 return 0;
5562 }
5563
5564 static const struct net_device_ops nv_netdev_ops = {
5565 .ndo_open = nv_open,
5566 .ndo_stop = nv_close,
5567 .ndo_get_stats = nv_get_stats,
5568 .ndo_start_xmit = nv_start_xmit,
5569 .ndo_tx_timeout = nv_tx_timeout,
5570 .ndo_change_mtu = nv_change_mtu,
5571 .ndo_validate_addr = eth_validate_addr,
5572 .ndo_set_mac_address = nv_set_mac_address,
5573 .ndo_set_multicast_list = nv_set_multicast,
5574 .ndo_vlan_rx_register = nv_vlan_rx_register,
5575 #ifdef CONFIG_NET_POLL_CONTROLLER
5576 .ndo_poll_controller = nv_poll_controller,
5577 #endif
5578 };
5579
5580 static const struct net_device_ops nv_netdev_ops_optimized = {
5581 .ndo_open = nv_open,
5582 .ndo_stop = nv_close,
5583 .ndo_get_stats = nv_get_stats,
5584 .ndo_start_xmit = nv_start_xmit_optimized,
5585 .ndo_tx_timeout = nv_tx_timeout,
5586 .ndo_change_mtu = nv_change_mtu,
5587 .ndo_validate_addr = eth_validate_addr,
5588 .ndo_set_mac_address = nv_set_mac_address,
5589 .ndo_set_multicast_list = nv_set_multicast,
5590 .ndo_vlan_rx_register = nv_vlan_rx_register,
5591 #ifdef CONFIG_NET_POLL_CONTROLLER
5592 .ndo_poll_controller = nv_poll_controller,
5593 #endif
5594 };
5595
5596 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5597 {
5598 struct net_device *dev;
5599 struct fe_priv *np;
5600 unsigned long addr;
5601 u8 __iomem *base;
5602 int err, i;
5603 u32 powerstate, txreg;
5604 u32 phystate_orig = 0, phystate;
5605 int phyinitialized = 0;
5606 static int printed_version;
5607
5608 if (!printed_version++)
5609 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5610 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5611
5612 dev = alloc_etherdev(sizeof(struct fe_priv));
5613 err = -ENOMEM;
5614 if (!dev)
5615 goto out;
5616
5617 np = netdev_priv(dev);
5618 np->dev = dev;
5619 np->pci_dev = pci_dev;
5620 spin_lock_init(&np->lock);
5621 SET_NETDEV_DEV(dev, &pci_dev->dev);
5622
5623 init_timer(&np->oom_kick);
5624 np->oom_kick.data = (unsigned long) dev;
5625 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5626 init_timer(&np->nic_poll);
5627 np->nic_poll.data = (unsigned long) dev;
5628 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5629 init_timer(&np->stats_poll);
5630 np->stats_poll.data = (unsigned long) dev;
5631 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5632
5633 err = pci_enable_device(pci_dev);
5634 if (err)
5635 goto out_free;
5636
5637 pci_set_master(pci_dev);
5638
5639 err = pci_request_regions(pci_dev, DRV_NAME);
5640 if (err < 0)
5641 goto out_disable;
5642
5643 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5644 np->register_size = NV_PCI_REGSZ_VER3;
5645 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5646 np->register_size = NV_PCI_REGSZ_VER2;
5647 else
5648 np->register_size = NV_PCI_REGSZ_VER1;
5649
5650 err = -EINVAL;
5651 addr = 0;
5652 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5653 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5654 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5655 pci_resource_len(pci_dev, i),
5656 pci_resource_flags(pci_dev, i));
5657 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5658 pci_resource_len(pci_dev, i) >= np->register_size) {
5659 addr = pci_resource_start(pci_dev, i);
5660 break;
5661 }
5662 }
5663 if (i == DEVICE_COUNT_RESOURCE) {
5664 dev_printk(KERN_INFO, &pci_dev->dev,
5665 "Couldn't find register window\n");
5666 goto out_relreg;
5667 }
5668
5669 /* copy of driver data */
5670 np->driver_data = id->driver_data;
5671 /* copy of device id */
5672 np->device_id = id->device;
5673
5674 /* handle different descriptor versions */
5675 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5676 /* packet format 3: supports 40-bit addressing */
5677 np->desc_ver = DESC_VER_3;
5678 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5679 if (dma_64bit) {
5680 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5681 dev_printk(KERN_INFO, &pci_dev->dev,
5682 "64-bit DMA failed, using 32-bit addressing\n");
5683 else
5684 dev->features |= NETIF_F_HIGHDMA;
5685 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5686 dev_printk(KERN_INFO, &pci_dev->dev,
5687 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5688 }
5689 }
5690 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5691 /* packet format 2: supports jumbo frames */
5692 np->desc_ver = DESC_VER_2;
5693 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5694 } else {
5695 /* original packet format */
5696 np->desc_ver = DESC_VER_1;
5697 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5698 }
5699
5700 np->pkt_limit = NV_PKTLIMIT_1;
5701 if (id->driver_data & DEV_HAS_LARGEDESC)
5702 np->pkt_limit = NV_PKTLIMIT_2;
5703
5704 if (id->driver_data & DEV_HAS_CHECKSUM) {
5705 np->rx_csum = 1;
5706 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5707 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
5708 dev->features |= NETIF_F_TSO;
5709 }
5710
5711 np->vlanctl_bits = 0;
5712 if (id->driver_data & DEV_HAS_VLAN) {
5713 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5714 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5715 }
5716
5717 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5718 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5719 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5720 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5721 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5722 }
5723
5724
5725 err = -ENOMEM;
5726 np->base = ioremap(addr, np->register_size);
5727 if (!np->base)
5728 goto out_relreg;
5729 dev->base_addr = (unsigned long)np->base;
5730
5731 dev->irq = pci_dev->irq;
5732
5733 np->rx_ring_size = RX_RING_DEFAULT;
5734 np->tx_ring_size = TX_RING_DEFAULT;
5735
5736 if (!nv_optimized(np)) {
5737 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5738 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5739 &np->ring_addr);
5740 if (!np->rx_ring.orig)
5741 goto out_unmap;
5742 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5743 } else {
5744 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5745 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5746 &np->ring_addr);
5747 if (!np->rx_ring.ex)
5748 goto out_unmap;
5749 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5750 }
5751 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5752 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5753 if (!np->rx_skb || !np->tx_skb)
5754 goto out_freering;
5755
5756 if (!nv_optimized(np))
5757 dev->netdev_ops = &nv_netdev_ops;
5758 else
5759 dev->netdev_ops = &nv_netdev_ops_optimized;
5760
5761 #ifdef CONFIG_FORCEDETH_NAPI
5762 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5763 #endif
5764 SET_ETHTOOL_OPS(dev, &ops);
5765 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5766
5767 pci_set_drvdata(pci_dev, dev);
5768
5769 /* read the mac address */
5770 base = get_hwbase(dev);
5771 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5772 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5773
5774 /* check the workaround bit for correct mac address order */
5775 txreg = readl(base + NvRegTransmitPoll);
5776 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5777 /* mac address is already in correct order */
5778 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5779 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5780 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5781 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5782 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5783 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5784 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5785 /* mac address is already in correct order */
5786 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5787 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5788 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5789 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5790 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5791 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5792 /*
5793 * Set orig mac address back to the reversed version.
5794 * This flag will be cleared during low power transition.
5795 * Therefore, we should always put back the reversed address.
5796 */
5797 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5798 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5799 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5800 } else {
5801 /* need to reverse mac address to correct order */
5802 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5803 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5804 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5805 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5806 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5807 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5808 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5809 printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
5810 }
5811 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5812
5813 if (!is_valid_ether_addr(dev->perm_addr)) {
5814 /*
5815 * Bad mac address. At least one bios sets the mac address
5816 * to 01:23:45:67:89:ab
5817 */
5818 dev_printk(KERN_ERR, &pci_dev->dev,
5819 "Invalid Mac address detected: %pM\n",
5820 dev->dev_addr);
5821 dev_printk(KERN_ERR, &pci_dev->dev,
5822 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5823 random_ether_addr(dev->dev_addr);
5824 }
5825
5826 dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
5827 pci_name(pci_dev), dev->dev_addr);
5828
5829 /* set mac address */
5830 nv_copy_mac_to_hw(dev);
5831
5832 /* Workaround current PCI init glitch: wakeup bits aren't
5833 * being set from PCI PM capability.
5834 */
5835 device_init_wakeup(&pci_dev->dev, 1);
5836
5837 /* disable WOL */
5838 writel(0, base + NvRegWakeUpFlags);
5839 np->wolenabled = 0;
5840
5841 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5842
5843 /* take phy and nic out of low power mode */
5844 powerstate = readl(base + NvRegPowerState2);
5845 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5846 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5847 pci_dev->revision >= 0xA3)
5848 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5849 writel(powerstate, base + NvRegPowerState2);
5850 }
5851
5852 if (np->desc_ver == DESC_VER_1) {
5853 np->tx_flags = NV_TX_VALID;
5854 } else {
5855 np->tx_flags = NV_TX2_VALID;
5856 }
5857
5858 np->msi_flags = 0;
5859 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5860 np->msi_flags |= NV_MSI_CAPABLE;
5861 }
5862 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5863 /* msix has had reported issues when modifying irqmask
5864 as in the case of napi, therefore, disable for now
5865 */
5866 #ifndef CONFIG_FORCEDETH_NAPI
5867 np->msi_flags |= NV_MSI_X_CAPABLE;
5868 #endif
5869 }
5870
5871 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5872 np->irqmask = NVREG_IRQMASK_CPU;
5873 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5874 np->msi_flags |= 0x0001;
5875 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5876 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5877 /* start off in throughput mode */
5878 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5879 /* remove support for msix mode */
5880 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5881 } else {
5882 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5883 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5884 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5885 np->msi_flags |= 0x0003;
5886 }
5887
5888 if (id->driver_data & DEV_NEED_TIMERIRQ)
5889 np->irqmask |= NVREG_IRQ_TIMER;
5890 if (id->driver_data & DEV_NEED_LINKTIMER) {
5891 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5892 np->need_linktimer = 1;
5893 np->link_timeout = jiffies + LINK_TIMEOUT;
5894 } else {
5895 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5896 np->need_linktimer = 0;
5897 }
5898
5899 /* Limit the number of tx's outstanding for hw bug */
5900 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5901 np->tx_limit = 1;
5902 if ((id->driver_data & DEV_NEED_TX_LIMIT2) &&
5903 pci_dev->revision >= 0xA2)
5904 np->tx_limit = 0;
5905 }
5906
5907 /* clear phy state and temporarily halt phy interrupts */
5908 writel(0, base + NvRegMIIMask);
5909 phystate = readl(base + NvRegAdapterControl);
5910 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5911 phystate_orig = 1;
5912 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5913 writel(phystate, base + NvRegAdapterControl);
5914 }
5915 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5916
5917 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5918 /* management unit running on the mac? */
5919 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5920 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5921 nv_mgmt_acquire_sema(dev) &&
5922 nv_mgmt_get_version(dev)) {
5923 np->mac_in_use = 1;
5924 if (np->mgmt_version > 0) {
5925 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5926 }
5927 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
5928 pci_name(pci_dev), np->mac_in_use);
5929 /* management unit setup the phy already? */
5930 if (np->mac_in_use &&
5931 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5932 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5933 /* phy is inited by mgmt unit */
5934 phyinitialized = 1;
5935 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
5936 pci_name(pci_dev));
5937 } else {
5938 /* we need to init the phy */
5939 }
5940 }
5941 }
5942
5943 /* find a suitable phy */
5944 for (i = 1; i <= 32; i++) {
5945 int id1, id2;
5946 int phyaddr = i & 0x1F;
5947
5948 spin_lock_irq(&np->lock);
5949 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5950 spin_unlock_irq(&np->lock);
5951 if (id1 < 0 || id1 == 0xffff)
5952 continue;
5953 spin_lock_irq(&np->lock);
5954 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5955 spin_unlock_irq(&np->lock);
5956 if (id2 < 0 || id2 == 0xffff)
5957 continue;
5958
5959 np->phy_model = id2 & PHYID2_MODEL_MASK;
5960 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5961 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5962 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5963 pci_name(pci_dev), id1, id2, phyaddr);
5964 np->phyaddr = phyaddr;
5965 np->phy_oui = id1 | id2;
5966
5967 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5968 if (np->phy_oui == PHY_OUI_REALTEK2)
5969 np->phy_oui = PHY_OUI_REALTEK;
5970 /* Setup phy revision for Realtek */
5971 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5972 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5973
5974 break;
5975 }
5976 if (i == 33) {
5977 dev_printk(KERN_INFO, &pci_dev->dev,
5978 "open: Could not find a valid PHY.\n");
5979 goto out_error;
5980 }
5981
5982 if (!phyinitialized) {
5983 /* reset it */
5984 phy_init(dev);
5985 } else {
5986 /* see if it is a gigabit phy */
5987 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5988 if (mii_status & PHY_GIGABIT) {
5989 np->gigabit = PHY_GIGABIT;
5990 }
5991 }
5992
5993 /* set default link speed settings */
5994 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5995 np->duplex = 0;
5996 np->autoneg = 1;
5997
5998 err = register_netdev(dev);
5999 if (err) {
6000 dev_printk(KERN_INFO, &pci_dev->dev,
6001 "unable to register netdev: %d\n", err);
6002 goto out_error;
6003 }
6004
6005 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
6006 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
6007 dev->name,
6008 np->phy_oui,
6009 np->phyaddr,
6010 dev->dev_addr[0],
6011 dev->dev_addr[1],
6012 dev->dev_addr[2],
6013 dev->dev_addr[3],
6014 dev->dev_addr[4],
6015 dev->dev_addr[5]);
6016
6017 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6018 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6019 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6020 "csum " : "",
6021 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
6022 "vlan " : "",
6023 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6024 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6025 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6026 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6027 np->need_linktimer ? "lnktim " : "",
6028 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6029 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6030 np->desc_ver);
6031
6032 return 0;
6033
6034 out_error:
6035 if (phystate_orig)
6036 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6037 pci_set_drvdata(pci_dev, NULL);
6038 out_freering:
6039 free_rings(dev);
6040 out_unmap:
6041 iounmap(get_hwbase(dev));
6042 out_relreg:
6043 pci_release_regions(pci_dev);
6044 out_disable:
6045 pci_disable_device(pci_dev);
6046 out_free:
6047 free_netdev(dev);
6048 out:
6049 return err;
6050 }
6051
6052 static void nv_restore_phy(struct net_device *dev)
6053 {
6054 struct fe_priv *np = netdev_priv(dev);
6055 u16 phy_reserved, mii_control;
6056
6057 if (np->phy_oui == PHY_OUI_REALTEK &&
6058 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6059 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6060 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6061 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6062 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6063 phy_reserved |= PHY_REALTEK_INIT8;
6064 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6065 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6066
6067 /* restart auto negotiation */
6068 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6069 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6070 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6071 }
6072 }
6073
6074 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6075 {
6076 struct net_device *dev = pci_get_drvdata(pci_dev);
6077 struct fe_priv *np = netdev_priv(dev);
6078 u8 __iomem *base = get_hwbase(dev);
6079
6080 /* special op: write back the misordered MAC address - otherwise
6081 * the next nv_probe would see a wrong address.
6082 */
6083 writel(np->orig_mac[0], base + NvRegMacAddrA);
6084 writel(np->orig_mac[1], base + NvRegMacAddrB);
6085 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6086 base + NvRegTransmitPoll);
6087 }
6088
6089 static void __devexit nv_remove(struct pci_dev *pci_dev)
6090 {
6091 struct net_device *dev = pci_get_drvdata(pci_dev);
6092
6093 unregister_netdev(dev);
6094
6095 nv_restore_mac_addr(pci_dev);
6096
6097 /* restore any phy related changes */
6098 nv_restore_phy(dev);
6099
6100 nv_mgmt_release_sema(dev);
6101
6102 /* free all structures */
6103 free_rings(dev);
6104 iounmap(get_hwbase(dev));
6105 pci_release_regions(pci_dev);
6106 pci_disable_device(pci_dev);
6107 free_netdev(dev);
6108 pci_set_drvdata(pci_dev, NULL);
6109 }
6110
6111 #ifdef CONFIG_PM
6112 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
6113 {
6114 struct net_device *dev = pci_get_drvdata(pdev);
6115 struct fe_priv *np = netdev_priv(dev);
6116 u8 __iomem *base = get_hwbase(dev);
6117 int i;
6118
6119 if (netif_running(dev)) {
6120 // Gross.
6121 nv_close(dev);
6122 }
6123 netif_device_detach(dev);
6124
6125 /* save non-pci configuration space */
6126 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6127 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6128
6129 pci_save_state(pdev);
6130 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
6131 pci_disable_device(pdev);
6132 pci_set_power_state(pdev, pci_choose_state(pdev, state));
6133 return 0;
6134 }
6135
6136 static int nv_resume(struct pci_dev *pdev)
6137 {
6138 struct net_device *dev = pci_get_drvdata(pdev);
6139 struct fe_priv *np = netdev_priv(dev);
6140 u8 __iomem *base = get_hwbase(dev);
6141 int i, rc = 0;
6142
6143 pci_set_power_state(pdev, PCI_D0);
6144 pci_restore_state(pdev);
6145 /* ack any pending wake events, disable PME */
6146 pci_enable_wake(pdev, PCI_D0, 0);
6147
6148 /* restore non-pci configuration space */
6149 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6150 writel(np->saved_config_space[i], base+i*sizeof(u32));
6151
6152 if (np->driver_data & DEV_NEED_MSI_FIX)
6153 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6154
6155 /* restore phy state, including autoneg */
6156 phy_init(dev);
6157
6158 netif_device_attach(dev);
6159 if (netif_running(dev)) {
6160 rc = nv_open(dev);
6161 nv_set_multicast(dev);
6162 }
6163 return rc;
6164 }
6165
6166 static void nv_shutdown(struct pci_dev *pdev)
6167 {
6168 struct net_device *dev = pci_get_drvdata(pdev);
6169 struct fe_priv *np = netdev_priv(dev);
6170
6171 if (netif_running(dev))
6172 nv_close(dev);
6173
6174 /*
6175 * Restore the MAC so a kernel started by kexec won't get confused.
6176 * If we really go for poweroff, we must not restore the MAC,
6177 * otherwise the MAC for WOL will be reversed at least on some boards.
6178 */
6179 if (system_state != SYSTEM_POWER_OFF) {
6180 nv_restore_mac_addr(pdev);
6181 }
6182
6183 pci_disable_device(pdev);
6184 /*
6185 * Apparently it is not possible to reinitialise from D3 hot,
6186 * only put the device into D3 if we really go for poweroff.
6187 */
6188 if (system_state == SYSTEM_POWER_OFF) {
6189 if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
6190 pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
6191 pci_set_power_state(pdev, PCI_D3hot);
6192 }
6193 }
6194 #else
6195 #define nv_suspend NULL
6196 #define nv_shutdown NULL
6197 #define nv_resume NULL
6198 #endif /* CONFIG_PM */
6199
6200 static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
6201 { /* nForce Ethernet Controller */
6202 PCI_DEVICE(0x10DE, 0x01C3),
6203 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6204 },
6205 { /* nForce2 Ethernet Controller */
6206 PCI_DEVICE(0x10DE, 0x0066),
6207 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6208 },
6209 { /* nForce3 Ethernet Controller */
6210 PCI_DEVICE(0x10DE, 0x00D6),
6211 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6212 },
6213 { /* nForce3 Ethernet Controller */
6214 PCI_DEVICE(0x10DE, 0x0086),
6215 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6216 },
6217 { /* nForce3 Ethernet Controller */
6218 PCI_DEVICE(0x10DE, 0x008C),
6219 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6220 },
6221 { /* nForce3 Ethernet Controller */
6222 PCI_DEVICE(0x10DE, 0x00E6),
6223 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6224 },
6225 { /* nForce3 Ethernet Controller */
6226 PCI_DEVICE(0x10DE, 0x00DF),
6227 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6228 },
6229 { /* CK804 Ethernet Controller */
6230 PCI_DEVICE(0x10DE, 0x0056),
6231 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6232 },
6233 { /* CK804 Ethernet Controller */
6234 PCI_DEVICE(0x10DE, 0x0057),
6235 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6236 },
6237 { /* MCP04 Ethernet Controller */
6238 PCI_DEVICE(0x10DE, 0x0037),
6239 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6240 },
6241 { /* MCP04 Ethernet Controller */
6242 PCI_DEVICE(0x10DE, 0x0038),
6243 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6244 },
6245 { /* MCP51 Ethernet Controller */
6246 PCI_DEVICE(0x10DE, 0x0268),
6247 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6248 },
6249 { /* MCP51 Ethernet Controller */
6250 PCI_DEVICE(0x10DE, 0x0269),
6251 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6252 },
6253 { /* MCP55 Ethernet Controller */
6254 PCI_DEVICE(0x10DE, 0x0372),
6255 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6256 },
6257 { /* MCP55 Ethernet Controller */
6258 PCI_DEVICE(0x10DE, 0x0373),
6259 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6260 },
6261 { /* MCP61 Ethernet Controller */
6262 PCI_DEVICE(0x10DE, 0x03E5),
6263 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6264 },
6265 { /* MCP61 Ethernet Controller */
6266 PCI_DEVICE(0x10DE, 0x03E6),
6267 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6268 },
6269 { /* MCP61 Ethernet Controller */
6270 PCI_DEVICE(0x10DE, 0x03EE),
6271 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6272 },
6273 { /* MCP61 Ethernet Controller */
6274 PCI_DEVICE(0x10DE, 0x03EF),
6275 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6276 },
6277 { /* MCP65 Ethernet Controller */
6278 PCI_DEVICE(0x10DE, 0x0450),
6279 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6280 },
6281 { /* MCP65 Ethernet Controller */
6282 PCI_DEVICE(0x10DE, 0x0451),
6283 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6284 },
6285 { /* MCP65 Ethernet Controller */
6286 PCI_DEVICE(0x10DE, 0x0452),
6287 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6288 },
6289 { /* MCP65 Ethernet Controller */
6290 PCI_DEVICE(0x10DE, 0x0453),
6291 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6292 },
6293 { /* MCP67 Ethernet Controller */
6294 PCI_DEVICE(0x10DE, 0x054C),
6295 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6296 },
6297 { /* MCP67 Ethernet Controller */
6298 PCI_DEVICE(0x10DE, 0x054D),
6299 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6300 },
6301 { /* MCP67 Ethernet Controller */
6302 PCI_DEVICE(0x10DE, 0x054E),
6303 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6304 },
6305 { /* MCP67 Ethernet Controller */
6306 PCI_DEVICE(0x10DE, 0x054F),
6307 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6308 },
6309 { /* MCP73 Ethernet Controller */
6310 PCI_DEVICE(0x10DE, 0x07DC),
6311 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6312 },
6313 { /* MCP73 Ethernet Controller */
6314 PCI_DEVICE(0x10DE, 0x07DD),
6315 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6316 },
6317 { /* MCP73 Ethernet Controller */
6318 PCI_DEVICE(0x10DE, 0x07DE),
6319 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6320 },
6321 { /* MCP73 Ethernet Controller */
6322 PCI_DEVICE(0x10DE, 0x07DF),
6323 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6324 },
6325 { /* MCP77 Ethernet Controller */
6326 PCI_DEVICE(0x10DE, 0x0760),
6327 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6328 },
6329 { /* MCP77 Ethernet Controller */
6330 PCI_DEVICE(0x10DE, 0x0761),
6331 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6332 },
6333 { /* MCP77 Ethernet Controller */
6334 PCI_DEVICE(0x10DE, 0x0762),
6335 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6336 },
6337 { /* MCP77 Ethernet Controller */
6338 PCI_DEVICE(0x10DE, 0x0763),
6339 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6340 },
6341 { /* MCP79 Ethernet Controller */
6342 PCI_DEVICE(0x10DE, 0x0AB0),
6343 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6344 },
6345 { /* MCP79 Ethernet Controller */
6346 PCI_DEVICE(0x10DE, 0x0AB1),
6347 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6348 },
6349 { /* MCP79 Ethernet Controller */
6350 PCI_DEVICE(0x10DE, 0x0AB2),
6351 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6352 },
6353 { /* MCP79 Ethernet Controller */
6354 PCI_DEVICE(0x10DE, 0x0AB3),
6355 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6356 },
6357 { /* MCP89 Ethernet Controller */
6358 PCI_DEVICE(0x10DE, 0x0D7D),
6359 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6360 },
6361 {0,},
6362 };
6363
6364 static struct pci_driver driver = {
6365 .name = DRV_NAME,
6366 .id_table = pci_tbl,
6367 .probe = nv_probe,
6368 .remove = __devexit_p(nv_remove),
6369 .suspend = nv_suspend,
6370 .resume = nv_resume,
6371 .shutdown = nv_shutdown,
6372 };
6373
6374 static int __init init_nic(void)
6375 {
6376 return pci_register_driver(&driver);
6377 }
6378
6379 static void __exit exit_nic(void)
6380 {
6381 pci_unregister_driver(&driver);
6382 }
6383
6384 module_param(max_interrupt_work, int, 0);
6385 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6386 module_param(optimization_mode, int, 0);
6387 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6388 module_param(poll_interval, int, 0);
6389 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6390 module_param(msi, int, 0);
6391 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6392 module_param(msix, int, 0);
6393 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6394 module_param(dma_64bit, int, 0);
6395 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6396 module_param(phy_cross, int, 0);
6397 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6398 module_param(phy_power_down, int, 0);
6399 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6400
6401 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6402 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6403 MODULE_LICENSE("GPL");
6404
6405 MODULE_DEVICE_TABLE(pci, pci_tbl);
6406
6407 module_init(init_nic);
6408 module_exit(exit_nic);