]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/forcedeth.c
Merge branch 'bjorn-notify' into release
[mirror_ubuntu-bionic-kernel.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.64"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/spinlock.h>
53 #include <linux/ethtool.h>
54 #include <linux/timer.h>
55 #include <linux/skbuff.h>
56 #include <linux/mii.h>
57 #include <linux/random.h>
58 #include <linux/init.h>
59 #include <linux/if_vlan.h>
60 #include <linux/dma-mapping.h>
61
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/uaccess.h>
65 #include <asm/system.h>
66
67 #if 0
68 #define dprintk printk
69 #else
70 #define dprintk(x...) do { } while (0)
71 #endif
72
73 #define TX_WORK_PER_LOOP 64
74 #define RX_WORK_PER_LOOP 64
75
76 /*
77 * Hardware access:
78 */
79
80 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
81 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
82 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
83 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
84 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
85 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
86 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
87 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
88 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
89 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
90 #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
91 #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
92 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
93 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
94 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
95 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
96 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
97 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
98 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
99 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
100 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
101 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
102 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
103 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
104 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
105
106 enum {
107 NvRegIrqStatus = 0x000,
108 #define NVREG_IRQSTAT_MIIEVENT 0x040
109 #define NVREG_IRQSTAT_MASK 0x83ff
110 NvRegIrqMask = 0x004,
111 #define NVREG_IRQ_RX_ERROR 0x0001
112 #define NVREG_IRQ_RX 0x0002
113 #define NVREG_IRQ_RX_NOBUF 0x0004
114 #define NVREG_IRQ_TX_ERR 0x0008
115 #define NVREG_IRQ_TX_OK 0x0010
116 #define NVREG_IRQ_TIMER 0x0020
117 #define NVREG_IRQ_LINK 0x0040
118 #define NVREG_IRQ_RX_FORCED 0x0080
119 #define NVREG_IRQ_TX_FORCED 0x0100
120 #define NVREG_IRQ_RECOVER_ERROR 0x8200
121 #define NVREG_IRQMASK_THROUGHPUT 0x00df
122 #define NVREG_IRQMASK_CPU 0x0060
123 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
124 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
125 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
126
127 NvRegUnknownSetupReg6 = 0x008,
128 #define NVREG_UNKSETUP6_VAL 3
129
130 /*
131 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
132 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
133 */
134 NvRegPollingInterval = 0x00c,
135 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
136 #define NVREG_POLL_DEFAULT_CPU 13
137 NvRegMSIMap0 = 0x020,
138 NvRegMSIMap1 = 0x024,
139 NvRegMSIIrqMask = 0x030,
140 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
141 NvRegMisc1 = 0x080,
142 #define NVREG_MISC1_PAUSE_TX 0x01
143 #define NVREG_MISC1_HD 0x02
144 #define NVREG_MISC1_FORCE 0x3b0f3c
145
146 NvRegMacReset = 0x34,
147 #define NVREG_MAC_RESET_ASSERT 0x0F3
148 NvRegTransmitterControl = 0x084,
149 #define NVREG_XMITCTL_START 0x01
150 #define NVREG_XMITCTL_MGMT_ST 0x40000000
151 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
152 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
153 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
154 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
155 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
156 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
157 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
158 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
159 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
160 #define NVREG_XMITCTL_DATA_START 0x00100000
161 #define NVREG_XMITCTL_DATA_READY 0x00010000
162 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
163 NvRegTransmitterStatus = 0x088,
164 #define NVREG_XMITSTAT_BUSY 0x01
165
166 NvRegPacketFilterFlags = 0x8c,
167 #define NVREG_PFF_PAUSE_RX 0x08
168 #define NVREG_PFF_ALWAYS 0x7F0000
169 #define NVREG_PFF_PROMISC 0x80
170 #define NVREG_PFF_MYADDR 0x20
171 #define NVREG_PFF_LOOPBACK 0x10
172
173 NvRegOffloadConfig = 0x90,
174 #define NVREG_OFFLOAD_HOMEPHY 0x601
175 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
176 NvRegReceiverControl = 0x094,
177 #define NVREG_RCVCTL_START 0x01
178 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
179 NvRegReceiverStatus = 0x98,
180 #define NVREG_RCVSTAT_BUSY 0x01
181
182 NvRegSlotTime = 0x9c,
183 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
184 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
185 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
186 #define NVREG_SLOTTIME_HALF 0x0000ff00
187 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
188 #define NVREG_SLOTTIME_MASK 0x000000ff
189
190 NvRegTxDeferral = 0xA0,
191 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
192 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
193 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
194 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
195 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
196 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
197 NvRegRxDeferral = 0xA4,
198 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
199 NvRegMacAddrA = 0xA8,
200 NvRegMacAddrB = 0xAC,
201 NvRegMulticastAddrA = 0xB0,
202 #define NVREG_MCASTADDRA_FORCE 0x01
203 NvRegMulticastAddrB = 0xB4,
204 NvRegMulticastMaskA = 0xB8,
205 #define NVREG_MCASTMASKA_NONE 0xffffffff
206 NvRegMulticastMaskB = 0xBC,
207 #define NVREG_MCASTMASKB_NONE 0xffff
208
209 NvRegPhyInterface = 0xC0,
210 #define PHY_RGMII 0x10000000
211 NvRegBackOffControl = 0xC4,
212 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
213 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
214 #define NVREG_BKOFFCTRL_SELECT 24
215 #define NVREG_BKOFFCTRL_GEAR 12
216
217 NvRegTxRingPhysAddr = 0x100,
218 NvRegRxRingPhysAddr = 0x104,
219 NvRegRingSizes = 0x108,
220 #define NVREG_RINGSZ_TXSHIFT 0
221 #define NVREG_RINGSZ_RXSHIFT 16
222 NvRegTransmitPoll = 0x10c,
223 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
224 NvRegLinkSpeed = 0x110,
225 #define NVREG_LINKSPEED_FORCE 0x10000
226 #define NVREG_LINKSPEED_10 1000
227 #define NVREG_LINKSPEED_100 100
228 #define NVREG_LINKSPEED_1000 50
229 #define NVREG_LINKSPEED_MASK (0xFFF)
230 NvRegUnknownSetupReg5 = 0x130,
231 #define NVREG_UNKSETUP5_BIT31 (1<<31)
232 NvRegTxWatermark = 0x13c,
233 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
234 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
235 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
236 NvRegTxRxControl = 0x144,
237 #define NVREG_TXRXCTL_KICK 0x0001
238 #define NVREG_TXRXCTL_BIT1 0x0002
239 #define NVREG_TXRXCTL_BIT2 0x0004
240 #define NVREG_TXRXCTL_IDLE 0x0008
241 #define NVREG_TXRXCTL_RESET 0x0010
242 #define NVREG_TXRXCTL_RXCHECK 0x0400
243 #define NVREG_TXRXCTL_DESC_1 0
244 #define NVREG_TXRXCTL_DESC_2 0x002100
245 #define NVREG_TXRXCTL_DESC_3 0xc02200
246 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
247 #define NVREG_TXRXCTL_VLANINS 0x00080
248 NvRegTxRingPhysAddrHigh = 0x148,
249 NvRegRxRingPhysAddrHigh = 0x14C,
250 NvRegTxPauseFrame = 0x170,
251 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
252 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
253 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
254 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
255 NvRegTxPauseFrameLimit = 0x174,
256 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
257 NvRegMIIStatus = 0x180,
258 #define NVREG_MIISTAT_ERROR 0x0001
259 #define NVREG_MIISTAT_LINKCHANGE 0x0008
260 #define NVREG_MIISTAT_MASK_RW 0x0007
261 #define NVREG_MIISTAT_MASK_ALL 0x000f
262 NvRegMIIMask = 0x184,
263 #define NVREG_MII_LINKCHANGE 0x0008
264
265 NvRegAdapterControl = 0x188,
266 #define NVREG_ADAPTCTL_START 0x02
267 #define NVREG_ADAPTCTL_LINKUP 0x04
268 #define NVREG_ADAPTCTL_PHYVALID 0x40000
269 #define NVREG_ADAPTCTL_RUNNING 0x100000
270 #define NVREG_ADAPTCTL_PHYSHIFT 24
271 NvRegMIISpeed = 0x18c,
272 #define NVREG_MIISPEED_BIT8 (1<<8)
273 #define NVREG_MIIDELAY 5
274 NvRegMIIControl = 0x190,
275 #define NVREG_MIICTL_INUSE 0x08000
276 #define NVREG_MIICTL_WRITE 0x00400
277 #define NVREG_MIICTL_ADDRSHIFT 5
278 NvRegMIIData = 0x194,
279 NvRegTxUnicast = 0x1a0,
280 NvRegTxMulticast = 0x1a4,
281 NvRegTxBroadcast = 0x1a8,
282 NvRegWakeUpFlags = 0x200,
283 #define NVREG_WAKEUPFLAGS_VAL 0x7770
284 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
285 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
286 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
287 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
288 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
289 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
290 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
291 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
292 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
293 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
294
295 NvRegMgmtUnitGetVersion = 0x204,
296 #define NVREG_MGMTUNITGETVERSION 0x01
297 NvRegMgmtUnitVersion = 0x208,
298 #define NVREG_MGMTUNITVERSION 0x08
299 NvRegPowerCap = 0x268,
300 #define NVREG_POWERCAP_D3SUPP (1<<30)
301 #define NVREG_POWERCAP_D2SUPP (1<<26)
302 #define NVREG_POWERCAP_D1SUPP (1<<25)
303 NvRegPowerState = 0x26c,
304 #define NVREG_POWERSTATE_POWEREDUP 0x8000
305 #define NVREG_POWERSTATE_VALID 0x0100
306 #define NVREG_POWERSTATE_MASK 0x0003
307 #define NVREG_POWERSTATE_D0 0x0000
308 #define NVREG_POWERSTATE_D1 0x0001
309 #define NVREG_POWERSTATE_D2 0x0002
310 #define NVREG_POWERSTATE_D3 0x0003
311 NvRegMgmtUnitControl = 0x278,
312 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
313 NvRegTxCnt = 0x280,
314 NvRegTxZeroReXmt = 0x284,
315 NvRegTxOneReXmt = 0x288,
316 NvRegTxManyReXmt = 0x28c,
317 NvRegTxLateCol = 0x290,
318 NvRegTxUnderflow = 0x294,
319 NvRegTxLossCarrier = 0x298,
320 NvRegTxExcessDef = 0x29c,
321 NvRegTxRetryErr = 0x2a0,
322 NvRegRxFrameErr = 0x2a4,
323 NvRegRxExtraByte = 0x2a8,
324 NvRegRxLateCol = 0x2ac,
325 NvRegRxRunt = 0x2b0,
326 NvRegRxFrameTooLong = 0x2b4,
327 NvRegRxOverflow = 0x2b8,
328 NvRegRxFCSErr = 0x2bc,
329 NvRegRxFrameAlignErr = 0x2c0,
330 NvRegRxLenErr = 0x2c4,
331 NvRegRxUnicast = 0x2c8,
332 NvRegRxMulticast = 0x2cc,
333 NvRegRxBroadcast = 0x2d0,
334 NvRegTxDef = 0x2d4,
335 NvRegTxFrame = 0x2d8,
336 NvRegRxCnt = 0x2dc,
337 NvRegTxPause = 0x2e0,
338 NvRegRxPause = 0x2e4,
339 NvRegRxDropFrame = 0x2e8,
340 NvRegVlanControl = 0x300,
341 #define NVREG_VLANCONTROL_ENABLE 0x2000
342 NvRegMSIXMap0 = 0x3e0,
343 NvRegMSIXMap1 = 0x3e4,
344 NvRegMSIXIrqStatus = 0x3f0,
345
346 NvRegPowerState2 = 0x600,
347 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
348 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
349 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
350 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
351 };
352
353 /* Big endian: should work, but is untested */
354 struct ring_desc {
355 __le32 buf;
356 __le32 flaglen;
357 };
358
359 struct ring_desc_ex {
360 __le32 bufhigh;
361 __le32 buflow;
362 __le32 txvlan;
363 __le32 flaglen;
364 };
365
366 union ring_type {
367 struct ring_desc* orig;
368 struct ring_desc_ex* ex;
369 };
370
371 #define FLAG_MASK_V1 0xffff0000
372 #define FLAG_MASK_V2 0xffffc000
373 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
374 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
375
376 #define NV_TX_LASTPACKET (1<<16)
377 #define NV_TX_RETRYERROR (1<<19)
378 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
379 #define NV_TX_FORCED_INTERRUPT (1<<24)
380 #define NV_TX_DEFERRED (1<<26)
381 #define NV_TX_CARRIERLOST (1<<27)
382 #define NV_TX_LATECOLLISION (1<<28)
383 #define NV_TX_UNDERFLOW (1<<29)
384 #define NV_TX_ERROR (1<<30)
385 #define NV_TX_VALID (1<<31)
386
387 #define NV_TX2_LASTPACKET (1<<29)
388 #define NV_TX2_RETRYERROR (1<<18)
389 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
390 #define NV_TX2_FORCED_INTERRUPT (1<<30)
391 #define NV_TX2_DEFERRED (1<<25)
392 #define NV_TX2_CARRIERLOST (1<<26)
393 #define NV_TX2_LATECOLLISION (1<<27)
394 #define NV_TX2_UNDERFLOW (1<<28)
395 /* error and valid are the same for both */
396 #define NV_TX2_ERROR (1<<30)
397 #define NV_TX2_VALID (1<<31)
398 #define NV_TX2_TSO (1<<28)
399 #define NV_TX2_TSO_SHIFT 14
400 #define NV_TX2_TSO_MAX_SHIFT 14
401 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
402 #define NV_TX2_CHECKSUM_L3 (1<<27)
403 #define NV_TX2_CHECKSUM_L4 (1<<26)
404
405 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
406
407 #define NV_RX_DESCRIPTORVALID (1<<16)
408 #define NV_RX_MISSEDFRAME (1<<17)
409 #define NV_RX_SUBSTRACT1 (1<<18)
410 #define NV_RX_ERROR1 (1<<23)
411 #define NV_RX_ERROR2 (1<<24)
412 #define NV_RX_ERROR3 (1<<25)
413 #define NV_RX_ERROR4 (1<<26)
414 #define NV_RX_CRCERR (1<<27)
415 #define NV_RX_OVERFLOW (1<<28)
416 #define NV_RX_FRAMINGERR (1<<29)
417 #define NV_RX_ERROR (1<<30)
418 #define NV_RX_AVAIL (1<<31)
419 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
420
421 #define NV_RX2_CHECKSUMMASK (0x1C000000)
422 #define NV_RX2_CHECKSUM_IP (0x10000000)
423 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
424 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
425 #define NV_RX2_DESCRIPTORVALID (1<<29)
426 #define NV_RX2_SUBSTRACT1 (1<<25)
427 #define NV_RX2_ERROR1 (1<<18)
428 #define NV_RX2_ERROR2 (1<<19)
429 #define NV_RX2_ERROR3 (1<<20)
430 #define NV_RX2_ERROR4 (1<<21)
431 #define NV_RX2_CRCERR (1<<22)
432 #define NV_RX2_OVERFLOW (1<<23)
433 #define NV_RX2_FRAMINGERR (1<<24)
434 /* error and avail are the same for both */
435 #define NV_RX2_ERROR (1<<30)
436 #define NV_RX2_AVAIL (1<<31)
437 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
438
439 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
440 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
441
442 /* Miscelaneous hardware related defines: */
443 #define NV_PCI_REGSZ_VER1 0x270
444 #define NV_PCI_REGSZ_VER2 0x2d4
445 #define NV_PCI_REGSZ_VER3 0x604
446 #define NV_PCI_REGSZ_MAX 0x604
447
448 /* various timeout delays: all in usec */
449 #define NV_TXRX_RESET_DELAY 4
450 #define NV_TXSTOP_DELAY1 10
451 #define NV_TXSTOP_DELAY1MAX 500000
452 #define NV_TXSTOP_DELAY2 100
453 #define NV_RXSTOP_DELAY1 10
454 #define NV_RXSTOP_DELAY1MAX 500000
455 #define NV_RXSTOP_DELAY2 100
456 #define NV_SETUP5_DELAY 5
457 #define NV_SETUP5_DELAYMAX 50000
458 #define NV_POWERUP_DELAY 5
459 #define NV_POWERUP_DELAYMAX 5000
460 #define NV_MIIBUSY_DELAY 50
461 #define NV_MIIPHY_DELAY 10
462 #define NV_MIIPHY_DELAYMAX 10000
463 #define NV_MAC_RESET_DELAY 64
464
465 #define NV_WAKEUPPATTERNS 5
466 #define NV_WAKEUPMASKENTRIES 4
467
468 /* General driver defaults */
469 #define NV_WATCHDOG_TIMEO (5*HZ)
470
471 #define RX_RING_DEFAULT 512
472 #define TX_RING_DEFAULT 256
473 #define RX_RING_MIN 128
474 #define TX_RING_MIN 64
475 #define RING_MAX_DESC_VER_1 1024
476 #define RING_MAX_DESC_VER_2_3 16384
477
478 /* rx/tx mac addr + type + vlan + align + slack*/
479 #define NV_RX_HEADERS (64)
480 /* even more slack. */
481 #define NV_RX_ALLOC_PAD (64)
482
483 /* maximum mtu size */
484 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
485 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
486
487 #define OOM_REFILL (1+HZ/20)
488 #define POLL_WAIT (1+HZ/100)
489 #define LINK_TIMEOUT (3*HZ)
490 #define STATS_INTERVAL (10*HZ)
491
492 /*
493 * desc_ver values:
494 * The nic supports three different descriptor types:
495 * - DESC_VER_1: Original
496 * - DESC_VER_2: support for jumbo frames.
497 * - DESC_VER_3: 64-bit format.
498 */
499 #define DESC_VER_1 1
500 #define DESC_VER_2 2
501 #define DESC_VER_3 3
502
503 /* PHY defines */
504 #define PHY_OUI_MARVELL 0x5043
505 #define PHY_OUI_CICADA 0x03f1
506 #define PHY_OUI_VITESSE 0x01c1
507 #define PHY_OUI_REALTEK 0x0732
508 #define PHY_OUI_REALTEK2 0x0020
509 #define PHYID1_OUI_MASK 0x03ff
510 #define PHYID1_OUI_SHFT 6
511 #define PHYID2_OUI_MASK 0xfc00
512 #define PHYID2_OUI_SHFT 10
513 #define PHYID2_MODEL_MASK 0x03f0
514 #define PHY_MODEL_REALTEK_8211 0x0110
515 #define PHY_REV_MASK 0x0001
516 #define PHY_REV_REALTEK_8211B 0x0000
517 #define PHY_REV_REALTEK_8211C 0x0001
518 #define PHY_MODEL_REALTEK_8201 0x0200
519 #define PHY_MODEL_MARVELL_E3016 0x0220
520 #define PHY_MARVELL_E3016_INITMASK 0x0300
521 #define PHY_CICADA_INIT1 0x0f000
522 #define PHY_CICADA_INIT2 0x0e00
523 #define PHY_CICADA_INIT3 0x01000
524 #define PHY_CICADA_INIT4 0x0200
525 #define PHY_CICADA_INIT5 0x0004
526 #define PHY_CICADA_INIT6 0x02000
527 #define PHY_VITESSE_INIT_REG1 0x1f
528 #define PHY_VITESSE_INIT_REG2 0x10
529 #define PHY_VITESSE_INIT_REG3 0x11
530 #define PHY_VITESSE_INIT_REG4 0x12
531 #define PHY_VITESSE_INIT_MSK1 0xc
532 #define PHY_VITESSE_INIT_MSK2 0x0180
533 #define PHY_VITESSE_INIT1 0x52b5
534 #define PHY_VITESSE_INIT2 0xaf8a
535 #define PHY_VITESSE_INIT3 0x8
536 #define PHY_VITESSE_INIT4 0x8f8a
537 #define PHY_VITESSE_INIT5 0xaf86
538 #define PHY_VITESSE_INIT6 0x8f86
539 #define PHY_VITESSE_INIT7 0xaf82
540 #define PHY_VITESSE_INIT8 0x0100
541 #define PHY_VITESSE_INIT9 0x8f82
542 #define PHY_VITESSE_INIT10 0x0
543 #define PHY_REALTEK_INIT_REG1 0x1f
544 #define PHY_REALTEK_INIT_REG2 0x19
545 #define PHY_REALTEK_INIT_REG3 0x13
546 #define PHY_REALTEK_INIT_REG4 0x14
547 #define PHY_REALTEK_INIT_REG5 0x18
548 #define PHY_REALTEK_INIT_REG6 0x11
549 #define PHY_REALTEK_INIT_REG7 0x01
550 #define PHY_REALTEK_INIT1 0x0000
551 #define PHY_REALTEK_INIT2 0x8e00
552 #define PHY_REALTEK_INIT3 0x0001
553 #define PHY_REALTEK_INIT4 0xad17
554 #define PHY_REALTEK_INIT5 0xfb54
555 #define PHY_REALTEK_INIT6 0xf5c7
556 #define PHY_REALTEK_INIT7 0x1000
557 #define PHY_REALTEK_INIT8 0x0003
558 #define PHY_REALTEK_INIT9 0x0008
559 #define PHY_REALTEK_INIT10 0x0005
560 #define PHY_REALTEK_INIT11 0x0200
561 #define PHY_REALTEK_INIT_MSK1 0x0003
562
563 #define PHY_GIGABIT 0x0100
564
565 #define PHY_TIMEOUT 0x1
566 #define PHY_ERROR 0x2
567
568 #define PHY_100 0x1
569 #define PHY_1000 0x2
570 #define PHY_HALF 0x100
571
572 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
573 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
574 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
575 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
576 #define NV_PAUSEFRAME_RX_REQ 0x0010
577 #define NV_PAUSEFRAME_TX_REQ 0x0020
578 #define NV_PAUSEFRAME_AUTONEG 0x0040
579
580 /* MSI/MSI-X defines */
581 #define NV_MSI_X_MAX_VECTORS 8
582 #define NV_MSI_X_VECTORS_MASK 0x000f
583 #define NV_MSI_CAPABLE 0x0010
584 #define NV_MSI_X_CAPABLE 0x0020
585 #define NV_MSI_ENABLED 0x0040
586 #define NV_MSI_X_ENABLED 0x0080
587
588 #define NV_MSI_X_VECTOR_ALL 0x0
589 #define NV_MSI_X_VECTOR_RX 0x0
590 #define NV_MSI_X_VECTOR_TX 0x1
591 #define NV_MSI_X_VECTOR_OTHER 0x2
592
593 #define NV_MSI_PRIV_OFFSET 0x68
594 #define NV_MSI_PRIV_VALUE 0xffffffff
595
596 #define NV_RESTART_TX 0x1
597 #define NV_RESTART_RX 0x2
598
599 #define NV_TX_LIMIT_COUNT 16
600
601 #define NV_DYNAMIC_THRESHOLD 4
602 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
603
604 /* statistics */
605 struct nv_ethtool_str {
606 char name[ETH_GSTRING_LEN];
607 };
608
609 static const struct nv_ethtool_str nv_estats_str[] = {
610 { "tx_bytes" },
611 { "tx_zero_rexmt" },
612 { "tx_one_rexmt" },
613 { "tx_many_rexmt" },
614 { "tx_late_collision" },
615 { "tx_fifo_errors" },
616 { "tx_carrier_errors" },
617 { "tx_excess_deferral" },
618 { "tx_retry_error" },
619 { "rx_frame_error" },
620 { "rx_extra_byte" },
621 { "rx_late_collision" },
622 { "rx_runt" },
623 { "rx_frame_too_long" },
624 { "rx_over_errors" },
625 { "rx_crc_errors" },
626 { "rx_frame_align_error" },
627 { "rx_length_error" },
628 { "rx_unicast" },
629 { "rx_multicast" },
630 { "rx_broadcast" },
631 { "rx_packets" },
632 { "rx_errors_total" },
633 { "tx_errors_total" },
634
635 /* version 2 stats */
636 { "tx_deferral" },
637 { "tx_packets" },
638 { "rx_bytes" },
639 { "tx_pause" },
640 { "rx_pause" },
641 { "rx_drop_frame" },
642
643 /* version 3 stats */
644 { "tx_unicast" },
645 { "tx_multicast" },
646 { "tx_broadcast" }
647 };
648
649 struct nv_ethtool_stats {
650 u64 tx_bytes;
651 u64 tx_zero_rexmt;
652 u64 tx_one_rexmt;
653 u64 tx_many_rexmt;
654 u64 tx_late_collision;
655 u64 tx_fifo_errors;
656 u64 tx_carrier_errors;
657 u64 tx_excess_deferral;
658 u64 tx_retry_error;
659 u64 rx_frame_error;
660 u64 rx_extra_byte;
661 u64 rx_late_collision;
662 u64 rx_runt;
663 u64 rx_frame_too_long;
664 u64 rx_over_errors;
665 u64 rx_crc_errors;
666 u64 rx_frame_align_error;
667 u64 rx_length_error;
668 u64 rx_unicast;
669 u64 rx_multicast;
670 u64 rx_broadcast;
671 u64 rx_packets;
672 u64 rx_errors_total;
673 u64 tx_errors_total;
674
675 /* version 2 stats */
676 u64 tx_deferral;
677 u64 tx_packets;
678 u64 rx_bytes;
679 u64 tx_pause;
680 u64 rx_pause;
681 u64 rx_drop_frame;
682
683 /* version 3 stats */
684 u64 tx_unicast;
685 u64 tx_multicast;
686 u64 tx_broadcast;
687 };
688
689 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
690 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
691 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
692
693 /* diagnostics */
694 #define NV_TEST_COUNT_BASE 3
695 #define NV_TEST_COUNT_EXTENDED 4
696
697 static const struct nv_ethtool_str nv_etests_str[] = {
698 { "link (online/offline)" },
699 { "register (offline) " },
700 { "interrupt (offline) " },
701 { "loopback (offline) " }
702 };
703
704 struct register_test {
705 __u32 reg;
706 __u32 mask;
707 };
708
709 static const struct register_test nv_registers_test[] = {
710 { NvRegUnknownSetupReg6, 0x01 },
711 { NvRegMisc1, 0x03c },
712 { NvRegOffloadConfig, 0x03ff },
713 { NvRegMulticastAddrA, 0xffffffff },
714 { NvRegTxWatermark, 0x0ff },
715 { NvRegWakeUpFlags, 0x07777 },
716 { 0,0 }
717 };
718
719 struct nv_skb_map {
720 struct sk_buff *skb;
721 dma_addr_t dma;
722 unsigned int dma_len:31;
723 unsigned int dma_single:1;
724 struct ring_desc_ex *first_tx_desc;
725 struct nv_skb_map *next_tx_ctx;
726 };
727
728 /*
729 * SMP locking:
730 * All hardware access under netdev_priv(dev)->lock, except the performance
731 * critical parts:
732 * - rx is (pseudo-) lockless: it relies on the single-threading provided
733 * by the arch code for interrupts.
734 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
735 * needs netdev_priv(dev)->lock :-(
736 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
737 */
738
739 /* in dev: base, irq */
740 struct fe_priv {
741 spinlock_t lock;
742
743 struct net_device *dev;
744 struct napi_struct napi;
745
746 /* General data:
747 * Locking: spin_lock(&np->lock); */
748 struct nv_ethtool_stats estats;
749 int in_shutdown;
750 u32 linkspeed;
751 int duplex;
752 int autoneg;
753 int fixed_mode;
754 int phyaddr;
755 int wolenabled;
756 unsigned int phy_oui;
757 unsigned int phy_model;
758 unsigned int phy_rev;
759 u16 gigabit;
760 int intr_test;
761 int recover_error;
762 int quiet_count;
763
764 /* General data: RO fields */
765 dma_addr_t ring_addr;
766 struct pci_dev *pci_dev;
767 u32 orig_mac[2];
768 u32 events;
769 u32 irqmask;
770 u32 desc_ver;
771 u32 txrxctl_bits;
772 u32 vlanctl_bits;
773 u32 driver_data;
774 u32 device_id;
775 u32 register_size;
776 int rx_csum;
777 u32 mac_in_use;
778 int mgmt_version;
779 int mgmt_sema;
780
781 void __iomem *base;
782
783 /* rx specific fields.
784 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
785 */
786 union ring_type get_rx, put_rx, first_rx, last_rx;
787 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
788 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
789 struct nv_skb_map *rx_skb;
790
791 union ring_type rx_ring;
792 unsigned int rx_buf_sz;
793 unsigned int pkt_limit;
794 struct timer_list oom_kick;
795 struct timer_list nic_poll;
796 struct timer_list stats_poll;
797 u32 nic_poll_irq;
798 int rx_ring_size;
799
800 /* media detection workaround.
801 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
802 */
803 int need_linktimer;
804 unsigned long link_timeout;
805 /*
806 * tx specific fields.
807 */
808 union ring_type get_tx, put_tx, first_tx, last_tx;
809 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
810 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
811 struct nv_skb_map *tx_skb;
812
813 union ring_type tx_ring;
814 u32 tx_flags;
815 int tx_ring_size;
816 int tx_limit;
817 u32 tx_pkts_in_progress;
818 struct nv_skb_map *tx_change_owner;
819 struct nv_skb_map *tx_end_flip;
820 int tx_stop;
821
822 /* vlan fields */
823 struct vlan_group *vlangrp;
824
825 /* msi/msi-x fields */
826 u32 msi_flags;
827 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
828
829 /* flow control */
830 u32 pause_flags;
831
832 /* power saved state */
833 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
834
835 /* for different msi-x irq type */
836 char name_rx[IFNAMSIZ + 3]; /* -rx */
837 char name_tx[IFNAMSIZ + 3]; /* -tx */
838 char name_other[IFNAMSIZ + 6]; /* -other */
839 };
840
841 /*
842 * Maximum number of loops until we assume that a bit in the irq mask
843 * is stuck. Overridable with module param.
844 */
845 static int max_interrupt_work = 4;
846
847 /*
848 * Optimization can be either throuput mode or cpu mode
849 *
850 * Throughput Mode: Every tx and rx packet will generate an interrupt.
851 * CPU Mode: Interrupts are controlled by a timer.
852 */
853 enum {
854 NV_OPTIMIZATION_MODE_THROUGHPUT,
855 NV_OPTIMIZATION_MODE_CPU,
856 NV_OPTIMIZATION_MODE_DYNAMIC
857 };
858 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
859
860 /*
861 * Poll interval for timer irq
862 *
863 * This interval determines how frequent an interrupt is generated.
864 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
865 * Min = 0, and Max = 65535
866 */
867 static int poll_interval = -1;
868
869 /*
870 * MSI interrupts
871 */
872 enum {
873 NV_MSI_INT_DISABLED,
874 NV_MSI_INT_ENABLED
875 };
876 static int msi = NV_MSI_INT_ENABLED;
877
878 /*
879 * MSIX interrupts
880 */
881 enum {
882 NV_MSIX_INT_DISABLED,
883 NV_MSIX_INT_ENABLED
884 };
885 static int msix = NV_MSIX_INT_ENABLED;
886
887 /*
888 * DMA 64bit
889 */
890 enum {
891 NV_DMA_64BIT_DISABLED,
892 NV_DMA_64BIT_ENABLED
893 };
894 static int dma_64bit = NV_DMA_64BIT_ENABLED;
895
896 /*
897 * Crossover Detection
898 * Realtek 8201 phy + some OEM boards do not work properly.
899 */
900 enum {
901 NV_CROSSOVER_DETECTION_DISABLED,
902 NV_CROSSOVER_DETECTION_ENABLED
903 };
904 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
905
906 /*
907 * Power down phy when interface is down (persists through reboot;
908 * older Linux and other OSes may not power it up again)
909 */
910 static int phy_power_down = 0;
911
912 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
913 {
914 return netdev_priv(dev);
915 }
916
917 static inline u8 __iomem *get_hwbase(struct net_device *dev)
918 {
919 return ((struct fe_priv *)netdev_priv(dev))->base;
920 }
921
922 static inline void pci_push(u8 __iomem *base)
923 {
924 /* force out pending posted writes */
925 readl(base);
926 }
927
928 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
929 {
930 return le32_to_cpu(prd->flaglen)
931 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
932 }
933
934 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
935 {
936 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
937 }
938
939 static bool nv_optimized(struct fe_priv *np)
940 {
941 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
942 return false;
943 return true;
944 }
945
946 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
947 int delay, int delaymax, const char *msg)
948 {
949 u8 __iomem *base = get_hwbase(dev);
950
951 pci_push(base);
952 do {
953 udelay(delay);
954 delaymax -= delay;
955 if (delaymax < 0) {
956 if (msg)
957 printk("%s", msg);
958 return 1;
959 }
960 } while ((readl(base + offset) & mask) != target);
961 return 0;
962 }
963
964 #define NV_SETUP_RX_RING 0x01
965 #define NV_SETUP_TX_RING 0x02
966
967 static inline u32 dma_low(dma_addr_t addr)
968 {
969 return addr;
970 }
971
972 static inline u32 dma_high(dma_addr_t addr)
973 {
974 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
975 }
976
977 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
978 {
979 struct fe_priv *np = get_nvpriv(dev);
980 u8 __iomem *base = get_hwbase(dev);
981
982 if (!nv_optimized(np)) {
983 if (rxtx_flags & NV_SETUP_RX_RING) {
984 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
985 }
986 if (rxtx_flags & NV_SETUP_TX_RING) {
987 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
988 }
989 } else {
990 if (rxtx_flags & NV_SETUP_RX_RING) {
991 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
992 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
993 }
994 if (rxtx_flags & NV_SETUP_TX_RING) {
995 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
996 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
997 }
998 }
999 }
1000
1001 static void free_rings(struct net_device *dev)
1002 {
1003 struct fe_priv *np = get_nvpriv(dev);
1004
1005 if (!nv_optimized(np)) {
1006 if (np->rx_ring.orig)
1007 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1008 np->rx_ring.orig, np->ring_addr);
1009 } else {
1010 if (np->rx_ring.ex)
1011 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1012 np->rx_ring.ex, np->ring_addr);
1013 }
1014 if (np->rx_skb)
1015 kfree(np->rx_skb);
1016 if (np->tx_skb)
1017 kfree(np->tx_skb);
1018 }
1019
1020 static int using_multi_irqs(struct net_device *dev)
1021 {
1022 struct fe_priv *np = get_nvpriv(dev);
1023
1024 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1025 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1026 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1027 return 0;
1028 else
1029 return 1;
1030 }
1031
1032 static void nv_txrx_gate(struct net_device *dev, bool gate)
1033 {
1034 struct fe_priv *np = get_nvpriv(dev);
1035 u8 __iomem *base = get_hwbase(dev);
1036 u32 powerstate;
1037
1038 if (!np->mac_in_use &&
1039 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1040 powerstate = readl(base + NvRegPowerState2);
1041 if (gate)
1042 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1043 else
1044 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1045 writel(powerstate, base + NvRegPowerState2);
1046 }
1047 }
1048
1049 static void nv_enable_irq(struct net_device *dev)
1050 {
1051 struct fe_priv *np = get_nvpriv(dev);
1052
1053 if (!using_multi_irqs(dev)) {
1054 if (np->msi_flags & NV_MSI_X_ENABLED)
1055 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1056 else
1057 enable_irq(np->pci_dev->irq);
1058 } else {
1059 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1060 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1061 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1062 }
1063 }
1064
1065 static void nv_disable_irq(struct net_device *dev)
1066 {
1067 struct fe_priv *np = get_nvpriv(dev);
1068
1069 if (!using_multi_irqs(dev)) {
1070 if (np->msi_flags & NV_MSI_X_ENABLED)
1071 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1072 else
1073 disable_irq(np->pci_dev->irq);
1074 } else {
1075 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1076 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1077 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1078 }
1079 }
1080
1081 /* In MSIX mode, a write to irqmask behaves as XOR */
1082 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1083 {
1084 u8 __iomem *base = get_hwbase(dev);
1085
1086 writel(mask, base + NvRegIrqMask);
1087 }
1088
1089 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1090 {
1091 struct fe_priv *np = get_nvpriv(dev);
1092 u8 __iomem *base = get_hwbase(dev);
1093
1094 if (np->msi_flags & NV_MSI_X_ENABLED) {
1095 writel(mask, base + NvRegIrqMask);
1096 } else {
1097 if (np->msi_flags & NV_MSI_ENABLED)
1098 writel(0, base + NvRegMSIIrqMask);
1099 writel(0, base + NvRegIrqMask);
1100 }
1101 }
1102
1103 static void nv_napi_enable(struct net_device *dev)
1104 {
1105 #ifdef CONFIG_FORCEDETH_NAPI
1106 struct fe_priv *np = get_nvpriv(dev);
1107
1108 napi_enable(&np->napi);
1109 #endif
1110 }
1111
1112 static void nv_napi_disable(struct net_device *dev)
1113 {
1114 #ifdef CONFIG_FORCEDETH_NAPI
1115 struct fe_priv *np = get_nvpriv(dev);
1116
1117 napi_disable(&np->napi);
1118 #endif
1119 }
1120
1121 #define MII_READ (-1)
1122 /* mii_rw: read/write a register on the PHY.
1123 *
1124 * Caller must guarantee serialization
1125 */
1126 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1127 {
1128 u8 __iomem *base = get_hwbase(dev);
1129 u32 reg;
1130 int retval;
1131
1132 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1133
1134 reg = readl(base + NvRegMIIControl);
1135 if (reg & NVREG_MIICTL_INUSE) {
1136 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1137 udelay(NV_MIIBUSY_DELAY);
1138 }
1139
1140 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1141 if (value != MII_READ) {
1142 writel(value, base + NvRegMIIData);
1143 reg |= NVREG_MIICTL_WRITE;
1144 }
1145 writel(reg, base + NvRegMIIControl);
1146
1147 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1148 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1149 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1150 dev->name, miireg, addr);
1151 retval = -1;
1152 } else if (value != MII_READ) {
1153 /* it was a write operation - fewer failures are detectable */
1154 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1155 dev->name, value, miireg, addr);
1156 retval = 0;
1157 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1158 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1159 dev->name, miireg, addr);
1160 retval = -1;
1161 } else {
1162 retval = readl(base + NvRegMIIData);
1163 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1164 dev->name, miireg, addr, retval);
1165 }
1166
1167 return retval;
1168 }
1169
1170 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1171 {
1172 struct fe_priv *np = netdev_priv(dev);
1173 u32 miicontrol;
1174 unsigned int tries = 0;
1175
1176 miicontrol = BMCR_RESET | bmcr_setup;
1177 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1178 return -1;
1179 }
1180
1181 /* wait for 500ms */
1182 msleep(500);
1183
1184 /* must wait till reset is deasserted */
1185 while (miicontrol & BMCR_RESET) {
1186 msleep(10);
1187 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1188 /* FIXME: 100 tries seem excessive */
1189 if (tries++ > 100)
1190 return -1;
1191 }
1192 return 0;
1193 }
1194
1195 static int phy_init(struct net_device *dev)
1196 {
1197 struct fe_priv *np = get_nvpriv(dev);
1198 u8 __iomem *base = get_hwbase(dev);
1199 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1200
1201 /* phy errata for E3016 phy */
1202 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1203 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1204 reg &= ~PHY_MARVELL_E3016_INITMASK;
1205 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1206 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1207 return PHY_ERROR;
1208 }
1209 }
1210 if (np->phy_oui == PHY_OUI_REALTEK) {
1211 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1212 np->phy_rev == PHY_REV_REALTEK_8211B) {
1213 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1214 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1215 return PHY_ERROR;
1216 }
1217 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1218 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1219 return PHY_ERROR;
1220 }
1221 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1222 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1223 return PHY_ERROR;
1224 }
1225 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1226 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1227 return PHY_ERROR;
1228 }
1229 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1230 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1231 return PHY_ERROR;
1232 }
1233 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1234 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1235 return PHY_ERROR;
1236 }
1237 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1238 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1239 return PHY_ERROR;
1240 }
1241 }
1242 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1243 np->phy_rev == PHY_REV_REALTEK_8211C) {
1244 u32 powerstate = readl(base + NvRegPowerState2);
1245
1246 /* need to perform hw phy reset */
1247 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1248 writel(powerstate, base + NvRegPowerState2);
1249 msleep(25);
1250
1251 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1252 writel(powerstate, base + NvRegPowerState2);
1253 msleep(25);
1254
1255 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1256 reg |= PHY_REALTEK_INIT9;
1257 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1258 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1259 return PHY_ERROR;
1260 }
1261 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1262 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1263 return PHY_ERROR;
1264 }
1265 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1266 if (!(reg & PHY_REALTEK_INIT11)) {
1267 reg |= PHY_REALTEK_INIT11;
1268 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1269 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1270 return PHY_ERROR;
1271 }
1272 }
1273 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1274 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1275 return PHY_ERROR;
1276 }
1277 }
1278 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1279 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1280 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1281 phy_reserved |= PHY_REALTEK_INIT7;
1282 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1283 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1284 return PHY_ERROR;
1285 }
1286 }
1287 }
1288 }
1289
1290 /* set advertise register */
1291 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1292 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1293 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1294 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1295 return PHY_ERROR;
1296 }
1297
1298 /* get phy interface type */
1299 phyinterface = readl(base + NvRegPhyInterface);
1300
1301 /* see if gigabit phy */
1302 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1303 if (mii_status & PHY_GIGABIT) {
1304 np->gigabit = PHY_GIGABIT;
1305 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1306 mii_control_1000 &= ~ADVERTISE_1000HALF;
1307 if (phyinterface & PHY_RGMII)
1308 mii_control_1000 |= ADVERTISE_1000FULL;
1309 else
1310 mii_control_1000 &= ~ADVERTISE_1000FULL;
1311
1312 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1313 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1314 return PHY_ERROR;
1315 }
1316 }
1317 else
1318 np->gigabit = 0;
1319
1320 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1321 mii_control |= BMCR_ANENABLE;
1322
1323 if (np->phy_oui == PHY_OUI_REALTEK &&
1324 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1325 np->phy_rev == PHY_REV_REALTEK_8211C) {
1326 /* start autoneg since we already performed hw reset above */
1327 mii_control |= BMCR_ANRESTART;
1328 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1329 printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1330 return PHY_ERROR;
1331 }
1332 } else {
1333 /* reset the phy
1334 * (certain phys need bmcr to be setup with reset)
1335 */
1336 if (phy_reset(dev, mii_control)) {
1337 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1338 return PHY_ERROR;
1339 }
1340 }
1341
1342 /* phy vendor specific configuration */
1343 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1344 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1345 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1346 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1347 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1348 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1349 return PHY_ERROR;
1350 }
1351 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1352 phy_reserved |= PHY_CICADA_INIT5;
1353 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1354 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1355 return PHY_ERROR;
1356 }
1357 }
1358 if (np->phy_oui == PHY_OUI_CICADA) {
1359 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1360 phy_reserved |= PHY_CICADA_INIT6;
1361 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1362 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1363 return PHY_ERROR;
1364 }
1365 }
1366 if (np->phy_oui == PHY_OUI_VITESSE) {
1367 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1368 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1369 return PHY_ERROR;
1370 }
1371 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1372 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1373 return PHY_ERROR;
1374 }
1375 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1376 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1377 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1378 return PHY_ERROR;
1379 }
1380 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1381 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1382 phy_reserved |= PHY_VITESSE_INIT3;
1383 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1384 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1385 return PHY_ERROR;
1386 }
1387 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1388 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1389 return PHY_ERROR;
1390 }
1391 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1392 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1393 return PHY_ERROR;
1394 }
1395 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1396 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1397 phy_reserved |= PHY_VITESSE_INIT3;
1398 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1399 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1400 return PHY_ERROR;
1401 }
1402 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1403 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1404 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1405 return PHY_ERROR;
1406 }
1407 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1408 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1409 return PHY_ERROR;
1410 }
1411 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1412 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1413 return PHY_ERROR;
1414 }
1415 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1416 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1417 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1418 return PHY_ERROR;
1419 }
1420 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1421 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1422 phy_reserved |= PHY_VITESSE_INIT8;
1423 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1424 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1425 return PHY_ERROR;
1426 }
1427 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1428 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1429 return PHY_ERROR;
1430 }
1431 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1432 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1433 return PHY_ERROR;
1434 }
1435 }
1436 if (np->phy_oui == PHY_OUI_REALTEK) {
1437 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1438 np->phy_rev == PHY_REV_REALTEK_8211B) {
1439 /* reset could have cleared these out, set them back */
1440 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1441 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1442 return PHY_ERROR;
1443 }
1444 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1445 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1446 return PHY_ERROR;
1447 }
1448 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1449 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1450 return PHY_ERROR;
1451 }
1452 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1453 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1454 return PHY_ERROR;
1455 }
1456 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1457 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1458 return PHY_ERROR;
1459 }
1460 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1461 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1462 return PHY_ERROR;
1463 }
1464 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1465 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1466 return PHY_ERROR;
1467 }
1468 }
1469 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1470 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1471 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1472 phy_reserved |= PHY_REALTEK_INIT7;
1473 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1474 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1475 return PHY_ERROR;
1476 }
1477 }
1478 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1479 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1480 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1481 return PHY_ERROR;
1482 }
1483 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1484 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1485 phy_reserved |= PHY_REALTEK_INIT3;
1486 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1487 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1488 return PHY_ERROR;
1489 }
1490 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1491 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1492 return PHY_ERROR;
1493 }
1494 }
1495 }
1496 }
1497
1498 /* some phys clear out pause advertisment on reset, set it back */
1499 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1500
1501 /* restart auto negotiation, power down phy */
1502 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1503 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1504 if (phy_power_down) {
1505 mii_control |= BMCR_PDOWN;
1506 }
1507 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1508 return PHY_ERROR;
1509 }
1510
1511 return 0;
1512 }
1513
1514 static void nv_start_rx(struct net_device *dev)
1515 {
1516 struct fe_priv *np = netdev_priv(dev);
1517 u8 __iomem *base = get_hwbase(dev);
1518 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1519
1520 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1521 /* Already running? Stop it. */
1522 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1523 rx_ctrl &= ~NVREG_RCVCTL_START;
1524 writel(rx_ctrl, base + NvRegReceiverControl);
1525 pci_push(base);
1526 }
1527 writel(np->linkspeed, base + NvRegLinkSpeed);
1528 pci_push(base);
1529 rx_ctrl |= NVREG_RCVCTL_START;
1530 if (np->mac_in_use)
1531 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1532 writel(rx_ctrl, base + NvRegReceiverControl);
1533 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1534 dev->name, np->duplex, np->linkspeed);
1535 pci_push(base);
1536 }
1537
1538 static void nv_stop_rx(struct net_device *dev)
1539 {
1540 struct fe_priv *np = netdev_priv(dev);
1541 u8 __iomem *base = get_hwbase(dev);
1542 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1543
1544 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1545 if (!np->mac_in_use)
1546 rx_ctrl &= ~NVREG_RCVCTL_START;
1547 else
1548 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1549 writel(rx_ctrl, base + NvRegReceiverControl);
1550 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1551 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1552 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1553
1554 udelay(NV_RXSTOP_DELAY2);
1555 if (!np->mac_in_use)
1556 writel(0, base + NvRegLinkSpeed);
1557 }
1558
1559 static void nv_start_tx(struct net_device *dev)
1560 {
1561 struct fe_priv *np = netdev_priv(dev);
1562 u8 __iomem *base = get_hwbase(dev);
1563 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1564
1565 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1566 tx_ctrl |= NVREG_XMITCTL_START;
1567 if (np->mac_in_use)
1568 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1569 writel(tx_ctrl, base + NvRegTransmitterControl);
1570 pci_push(base);
1571 }
1572
1573 static void nv_stop_tx(struct net_device *dev)
1574 {
1575 struct fe_priv *np = netdev_priv(dev);
1576 u8 __iomem *base = get_hwbase(dev);
1577 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1578
1579 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1580 if (!np->mac_in_use)
1581 tx_ctrl &= ~NVREG_XMITCTL_START;
1582 else
1583 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1584 writel(tx_ctrl, base + NvRegTransmitterControl);
1585 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1586 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1587 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1588
1589 udelay(NV_TXSTOP_DELAY2);
1590 if (!np->mac_in_use)
1591 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1592 base + NvRegTransmitPoll);
1593 }
1594
1595 static void nv_start_rxtx(struct net_device *dev)
1596 {
1597 nv_start_rx(dev);
1598 nv_start_tx(dev);
1599 }
1600
1601 static void nv_stop_rxtx(struct net_device *dev)
1602 {
1603 nv_stop_rx(dev);
1604 nv_stop_tx(dev);
1605 }
1606
1607 static void nv_txrx_reset(struct net_device *dev)
1608 {
1609 struct fe_priv *np = netdev_priv(dev);
1610 u8 __iomem *base = get_hwbase(dev);
1611
1612 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1613 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1614 pci_push(base);
1615 udelay(NV_TXRX_RESET_DELAY);
1616 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1617 pci_push(base);
1618 }
1619
1620 static void nv_mac_reset(struct net_device *dev)
1621 {
1622 struct fe_priv *np = netdev_priv(dev);
1623 u8 __iomem *base = get_hwbase(dev);
1624 u32 temp1, temp2, temp3;
1625
1626 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1627
1628 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1629 pci_push(base);
1630
1631 /* save registers since they will be cleared on reset */
1632 temp1 = readl(base + NvRegMacAddrA);
1633 temp2 = readl(base + NvRegMacAddrB);
1634 temp3 = readl(base + NvRegTransmitPoll);
1635
1636 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1637 pci_push(base);
1638 udelay(NV_MAC_RESET_DELAY);
1639 writel(0, base + NvRegMacReset);
1640 pci_push(base);
1641 udelay(NV_MAC_RESET_DELAY);
1642
1643 /* restore saved registers */
1644 writel(temp1, base + NvRegMacAddrA);
1645 writel(temp2, base + NvRegMacAddrB);
1646 writel(temp3, base + NvRegTransmitPoll);
1647
1648 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1649 pci_push(base);
1650 }
1651
1652 static void nv_get_hw_stats(struct net_device *dev)
1653 {
1654 struct fe_priv *np = netdev_priv(dev);
1655 u8 __iomem *base = get_hwbase(dev);
1656
1657 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1658 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1659 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1660 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1661 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1662 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1663 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1664 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1665 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1666 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1667 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1668 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1669 np->estats.rx_runt += readl(base + NvRegRxRunt);
1670 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1671 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1672 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1673 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1674 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1675 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1676 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1677 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1678 np->estats.rx_packets =
1679 np->estats.rx_unicast +
1680 np->estats.rx_multicast +
1681 np->estats.rx_broadcast;
1682 np->estats.rx_errors_total =
1683 np->estats.rx_crc_errors +
1684 np->estats.rx_over_errors +
1685 np->estats.rx_frame_error +
1686 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1687 np->estats.rx_late_collision +
1688 np->estats.rx_runt +
1689 np->estats.rx_frame_too_long;
1690 np->estats.tx_errors_total =
1691 np->estats.tx_late_collision +
1692 np->estats.tx_fifo_errors +
1693 np->estats.tx_carrier_errors +
1694 np->estats.tx_excess_deferral +
1695 np->estats.tx_retry_error;
1696
1697 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1698 np->estats.tx_deferral += readl(base + NvRegTxDef);
1699 np->estats.tx_packets += readl(base + NvRegTxFrame);
1700 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1701 np->estats.tx_pause += readl(base + NvRegTxPause);
1702 np->estats.rx_pause += readl(base + NvRegRxPause);
1703 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1704 }
1705
1706 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1707 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1708 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1709 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1710 }
1711 }
1712
1713 /*
1714 * nv_get_stats: dev->get_stats function
1715 * Get latest stats value from the nic.
1716 * Called with read_lock(&dev_base_lock) held for read -
1717 * only synchronized against unregister_netdevice.
1718 */
1719 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1720 {
1721 struct fe_priv *np = netdev_priv(dev);
1722
1723 /* If the nic supports hw counters then retrieve latest values */
1724 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1725 nv_get_hw_stats(dev);
1726
1727 /* copy to net_device stats */
1728 dev->stats.tx_bytes = np->estats.tx_bytes;
1729 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1730 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1731 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1732 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1733 dev->stats.rx_errors = np->estats.rx_errors_total;
1734 dev->stats.tx_errors = np->estats.tx_errors_total;
1735 }
1736
1737 return &dev->stats;
1738 }
1739
1740 /*
1741 * nv_alloc_rx: fill rx ring entries.
1742 * Return 1 if the allocations for the skbs failed and the
1743 * rx engine is without Available descriptors
1744 */
1745 static int nv_alloc_rx(struct net_device *dev)
1746 {
1747 struct fe_priv *np = netdev_priv(dev);
1748 struct ring_desc* less_rx;
1749
1750 less_rx = np->get_rx.orig;
1751 if (less_rx-- == np->first_rx.orig)
1752 less_rx = np->last_rx.orig;
1753
1754 while (np->put_rx.orig != less_rx) {
1755 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1756 if (skb) {
1757 np->put_rx_ctx->skb = skb;
1758 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1759 skb->data,
1760 skb_tailroom(skb),
1761 PCI_DMA_FROMDEVICE);
1762 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1763 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1764 wmb();
1765 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1766 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1767 np->put_rx.orig = np->first_rx.orig;
1768 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1769 np->put_rx_ctx = np->first_rx_ctx;
1770 } else {
1771 return 1;
1772 }
1773 }
1774 return 0;
1775 }
1776
1777 static int nv_alloc_rx_optimized(struct net_device *dev)
1778 {
1779 struct fe_priv *np = netdev_priv(dev);
1780 struct ring_desc_ex* less_rx;
1781
1782 less_rx = np->get_rx.ex;
1783 if (less_rx-- == np->first_rx.ex)
1784 less_rx = np->last_rx.ex;
1785
1786 while (np->put_rx.ex != less_rx) {
1787 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1788 if (skb) {
1789 np->put_rx_ctx->skb = skb;
1790 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1791 skb->data,
1792 skb_tailroom(skb),
1793 PCI_DMA_FROMDEVICE);
1794 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1795 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1796 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1797 wmb();
1798 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1799 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1800 np->put_rx.ex = np->first_rx.ex;
1801 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1802 np->put_rx_ctx = np->first_rx_ctx;
1803 } else {
1804 return 1;
1805 }
1806 }
1807 return 0;
1808 }
1809
1810 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1811 #ifdef CONFIG_FORCEDETH_NAPI
1812 static void nv_do_rx_refill(unsigned long data)
1813 {
1814 struct net_device *dev = (struct net_device *) data;
1815 struct fe_priv *np = netdev_priv(dev);
1816
1817 /* Just reschedule NAPI rx processing */
1818 napi_schedule(&np->napi);
1819 }
1820 #else
1821 static void nv_do_rx_refill(unsigned long data)
1822 {
1823 struct net_device *dev = (struct net_device *) data;
1824 struct fe_priv *np = netdev_priv(dev);
1825 int retcode;
1826
1827 if (!using_multi_irqs(dev)) {
1828 if (np->msi_flags & NV_MSI_X_ENABLED)
1829 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1830 else
1831 disable_irq(np->pci_dev->irq);
1832 } else {
1833 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1834 }
1835 if (!nv_optimized(np))
1836 retcode = nv_alloc_rx(dev);
1837 else
1838 retcode = nv_alloc_rx_optimized(dev);
1839 if (retcode) {
1840 spin_lock_irq(&np->lock);
1841 if (!np->in_shutdown)
1842 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1843 spin_unlock_irq(&np->lock);
1844 }
1845 if (!using_multi_irqs(dev)) {
1846 if (np->msi_flags & NV_MSI_X_ENABLED)
1847 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1848 else
1849 enable_irq(np->pci_dev->irq);
1850 } else {
1851 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1852 }
1853 }
1854 #endif
1855
1856 static void nv_init_rx(struct net_device *dev)
1857 {
1858 struct fe_priv *np = netdev_priv(dev);
1859 int i;
1860
1861 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1862
1863 if (!nv_optimized(np))
1864 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1865 else
1866 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1867 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1868 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1869
1870 for (i = 0; i < np->rx_ring_size; i++) {
1871 if (!nv_optimized(np)) {
1872 np->rx_ring.orig[i].flaglen = 0;
1873 np->rx_ring.orig[i].buf = 0;
1874 } else {
1875 np->rx_ring.ex[i].flaglen = 0;
1876 np->rx_ring.ex[i].txvlan = 0;
1877 np->rx_ring.ex[i].bufhigh = 0;
1878 np->rx_ring.ex[i].buflow = 0;
1879 }
1880 np->rx_skb[i].skb = NULL;
1881 np->rx_skb[i].dma = 0;
1882 }
1883 }
1884
1885 static void nv_init_tx(struct net_device *dev)
1886 {
1887 struct fe_priv *np = netdev_priv(dev);
1888 int i;
1889
1890 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1891
1892 if (!nv_optimized(np))
1893 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1894 else
1895 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1896 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1897 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1898 np->tx_pkts_in_progress = 0;
1899 np->tx_change_owner = NULL;
1900 np->tx_end_flip = NULL;
1901 np->tx_stop = 0;
1902
1903 for (i = 0; i < np->tx_ring_size; i++) {
1904 if (!nv_optimized(np)) {
1905 np->tx_ring.orig[i].flaglen = 0;
1906 np->tx_ring.orig[i].buf = 0;
1907 } else {
1908 np->tx_ring.ex[i].flaglen = 0;
1909 np->tx_ring.ex[i].txvlan = 0;
1910 np->tx_ring.ex[i].bufhigh = 0;
1911 np->tx_ring.ex[i].buflow = 0;
1912 }
1913 np->tx_skb[i].skb = NULL;
1914 np->tx_skb[i].dma = 0;
1915 np->tx_skb[i].dma_len = 0;
1916 np->tx_skb[i].dma_single = 0;
1917 np->tx_skb[i].first_tx_desc = NULL;
1918 np->tx_skb[i].next_tx_ctx = NULL;
1919 }
1920 }
1921
1922 static int nv_init_ring(struct net_device *dev)
1923 {
1924 struct fe_priv *np = netdev_priv(dev);
1925
1926 nv_init_tx(dev);
1927 nv_init_rx(dev);
1928
1929 if (!nv_optimized(np))
1930 return nv_alloc_rx(dev);
1931 else
1932 return nv_alloc_rx_optimized(dev);
1933 }
1934
1935 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1936 {
1937 if (tx_skb->dma) {
1938 if (tx_skb->dma_single)
1939 pci_unmap_single(np->pci_dev, tx_skb->dma,
1940 tx_skb->dma_len,
1941 PCI_DMA_TODEVICE);
1942 else
1943 pci_unmap_page(np->pci_dev, tx_skb->dma,
1944 tx_skb->dma_len,
1945 PCI_DMA_TODEVICE);
1946 tx_skb->dma = 0;
1947 }
1948 }
1949
1950 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1951 {
1952 nv_unmap_txskb(np, tx_skb);
1953 if (tx_skb->skb) {
1954 dev_kfree_skb_any(tx_skb->skb);
1955 tx_skb->skb = NULL;
1956 return 1;
1957 }
1958 return 0;
1959 }
1960
1961 static void nv_drain_tx(struct net_device *dev)
1962 {
1963 struct fe_priv *np = netdev_priv(dev);
1964 unsigned int i;
1965
1966 for (i = 0; i < np->tx_ring_size; i++) {
1967 if (!nv_optimized(np)) {
1968 np->tx_ring.orig[i].flaglen = 0;
1969 np->tx_ring.orig[i].buf = 0;
1970 } else {
1971 np->tx_ring.ex[i].flaglen = 0;
1972 np->tx_ring.ex[i].txvlan = 0;
1973 np->tx_ring.ex[i].bufhigh = 0;
1974 np->tx_ring.ex[i].buflow = 0;
1975 }
1976 if (nv_release_txskb(np, &np->tx_skb[i]))
1977 dev->stats.tx_dropped++;
1978 np->tx_skb[i].dma = 0;
1979 np->tx_skb[i].dma_len = 0;
1980 np->tx_skb[i].dma_single = 0;
1981 np->tx_skb[i].first_tx_desc = NULL;
1982 np->tx_skb[i].next_tx_ctx = NULL;
1983 }
1984 np->tx_pkts_in_progress = 0;
1985 np->tx_change_owner = NULL;
1986 np->tx_end_flip = NULL;
1987 }
1988
1989 static void nv_drain_rx(struct net_device *dev)
1990 {
1991 struct fe_priv *np = netdev_priv(dev);
1992 int i;
1993
1994 for (i = 0; i < np->rx_ring_size; i++) {
1995 if (!nv_optimized(np)) {
1996 np->rx_ring.orig[i].flaglen = 0;
1997 np->rx_ring.orig[i].buf = 0;
1998 } else {
1999 np->rx_ring.ex[i].flaglen = 0;
2000 np->rx_ring.ex[i].txvlan = 0;
2001 np->rx_ring.ex[i].bufhigh = 0;
2002 np->rx_ring.ex[i].buflow = 0;
2003 }
2004 wmb();
2005 if (np->rx_skb[i].skb) {
2006 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
2007 (skb_end_pointer(np->rx_skb[i].skb) -
2008 np->rx_skb[i].skb->data),
2009 PCI_DMA_FROMDEVICE);
2010 dev_kfree_skb(np->rx_skb[i].skb);
2011 np->rx_skb[i].skb = NULL;
2012 }
2013 }
2014 }
2015
2016 static void nv_drain_rxtx(struct net_device *dev)
2017 {
2018 nv_drain_tx(dev);
2019 nv_drain_rx(dev);
2020 }
2021
2022 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2023 {
2024 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2025 }
2026
2027 static void nv_legacybackoff_reseed(struct net_device *dev)
2028 {
2029 u8 __iomem *base = get_hwbase(dev);
2030 u32 reg;
2031 u32 low;
2032 int tx_status = 0;
2033
2034 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2035 get_random_bytes(&low, sizeof(low));
2036 reg |= low & NVREG_SLOTTIME_MASK;
2037
2038 /* Need to stop tx before change takes effect.
2039 * Caller has already gained np->lock.
2040 */
2041 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2042 if (tx_status)
2043 nv_stop_tx(dev);
2044 nv_stop_rx(dev);
2045 writel(reg, base + NvRegSlotTime);
2046 if (tx_status)
2047 nv_start_tx(dev);
2048 nv_start_rx(dev);
2049 }
2050
2051 /* Gear Backoff Seeds */
2052 #define BACKOFF_SEEDSET_ROWS 8
2053 #define BACKOFF_SEEDSET_LFSRS 15
2054
2055 /* Known Good seed sets */
2056 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2057 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2058 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2059 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2060 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2061 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2062 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2063 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2064 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2065
2066 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2067 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2068 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2069 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2070 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2071 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2072 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2073 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2074 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2075
2076 static void nv_gear_backoff_reseed(struct net_device *dev)
2077 {
2078 u8 __iomem *base = get_hwbase(dev);
2079 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2080 u32 temp, seedset, combinedSeed;
2081 int i;
2082
2083 /* Setup seed for free running LFSR */
2084 /* We are going to read the time stamp counter 3 times
2085 and swizzle bits around to increase randomness */
2086 get_random_bytes(&miniseed1, sizeof(miniseed1));
2087 miniseed1 &= 0x0fff;
2088 if (miniseed1 == 0)
2089 miniseed1 = 0xabc;
2090
2091 get_random_bytes(&miniseed2, sizeof(miniseed2));
2092 miniseed2 &= 0x0fff;
2093 if (miniseed2 == 0)
2094 miniseed2 = 0xabc;
2095 miniseed2_reversed =
2096 ((miniseed2 & 0xF00) >> 8) |
2097 (miniseed2 & 0x0F0) |
2098 ((miniseed2 & 0x00F) << 8);
2099
2100 get_random_bytes(&miniseed3, sizeof(miniseed3));
2101 miniseed3 &= 0x0fff;
2102 if (miniseed3 == 0)
2103 miniseed3 = 0xabc;
2104 miniseed3_reversed =
2105 ((miniseed3 & 0xF00) >> 8) |
2106 (miniseed3 & 0x0F0) |
2107 ((miniseed3 & 0x00F) << 8);
2108
2109 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2110 (miniseed2 ^ miniseed3_reversed);
2111
2112 /* Seeds can not be zero */
2113 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2114 combinedSeed |= 0x08;
2115 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2116 combinedSeed |= 0x8000;
2117
2118 /* No need to disable tx here */
2119 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2120 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2121 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2122 writel(temp,base + NvRegBackOffControl);
2123
2124 /* Setup seeds for all gear LFSRs. */
2125 get_random_bytes(&seedset, sizeof(seedset));
2126 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2127 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2128 {
2129 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2130 temp |= main_seedset[seedset][i-1] & 0x3ff;
2131 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2132 writel(temp, base + NvRegBackOffControl);
2133 }
2134 }
2135
2136 /*
2137 * nv_start_xmit: dev->hard_start_xmit function
2138 * Called with netif_tx_lock held.
2139 */
2140 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2141 {
2142 struct fe_priv *np = netdev_priv(dev);
2143 u32 tx_flags = 0;
2144 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2145 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2146 unsigned int i;
2147 u32 offset = 0;
2148 u32 bcnt;
2149 u32 size = skb->len-skb->data_len;
2150 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2151 u32 empty_slots;
2152 struct ring_desc* put_tx;
2153 struct ring_desc* start_tx;
2154 struct ring_desc* prev_tx;
2155 struct nv_skb_map* prev_tx_ctx;
2156 unsigned long flags;
2157
2158 /* add fragments to entries count */
2159 for (i = 0; i < fragments; i++) {
2160 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2161 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2162 }
2163
2164 spin_lock_irqsave(&np->lock, flags);
2165 empty_slots = nv_get_empty_tx_slots(np);
2166 if (unlikely(empty_slots <= entries)) {
2167 netif_stop_queue(dev);
2168 np->tx_stop = 1;
2169 spin_unlock_irqrestore(&np->lock, flags);
2170 return NETDEV_TX_BUSY;
2171 }
2172 spin_unlock_irqrestore(&np->lock, flags);
2173
2174 start_tx = put_tx = np->put_tx.orig;
2175
2176 /* setup the header buffer */
2177 do {
2178 prev_tx = put_tx;
2179 prev_tx_ctx = np->put_tx_ctx;
2180 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2181 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2182 PCI_DMA_TODEVICE);
2183 np->put_tx_ctx->dma_len = bcnt;
2184 np->put_tx_ctx->dma_single = 1;
2185 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2186 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2187
2188 tx_flags = np->tx_flags;
2189 offset += bcnt;
2190 size -= bcnt;
2191 if (unlikely(put_tx++ == np->last_tx.orig))
2192 put_tx = np->first_tx.orig;
2193 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2194 np->put_tx_ctx = np->first_tx_ctx;
2195 } while (size);
2196
2197 /* setup the fragments */
2198 for (i = 0; i < fragments; i++) {
2199 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2200 u32 size = frag->size;
2201 offset = 0;
2202
2203 do {
2204 prev_tx = put_tx;
2205 prev_tx_ctx = np->put_tx_ctx;
2206 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2207 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2208 PCI_DMA_TODEVICE);
2209 np->put_tx_ctx->dma_len = bcnt;
2210 np->put_tx_ctx->dma_single = 0;
2211 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2212 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2213
2214 offset += bcnt;
2215 size -= bcnt;
2216 if (unlikely(put_tx++ == np->last_tx.orig))
2217 put_tx = np->first_tx.orig;
2218 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2219 np->put_tx_ctx = np->first_tx_ctx;
2220 } while (size);
2221 }
2222
2223 /* set last fragment flag */
2224 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2225
2226 /* save skb in this slot's context area */
2227 prev_tx_ctx->skb = skb;
2228
2229 if (skb_is_gso(skb))
2230 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2231 else
2232 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2233 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2234
2235 spin_lock_irqsave(&np->lock, flags);
2236
2237 /* set tx flags */
2238 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2239 np->put_tx.orig = put_tx;
2240
2241 spin_unlock_irqrestore(&np->lock, flags);
2242
2243 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2244 dev->name, entries, tx_flags_extra);
2245 {
2246 int j;
2247 for (j=0; j<64; j++) {
2248 if ((j%16) == 0)
2249 dprintk("\n%03x:", j);
2250 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2251 }
2252 dprintk("\n");
2253 }
2254
2255 dev->trans_start = jiffies;
2256 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2257 return NETDEV_TX_OK;
2258 }
2259
2260 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
2261 {
2262 struct fe_priv *np = netdev_priv(dev);
2263 u32 tx_flags = 0;
2264 u32 tx_flags_extra;
2265 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2266 unsigned int i;
2267 u32 offset = 0;
2268 u32 bcnt;
2269 u32 size = skb->len-skb->data_len;
2270 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2271 u32 empty_slots;
2272 struct ring_desc_ex* put_tx;
2273 struct ring_desc_ex* start_tx;
2274 struct ring_desc_ex* prev_tx;
2275 struct nv_skb_map* prev_tx_ctx;
2276 struct nv_skb_map* start_tx_ctx;
2277 unsigned long flags;
2278
2279 /* add fragments to entries count */
2280 for (i = 0; i < fragments; i++) {
2281 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2282 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2283 }
2284
2285 spin_lock_irqsave(&np->lock, flags);
2286 empty_slots = nv_get_empty_tx_slots(np);
2287 if (unlikely(empty_slots <= entries)) {
2288 netif_stop_queue(dev);
2289 np->tx_stop = 1;
2290 spin_unlock_irqrestore(&np->lock, flags);
2291 return NETDEV_TX_BUSY;
2292 }
2293 spin_unlock_irqrestore(&np->lock, flags);
2294
2295 start_tx = put_tx = np->put_tx.ex;
2296 start_tx_ctx = np->put_tx_ctx;
2297
2298 /* setup the header buffer */
2299 do {
2300 prev_tx = put_tx;
2301 prev_tx_ctx = np->put_tx_ctx;
2302 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2303 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2304 PCI_DMA_TODEVICE);
2305 np->put_tx_ctx->dma_len = bcnt;
2306 np->put_tx_ctx->dma_single = 1;
2307 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2308 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2309 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2310
2311 tx_flags = NV_TX2_VALID;
2312 offset += bcnt;
2313 size -= bcnt;
2314 if (unlikely(put_tx++ == np->last_tx.ex))
2315 put_tx = np->first_tx.ex;
2316 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2317 np->put_tx_ctx = np->first_tx_ctx;
2318 } while (size);
2319
2320 /* setup the fragments */
2321 for (i = 0; i < fragments; i++) {
2322 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2323 u32 size = frag->size;
2324 offset = 0;
2325
2326 do {
2327 prev_tx = put_tx;
2328 prev_tx_ctx = np->put_tx_ctx;
2329 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2330 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2331 PCI_DMA_TODEVICE);
2332 np->put_tx_ctx->dma_len = bcnt;
2333 np->put_tx_ctx->dma_single = 0;
2334 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2335 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2336 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2337
2338 offset += bcnt;
2339 size -= bcnt;
2340 if (unlikely(put_tx++ == np->last_tx.ex))
2341 put_tx = np->first_tx.ex;
2342 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2343 np->put_tx_ctx = np->first_tx_ctx;
2344 } while (size);
2345 }
2346
2347 /* set last fragment flag */
2348 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2349
2350 /* save skb in this slot's context area */
2351 prev_tx_ctx->skb = skb;
2352
2353 if (skb_is_gso(skb))
2354 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2355 else
2356 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2357 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2358
2359 /* vlan tag */
2360 if (likely(!np->vlangrp)) {
2361 start_tx->txvlan = 0;
2362 } else {
2363 if (vlan_tx_tag_present(skb))
2364 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2365 else
2366 start_tx->txvlan = 0;
2367 }
2368
2369 spin_lock_irqsave(&np->lock, flags);
2370
2371 if (np->tx_limit) {
2372 /* Limit the number of outstanding tx. Setup all fragments, but
2373 * do not set the VALID bit on the first descriptor. Save a pointer
2374 * to that descriptor and also for next skb_map element.
2375 */
2376
2377 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2378 if (!np->tx_change_owner)
2379 np->tx_change_owner = start_tx_ctx;
2380
2381 /* remove VALID bit */
2382 tx_flags &= ~NV_TX2_VALID;
2383 start_tx_ctx->first_tx_desc = start_tx;
2384 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2385 np->tx_end_flip = np->put_tx_ctx;
2386 } else {
2387 np->tx_pkts_in_progress++;
2388 }
2389 }
2390
2391 /* set tx flags */
2392 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2393 np->put_tx.ex = put_tx;
2394
2395 spin_unlock_irqrestore(&np->lock, flags);
2396
2397 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2398 dev->name, entries, tx_flags_extra);
2399 {
2400 int j;
2401 for (j=0; j<64; j++) {
2402 if ((j%16) == 0)
2403 dprintk("\n%03x:", j);
2404 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2405 }
2406 dprintk("\n");
2407 }
2408
2409 dev->trans_start = jiffies;
2410 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2411 return NETDEV_TX_OK;
2412 }
2413
2414 static inline void nv_tx_flip_ownership(struct net_device *dev)
2415 {
2416 struct fe_priv *np = netdev_priv(dev);
2417
2418 np->tx_pkts_in_progress--;
2419 if (np->tx_change_owner) {
2420 np->tx_change_owner->first_tx_desc->flaglen |=
2421 cpu_to_le32(NV_TX2_VALID);
2422 np->tx_pkts_in_progress++;
2423
2424 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2425 if (np->tx_change_owner == np->tx_end_flip)
2426 np->tx_change_owner = NULL;
2427
2428 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2429 }
2430 }
2431
2432 /*
2433 * nv_tx_done: check for completed packets, release the skbs.
2434 *
2435 * Caller must own np->lock.
2436 */
2437 static int nv_tx_done(struct net_device *dev, int limit)
2438 {
2439 struct fe_priv *np = netdev_priv(dev);
2440 u32 flags;
2441 int tx_work = 0;
2442 struct ring_desc* orig_get_tx = np->get_tx.orig;
2443
2444 while ((np->get_tx.orig != np->put_tx.orig) &&
2445 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2446 (tx_work < limit)) {
2447
2448 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2449 dev->name, flags);
2450
2451 nv_unmap_txskb(np, np->get_tx_ctx);
2452
2453 if (np->desc_ver == DESC_VER_1) {
2454 if (flags & NV_TX_LASTPACKET) {
2455 if (flags & NV_TX_ERROR) {
2456 if (flags & NV_TX_UNDERFLOW)
2457 dev->stats.tx_fifo_errors++;
2458 if (flags & NV_TX_CARRIERLOST)
2459 dev->stats.tx_carrier_errors++;
2460 if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2461 nv_legacybackoff_reseed(dev);
2462 dev->stats.tx_errors++;
2463 } else {
2464 dev->stats.tx_packets++;
2465 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2466 }
2467 dev_kfree_skb_any(np->get_tx_ctx->skb);
2468 np->get_tx_ctx->skb = NULL;
2469 tx_work++;
2470 }
2471 } else {
2472 if (flags & NV_TX2_LASTPACKET) {
2473 if (flags & NV_TX2_ERROR) {
2474 if (flags & NV_TX2_UNDERFLOW)
2475 dev->stats.tx_fifo_errors++;
2476 if (flags & NV_TX2_CARRIERLOST)
2477 dev->stats.tx_carrier_errors++;
2478 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2479 nv_legacybackoff_reseed(dev);
2480 dev->stats.tx_errors++;
2481 } else {
2482 dev->stats.tx_packets++;
2483 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2484 }
2485 dev_kfree_skb_any(np->get_tx_ctx->skb);
2486 np->get_tx_ctx->skb = NULL;
2487 tx_work++;
2488 }
2489 }
2490 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2491 np->get_tx.orig = np->first_tx.orig;
2492 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2493 np->get_tx_ctx = np->first_tx_ctx;
2494 }
2495 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2496 np->tx_stop = 0;
2497 netif_wake_queue(dev);
2498 }
2499 return tx_work;
2500 }
2501
2502 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2503 {
2504 struct fe_priv *np = netdev_priv(dev);
2505 u32 flags;
2506 int tx_work = 0;
2507 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2508
2509 while ((np->get_tx.ex != np->put_tx.ex) &&
2510 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2511 (tx_work < limit)) {
2512
2513 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2514 dev->name, flags);
2515
2516 nv_unmap_txskb(np, np->get_tx_ctx);
2517
2518 if (flags & NV_TX2_LASTPACKET) {
2519 if (!(flags & NV_TX2_ERROR))
2520 dev->stats.tx_packets++;
2521 else {
2522 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2523 if (np->driver_data & DEV_HAS_GEAR_MODE)
2524 nv_gear_backoff_reseed(dev);
2525 else
2526 nv_legacybackoff_reseed(dev);
2527 }
2528 }
2529
2530 dev_kfree_skb_any(np->get_tx_ctx->skb);
2531 np->get_tx_ctx->skb = NULL;
2532 tx_work++;
2533
2534 if (np->tx_limit) {
2535 nv_tx_flip_ownership(dev);
2536 }
2537 }
2538 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2539 np->get_tx.ex = np->first_tx.ex;
2540 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2541 np->get_tx_ctx = np->first_tx_ctx;
2542 }
2543 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2544 np->tx_stop = 0;
2545 netif_wake_queue(dev);
2546 }
2547 return tx_work;
2548 }
2549
2550 /*
2551 * nv_tx_timeout: dev->tx_timeout function
2552 * Called with netif_tx_lock held.
2553 */
2554 static void nv_tx_timeout(struct net_device *dev)
2555 {
2556 struct fe_priv *np = netdev_priv(dev);
2557 u8 __iomem *base = get_hwbase(dev);
2558 u32 status;
2559 union ring_type put_tx;
2560 int saved_tx_limit;
2561
2562 if (np->msi_flags & NV_MSI_X_ENABLED)
2563 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2564 else
2565 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2566
2567 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2568
2569 {
2570 int i;
2571
2572 printk(KERN_INFO "%s: Ring at %lx\n",
2573 dev->name, (unsigned long)np->ring_addr);
2574 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2575 for (i=0;i<=np->register_size;i+= 32) {
2576 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2577 i,
2578 readl(base + i + 0), readl(base + i + 4),
2579 readl(base + i + 8), readl(base + i + 12),
2580 readl(base + i + 16), readl(base + i + 20),
2581 readl(base + i + 24), readl(base + i + 28));
2582 }
2583 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2584 for (i=0;i<np->tx_ring_size;i+= 4) {
2585 if (!nv_optimized(np)) {
2586 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2587 i,
2588 le32_to_cpu(np->tx_ring.orig[i].buf),
2589 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2590 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2591 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2592 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2593 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2594 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2595 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2596 } else {
2597 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2598 i,
2599 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2600 le32_to_cpu(np->tx_ring.ex[i].buflow),
2601 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2602 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2603 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2604 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2605 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2606 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2607 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2608 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2609 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2610 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2611 }
2612 }
2613 }
2614
2615 spin_lock_irq(&np->lock);
2616
2617 /* 1) stop tx engine */
2618 nv_stop_tx(dev);
2619
2620 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2621 saved_tx_limit = np->tx_limit;
2622 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2623 np->tx_stop = 0; /* prevent waking tx queue */
2624 if (!nv_optimized(np))
2625 nv_tx_done(dev, np->tx_ring_size);
2626 else
2627 nv_tx_done_optimized(dev, np->tx_ring_size);
2628
2629 /* save current HW postion */
2630 if (np->tx_change_owner)
2631 put_tx.ex = np->tx_change_owner->first_tx_desc;
2632 else
2633 put_tx = np->put_tx;
2634
2635 /* 3) clear all tx state */
2636 nv_drain_tx(dev);
2637 nv_init_tx(dev);
2638
2639 /* 4) restore state to current HW position */
2640 np->get_tx = np->put_tx = put_tx;
2641 np->tx_limit = saved_tx_limit;
2642
2643 /* 5) restart tx engine */
2644 nv_start_tx(dev);
2645 netif_wake_queue(dev);
2646 spin_unlock_irq(&np->lock);
2647 }
2648
2649 /*
2650 * Called when the nic notices a mismatch between the actual data len on the
2651 * wire and the len indicated in the 802 header
2652 */
2653 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2654 {
2655 int hdrlen; /* length of the 802 header */
2656 int protolen; /* length as stored in the proto field */
2657
2658 /* 1) calculate len according to header */
2659 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2660 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2661 hdrlen = VLAN_HLEN;
2662 } else {
2663 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2664 hdrlen = ETH_HLEN;
2665 }
2666 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2667 dev->name, datalen, protolen, hdrlen);
2668 if (protolen > ETH_DATA_LEN)
2669 return datalen; /* Value in proto field not a len, no checks possible */
2670
2671 protolen += hdrlen;
2672 /* consistency checks: */
2673 if (datalen > ETH_ZLEN) {
2674 if (datalen >= protolen) {
2675 /* more data on wire than in 802 header, trim of
2676 * additional data.
2677 */
2678 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2679 dev->name, protolen);
2680 return protolen;
2681 } else {
2682 /* less data on wire than mentioned in header.
2683 * Discard the packet.
2684 */
2685 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2686 dev->name);
2687 return -1;
2688 }
2689 } else {
2690 /* short packet. Accept only if 802 values are also short */
2691 if (protolen > ETH_ZLEN) {
2692 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2693 dev->name);
2694 return -1;
2695 }
2696 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2697 dev->name, datalen);
2698 return datalen;
2699 }
2700 }
2701
2702 static int nv_rx_process(struct net_device *dev, int limit)
2703 {
2704 struct fe_priv *np = netdev_priv(dev);
2705 u32 flags;
2706 int rx_work = 0;
2707 struct sk_buff *skb;
2708 int len;
2709
2710 while((np->get_rx.orig != np->put_rx.orig) &&
2711 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2712 (rx_work < limit)) {
2713
2714 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2715 dev->name, flags);
2716
2717 /*
2718 * the packet is for us - immediately tear down the pci mapping.
2719 * TODO: check if a prefetch of the first cacheline improves
2720 * the performance.
2721 */
2722 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2723 np->get_rx_ctx->dma_len,
2724 PCI_DMA_FROMDEVICE);
2725 skb = np->get_rx_ctx->skb;
2726 np->get_rx_ctx->skb = NULL;
2727
2728 {
2729 int j;
2730 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2731 for (j=0; j<64; j++) {
2732 if ((j%16) == 0)
2733 dprintk("\n%03x:", j);
2734 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2735 }
2736 dprintk("\n");
2737 }
2738 /* look at what we actually got: */
2739 if (np->desc_ver == DESC_VER_1) {
2740 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2741 len = flags & LEN_MASK_V1;
2742 if (unlikely(flags & NV_RX_ERROR)) {
2743 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2744 len = nv_getlen(dev, skb->data, len);
2745 if (len < 0) {
2746 dev->stats.rx_errors++;
2747 dev_kfree_skb(skb);
2748 goto next_pkt;
2749 }
2750 }
2751 /* framing errors are soft errors */
2752 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2753 if (flags & NV_RX_SUBSTRACT1) {
2754 len--;
2755 }
2756 }
2757 /* the rest are hard errors */
2758 else {
2759 if (flags & NV_RX_MISSEDFRAME)
2760 dev->stats.rx_missed_errors++;
2761 if (flags & NV_RX_CRCERR)
2762 dev->stats.rx_crc_errors++;
2763 if (flags & NV_RX_OVERFLOW)
2764 dev->stats.rx_over_errors++;
2765 dev->stats.rx_errors++;
2766 dev_kfree_skb(skb);
2767 goto next_pkt;
2768 }
2769 }
2770 } else {
2771 dev_kfree_skb(skb);
2772 goto next_pkt;
2773 }
2774 } else {
2775 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2776 len = flags & LEN_MASK_V2;
2777 if (unlikely(flags & NV_RX2_ERROR)) {
2778 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2779 len = nv_getlen(dev, skb->data, len);
2780 if (len < 0) {
2781 dev->stats.rx_errors++;
2782 dev_kfree_skb(skb);
2783 goto next_pkt;
2784 }
2785 }
2786 /* framing errors are soft errors */
2787 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2788 if (flags & NV_RX2_SUBSTRACT1) {
2789 len--;
2790 }
2791 }
2792 /* the rest are hard errors */
2793 else {
2794 if (flags & NV_RX2_CRCERR)
2795 dev->stats.rx_crc_errors++;
2796 if (flags & NV_RX2_OVERFLOW)
2797 dev->stats.rx_over_errors++;
2798 dev->stats.rx_errors++;
2799 dev_kfree_skb(skb);
2800 goto next_pkt;
2801 }
2802 }
2803 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2804 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2805 skb->ip_summed = CHECKSUM_UNNECESSARY;
2806 } else {
2807 dev_kfree_skb(skb);
2808 goto next_pkt;
2809 }
2810 }
2811 /* got a valid packet - forward it to the network core */
2812 skb_put(skb, len);
2813 skb->protocol = eth_type_trans(skb, dev);
2814 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2815 dev->name, len, skb->protocol);
2816 #ifdef CONFIG_FORCEDETH_NAPI
2817 netif_receive_skb(skb);
2818 #else
2819 netif_rx(skb);
2820 #endif
2821 dev->stats.rx_packets++;
2822 dev->stats.rx_bytes += len;
2823 next_pkt:
2824 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2825 np->get_rx.orig = np->first_rx.orig;
2826 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2827 np->get_rx_ctx = np->first_rx_ctx;
2828
2829 rx_work++;
2830 }
2831
2832 return rx_work;
2833 }
2834
2835 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2836 {
2837 struct fe_priv *np = netdev_priv(dev);
2838 u32 flags;
2839 u32 vlanflags = 0;
2840 int rx_work = 0;
2841 struct sk_buff *skb;
2842 int len;
2843
2844 while((np->get_rx.ex != np->put_rx.ex) &&
2845 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2846 (rx_work < limit)) {
2847
2848 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2849 dev->name, flags);
2850
2851 /*
2852 * the packet is for us - immediately tear down the pci mapping.
2853 * TODO: check if a prefetch of the first cacheline improves
2854 * the performance.
2855 */
2856 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2857 np->get_rx_ctx->dma_len,
2858 PCI_DMA_FROMDEVICE);
2859 skb = np->get_rx_ctx->skb;
2860 np->get_rx_ctx->skb = NULL;
2861
2862 {
2863 int j;
2864 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2865 for (j=0; j<64; j++) {
2866 if ((j%16) == 0)
2867 dprintk("\n%03x:", j);
2868 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2869 }
2870 dprintk("\n");
2871 }
2872 /* look at what we actually got: */
2873 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2874 len = flags & LEN_MASK_V2;
2875 if (unlikely(flags & NV_RX2_ERROR)) {
2876 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2877 len = nv_getlen(dev, skb->data, len);
2878 if (len < 0) {
2879 dev_kfree_skb(skb);
2880 goto next_pkt;
2881 }
2882 }
2883 /* framing errors are soft errors */
2884 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2885 if (flags & NV_RX2_SUBSTRACT1) {
2886 len--;
2887 }
2888 }
2889 /* the rest are hard errors */
2890 else {
2891 dev_kfree_skb(skb);
2892 goto next_pkt;
2893 }
2894 }
2895
2896 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2897 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2898 skb->ip_summed = CHECKSUM_UNNECESSARY;
2899
2900 /* got a valid packet - forward it to the network core */
2901 skb_put(skb, len);
2902 skb->protocol = eth_type_trans(skb, dev);
2903 prefetch(skb->data);
2904
2905 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2906 dev->name, len, skb->protocol);
2907
2908 if (likely(!np->vlangrp)) {
2909 #ifdef CONFIG_FORCEDETH_NAPI
2910 netif_receive_skb(skb);
2911 #else
2912 netif_rx(skb);
2913 #endif
2914 } else {
2915 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2916 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2917 #ifdef CONFIG_FORCEDETH_NAPI
2918 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2919 vlanflags & NV_RX3_VLAN_TAG_MASK);
2920 #else
2921 vlan_hwaccel_rx(skb, np->vlangrp,
2922 vlanflags & NV_RX3_VLAN_TAG_MASK);
2923 #endif
2924 } else {
2925 #ifdef CONFIG_FORCEDETH_NAPI
2926 netif_receive_skb(skb);
2927 #else
2928 netif_rx(skb);
2929 #endif
2930 }
2931 }
2932
2933 dev->stats.rx_packets++;
2934 dev->stats.rx_bytes += len;
2935 } else {
2936 dev_kfree_skb(skb);
2937 }
2938 next_pkt:
2939 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2940 np->get_rx.ex = np->first_rx.ex;
2941 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2942 np->get_rx_ctx = np->first_rx_ctx;
2943
2944 rx_work++;
2945 }
2946
2947 return rx_work;
2948 }
2949
2950 static void set_bufsize(struct net_device *dev)
2951 {
2952 struct fe_priv *np = netdev_priv(dev);
2953
2954 if (dev->mtu <= ETH_DATA_LEN)
2955 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2956 else
2957 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2958 }
2959
2960 /*
2961 * nv_change_mtu: dev->change_mtu function
2962 * Called with dev_base_lock held for read.
2963 */
2964 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2965 {
2966 struct fe_priv *np = netdev_priv(dev);
2967 int old_mtu;
2968
2969 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2970 return -EINVAL;
2971
2972 old_mtu = dev->mtu;
2973 dev->mtu = new_mtu;
2974
2975 /* return early if the buffer sizes will not change */
2976 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2977 return 0;
2978 if (old_mtu == new_mtu)
2979 return 0;
2980
2981 /* synchronized against open : rtnl_lock() held by caller */
2982 if (netif_running(dev)) {
2983 u8 __iomem *base = get_hwbase(dev);
2984 /*
2985 * It seems that the nic preloads valid ring entries into an
2986 * internal buffer. The procedure for flushing everything is
2987 * guessed, there is probably a simpler approach.
2988 * Changing the MTU is a rare event, it shouldn't matter.
2989 */
2990 nv_disable_irq(dev);
2991 nv_napi_disable(dev);
2992 netif_tx_lock_bh(dev);
2993 netif_addr_lock(dev);
2994 spin_lock(&np->lock);
2995 /* stop engines */
2996 nv_stop_rxtx(dev);
2997 nv_txrx_reset(dev);
2998 /* drain rx queue */
2999 nv_drain_rxtx(dev);
3000 /* reinit driver view of the rx queue */
3001 set_bufsize(dev);
3002 if (nv_init_ring(dev)) {
3003 if (!np->in_shutdown)
3004 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3005 }
3006 /* reinit nic view of the rx queue */
3007 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3008 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3009 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3010 base + NvRegRingSizes);
3011 pci_push(base);
3012 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3013 pci_push(base);
3014
3015 /* restart rx engine */
3016 nv_start_rxtx(dev);
3017 spin_unlock(&np->lock);
3018 netif_addr_unlock(dev);
3019 netif_tx_unlock_bh(dev);
3020 nv_napi_enable(dev);
3021 nv_enable_irq(dev);
3022 }
3023 return 0;
3024 }
3025
3026 static void nv_copy_mac_to_hw(struct net_device *dev)
3027 {
3028 u8 __iomem *base = get_hwbase(dev);
3029 u32 mac[2];
3030
3031 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3032 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3033 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3034
3035 writel(mac[0], base + NvRegMacAddrA);
3036 writel(mac[1], base + NvRegMacAddrB);
3037 }
3038
3039 /*
3040 * nv_set_mac_address: dev->set_mac_address function
3041 * Called with rtnl_lock() held.
3042 */
3043 static int nv_set_mac_address(struct net_device *dev, void *addr)
3044 {
3045 struct fe_priv *np = netdev_priv(dev);
3046 struct sockaddr *macaddr = (struct sockaddr*)addr;
3047
3048 if (!is_valid_ether_addr(macaddr->sa_data))
3049 return -EADDRNOTAVAIL;
3050
3051 /* synchronized against open : rtnl_lock() held by caller */
3052 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3053
3054 if (netif_running(dev)) {
3055 netif_tx_lock_bh(dev);
3056 netif_addr_lock(dev);
3057 spin_lock_irq(&np->lock);
3058
3059 /* stop rx engine */
3060 nv_stop_rx(dev);
3061
3062 /* set mac address */
3063 nv_copy_mac_to_hw(dev);
3064
3065 /* restart rx engine */
3066 nv_start_rx(dev);
3067 spin_unlock_irq(&np->lock);
3068 netif_addr_unlock(dev);
3069 netif_tx_unlock_bh(dev);
3070 } else {
3071 nv_copy_mac_to_hw(dev);
3072 }
3073 return 0;
3074 }
3075
3076 /*
3077 * nv_set_multicast: dev->set_multicast function
3078 * Called with netif_tx_lock held.
3079 */
3080 static void nv_set_multicast(struct net_device *dev)
3081 {
3082 struct fe_priv *np = netdev_priv(dev);
3083 u8 __iomem *base = get_hwbase(dev);
3084 u32 addr[2];
3085 u32 mask[2];
3086 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3087
3088 memset(addr, 0, sizeof(addr));
3089 memset(mask, 0, sizeof(mask));
3090
3091 if (dev->flags & IFF_PROMISC) {
3092 pff |= NVREG_PFF_PROMISC;
3093 } else {
3094 pff |= NVREG_PFF_MYADDR;
3095
3096 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
3097 u32 alwaysOff[2];
3098 u32 alwaysOn[2];
3099
3100 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3101 if (dev->flags & IFF_ALLMULTI) {
3102 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3103 } else {
3104 struct dev_mc_list *walk;
3105
3106 walk = dev->mc_list;
3107 while (walk != NULL) {
3108 u32 a, b;
3109 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
3110 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
3111 alwaysOn[0] &= a;
3112 alwaysOff[0] &= ~a;
3113 alwaysOn[1] &= b;
3114 alwaysOff[1] &= ~b;
3115 walk = walk->next;
3116 }
3117 }
3118 addr[0] = alwaysOn[0];
3119 addr[1] = alwaysOn[1];
3120 mask[0] = alwaysOn[0] | alwaysOff[0];
3121 mask[1] = alwaysOn[1] | alwaysOff[1];
3122 } else {
3123 mask[0] = NVREG_MCASTMASKA_NONE;
3124 mask[1] = NVREG_MCASTMASKB_NONE;
3125 }
3126 }
3127 addr[0] |= NVREG_MCASTADDRA_FORCE;
3128 pff |= NVREG_PFF_ALWAYS;
3129 spin_lock_irq(&np->lock);
3130 nv_stop_rx(dev);
3131 writel(addr[0], base + NvRegMulticastAddrA);
3132 writel(addr[1], base + NvRegMulticastAddrB);
3133 writel(mask[0], base + NvRegMulticastMaskA);
3134 writel(mask[1], base + NvRegMulticastMaskB);
3135 writel(pff, base + NvRegPacketFilterFlags);
3136 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3137 dev->name);
3138 nv_start_rx(dev);
3139 spin_unlock_irq(&np->lock);
3140 }
3141
3142 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3143 {
3144 struct fe_priv *np = netdev_priv(dev);
3145 u8 __iomem *base = get_hwbase(dev);
3146
3147 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3148
3149 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3150 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3151 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3152 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3153 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3154 } else {
3155 writel(pff, base + NvRegPacketFilterFlags);
3156 }
3157 }
3158 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3159 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3160 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3161 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3162 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3163 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3164 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3165 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3166 /* limit the number of tx pause frames to a default of 8 */
3167 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3168 }
3169 writel(pause_enable, base + NvRegTxPauseFrame);
3170 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3171 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3172 } else {
3173 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3174 writel(regmisc, base + NvRegMisc1);
3175 }
3176 }
3177 }
3178
3179 /**
3180 * nv_update_linkspeed: Setup the MAC according to the link partner
3181 * @dev: Network device to be configured
3182 *
3183 * The function queries the PHY and checks if there is a link partner.
3184 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3185 * set to 10 MBit HD.
3186 *
3187 * The function returns 0 if there is no link partner and 1 if there is
3188 * a good link partner.
3189 */
3190 static int nv_update_linkspeed(struct net_device *dev)
3191 {
3192 struct fe_priv *np = netdev_priv(dev);
3193 u8 __iomem *base = get_hwbase(dev);
3194 int adv = 0;
3195 int lpa = 0;
3196 int adv_lpa, adv_pause, lpa_pause;
3197 int newls = np->linkspeed;
3198 int newdup = np->duplex;
3199 int mii_status;
3200 int retval = 0;
3201 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3202 u32 txrxFlags = 0;
3203 u32 phy_exp;
3204
3205 /* BMSR_LSTATUS is latched, read it twice:
3206 * we want the current value.
3207 */
3208 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3209 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3210
3211 if (!(mii_status & BMSR_LSTATUS)) {
3212 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3213 dev->name);
3214 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3215 newdup = 0;
3216 retval = 0;
3217 goto set_speed;
3218 }
3219
3220 if (np->autoneg == 0) {
3221 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3222 dev->name, np->fixed_mode);
3223 if (np->fixed_mode & LPA_100FULL) {
3224 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3225 newdup = 1;
3226 } else if (np->fixed_mode & LPA_100HALF) {
3227 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3228 newdup = 0;
3229 } else if (np->fixed_mode & LPA_10FULL) {
3230 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3231 newdup = 1;
3232 } else {
3233 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3234 newdup = 0;
3235 }
3236 retval = 1;
3237 goto set_speed;
3238 }
3239 /* check auto negotiation is complete */
3240 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3241 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3242 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3243 newdup = 0;
3244 retval = 0;
3245 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3246 goto set_speed;
3247 }
3248
3249 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3250 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3251 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3252 dev->name, adv, lpa);
3253
3254 retval = 1;
3255 if (np->gigabit == PHY_GIGABIT) {
3256 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3257 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3258
3259 if ((control_1000 & ADVERTISE_1000FULL) &&
3260 (status_1000 & LPA_1000FULL)) {
3261 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3262 dev->name);
3263 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3264 newdup = 1;
3265 goto set_speed;
3266 }
3267 }
3268
3269 /* FIXME: handle parallel detection properly */
3270 adv_lpa = lpa & adv;
3271 if (adv_lpa & LPA_100FULL) {
3272 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3273 newdup = 1;
3274 } else if (adv_lpa & LPA_100HALF) {
3275 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3276 newdup = 0;
3277 } else if (adv_lpa & LPA_10FULL) {
3278 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3279 newdup = 1;
3280 } else if (adv_lpa & LPA_10HALF) {
3281 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3282 newdup = 0;
3283 } else {
3284 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3285 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3286 newdup = 0;
3287 }
3288
3289 set_speed:
3290 if (np->duplex == newdup && np->linkspeed == newls)
3291 return retval;
3292
3293 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3294 dev->name, np->linkspeed, np->duplex, newls, newdup);
3295
3296 np->duplex = newdup;
3297 np->linkspeed = newls;
3298
3299 /* The transmitter and receiver must be restarted for safe update */
3300 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3301 txrxFlags |= NV_RESTART_TX;
3302 nv_stop_tx(dev);
3303 }
3304 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3305 txrxFlags |= NV_RESTART_RX;
3306 nv_stop_rx(dev);
3307 }
3308
3309 if (np->gigabit == PHY_GIGABIT) {
3310 phyreg = readl(base + NvRegSlotTime);
3311 phyreg &= ~(0x3FF00);
3312 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3313 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3314 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3315 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3316 phyreg |= NVREG_SLOTTIME_1000_FULL;
3317 writel(phyreg, base + NvRegSlotTime);
3318 }
3319
3320 phyreg = readl(base + NvRegPhyInterface);
3321 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3322 if (np->duplex == 0)
3323 phyreg |= PHY_HALF;
3324 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3325 phyreg |= PHY_100;
3326 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3327 phyreg |= PHY_1000;
3328 writel(phyreg, base + NvRegPhyInterface);
3329
3330 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3331 if (phyreg & PHY_RGMII) {
3332 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3333 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3334 } else {
3335 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3336 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3337 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3338 else
3339 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3340 } else {
3341 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3342 }
3343 }
3344 } else {
3345 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3346 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3347 else
3348 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3349 }
3350 writel(txreg, base + NvRegTxDeferral);
3351
3352 if (np->desc_ver == DESC_VER_1) {
3353 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3354 } else {
3355 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3356 txreg = NVREG_TX_WM_DESC2_3_1000;
3357 else
3358 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3359 }
3360 writel(txreg, base + NvRegTxWatermark);
3361
3362 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3363 base + NvRegMisc1);
3364 pci_push(base);
3365 writel(np->linkspeed, base + NvRegLinkSpeed);
3366 pci_push(base);
3367
3368 pause_flags = 0;
3369 /* setup pause frame */
3370 if (np->duplex != 0) {
3371 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3372 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3373 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3374
3375 switch (adv_pause) {
3376 case ADVERTISE_PAUSE_CAP:
3377 if (lpa_pause & LPA_PAUSE_CAP) {
3378 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3379 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3380 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3381 }
3382 break;
3383 case ADVERTISE_PAUSE_ASYM:
3384 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3385 {
3386 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3387 }
3388 break;
3389 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3390 if (lpa_pause & LPA_PAUSE_CAP)
3391 {
3392 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3393 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3394 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3395 }
3396 if (lpa_pause == LPA_PAUSE_ASYM)
3397 {
3398 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3399 }
3400 break;
3401 }
3402 } else {
3403 pause_flags = np->pause_flags;
3404 }
3405 }
3406 nv_update_pause(dev, pause_flags);
3407
3408 if (txrxFlags & NV_RESTART_TX)
3409 nv_start_tx(dev);
3410 if (txrxFlags & NV_RESTART_RX)
3411 nv_start_rx(dev);
3412
3413 return retval;
3414 }
3415
3416 static void nv_linkchange(struct net_device *dev)
3417 {
3418 if (nv_update_linkspeed(dev)) {
3419 if (!netif_carrier_ok(dev)) {
3420 netif_carrier_on(dev);
3421 printk(KERN_INFO "%s: link up.\n", dev->name);
3422 nv_txrx_gate(dev, false);
3423 nv_start_rx(dev);
3424 }
3425 } else {
3426 if (netif_carrier_ok(dev)) {
3427 netif_carrier_off(dev);
3428 printk(KERN_INFO "%s: link down.\n", dev->name);
3429 nv_txrx_gate(dev, true);
3430 nv_stop_rx(dev);
3431 }
3432 }
3433 }
3434
3435 static void nv_link_irq(struct net_device *dev)
3436 {
3437 u8 __iomem *base = get_hwbase(dev);
3438 u32 miistat;
3439
3440 miistat = readl(base + NvRegMIIStatus);
3441 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3442 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3443
3444 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3445 nv_linkchange(dev);
3446 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3447 }
3448
3449 static void nv_msi_workaround(struct fe_priv *np)
3450 {
3451
3452 /* Need to toggle the msi irq mask within the ethernet device,
3453 * otherwise, future interrupts will not be detected.
3454 */
3455 if (np->msi_flags & NV_MSI_ENABLED) {
3456 u8 __iomem *base = np->base;
3457
3458 writel(0, base + NvRegMSIIrqMask);
3459 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3460 }
3461 }
3462
3463 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3464 {
3465 struct fe_priv *np = netdev_priv(dev);
3466
3467 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3468 if (total_work > NV_DYNAMIC_THRESHOLD) {
3469 /* transition to poll based interrupts */
3470 np->quiet_count = 0;
3471 if (np->irqmask != NVREG_IRQMASK_CPU) {
3472 np->irqmask = NVREG_IRQMASK_CPU;
3473 return 1;
3474 }
3475 } else {
3476 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3477 np->quiet_count++;
3478 } else {
3479 /* reached a period of low activity, switch
3480 to per tx/rx packet interrupts */
3481 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3482 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3483 return 1;
3484 }
3485 }
3486 }
3487 }
3488 return 0;
3489 }
3490
3491 static irqreturn_t nv_nic_irq(int foo, void *data)
3492 {
3493 struct net_device *dev = (struct net_device *) data;
3494 struct fe_priv *np = netdev_priv(dev);
3495 u8 __iomem *base = get_hwbase(dev);
3496 #ifndef CONFIG_FORCEDETH_NAPI
3497 int total_work = 0;
3498 int loop_count = 0;
3499 #endif
3500
3501 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3502
3503 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3504 np->events = readl(base + NvRegIrqStatus);
3505 writel(np->events, base + NvRegIrqStatus);
3506 } else {
3507 np->events = readl(base + NvRegMSIXIrqStatus);
3508 writel(np->events, base + NvRegMSIXIrqStatus);
3509 }
3510 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3511 if (!(np->events & np->irqmask))
3512 return IRQ_NONE;
3513
3514 nv_msi_workaround(np);
3515
3516 #ifdef CONFIG_FORCEDETH_NAPI
3517 napi_schedule(&np->napi);
3518
3519 /* Disable furthur irq's
3520 (msix not enabled with napi) */
3521 writel(0, base + NvRegIrqMask);
3522
3523 #else
3524 do
3525 {
3526 int work = 0;
3527 if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
3528 if (unlikely(nv_alloc_rx(dev))) {
3529 spin_lock(&np->lock);
3530 if (!np->in_shutdown)
3531 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3532 spin_unlock(&np->lock);
3533 }
3534 }
3535
3536 spin_lock(&np->lock);
3537 work += nv_tx_done(dev, TX_WORK_PER_LOOP);
3538 spin_unlock(&np->lock);
3539
3540 if (!work)
3541 break;
3542
3543 total_work += work;
3544
3545 loop_count++;
3546 }
3547 while (loop_count < max_interrupt_work);
3548
3549 if (nv_change_interrupt_mode(dev, total_work)) {
3550 /* setup new irq mask */
3551 writel(np->irqmask, base + NvRegIrqMask);
3552 }
3553
3554 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3555 spin_lock(&np->lock);
3556 nv_link_irq(dev);
3557 spin_unlock(&np->lock);
3558 }
3559 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3560 spin_lock(&np->lock);
3561 nv_linkchange(dev);
3562 spin_unlock(&np->lock);
3563 np->link_timeout = jiffies + LINK_TIMEOUT;
3564 }
3565 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3566 spin_lock(&np->lock);
3567 /* disable interrupts on the nic */
3568 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3569 writel(0, base + NvRegIrqMask);
3570 else
3571 writel(np->irqmask, base + NvRegIrqMask);
3572 pci_push(base);
3573
3574 if (!np->in_shutdown) {
3575 np->nic_poll_irq = np->irqmask;
3576 np->recover_error = 1;
3577 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3578 }
3579 spin_unlock(&np->lock);
3580 }
3581 #endif
3582 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3583
3584 return IRQ_HANDLED;
3585 }
3586
3587 /**
3588 * All _optimized functions are used to help increase performance
3589 * (reduce CPU and increase throughput). They use descripter version 3,
3590 * compiler directives, and reduce memory accesses.
3591 */
3592 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3593 {
3594 struct net_device *dev = (struct net_device *) data;
3595 struct fe_priv *np = netdev_priv(dev);
3596 u8 __iomem *base = get_hwbase(dev);
3597 #ifndef CONFIG_FORCEDETH_NAPI
3598 int total_work = 0;
3599 int loop_count = 0;
3600 #endif
3601
3602 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3603
3604 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3605 np->events = readl(base + NvRegIrqStatus);
3606 writel(np->events, base + NvRegIrqStatus);
3607 } else {
3608 np->events = readl(base + NvRegMSIXIrqStatus);
3609 writel(np->events, base + NvRegMSIXIrqStatus);
3610 }
3611 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3612 if (!(np->events & np->irqmask))
3613 return IRQ_NONE;
3614
3615 nv_msi_workaround(np);
3616
3617 #ifdef CONFIG_FORCEDETH_NAPI
3618 napi_schedule(&np->napi);
3619
3620 /* Disable furthur irq's
3621 (msix not enabled with napi) */
3622 writel(0, base + NvRegIrqMask);
3623
3624 #else
3625 do
3626 {
3627 int work = 0;
3628 if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
3629 if (unlikely(nv_alloc_rx_optimized(dev))) {
3630 spin_lock(&np->lock);
3631 if (!np->in_shutdown)
3632 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3633 spin_unlock(&np->lock);
3634 }
3635 }
3636
3637 spin_lock(&np->lock);
3638 work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3639 spin_unlock(&np->lock);
3640
3641 if (!work)
3642 break;
3643
3644 total_work += work;
3645
3646 loop_count++;
3647 }
3648 while (loop_count < max_interrupt_work);
3649
3650 if (nv_change_interrupt_mode(dev, total_work)) {
3651 /* setup new irq mask */
3652 writel(np->irqmask, base + NvRegIrqMask);
3653 }
3654
3655 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3656 spin_lock(&np->lock);
3657 nv_link_irq(dev);
3658 spin_unlock(&np->lock);
3659 }
3660 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3661 spin_lock(&np->lock);
3662 nv_linkchange(dev);
3663 spin_unlock(&np->lock);
3664 np->link_timeout = jiffies + LINK_TIMEOUT;
3665 }
3666 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3667 spin_lock(&np->lock);
3668 /* disable interrupts on the nic */
3669 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3670 writel(0, base + NvRegIrqMask);
3671 else
3672 writel(np->irqmask, base + NvRegIrqMask);
3673 pci_push(base);
3674
3675 if (!np->in_shutdown) {
3676 np->nic_poll_irq = np->irqmask;
3677 np->recover_error = 1;
3678 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3679 }
3680 spin_unlock(&np->lock);
3681 }
3682
3683 #endif
3684 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3685
3686 return IRQ_HANDLED;
3687 }
3688
3689 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3690 {
3691 struct net_device *dev = (struct net_device *) data;
3692 struct fe_priv *np = netdev_priv(dev);
3693 u8 __iomem *base = get_hwbase(dev);
3694 u32 events;
3695 int i;
3696 unsigned long flags;
3697
3698 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3699
3700 for (i=0; ; i++) {
3701 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3702 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3703 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3704 if (!(events & np->irqmask))
3705 break;
3706
3707 spin_lock_irqsave(&np->lock, flags);
3708 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3709 spin_unlock_irqrestore(&np->lock, flags);
3710
3711 if (unlikely(i > max_interrupt_work)) {
3712 spin_lock_irqsave(&np->lock, flags);
3713 /* disable interrupts on the nic */
3714 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3715 pci_push(base);
3716
3717 if (!np->in_shutdown) {
3718 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3719 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3720 }
3721 spin_unlock_irqrestore(&np->lock, flags);
3722 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3723 break;
3724 }
3725
3726 }
3727 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3728
3729 return IRQ_RETVAL(i);
3730 }
3731
3732 #ifdef CONFIG_FORCEDETH_NAPI
3733 static int nv_napi_poll(struct napi_struct *napi, int budget)
3734 {
3735 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3736 struct net_device *dev = np->dev;
3737 u8 __iomem *base = get_hwbase(dev);
3738 unsigned long flags;
3739 int retcode;
3740 int tx_work, rx_work;
3741
3742 if (!nv_optimized(np)) {
3743 spin_lock_irqsave(&np->lock, flags);
3744 tx_work = nv_tx_done(dev, np->tx_ring_size);
3745 spin_unlock_irqrestore(&np->lock, flags);
3746
3747 rx_work = nv_rx_process(dev, budget);
3748 retcode = nv_alloc_rx(dev);
3749 } else {
3750 spin_lock_irqsave(&np->lock, flags);
3751 tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
3752 spin_unlock_irqrestore(&np->lock, flags);
3753
3754 rx_work = nv_rx_process_optimized(dev, budget);
3755 retcode = nv_alloc_rx_optimized(dev);
3756 }
3757
3758 if (retcode) {
3759 spin_lock_irqsave(&np->lock, flags);
3760 if (!np->in_shutdown)
3761 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3762 spin_unlock_irqrestore(&np->lock, flags);
3763 }
3764
3765 nv_change_interrupt_mode(dev, tx_work + rx_work);
3766
3767 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3768 spin_lock_irqsave(&np->lock, flags);
3769 nv_link_irq(dev);
3770 spin_unlock_irqrestore(&np->lock, flags);
3771 }
3772 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3773 spin_lock_irqsave(&np->lock, flags);
3774 nv_linkchange(dev);
3775 spin_unlock_irqrestore(&np->lock, flags);
3776 np->link_timeout = jiffies + LINK_TIMEOUT;
3777 }
3778 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3779 spin_lock_irqsave(&np->lock, flags);
3780 if (!np->in_shutdown) {
3781 np->nic_poll_irq = np->irqmask;
3782 np->recover_error = 1;
3783 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3784 }
3785 spin_unlock_irqrestore(&np->lock, flags);
3786 napi_complete(napi);
3787 return rx_work;
3788 }
3789
3790 if (rx_work < budget) {
3791 /* re-enable interrupts
3792 (msix not enabled in napi) */
3793 napi_complete(napi);
3794
3795 writel(np->irqmask, base + NvRegIrqMask);
3796 }
3797 return rx_work;
3798 }
3799 #endif
3800
3801 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3802 {
3803 struct net_device *dev = (struct net_device *) data;
3804 struct fe_priv *np = netdev_priv(dev);
3805 u8 __iomem *base = get_hwbase(dev);
3806 u32 events;
3807 int i;
3808 unsigned long flags;
3809
3810 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3811
3812 for (i=0; ; i++) {
3813 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3814 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3815 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3816 if (!(events & np->irqmask))
3817 break;
3818
3819 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3820 if (unlikely(nv_alloc_rx_optimized(dev))) {
3821 spin_lock_irqsave(&np->lock, flags);
3822 if (!np->in_shutdown)
3823 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3824 spin_unlock_irqrestore(&np->lock, flags);
3825 }
3826 }
3827
3828 if (unlikely(i > max_interrupt_work)) {
3829 spin_lock_irqsave(&np->lock, flags);
3830 /* disable interrupts on the nic */
3831 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3832 pci_push(base);
3833
3834 if (!np->in_shutdown) {
3835 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3836 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3837 }
3838 spin_unlock_irqrestore(&np->lock, flags);
3839 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3840 break;
3841 }
3842 }
3843 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3844
3845 return IRQ_RETVAL(i);
3846 }
3847
3848 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3849 {
3850 struct net_device *dev = (struct net_device *) data;
3851 struct fe_priv *np = netdev_priv(dev);
3852 u8 __iomem *base = get_hwbase(dev);
3853 u32 events;
3854 int i;
3855 unsigned long flags;
3856
3857 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3858
3859 for (i=0; ; i++) {
3860 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3861 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3862 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3863 if (!(events & np->irqmask))
3864 break;
3865
3866 /* check tx in case we reached max loop limit in tx isr */
3867 spin_lock_irqsave(&np->lock, flags);
3868 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3869 spin_unlock_irqrestore(&np->lock, flags);
3870
3871 if (events & NVREG_IRQ_LINK) {
3872 spin_lock_irqsave(&np->lock, flags);
3873 nv_link_irq(dev);
3874 spin_unlock_irqrestore(&np->lock, flags);
3875 }
3876 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3877 spin_lock_irqsave(&np->lock, flags);
3878 nv_linkchange(dev);
3879 spin_unlock_irqrestore(&np->lock, flags);
3880 np->link_timeout = jiffies + LINK_TIMEOUT;
3881 }
3882 if (events & NVREG_IRQ_RECOVER_ERROR) {
3883 spin_lock_irq(&np->lock);
3884 /* disable interrupts on the nic */
3885 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3886 pci_push(base);
3887
3888 if (!np->in_shutdown) {
3889 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3890 np->recover_error = 1;
3891 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3892 }
3893 spin_unlock_irq(&np->lock);
3894 break;
3895 }
3896 if (unlikely(i > max_interrupt_work)) {
3897 spin_lock_irqsave(&np->lock, flags);
3898 /* disable interrupts on the nic */
3899 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3900 pci_push(base);
3901
3902 if (!np->in_shutdown) {
3903 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3904 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3905 }
3906 spin_unlock_irqrestore(&np->lock, flags);
3907 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3908 break;
3909 }
3910
3911 }
3912 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3913
3914 return IRQ_RETVAL(i);
3915 }
3916
3917 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3918 {
3919 struct net_device *dev = (struct net_device *) data;
3920 struct fe_priv *np = netdev_priv(dev);
3921 u8 __iomem *base = get_hwbase(dev);
3922 u32 events;
3923
3924 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3925
3926 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3927 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3928 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3929 } else {
3930 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3931 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3932 }
3933 pci_push(base);
3934 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3935 if (!(events & NVREG_IRQ_TIMER))
3936 return IRQ_RETVAL(0);
3937
3938 nv_msi_workaround(np);
3939
3940 spin_lock(&np->lock);
3941 np->intr_test = 1;
3942 spin_unlock(&np->lock);
3943
3944 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3945
3946 return IRQ_RETVAL(1);
3947 }
3948
3949 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3950 {
3951 u8 __iomem *base = get_hwbase(dev);
3952 int i;
3953 u32 msixmap = 0;
3954
3955 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3956 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3957 * the remaining 8 interrupts.
3958 */
3959 for (i = 0; i < 8; i++) {
3960 if ((irqmask >> i) & 0x1) {
3961 msixmap |= vector << (i << 2);
3962 }
3963 }
3964 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3965
3966 msixmap = 0;
3967 for (i = 0; i < 8; i++) {
3968 if ((irqmask >> (i + 8)) & 0x1) {
3969 msixmap |= vector << (i << 2);
3970 }
3971 }
3972 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3973 }
3974
3975 static int nv_request_irq(struct net_device *dev, int intr_test)
3976 {
3977 struct fe_priv *np = get_nvpriv(dev);
3978 u8 __iomem *base = get_hwbase(dev);
3979 int ret = 1;
3980 int i;
3981 irqreturn_t (*handler)(int foo, void *data);
3982
3983 if (intr_test) {
3984 handler = nv_nic_irq_test;
3985 } else {
3986 if (nv_optimized(np))
3987 handler = nv_nic_irq_optimized;
3988 else
3989 handler = nv_nic_irq;
3990 }
3991
3992 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3993 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3994 np->msi_x_entry[i].entry = i;
3995 }
3996 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3997 np->msi_flags |= NV_MSI_X_ENABLED;
3998 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3999 /* Request irq for rx handling */
4000 sprintf(np->name_rx, "%s-rx", dev->name);
4001 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
4002 &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
4003 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
4004 pci_disable_msix(np->pci_dev);
4005 np->msi_flags &= ~NV_MSI_X_ENABLED;
4006 goto out_err;
4007 }
4008 /* Request irq for tx handling */
4009 sprintf(np->name_tx, "%s-tx", dev->name);
4010 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
4011 &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
4012 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
4013 pci_disable_msix(np->pci_dev);
4014 np->msi_flags &= ~NV_MSI_X_ENABLED;
4015 goto out_free_rx;
4016 }
4017 /* Request irq for link and timer handling */
4018 sprintf(np->name_other, "%s-other", dev->name);
4019 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
4020 &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
4021 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
4022 pci_disable_msix(np->pci_dev);
4023 np->msi_flags &= ~NV_MSI_X_ENABLED;
4024 goto out_free_tx;
4025 }
4026 /* map interrupts to their respective vector */
4027 writel(0, base + NvRegMSIXMap0);
4028 writel(0, base + NvRegMSIXMap1);
4029 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4030 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4031 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4032 } else {
4033 /* Request irq for all interrupts */
4034 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
4035 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4036 pci_disable_msix(np->pci_dev);
4037 np->msi_flags &= ~NV_MSI_X_ENABLED;
4038 goto out_err;
4039 }
4040
4041 /* map interrupts to vector 0 */
4042 writel(0, base + NvRegMSIXMap0);
4043 writel(0, base + NvRegMSIXMap1);
4044 }
4045 }
4046 }
4047 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
4048 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
4049 np->msi_flags |= NV_MSI_ENABLED;
4050 dev->irq = np->pci_dev->irq;
4051 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
4052 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4053 pci_disable_msi(np->pci_dev);
4054 np->msi_flags &= ~NV_MSI_ENABLED;
4055 dev->irq = np->pci_dev->irq;
4056 goto out_err;
4057 }
4058
4059 /* map interrupts to vector 0 */
4060 writel(0, base + NvRegMSIMap0);
4061 writel(0, base + NvRegMSIMap1);
4062 /* enable msi vector 0 */
4063 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4064 }
4065 }
4066 if (ret != 0) {
4067 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4068 goto out_err;
4069
4070 }
4071
4072 return 0;
4073 out_free_tx:
4074 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4075 out_free_rx:
4076 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4077 out_err:
4078 return 1;
4079 }
4080
4081 static void nv_free_irq(struct net_device *dev)
4082 {
4083 struct fe_priv *np = get_nvpriv(dev);
4084 int i;
4085
4086 if (np->msi_flags & NV_MSI_X_ENABLED) {
4087 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
4088 free_irq(np->msi_x_entry[i].vector, dev);
4089 }
4090 pci_disable_msix(np->pci_dev);
4091 np->msi_flags &= ~NV_MSI_X_ENABLED;
4092 } else {
4093 free_irq(np->pci_dev->irq, dev);
4094 if (np->msi_flags & NV_MSI_ENABLED) {
4095 pci_disable_msi(np->pci_dev);
4096 np->msi_flags &= ~NV_MSI_ENABLED;
4097 }
4098 }
4099 }
4100
4101 static void nv_do_nic_poll(unsigned long data)
4102 {
4103 struct net_device *dev = (struct net_device *) data;
4104 struct fe_priv *np = netdev_priv(dev);
4105 u8 __iomem *base = get_hwbase(dev);
4106 u32 mask = 0;
4107
4108 /*
4109 * First disable irq(s) and then
4110 * reenable interrupts on the nic, we have to do this before calling
4111 * nv_nic_irq because that may decide to do otherwise
4112 */
4113
4114 if (!using_multi_irqs(dev)) {
4115 if (np->msi_flags & NV_MSI_X_ENABLED)
4116 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4117 else
4118 disable_irq_lockdep(np->pci_dev->irq);
4119 mask = np->irqmask;
4120 } else {
4121 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4122 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4123 mask |= NVREG_IRQ_RX_ALL;
4124 }
4125 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4126 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4127 mask |= NVREG_IRQ_TX_ALL;
4128 }
4129 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4130 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4131 mask |= NVREG_IRQ_OTHER;
4132 }
4133 }
4134 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4135
4136 if (np->recover_error) {
4137 np->recover_error = 0;
4138 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
4139 if (netif_running(dev)) {
4140 netif_tx_lock_bh(dev);
4141 netif_addr_lock(dev);
4142 spin_lock(&np->lock);
4143 /* stop engines */
4144 nv_stop_rxtx(dev);
4145 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4146 nv_mac_reset(dev);
4147 nv_txrx_reset(dev);
4148 /* drain rx queue */
4149 nv_drain_rxtx(dev);
4150 /* reinit driver view of the rx queue */
4151 set_bufsize(dev);
4152 if (nv_init_ring(dev)) {
4153 if (!np->in_shutdown)
4154 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4155 }
4156 /* reinit nic view of the rx queue */
4157 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4158 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4159 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4160 base + NvRegRingSizes);
4161 pci_push(base);
4162 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4163 pci_push(base);
4164 /* clear interrupts */
4165 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4166 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4167 else
4168 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4169
4170 /* restart rx engine */
4171 nv_start_rxtx(dev);
4172 spin_unlock(&np->lock);
4173 netif_addr_unlock(dev);
4174 netif_tx_unlock_bh(dev);
4175 }
4176 }
4177
4178 writel(mask, base + NvRegIrqMask);
4179 pci_push(base);
4180
4181 if (!using_multi_irqs(dev)) {
4182 np->nic_poll_irq = 0;
4183 if (nv_optimized(np))
4184 nv_nic_irq_optimized(0, dev);
4185 else
4186 nv_nic_irq(0, dev);
4187 if (np->msi_flags & NV_MSI_X_ENABLED)
4188 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4189 else
4190 enable_irq_lockdep(np->pci_dev->irq);
4191 } else {
4192 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4193 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4194 nv_nic_irq_rx(0, dev);
4195 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4196 }
4197 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4198 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4199 nv_nic_irq_tx(0, dev);
4200 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4201 }
4202 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4203 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4204 nv_nic_irq_other(0, dev);
4205 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4206 }
4207 }
4208
4209 }
4210
4211 #ifdef CONFIG_NET_POLL_CONTROLLER
4212 static void nv_poll_controller(struct net_device *dev)
4213 {
4214 nv_do_nic_poll((unsigned long) dev);
4215 }
4216 #endif
4217
4218 static void nv_do_stats_poll(unsigned long data)
4219 {
4220 struct net_device *dev = (struct net_device *) data;
4221 struct fe_priv *np = netdev_priv(dev);
4222
4223 nv_get_hw_stats(dev);
4224
4225 if (!np->in_shutdown)
4226 mod_timer(&np->stats_poll,
4227 round_jiffies(jiffies + STATS_INTERVAL));
4228 }
4229
4230 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4231 {
4232 struct fe_priv *np = netdev_priv(dev);
4233 strcpy(info->driver, DRV_NAME);
4234 strcpy(info->version, FORCEDETH_VERSION);
4235 strcpy(info->bus_info, pci_name(np->pci_dev));
4236 }
4237
4238 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4239 {
4240 struct fe_priv *np = netdev_priv(dev);
4241 wolinfo->supported = WAKE_MAGIC;
4242
4243 spin_lock_irq(&np->lock);
4244 if (np->wolenabled)
4245 wolinfo->wolopts = WAKE_MAGIC;
4246 spin_unlock_irq(&np->lock);
4247 }
4248
4249 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4250 {
4251 struct fe_priv *np = netdev_priv(dev);
4252 u8 __iomem *base = get_hwbase(dev);
4253 u32 flags = 0;
4254
4255 if (wolinfo->wolopts == 0) {
4256 np->wolenabled = 0;
4257 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4258 np->wolenabled = 1;
4259 flags = NVREG_WAKEUPFLAGS_ENABLE;
4260 }
4261 if (netif_running(dev)) {
4262 spin_lock_irq(&np->lock);
4263 writel(flags, base + NvRegWakeUpFlags);
4264 spin_unlock_irq(&np->lock);
4265 }
4266 return 0;
4267 }
4268
4269 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4270 {
4271 struct fe_priv *np = netdev_priv(dev);
4272 int adv;
4273
4274 spin_lock_irq(&np->lock);
4275 ecmd->port = PORT_MII;
4276 if (!netif_running(dev)) {
4277 /* We do not track link speed / duplex setting if the
4278 * interface is disabled. Force a link check */
4279 if (nv_update_linkspeed(dev)) {
4280 if (!netif_carrier_ok(dev))
4281 netif_carrier_on(dev);
4282 } else {
4283 if (netif_carrier_ok(dev))
4284 netif_carrier_off(dev);
4285 }
4286 }
4287
4288 if (netif_carrier_ok(dev)) {
4289 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4290 case NVREG_LINKSPEED_10:
4291 ecmd->speed = SPEED_10;
4292 break;
4293 case NVREG_LINKSPEED_100:
4294 ecmd->speed = SPEED_100;
4295 break;
4296 case NVREG_LINKSPEED_1000:
4297 ecmd->speed = SPEED_1000;
4298 break;
4299 }
4300 ecmd->duplex = DUPLEX_HALF;
4301 if (np->duplex)
4302 ecmd->duplex = DUPLEX_FULL;
4303 } else {
4304 ecmd->speed = -1;
4305 ecmd->duplex = -1;
4306 }
4307
4308 ecmd->autoneg = np->autoneg;
4309
4310 ecmd->advertising = ADVERTISED_MII;
4311 if (np->autoneg) {
4312 ecmd->advertising |= ADVERTISED_Autoneg;
4313 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4314 if (adv & ADVERTISE_10HALF)
4315 ecmd->advertising |= ADVERTISED_10baseT_Half;
4316 if (adv & ADVERTISE_10FULL)
4317 ecmd->advertising |= ADVERTISED_10baseT_Full;
4318 if (adv & ADVERTISE_100HALF)
4319 ecmd->advertising |= ADVERTISED_100baseT_Half;
4320 if (adv & ADVERTISE_100FULL)
4321 ecmd->advertising |= ADVERTISED_100baseT_Full;
4322 if (np->gigabit == PHY_GIGABIT) {
4323 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4324 if (adv & ADVERTISE_1000FULL)
4325 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4326 }
4327 }
4328 ecmd->supported = (SUPPORTED_Autoneg |
4329 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4330 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4331 SUPPORTED_MII);
4332 if (np->gigabit == PHY_GIGABIT)
4333 ecmd->supported |= SUPPORTED_1000baseT_Full;
4334
4335 ecmd->phy_address = np->phyaddr;
4336 ecmd->transceiver = XCVR_EXTERNAL;
4337
4338 /* ignore maxtxpkt, maxrxpkt for now */
4339 spin_unlock_irq(&np->lock);
4340 return 0;
4341 }
4342
4343 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4344 {
4345 struct fe_priv *np = netdev_priv(dev);
4346
4347 if (ecmd->port != PORT_MII)
4348 return -EINVAL;
4349 if (ecmd->transceiver != XCVR_EXTERNAL)
4350 return -EINVAL;
4351 if (ecmd->phy_address != np->phyaddr) {
4352 /* TODO: support switching between multiple phys. Should be
4353 * trivial, but not enabled due to lack of test hardware. */
4354 return -EINVAL;
4355 }
4356 if (ecmd->autoneg == AUTONEG_ENABLE) {
4357 u32 mask;
4358
4359 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4360 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4361 if (np->gigabit == PHY_GIGABIT)
4362 mask |= ADVERTISED_1000baseT_Full;
4363
4364 if ((ecmd->advertising & mask) == 0)
4365 return -EINVAL;
4366
4367 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4368 /* Note: autonegotiation disable, speed 1000 intentionally
4369 * forbidden - noone should need that. */
4370
4371 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4372 return -EINVAL;
4373 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4374 return -EINVAL;
4375 } else {
4376 return -EINVAL;
4377 }
4378
4379 netif_carrier_off(dev);
4380 if (netif_running(dev)) {
4381 unsigned long flags;
4382
4383 nv_disable_irq(dev);
4384 netif_tx_lock_bh(dev);
4385 netif_addr_lock(dev);
4386 /* with plain spinlock lockdep complains */
4387 spin_lock_irqsave(&np->lock, flags);
4388 /* stop engines */
4389 /* FIXME:
4390 * this can take some time, and interrupts are disabled
4391 * due to spin_lock_irqsave, but let's hope no daemon
4392 * is going to change the settings very often...
4393 * Worst case:
4394 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4395 * + some minor delays, which is up to a second approximately
4396 */
4397 nv_stop_rxtx(dev);
4398 spin_unlock_irqrestore(&np->lock, flags);
4399 netif_addr_unlock(dev);
4400 netif_tx_unlock_bh(dev);
4401 }
4402
4403 if (ecmd->autoneg == AUTONEG_ENABLE) {
4404 int adv, bmcr;
4405
4406 np->autoneg = 1;
4407
4408 /* advertise only what has been requested */
4409 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4410 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4411 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4412 adv |= ADVERTISE_10HALF;
4413 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4414 adv |= ADVERTISE_10FULL;
4415 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4416 adv |= ADVERTISE_100HALF;
4417 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4418 adv |= ADVERTISE_100FULL;
4419 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4420 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4421 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4422 adv |= ADVERTISE_PAUSE_ASYM;
4423 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4424
4425 if (np->gigabit == PHY_GIGABIT) {
4426 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4427 adv &= ~ADVERTISE_1000FULL;
4428 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4429 adv |= ADVERTISE_1000FULL;
4430 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4431 }
4432
4433 if (netif_running(dev))
4434 printk(KERN_INFO "%s: link down.\n", dev->name);
4435 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4436 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4437 bmcr |= BMCR_ANENABLE;
4438 /* reset the phy in order for settings to stick,
4439 * and cause autoneg to start */
4440 if (phy_reset(dev, bmcr)) {
4441 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4442 return -EINVAL;
4443 }
4444 } else {
4445 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4446 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4447 }
4448 } else {
4449 int adv, bmcr;
4450
4451 np->autoneg = 0;
4452
4453 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4454 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4455 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4456 adv |= ADVERTISE_10HALF;
4457 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4458 adv |= ADVERTISE_10FULL;
4459 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4460 adv |= ADVERTISE_100HALF;
4461 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4462 adv |= ADVERTISE_100FULL;
4463 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4464 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4465 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4466 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4467 }
4468 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4469 adv |= ADVERTISE_PAUSE_ASYM;
4470 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4471 }
4472 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4473 np->fixed_mode = adv;
4474
4475 if (np->gigabit == PHY_GIGABIT) {
4476 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4477 adv &= ~ADVERTISE_1000FULL;
4478 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4479 }
4480
4481 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4482 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4483 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4484 bmcr |= BMCR_FULLDPLX;
4485 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4486 bmcr |= BMCR_SPEED100;
4487 if (np->phy_oui == PHY_OUI_MARVELL) {
4488 /* reset the phy in order for forced mode settings to stick */
4489 if (phy_reset(dev, bmcr)) {
4490 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4491 return -EINVAL;
4492 }
4493 } else {
4494 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4495 if (netif_running(dev)) {
4496 /* Wait a bit and then reconfigure the nic. */
4497 udelay(10);
4498 nv_linkchange(dev);
4499 }
4500 }
4501 }
4502
4503 if (netif_running(dev)) {
4504 nv_start_rxtx(dev);
4505 nv_enable_irq(dev);
4506 }
4507
4508 return 0;
4509 }
4510
4511 #define FORCEDETH_REGS_VER 1
4512
4513 static int nv_get_regs_len(struct net_device *dev)
4514 {
4515 struct fe_priv *np = netdev_priv(dev);
4516 return np->register_size;
4517 }
4518
4519 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4520 {
4521 struct fe_priv *np = netdev_priv(dev);
4522 u8 __iomem *base = get_hwbase(dev);
4523 u32 *rbuf = buf;
4524 int i;
4525
4526 regs->version = FORCEDETH_REGS_VER;
4527 spin_lock_irq(&np->lock);
4528 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4529 rbuf[i] = readl(base + i*sizeof(u32));
4530 spin_unlock_irq(&np->lock);
4531 }
4532
4533 static int nv_nway_reset(struct net_device *dev)
4534 {
4535 struct fe_priv *np = netdev_priv(dev);
4536 int ret;
4537
4538 if (np->autoneg) {
4539 int bmcr;
4540
4541 netif_carrier_off(dev);
4542 if (netif_running(dev)) {
4543 nv_disable_irq(dev);
4544 netif_tx_lock_bh(dev);
4545 netif_addr_lock(dev);
4546 spin_lock(&np->lock);
4547 /* stop engines */
4548 nv_stop_rxtx(dev);
4549 spin_unlock(&np->lock);
4550 netif_addr_unlock(dev);
4551 netif_tx_unlock_bh(dev);
4552 printk(KERN_INFO "%s: link down.\n", dev->name);
4553 }
4554
4555 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4556 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4557 bmcr |= BMCR_ANENABLE;
4558 /* reset the phy in order for settings to stick*/
4559 if (phy_reset(dev, bmcr)) {
4560 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4561 return -EINVAL;
4562 }
4563 } else {
4564 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4565 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4566 }
4567
4568 if (netif_running(dev)) {
4569 nv_start_rxtx(dev);
4570 nv_enable_irq(dev);
4571 }
4572 ret = 0;
4573 } else {
4574 ret = -EINVAL;
4575 }
4576
4577 return ret;
4578 }
4579
4580 static int nv_set_tso(struct net_device *dev, u32 value)
4581 {
4582 struct fe_priv *np = netdev_priv(dev);
4583
4584 if ((np->driver_data & DEV_HAS_CHECKSUM))
4585 return ethtool_op_set_tso(dev, value);
4586 else
4587 return -EOPNOTSUPP;
4588 }
4589
4590 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4591 {
4592 struct fe_priv *np = netdev_priv(dev);
4593
4594 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4595 ring->rx_mini_max_pending = 0;
4596 ring->rx_jumbo_max_pending = 0;
4597 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4598
4599 ring->rx_pending = np->rx_ring_size;
4600 ring->rx_mini_pending = 0;
4601 ring->rx_jumbo_pending = 0;
4602 ring->tx_pending = np->tx_ring_size;
4603 }
4604
4605 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4606 {
4607 struct fe_priv *np = netdev_priv(dev);
4608 u8 __iomem *base = get_hwbase(dev);
4609 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4610 dma_addr_t ring_addr;
4611
4612 if (ring->rx_pending < RX_RING_MIN ||
4613 ring->tx_pending < TX_RING_MIN ||
4614 ring->rx_mini_pending != 0 ||
4615 ring->rx_jumbo_pending != 0 ||
4616 (np->desc_ver == DESC_VER_1 &&
4617 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4618 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4619 (np->desc_ver != DESC_VER_1 &&
4620 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4621 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4622 return -EINVAL;
4623 }
4624
4625 /* allocate new rings */
4626 if (!nv_optimized(np)) {
4627 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4628 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4629 &ring_addr);
4630 } else {
4631 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4632 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4633 &ring_addr);
4634 }
4635 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4636 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4637 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4638 /* fall back to old rings */
4639 if (!nv_optimized(np)) {
4640 if (rxtx_ring)
4641 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4642 rxtx_ring, ring_addr);
4643 } else {
4644 if (rxtx_ring)
4645 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4646 rxtx_ring, ring_addr);
4647 }
4648 if (rx_skbuff)
4649 kfree(rx_skbuff);
4650 if (tx_skbuff)
4651 kfree(tx_skbuff);
4652 goto exit;
4653 }
4654
4655 if (netif_running(dev)) {
4656 nv_disable_irq(dev);
4657 nv_napi_disable(dev);
4658 netif_tx_lock_bh(dev);
4659 netif_addr_lock(dev);
4660 spin_lock(&np->lock);
4661 /* stop engines */
4662 nv_stop_rxtx(dev);
4663 nv_txrx_reset(dev);
4664 /* drain queues */
4665 nv_drain_rxtx(dev);
4666 /* delete queues */
4667 free_rings(dev);
4668 }
4669
4670 /* set new values */
4671 np->rx_ring_size = ring->rx_pending;
4672 np->tx_ring_size = ring->tx_pending;
4673
4674 if (!nv_optimized(np)) {
4675 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4676 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4677 } else {
4678 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4679 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4680 }
4681 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4682 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4683 np->ring_addr = ring_addr;
4684
4685 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4686 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4687
4688 if (netif_running(dev)) {
4689 /* reinit driver view of the queues */
4690 set_bufsize(dev);
4691 if (nv_init_ring(dev)) {
4692 if (!np->in_shutdown)
4693 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4694 }
4695
4696 /* reinit nic view of the queues */
4697 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4698 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4699 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4700 base + NvRegRingSizes);
4701 pci_push(base);
4702 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4703 pci_push(base);
4704
4705 /* restart engines */
4706 nv_start_rxtx(dev);
4707 spin_unlock(&np->lock);
4708 netif_addr_unlock(dev);
4709 netif_tx_unlock_bh(dev);
4710 nv_napi_enable(dev);
4711 nv_enable_irq(dev);
4712 }
4713 return 0;
4714 exit:
4715 return -ENOMEM;
4716 }
4717
4718 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4719 {
4720 struct fe_priv *np = netdev_priv(dev);
4721
4722 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4723 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4724 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4725 }
4726
4727 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4728 {
4729 struct fe_priv *np = netdev_priv(dev);
4730 int adv, bmcr;
4731
4732 if ((!np->autoneg && np->duplex == 0) ||
4733 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4734 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4735 dev->name);
4736 return -EINVAL;
4737 }
4738 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4739 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4740 return -EINVAL;
4741 }
4742
4743 netif_carrier_off(dev);
4744 if (netif_running(dev)) {
4745 nv_disable_irq(dev);
4746 netif_tx_lock_bh(dev);
4747 netif_addr_lock(dev);
4748 spin_lock(&np->lock);
4749 /* stop engines */
4750 nv_stop_rxtx(dev);
4751 spin_unlock(&np->lock);
4752 netif_addr_unlock(dev);
4753 netif_tx_unlock_bh(dev);
4754 }
4755
4756 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4757 if (pause->rx_pause)
4758 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4759 if (pause->tx_pause)
4760 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4761
4762 if (np->autoneg && pause->autoneg) {
4763 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4764
4765 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4766 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4767 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4768 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4769 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4770 adv |= ADVERTISE_PAUSE_ASYM;
4771 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4772
4773 if (netif_running(dev))
4774 printk(KERN_INFO "%s: link down.\n", dev->name);
4775 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4776 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4777 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4778 } else {
4779 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4780 if (pause->rx_pause)
4781 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4782 if (pause->tx_pause)
4783 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4784
4785 if (!netif_running(dev))
4786 nv_update_linkspeed(dev);
4787 else
4788 nv_update_pause(dev, np->pause_flags);
4789 }
4790
4791 if (netif_running(dev)) {
4792 nv_start_rxtx(dev);
4793 nv_enable_irq(dev);
4794 }
4795 return 0;
4796 }
4797
4798 static u32 nv_get_rx_csum(struct net_device *dev)
4799 {
4800 struct fe_priv *np = netdev_priv(dev);
4801 return (np->rx_csum) != 0;
4802 }
4803
4804 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4805 {
4806 struct fe_priv *np = netdev_priv(dev);
4807 u8 __iomem *base = get_hwbase(dev);
4808 int retcode = 0;
4809
4810 if (np->driver_data & DEV_HAS_CHECKSUM) {
4811 if (data) {
4812 np->rx_csum = 1;
4813 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4814 } else {
4815 np->rx_csum = 0;
4816 /* vlan is dependent on rx checksum offload */
4817 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4818 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4819 }
4820 if (netif_running(dev)) {
4821 spin_lock_irq(&np->lock);
4822 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4823 spin_unlock_irq(&np->lock);
4824 }
4825 } else {
4826 return -EINVAL;
4827 }
4828
4829 return retcode;
4830 }
4831
4832 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4833 {
4834 struct fe_priv *np = netdev_priv(dev);
4835
4836 if (np->driver_data & DEV_HAS_CHECKSUM)
4837 return ethtool_op_set_tx_csum(dev, data);
4838 else
4839 return -EOPNOTSUPP;
4840 }
4841
4842 static int nv_set_sg(struct net_device *dev, u32 data)
4843 {
4844 struct fe_priv *np = netdev_priv(dev);
4845
4846 if (np->driver_data & DEV_HAS_CHECKSUM)
4847 return ethtool_op_set_sg(dev, data);
4848 else
4849 return -EOPNOTSUPP;
4850 }
4851
4852 static int nv_get_sset_count(struct net_device *dev, int sset)
4853 {
4854 struct fe_priv *np = netdev_priv(dev);
4855
4856 switch (sset) {
4857 case ETH_SS_TEST:
4858 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4859 return NV_TEST_COUNT_EXTENDED;
4860 else
4861 return NV_TEST_COUNT_BASE;
4862 case ETH_SS_STATS:
4863 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4864 return NV_DEV_STATISTICS_V3_COUNT;
4865 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4866 return NV_DEV_STATISTICS_V2_COUNT;
4867 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4868 return NV_DEV_STATISTICS_V1_COUNT;
4869 else
4870 return 0;
4871 default:
4872 return -EOPNOTSUPP;
4873 }
4874 }
4875
4876 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4877 {
4878 struct fe_priv *np = netdev_priv(dev);
4879
4880 /* update stats */
4881 nv_do_stats_poll((unsigned long)dev);
4882
4883 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4884 }
4885
4886 static int nv_link_test(struct net_device *dev)
4887 {
4888 struct fe_priv *np = netdev_priv(dev);
4889 int mii_status;
4890
4891 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4892 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4893
4894 /* check phy link status */
4895 if (!(mii_status & BMSR_LSTATUS))
4896 return 0;
4897 else
4898 return 1;
4899 }
4900
4901 static int nv_register_test(struct net_device *dev)
4902 {
4903 u8 __iomem *base = get_hwbase(dev);
4904 int i = 0;
4905 u32 orig_read, new_read;
4906
4907 do {
4908 orig_read = readl(base + nv_registers_test[i].reg);
4909
4910 /* xor with mask to toggle bits */
4911 orig_read ^= nv_registers_test[i].mask;
4912
4913 writel(orig_read, base + nv_registers_test[i].reg);
4914
4915 new_read = readl(base + nv_registers_test[i].reg);
4916
4917 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4918 return 0;
4919
4920 /* restore original value */
4921 orig_read ^= nv_registers_test[i].mask;
4922 writel(orig_read, base + nv_registers_test[i].reg);
4923
4924 } while (nv_registers_test[++i].reg != 0);
4925
4926 return 1;
4927 }
4928
4929 static int nv_interrupt_test(struct net_device *dev)
4930 {
4931 struct fe_priv *np = netdev_priv(dev);
4932 u8 __iomem *base = get_hwbase(dev);
4933 int ret = 1;
4934 int testcnt;
4935 u32 save_msi_flags, save_poll_interval = 0;
4936
4937 if (netif_running(dev)) {
4938 /* free current irq */
4939 nv_free_irq(dev);
4940 save_poll_interval = readl(base+NvRegPollingInterval);
4941 }
4942
4943 /* flag to test interrupt handler */
4944 np->intr_test = 0;
4945
4946 /* setup test irq */
4947 save_msi_flags = np->msi_flags;
4948 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4949 np->msi_flags |= 0x001; /* setup 1 vector */
4950 if (nv_request_irq(dev, 1))
4951 return 0;
4952
4953 /* setup timer interrupt */
4954 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4955 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4956
4957 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4958
4959 /* wait for at least one interrupt */
4960 msleep(100);
4961
4962 spin_lock_irq(&np->lock);
4963
4964 /* flag should be set within ISR */
4965 testcnt = np->intr_test;
4966 if (!testcnt)
4967 ret = 2;
4968
4969 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4970 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4971 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4972 else
4973 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4974
4975 spin_unlock_irq(&np->lock);
4976
4977 nv_free_irq(dev);
4978
4979 np->msi_flags = save_msi_flags;
4980
4981 if (netif_running(dev)) {
4982 writel(save_poll_interval, base + NvRegPollingInterval);
4983 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4984 /* restore original irq */
4985 if (nv_request_irq(dev, 0))
4986 return 0;
4987 }
4988
4989 return ret;
4990 }
4991
4992 static int nv_loopback_test(struct net_device *dev)
4993 {
4994 struct fe_priv *np = netdev_priv(dev);
4995 u8 __iomem *base = get_hwbase(dev);
4996 struct sk_buff *tx_skb, *rx_skb;
4997 dma_addr_t test_dma_addr;
4998 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4999 u32 flags;
5000 int len, i, pkt_len;
5001 u8 *pkt_data;
5002 u32 filter_flags = 0;
5003 u32 misc1_flags = 0;
5004 int ret = 1;
5005
5006 if (netif_running(dev)) {
5007 nv_disable_irq(dev);
5008 filter_flags = readl(base + NvRegPacketFilterFlags);
5009 misc1_flags = readl(base + NvRegMisc1);
5010 } else {
5011 nv_txrx_reset(dev);
5012 }
5013
5014 /* reinit driver view of the rx queue */
5015 set_bufsize(dev);
5016 nv_init_ring(dev);
5017
5018 /* setup hardware for loopback */
5019 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5020 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5021
5022 /* reinit nic view of the rx queue */
5023 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5024 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5025 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5026 base + NvRegRingSizes);
5027 pci_push(base);
5028
5029 /* restart rx engine */
5030 nv_start_rxtx(dev);
5031
5032 /* setup packet for tx */
5033 pkt_len = ETH_DATA_LEN;
5034 tx_skb = dev_alloc_skb(pkt_len);
5035 if (!tx_skb) {
5036 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
5037 " of %s\n", dev->name);
5038 ret = 0;
5039 goto out;
5040 }
5041 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5042 skb_tailroom(tx_skb),
5043 PCI_DMA_FROMDEVICE);
5044 pkt_data = skb_put(tx_skb, pkt_len);
5045 for (i = 0; i < pkt_len; i++)
5046 pkt_data[i] = (u8)(i & 0xff);
5047
5048 if (!nv_optimized(np)) {
5049 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5050 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5051 } else {
5052 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5053 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5054 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5055 }
5056 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5057 pci_push(get_hwbase(dev));
5058
5059 msleep(500);
5060
5061 /* check for rx of the packet */
5062 if (!nv_optimized(np)) {
5063 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5064 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5065
5066 } else {
5067 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5068 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5069 }
5070
5071 if (flags & NV_RX_AVAIL) {
5072 ret = 0;
5073 } else if (np->desc_ver == DESC_VER_1) {
5074 if (flags & NV_RX_ERROR)
5075 ret = 0;
5076 } else {
5077 if (flags & NV_RX2_ERROR) {
5078 ret = 0;
5079 }
5080 }
5081
5082 if (ret) {
5083 if (len != pkt_len) {
5084 ret = 0;
5085 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
5086 dev->name, len, pkt_len);
5087 } else {
5088 rx_skb = np->rx_skb[0].skb;
5089 for (i = 0; i < pkt_len; i++) {
5090 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5091 ret = 0;
5092 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
5093 dev->name, i);
5094 break;
5095 }
5096 }
5097 }
5098 } else {
5099 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
5100 }
5101
5102 pci_unmap_single(np->pci_dev, test_dma_addr,
5103 (skb_end_pointer(tx_skb) - tx_skb->data),
5104 PCI_DMA_TODEVICE);
5105 dev_kfree_skb_any(tx_skb);
5106 out:
5107 /* stop engines */
5108 nv_stop_rxtx(dev);
5109 nv_txrx_reset(dev);
5110 /* drain rx queue */
5111 nv_drain_rxtx(dev);
5112
5113 if (netif_running(dev)) {
5114 writel(misc1_flags, base + NvRegMisc1);
5115 writel(filter_flags, base + NvRegPacketFilterFlags);
5116 nv_enable_irq(dev);
5117 }
5118
5119 return ret;
5120 }
5121
5122 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5123 {
5124 struct fe_priv *np = netdev_priv(dev);
5125 u8 __iomem *base = get_hwbase(dev);
5126 int result;
5127 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5128
5129 if (!nv_link_test(dev)) {
5130 test->flags |= ETH_TEST_FL_FAILED;
5131 buffer[0] = 1;
5132 }
5133
5134 if (test->flags & ETH_TEST_FL_OFFLINE) {
5135 if (netif_running(dev)) {
5136 netif_stop_queue(dev);
5137 nv_napi_disable(dev);
5138 netif_tx_lock_bh(dev);
5139 netif_addr_lock(dev);
5140 spin_lock_irq(&np->lock);
5141 nv_disable_hw_interrupts(dev, np->irqmask);
5142 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
5143 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5144 } else {
5145 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5146 }
5147 /* stop engines */
5148 nv_stop_rxtx(dev);
5149 nv_txrx_reset(dev);
5150 /* drain rx queue */
5151 nv_drain_rxtx(dev);
5152 spin_unlock_irq(&np->lock);
5153 netif_addr_unlock(dev);
5154 netif_tx_unlock_bh(dev);
5155 }
5156
5157 if (!nv_register_test(dev)) {
5158 test->flags |= ETH_TEST_FL_FAILED;
5159 buffer[1] = 1;
5160 }
5161
5162 result = nv_interrupt_test(dev);
5163 if (result != 1) {
5164 test->flags |= ETH_TEST_FL_FAILED;
5165 buffer[2] = 1;
5166 }
5167 if (result == 0) {
5168 /* bail out */
5169 return;
5170 }
5171
5172 if (!nv_loopback_test(dev)) {
5173 test->flags |= ETH_TEST_FL_FAILED;
5174 buffer[3] = 1;
5175 }
5176
5177 if (netif_running(dev)) {
5178 /* reinit driver view of the rx queue */
5179 set_bufsize(dev);
5180 if (nv_init_ring(dev)) {
5181 if (!np->in_shutdown)
5182 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5183 }
5184 /* reinit nic view of the rx queue */
5185 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5186 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5187 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5188 base + NvRegRingSizes);
5189 pci_push(base);
5190 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5191 pci_push(base);
5192 /* restart rx engine */
5193 nv_start_rxtx(dev);
5194 netif_start_queue(dev);
5195 nv_napi_enable(dev);
5196 nv_enable_hw_interrupts(dev, np->irqmask);
5197 }
5198 }
5199 }
5200
5201 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5202 {
5203 switch (stringset) {
5204 case ETH_SS_STATS:
5205 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5206 break;
5207 case ETH_SS_TEST:
5208 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5209 break;
5210 }
5211 }
5212
5213 static const struct ethtool_ops ops = {
5214 .get_drvinfo = nv_get_drvinfo,
5215 .get_link = ethtool_op_get_link,
5216 .get_wol = nv_get_wol,
5217 .set_wol = nv_set_wol,
5218 .get_settings = nv_get_settings,
5219 .set_settings = nv_set_settings,
5220 .get_regs_len = nv_get_regs_len,
5221 .get_regs = nv_get_regs,
5222 .nway_reset = nv_nway_reset,
5223 .set_tso = nv_set_tso,
5224 .get_ringparam = nv_get_ringparam,
5225 .set_ringparam = nv_set_ringparam,
5226 .get_pauseparam = nv_get_pauseparam,
5227 .set_pauseparam = nv_set_pauseparam,
5228 .get_rx_csum = nv_get_rx_csum,
5229 .set_rx_csum = nv_set_rx_csum,
5230 .set_tx_csum = nv_set_tx_csum,
5231 .set_sg = nv_set_sg,
5232 .get_strings = nv_get_strings,
5233 .get_ethtool_stats = nv_get_ethtool_stats,
5234 .get_sset_count = nv_get_sset_count,
5235 .self_test = nv_self_test,
5236 };
5237
5238 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5239 {
5240 struct fe_priv *np = get_nvpriv(dev);
5241
5242 spin_lock_irq(&np->lock);
5243
5244 /* save vlan group */
5245 np->vlangrp = grp;
5246
5247 if (grp) {
5248 /* enable vlan on MAC */
5249 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5250 } else {
5251 /* disable vlan on MAC */
5252 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5253 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5254 }
5255
5256 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5257
5258 spin_unlock_irq(&np->lock);
5259 }
5260
5261 /* The mgmt unit and driver use a semaphore to access the phy during init */
5262 static int nv_mgmt_acquire_sema(struct net_device *dev)
5263 {
5264 struct fe_priv *np = netdev_priv(dev);
5265 u8 __iomem *base = get_hwbase(dev);
5266 int i;
5267 u32 tx_ctrl, mgmt_sema;
5268
5269 for (i = 0; i < 10; i++) {
5270 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5271 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5272 break;
5273 msleep(500);
5274 }
5275
5276 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5277 return 0;
5278
5279 for (i = 0; i < 2; i++) {
5280 tx_ctrl = readl(base + NvRegTransmitterControl);
5281 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5282 writel(tx_ctrl, base + NvRegTransmitterControl);
5283
5284 /* verify that semaphore was acquired */
5285 tx_ctrl = readl(base + NvRegTransmitterControl);
5286 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5287 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5288 np->mgmt_sema = 1;
5289 return 1;
5290 }
5291 else
5292 udelay(50);
5293 }
5294
5295 return 0;
5296 }
5297
5298 static void nv_mgmt_release_sema(struct net_device *dev)
5299 {
5300 struct fe_priv *np = netdev_priv(dev);
5301 u8 __iomem *base = get_hwbase(dev);
5302 u32 tx_ctrl;
5303
5304 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5305 if (np->mgmt_sema) {
5306 tx_ctrl = readl(base + NvRegTransmitterControl);
5307 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5308 writel(tx_ctrl, base + NvRegTransmitterControl);
5309 }
5310 }
5311 }
5312
5313
5314 static int nv_mgmt_get_version(struct net_device *dev)
5315 {
5316 struct fe_priv *np = netdev_priv(dev);
5317 u8 __iomem *base = get_hwbase(dev);
5318 u32 data_ready = readl(base + NvRegTransmitterControl);
5319 u32 data_ready2 = 0;
5320 unsigned long start;
5321 int ready = 0;
5322
5323 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5324 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5325 start = jiffies;
5326 while (time_before(jiffies, start + 5*HZ)) {
5327 data_ready2 = readl(base + NvRegTransmitterControl);
5328 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5329 ready = 1;
5330 break;
5331 }
5332 schedule_timeout_uninterruptible(1);
5333 }
5334
5335 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5336 return 0;
5337
5338 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5339
5340 return 1;
5341 }
5342
5343 static int nv_open(struct net_device *dev)
5344 {
5345 struct fe_priv *np = netdev_priv(dev);
5346 u8 __iomem *base = get_hwbase(dev);
5347 int ret = 1;
5348 int oom, i;
5349 u32 low;
5350
5351 dprintk(KERN_DEBUG "nv_open: begin\n");
5352
5353 /* power up phy */
5354 mii_rw(dev, np->phyaddr, MII_BMCR,
5355 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5356
5357 nv_txrx_gate(dev, false);
5358 /* erase previous misconfiguration */
5359 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5360 nv_mac_reset(dev);
5361 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5362 writel(0, base + NvRegMulticastAddrB);
5363 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5364 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5365 writel(0, base + NvRegPacketFilterFlags);
5366
5367 writel(0, base + NvRegTransmitterControl);
5368 writel(0, base + NvRegReceiverControl);
5369
5370 writel(0, base + NvRegAdapterControl);
5371
5372 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5373 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5374
5375 /* initialize descriptor rings */
5376 set_bufsize(dev);
5377 oom = nv_init_ring(dev);
5378
5379 writel(0, base + NvRegLinkSpeed);
5380 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5381 nv_txrx_reset(dev);
5382 writel(0, base + NvRegUnknownSetupReg6);
5383
5384 np->in_shutdown = 0;
5385
5386 /* give hw rings */
5387 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5388 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5389 base + NvRegRingSizes);
5390
5391 writel(np->linkspeed, base + NvRegLinkSpeed);
5392 if (np->desc_ver == DESC_VER_1)
5393 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5394 else
5395 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5396 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5397 writel(np->vlanctl_bits, base + NvRegVlanControl);
5398 pci_push(base);
5399 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5400 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5401 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5402 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5403
5404 writel(0, base + NvRegMIIMask);
5405 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5406 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5407
5408 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5409 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5410 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5411 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5412
5413 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5414
5415 get_random_bytes(&low, sizeof(low));
5416 low &= NVREG_SLOTTIME_MASK;
5417 if (np->desc_ver == DESC_VER_1) {
5418 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5419 } else {
5420 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5421 /* setup legacy backoff */
5422 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5423 } else {
5424 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5425 nv_gear_backoff_reseed(dev);
5426 }
5427 }
5428 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5429 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5430 if (poll_interval == -1) {
5431 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5432 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5433 else
5434 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5435 }
5436 else
5437 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5438 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5439 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5440 base + NvRegAdapterControl);
5441 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5442 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5443 if (np->wolenabled)
5444 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5445
5446 i = readl(base + NvRegPowerState);
5447 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5448 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5449
5450 pci_push(base);
5451 udelay(10);
5452 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5453
5454 nv_disable_hw_interrupts(dev, np->irqmask);
5455 pci_push(base);
5456 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5457 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5458 pci_push(base);
5459
5460 if (nv_request_irq(dev, 0)) {
5461 goto out_drain;
5462 }
5463
5464 /* ask for interrupts */
5465 nv_enable_hw_interrupts(dev, np->irqmask);
5466
5467 spin_lock_irq(&np->lock);
5468 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5469 writel(0, base + NvRegMulticastAddrB);
5470 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5471 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5472 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5473 /* One manual link speed update: Interrupts are enabled, future link
5474 * speed changes cause interrupts and are handled by nv_link_irq().
5475 */
5476 {
5477 u32 miistat;
5478 miistat = readl(base + NvRegMIIStatus);
5479 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5480 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5481 }
5482 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5483 * to init hw */
5484 np->linkspeed = 0;
5485 ret = nv_update_linkspeed(dev);
5486 nv_start_rxtx(dev);
5487 netif_start_queue(dev);
5488 nv_napi_enable(dev);
5489
5490 if (ret) {
5491 netif_carrier_on(dev);
5492 } else {
5493 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5494 netif_carrier_off(dev);
5495 }
5496 if (oom)
5497 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5498
5499 /* start statistics timer */
5500 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5501 mod_timer(&np->stats_poll,
5502 round_jiffies(jiffies + STATS_INTERVAL));
5503
5504 spin_unlock_irq(&np->lock);
5505
5506 return 0;
5507 out_drain:
5508 nv_drain_rxtx(dev);
5509 return ret;
5510 }
5511
5512 static int nv_close(struct net_device *dev)
5513 {
5514 struct fe_priv *np = netdev_priv(dev);
5515 u8 __iomem *base;
5516
5517 spin_lock_irq(&np->lock);
5518 np->in_shutdown = 1;
5519 spin_unlock_irq(&np->lock);
5520 nv_napi_disable(dev);
5521 synchronize_irq(np->pci_dev->irq);
5522
5523 del_timer_sync(&np->oom_kick);
5524 del_timer_sync(&np->nic_poll);
5525 del_timer_sync(&np->stats_poll);
5526
5527 netif_stop_queue(dev);
5528 spin_lock_irq(&np->lock);
5529 nv_stop_rxtx(dev);
5530 nv_txrx_reset(dev);
5531
5532 /* disable interrupts on the nic or we will lock up */
5533 base = get_hwbase(dev);
5534 nv_disable_hw_interrupts(dev, np->irqmask);
5535 pci_push(base);
5536 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5537
5538 spin_unlock_irq(&np->lock);
5539
5540 nv_free_irq(dev);
5541
5542 nv_drain_rxtx(dev);
5543
5544 if (np->wolenabled || !phy_power_down) {
5545 nv_txrx_gate(dev, false);
5546 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5547 nv_start_rx(dev);
5548 } else {
5549 /* power down phy */
5550 mii_rw(dev, np->phyaddr, MII_BMCR,
5551 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5552 nv_txrx_gate(dev, true);
5553 }
5554
5555 /* FIXME: power down nic */
5556
5557 return 0;
5558 }
5559
5560 static const struct net_device_ops nv_netdev_ops = {
5561 .ndo_open = nv_open,
5562 .ndo_stop = nv_close,
5563 .ndo_get_stats = nv_get_stats,
5564 .ndo_start_xmit = nv_start_xmit,
5565 .ndo_tx_timeout = nv_tx_timeout,
5566 .ndo_change_mtu = nv_change_mtu,
5567 .ndo_validate_addr = eth_validate_addr,
5568 .ndo_set_mac_address = nv_set_mac_address,
5569 .ndo_set_multicast_list = nv_set_multicast,
5570 .ndo_vlan_rx_register = nv_vlan_rx_register,
5571 #ifdef CONFIG_NET_POLL_CONTROLLER
5572 .ndo_poll_controller = nv_poll_controller,
5573 #endif
5574 };
5575
5576 static const struct net_device_ops nv_netdev_ops_optimized = {
5577 .ndo_open = nv_open,
5578 .ndo_stop = nv_close,
5579 .ndo_get_stats = nv_get_stats,
5580 .ndo_start_xmit = nv_start_xmit_optimized,
5581 .ndo_tx_timeout = nv_tx_timeout,
5582 .ndo_change_mtu = nv_change_mtu,
5583 .ndo_validate_addr = eth_validate_addr,
5584 .ndo_set_mac_address = nv_set_mac_address,
5585 .ndo_set_multicast_list = nv_set_multicast,
5586 .ndo_vlan_rx_register = nv_vlan_rx_register,
5587 #ifdef CONFIG_NET_POLL_CONTROLLER
5588 .ndo_poll_controller = nv_poll_controller,
5589 #endif
5590 };
5591
5592 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5593 {
5594 struct net_device *dev;
5595 struct fe_priv *np;
5596 unsigned long addr;
5597 u8 __iomem *base;
5598 int err, i;
5599 u32 powerstate, txreg;
5600 u32 phystate_orig = 0, phystate;
5601 int phyinitialized = 0;
5602 static int printed_version;
5603
5604 if (!printed_version++)
5605 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5606 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5607
5608 dev = alloc_etherdev(sizeof(struct fe_priv));
5609 err = -ENOMEM;
5610 if (!dev)
5611 goto out;
5612
5613 np = netdev_priv(dev);
5614 np->dev = dev;
5615 np->pci_dev = pci_dev;
5616 spin_lock_init(&np->lock);
5617 SET_NETDEV_DEV(dev, &pci_dev->dev);
5618
5619 init_timer(&np->oom_kick);
5620 np->oom_kick.data = (unsigned long) dev;
5621 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5622 init_timer(&np->nic_poll);
5623 np->nic_poll.data = (unsigned long) dev;
5624 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5625 init_timer(&np->stats_poll);
5626 np->stats_poll.data = (unsigned long) dev;
5627 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5628
5629 err = pci_enable_device(pci_dev);
5630 if (err)
5631 goto out_free;
5632
5633 pci_set_master(pci_dev);
5634
5635 err = pci_request_regions(pci_dev, DRV_NAME);
5636 if (err < 0)
5637 goto out_disable;
5638
5639 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5640 np->register_size = NV_PCI_REGSZ_VER3;
5641 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5642 np->register_size = NV_PCI_REGSZ_VER2;
5643 else
5644 np->register_size = NV_PCI_REGSZ_VER1;
5645
5646 err = -EINVAL;
5647 addr = 0;
5648 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5649 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5650 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5651 pci_resource_len(pci_dev, i),
5652 pci_resource_flags(pci_dev, i));
5653 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5654 pci_resource_len(pci_dev, i) >= np->register_size) {
5655 addr = pci_resource_start(pci_dev, i);
5656 break;
5657 }
5658 }
5659 if (i == DEVICE_COUNT_RESOURCE) {
5660 dev_printk(KERN_INFO, &pci_dev->dev,
5661 "Couldn't find register window\n");
5662 goto out_relreg;
5663 }
5664
5665 /* copy of driver data */
5666 np->driver_data = id->driver_data;
5667 /* copy of device id */
5668 np->device_id = id->device;
5669
5670 /* handle different descriptor versions */
5671 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5672 /* packet format 3: supports 40-bit addressing */
5673 np->desc_ver = DESC_VER_3;
5674 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5675 if (dma_64bit) {
5676 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5677 dev_printk(KERN_INFO, &pci_dev->dev,
5678 "64-bit DMA failed, using 32-bit addressing\n");
5679 else
5680 dev->features |= NETIF_F_HIGHDMA;
5681 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5682 dev_printk(KERN_INFO, &pci_dev->dev,
5683 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5684 }
5685 }
5686 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5687 /* packet format 2: supports jumbo frames */
5688 np->desc_ver = DESC_VER_2;
5689 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5690 } else {
5691 /* original packet format */
5692 np->desc_ver = DESC_VER_1;
5693 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5694 }
5695
5696 np->pkt_limit = NV_PKTLIMIT_1;
5697 if (id->driver_data & DEV_HAS_LARGEDESC)
5698 np->pkt_limit = NV_PKTLIMIT_2;
5699
5700 if (id->driver_data & DEV_HAS_CHECKSUM) {
5701 np->rx_csum = 1;
5702 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5703 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
5704 dev->features |= NETIF_F_TSO;
5705 }
5706
5707 np->vlanctl_bits = 0;
5708 if (id->driver_data & DEV_HAS_VLAN) {
5709 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5710 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5711 }
5712
5713 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5714 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5715 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5716 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5717 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5718 }
5719
5720
5721 err = -ENOMEM;
5722 np->base = ioremap(addr, np->register_size);
5723 if (!np->base)
5724 goto out_relreg;
5725 dev->base_addr = (unsigned long)np->base;
5726
5727 dev->irq = pci_dev->irq;
5728
5729 np->rx_ring_size = RX_RING_DEFAULT;
5730 np->tx_ring_size = TX_RING_DEFAULT;
5731
5732 if (!nv_optimized(np)) {
5733 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5734 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5735 &np->ring_addr);
5736 if (!np->rx_ring.orig)
5737 goto out_unmap;
5738 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5739 } else {
5740 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5741 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5742 &np->ring_addr);
5743 if (!np->rx_ring.ex)
5744 goto out_unmap;
5745 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5746 }
5747 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5748 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5749 if (!np->rx_skb || !np->tx_skb)
5750 goto out_freering;
5751
5752 if (!nv_optimized(np))
5753 dev->netdev_ops = &nv_netdev_ops;
5754 else
5755 dev->netdev_ops = &nv_netdev_ops_optimized;
5756
5757 #ifdef CONFIG_FORCEDETH_NAPI
5758 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5759 #endif
5760 SET_ETHTOOL_OPS(dev, &ops);
5761 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5762
5763 pci_set_drvdata(pci_dev, dev);
5764
5765 /* read the mac address */
5766 base = get_hwbase(dev);
5767 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5768 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5769
5770 /* check the workaround bit for correct mac address order */
5771 txreg = readl(base + NvRegTransmitPoll);
5772 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5773 /* mac address is already in correct order */
5774 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5775 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5776 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5777 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5778 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5779 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5780 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5781 /* mac address is already in correct order */
5782 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5783 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5784 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5785 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5786 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5787 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5788 /*
5789 * Set orig mac address back to the reversed version.
5790 * This flag will be cleared during low power transition.
5791 * Therefore, we should always put back the reversed address.
5792 */
5793 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5794 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5795 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5796 } else {
5797 /* need to reverse mac address to correct order */
5798 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5799 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5800 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5801 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5802 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5803 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5804 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5805 printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
5806 }
5807 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5808
5809 if (!is_valid_ether_addr(dev->perm_addr)) {
5810 /*
5811 * Bad mac address. At least one bios sets the mac address
5812 * to 01:23:45:67:89:ab
5813 */
5814 dev_printk(KERN_ERR, &pci_dev->dev,
5815 "Invalid Mac address detected: %pM\n",
5816 dev->dev_addr);
5817 dev_printk(KERN_ERR, &pci_dev->dev,
5818 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5819 dev->dev_addr[0] = 0x00;
5820 dev->dev_addr[1] = 0x00;
5821 dev->dev_addr[2] = 0x6c;
5822 get_random_bytes(&dev->dev_addr[3], 3);
5823 }
5824
5825 dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
5826 pci_name(pci_dev), dev->dev_addr);
5827
5828 /* set mac address */
5829 nv_copy_mac_to_hw(dev);
5830
5831 /* Workaround current PCI init glitch: wakeup bits aren't
5832 * being set from PCI PM capability.
5833 */
5834 device_init_wakeup(&pci_dev->dev, 1);
5835
5836 /* disable WOL */
5837 writel(0, base + NvRegWakeUpFlags);
5838 np->wolenabled = 0;
5839
5840 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5841
5842 /* take phy and nic out of low power mode */
5843 powerstate = readl(base + NvRegPowerState2);
5844 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5845 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5846 pci_dev->revision >= 0xA3)
5847 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5848 writel(powerstate, base + NvRegPowerState2);
5849 }
5850
5851 if (np->desc_ver == DESC_VER_1) {
5852 np->tx_flags = NV_TX_VALID;
5853 } else {
5854 np->tx_flags = NV_TX2_VALID;
5855 }
5856
5857 np->msi_flags = 0;
5858 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5859 np->msi_flags |= NV_MSI_CAPABLE;
5860 }
5861 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5862 /* msix has had reported issues when modifying irqmask
5863 as in the case of napi, therefore, disable for now
5864 */
5865 #ifndef CONFIG_FORCEDETH_NAPI
5866 np->msi_flags |= NV_MSI_X_CAPABLE;
5867 #endif
5868 }
5869
5870 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5871 np->irqmask = NVREG_IRQMASK_CPU;
5872 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5873 np->msi_flags |= 0x0001;
5874 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5875 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5876 /* start off in throughput mode */
5877 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5878 /* remove support for msix mode */
5879 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5880 } else {
5881 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5882 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5883 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5884 np->msi_flags |= 0x0003;
5885 }
5886
5887 if (id->driver_data & DEV_NEED_TIMERIRQ)
5888 np->irqmask |= NVREG_IRQ_TIMER;
5889 if (id->driver_data & DEV_NEED_LINKTIMER) {
5890 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5891 np->need_linktimer = 1;
5892 np->link_timeout = jiffies + LINK_TIMEOUT;
5893 } else {
5894 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5895 np->need_linktimer = 0;
5896 }
5897
5898 /* Limit the number of tx's outstanding for hw bug */
5899 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5900 np->tx_limit = 1;
5901 if ((id->driver_data & DEV_NEED_TX_LIMIT2) &&
5902 pci_dev->revision >= 0xA2)
5903 np->tx_limit = 0;
5904 }
5905
5906 /* clear phy state and temporarily halt phy interrupts */
5907 writel(0, base + NvRegMIIMask);
5908 phystate = readl(base + NvRegAdapterControl);
5909 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5910 phystate_orig = 1;
5911 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5912 writel(phystate, base + NvRegAdapterControl);
5913 }
5914 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5915
5916 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5917 /* management unit running on the mac? */
5918 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5919 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5920 nv_mgmt_acquire_sema(dev) &&
5921 nv_mgmt_get_version(dev)) {
5922 np->mac_in_use = 1;
5923 if (np->mgmt_version > 0) {
5924 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5925 }
5926 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
5927 pci_name(pci_dev), np->mac_in_use);
5928 /* management unit setup the phy already? */
5929 if (np->mac_in_use &&
5930 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5931 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5932 /* phy is inited by mgmt unit */
5933 phyinitialized = 1;
5934 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
5935 pci_name(pci_dev));
5936 } else {
5937 /* we need to init the phy */
5938 }
5939 }
5940 }
5941
5942 /* find a suitable phy */
5943 for (i = 1; i <= 32; i++) {
5944 int id1, id2;
5945 int phyaddr = i & 0x1F;
5946
5947 spin_lock_irq(&np->lock);
5948 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5949 spin_unlock_irq(&np->lock);
5950 if (id1 < 0 || id1 == 0xffff)
5951 continue;
5952 spin_lock_irq(&np->lock);
5953 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5954 spin_unlock_irq(&np->lock);
5955 if (id2 < 0 || id2 == 0xffff)
5956 continue;
5957
5958 np->phy_model = id2 & PHYID2_MODEL_MASK;
5959 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5960 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5961 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5962 pci_name(pci_dev), id1, id2, phyaddr);
5963 np->phyaddr = phyaddr;
5964 np->phy_oui = id1 | id2;
5965
5966 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5967 if (np->phy_oui == PHY_OUI_REALTEK2)
5968 np->phy_oui = PHY_OUI_REALTEK;
5969 /* Setup phy revision for Realtek */
5970 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5971 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5972
5973 break;
5974 }
5975 if (i == 33) {
5976 dev_printk(KERN_INFO, &pci_dev->dev,
5977 "open: Could not find a valid PHY.\n");
5978 goto out_error;
5979 }
5980
5981 if (!phyinitialized) {
5982 /* reset it */
5983 phy_init(dev);
5984 } else {
5985 /* see if it is a gigabit phy */
5986 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5987 if (mii_status & PHY_GIGABIT) {
5988 np->gigabit = PHY_GIGABIT;
5989 }
5990 }
5991
5992 /* set default link speed settings */
5993 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5994 np->duplex = 0;
5995 np->autoneg = 1;
5996
5997 err = register_netdev(dev);
5998 if (err) {
5999 dev_printk(KERN_INFO, &pci_dev->dev,
6000 "unable to register netdev: %d\n", err);
6001 goto out_error;
6002 }
6003
6004 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
6005 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
6006 dev->name,
6007 np->phy_oui,
6008 np->phyaddr,
6009 dev->dev_addr[0],
6010 dev->dev_addr[1],
6011 dev->dev_addr[2],
6012 dev->dev_addr[3],
6013 dev->dev_addr[4],
6014 dev->dev_addr[5]);
6015
6016 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6017 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6018 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6019 "csum " : "",
6020 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
6021 "vlan " : "",
6022 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6023 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6024 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6025 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6026 np->need_linktimer ? "lnktim " : "",
6027 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6028 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6029 np->desc_ver);
6030
6031 return 0;
6032
6033 out_error:
6034 if (phystate_orig)
6035 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6036 pci_set_drvdata(pci_dev, NULL);
6037 out_freering:
6038 free_rings(dev);
6039 out_unmap:
6040 iounmap(get_hwbase(dev));
6041 out_relreg:
6042 pci_release_regions(pci_dev);
6043 out_disable:
6044 pci_disable_device(pci_dev);
6045 out_free:
6046 free_netdev(dev);
6047 out:
6048 return err;
6049 }
6050
6051 static void nv_restore_phy(struct net_device *dev)
6052 {
6053 struct fe_priv *np = netdev_priv(dev);
6054 u16 phy_reserved, mii_control;
6055
6056 if (np->phy_oui == PHY_OUI_REALTEK &&
6057 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6058 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6059 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6060 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6061 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6062 phy_reserved |= PHY_REALTEK_INIT8;
6063 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6064 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6065
6066 /* restart auto negotiation */
6067 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6068 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6069 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6070 }
6071 }
6072
6073 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6074 {
6075 struct net_device *dev = pci_get_drvdata(pci_dev);
6076 struct fe_priv *np = netdev_priv(dev);
6077 u8 __iomem *base = get_hwbase(dev);
6078
6079 /* special op: write back the misordered MAC address - otherwise
6080 * the next nv_probe would see a wrong address.
6081 */
6082 writel(np->orig_mac[0], base + NvRegMacAddrA);
6083 writel(np->orig_mac[1], base + NvRegMacAddrB);
6084 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6085 base + NvRegTransmitPoll);
6086 }
6087
6088 static void __devexit nv_remove(struct pci_dev *pci_dev)
6089 {
6090 struct net_device *dev = pci_get_drvdata(pci_dev);
6091
6092 unregister_netdev(dev);
6093
6094 nv_restore_mac_addr(pci_dev);
6095
6096 /* restore any phy related changes */
6097 nv_restore_phy(dev);
6098
6099 nv_mgmt_release_sema(dev);
6100
6101 /* free all structures */
6102 free_rings(dev);
6103 iounmap(get_hwbase(dev));
6104 pci_release_regions(pci_dev);
6105 pci_disable_device(pci_dev);
6106 free_netdev(dev);
6107 pci_set_drvdata(pci_dev, NULL);
6108 }
6109
6110 #ifdef CONFIG_PM
6111 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
6112 {
6113 struct net_device *dev = pci_get_drvdata(pdev);
6114 struct fe_priv *np = netdev_priv(dev);
6115 u8 __iomem *base = get_hwbase(dev);
6116 int i;
6117
6118 if (netif_running(dev)) {
6119 // Gross.
6120 nv_close(dev);
6121 }
6122 netif_device_detach(dev);
6123
6124 /* save non-pci configuration space */
6125 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6126 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6127
6128 pci_save_state(pdev);
6129 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
6130 pci_disable_device(pdev);
6131 pci_set_power_state(pdev, pci_choose_state(pdev, state));
6132 return 0;
6133 }
6134
6135 static int nv_resume(struct pci_dev *pdev)
6136 {
6137 struct net_device *dev = pci_get_drvdata(pdev);
6138 struct fe_priv *np = netdev_priv(dev);
6139 u8 __iomem *base = get_hwbase(dev);
6140 int i, rc = 0;
6141
6142 pci_set_power_state(pdev, PCI_D0);
6143 pci_restore_state(pdev);
6144 /* ack any pending wake events, disable PME */
6145 pci_enable_wake(pdev, PCI_D0, 0);
6146
6147 /* restore non-pci configuration space */
6148 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6149 writel(np->saved_config_space[i], base+i*sizeof(u32));
6150
6151 if (np->driver_data & DEV_NEED_MSI_FIX)
6152 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6153
6154 /* restore phy state, including autoneg */
6155 phy_init(dev);
6156
6157 netif_device_attach(dev);
6158 if (netif_running(dev)) {
6159 rc = nv_open(dev);
6160 nv_set_multicast(dev);
6161 }
6162 return rc;
6163 }
6164
6165 static void nv_shutdown(struct pci_dev *pdev)
6166 {
6167 struct net_device *dev = pci_get_drvdata(pdev);
6168 struct fe_priv *np = netdev_priv(dev);
6169
6170 if (netif_running(dev))
6171 nv_close(dev);
6172
6173 /*
6174 * Restore the MAC so a kernel started by kexec won't get confused.
6175 * If we really go for poweroff, we must not restore the MAC,
6176 * otherwise the MAC for WOL will be reversed at least on some boards.
6177 */
6178 if (system_state != SYSTEM_POWER_OFF) {
6179 nv_restore_mac_addr(pdev);
6180 }
6181
6182 pci_disable_device(pdev);
6183 /*
6184 * Apparently it is not possible to reinitialise from D3 hot,
6185 * only put the device into D3 if we really go for poweroff.
6186 */
6187 if (system_state == SYSTEM_POWER_OFF) {
6188 if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
6189 pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
6190 pci_set_power_state(pdev, PCI_D3hot);
6191 }
6192 }
6193 #else
6194 #define nv_suspend NULL
6195 #define nv_shutdown NULL
6196 #define nv_resume NULL
6197 #endif /* CONFIG_PM */
6198
6199 static struct pci_device_id pci_tbl[] = {
6200 { /* nForce Ethernet Controller */
6201 PCI_DEVICE(0x10DE, 0x01C3),
6202 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6203 },
6204 { /* nForce2 Ethernet Controller */
6205 PCI_DEVICE(0x10DE, 0x0066),
6206 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6207 },
6208 { /* nForce3 Ethernet Controller */
6209 PCI_DEVICE(0x10DE, 0x00D6),
6210 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6211 },
6212 { /* nForce3 Ethernet Controller */
6213 PCI_DEVICE(0x10DE, 0x0086),
6214 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6215 },
6216 { /* nForce3 Ethernet Controller */
6217 PCI_DEVICE(0x10DE, 0x008C),
6218 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6219 },
6220 { /* nForce3 Ethernet Controller */
6221 PCI_DEVICE(0x10DE, 0x00E6),
6222 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6223 },
6224 { /* nForce3 Ethernet Controller */
6225 PCI_DEVICE(0x10DE, 0x00DF),
6226 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6227 },
6228 { /* CK804 Ethernet Controller */
6229 PCI_DEVICE(0x10DE, 0x0056),
6230 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6231 },
6232 { /* CK804 Ethernet Controller */
6233 PCI_DEVICE(0x10DE, 0x0057),
6234 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6235 },
6236 { /* MCP04 Ethernet Controller */
6237 PCI_DEVICE(0x10DE, 0x0037),
6238 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6239 },
6240 { /* MCP04 Ethernet Controller */
6241 PCI_DEVICE(0x10DE, 0x0038),
6242 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6243 },
6244 { /* MCP51 Ethernet Controller */
6245 PCI_DEVICE(0x10DE, 0x0268),
6246 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6247 },
6248 { /* MCP51 Ethernet Controller */
6249 PCI_DEVICE(0x10DE, 0x0269),
6250 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6251 },
6252 { /* MCP55 Ethernet Controller */
6253 PCI_DEVICE(0x10DE, 0x0372),
6254 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6255 },
6256 { /* MCP55 Ethernet Controller */
6257 PCI_DEVICE(0x10DE, 0x0373),
6258 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6259 },
6260 { /* MCP61 Ethernet Controller */
6261 PCI_DEVICE(0x10DE, 0x03E5),
6262 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6263 },
6264 { /* MCP61 Ethernet Controller */
6265 PCI_DEVICE(0x10DE, 0x03E6),
6266 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6267 },
6268 { /* MCP61 Ethernet Controller */
6269 PCI_DEVICE(0x10DE, 0x03EE),
6270 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6271 },
6272 { /* MCP61 Ethernet Controller */
6273 PCI_DEVICE(0x10DE, 0x03EF),
6274 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6275 },
6276 { /* MCP65 Ethernet Controller */
6277 PCI_DEVICE(0x10DE, 0x0450),
6278 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6279 },
6280 { /* MCP65 Ethernet Controller */
6281 PCI_DEVICE(0x10DE, 0x0451),
6282 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6283 },
6284 { /* MCP65 Ethernet Controller */
6285 PCI_DEVICE(0x10DE, 0x0452),
6286 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6287 },
6288 { /* MCP65 Ethernet Controller */
6289 PCI_DEVICE(0x10DE, 0x0453),
6290 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6291 },
6292 { /* MCP67 Ethernet Controller */
6293 PCI_DEVICE(0x10DE, 0x054C),
6294 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6295 },
6296 { /* MCP67 Ethernet Controller */
6297 PCI_DEVICE(0x10DE, 0x054D),
6298 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6299 },
6300 { /* MCP67 Ethernet Controller */
6301 PCI_DEVICE(0x10DE, 0x054E),
6302 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6303 },
6304 { /* MCP67 Ethernet Controller */
6305 PCI_DEVICE(0x10DE, 0x054F),
6306 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6307 },
6308 { /* MCP73 Ethernet Controller */
6309 PCI_DEVICE(0x10DE, 0x07DC),
6310 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6311 },
6312 { /* MCP73 Ethernet Controller */
6313 PCI_DEVICE(0x10DE, 0x07DD),
6314 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6315 },
6316 { /* MCP73 Ethernet Controller */
6317 PCI_DEVICE(0x10DE, 0x07DE),
6318 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6319 },
6320 { /* MCP73 Ethernet Controller */
6321 PCI_DEVICE(0x10DE, 0x07DF),
6322 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6323 },
6324 { /* MCP77 Ethernet Controller */
6325 PCI_DEVICE(0x10DE, 0x0760),
6326 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6327 },
6328 { /* MCP77 Ethernet Controller */
6329 PCI_DEVICE(0x10DE, 0x0761),
6330 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6331 },
6332 { /* MCP77 Ethernet Controller */
6333 PCI_DEVICE(0x10DE, 0x0762),
6334 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6335 },
6336 { /* MCP77 Ethernet Controller */
6337 PCI_DEVICE(0x10DE, 0x0763),
6338 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6339 },
6340 { /* MCP79 Ethernet Controller */
6341 PCI_DEVICE(0x10DE, 0x0AB0),
6342 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6343 },
6344 { /* MCP79 Ethernet Controller */
6345 PCI_DEVICE(0x10DE, 0x0AB1),
6346 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6347 },
6348 { /* MCP79 Ethernet Controller */
6349 PCI_DEVICE(0x10DE, 0x0AB2),
6350 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6351 },
6352 { /* MCP79 Ethernet Controller */
6353 PCI_DEVICE(0x10DE, 0x0AB3),
6354 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6355 },
6356 { /* MCP89 Ethernet Controller */
6357 PCI_DEVICE(0x10DE, 0x0D7D),
6358 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6359 },
6360 {0,},
6361 };
6362
6363 static struct pci_driver driver = {
6364 .name = DRV_NAME,
6365 .id_table = pci_tbl,
6366 .probe = nv_probe,
6367 .remove = __devexit_p(nv_remove),
6368 .suspend = nv_suspend,
6369 .resume = nv_resume,
6370 .shutdown = nv_shutdown,
6371 };
6372
6373 static int __init init_nic(void)
6374 {
6375 return pci_register_driver(&driver);
6376 }
6377
6378 static void __exit exit_nic(void)
6379 {
6380 pci_unregister_driver(&driver);
6381 }
6382
6383 module_param(max_interrupt_work, int, 0);
6384 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6385 module_param(optimization_mode, int, 0);
6386 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6387 module_param(poll_interval, int, 0);
6388 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6389 module_param(msi, int, 0);
6390 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6391 module_param(msix, int, 0);
6392 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6393 module_param(dma_64bit, int, 0);
6394 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6395 module_param(phy_cross, int, 0);
6396 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6397 module_param(phy_power_down, int, 0);
6398 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6399
6400 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6401 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6402 MODULE_LICENSE("GPL");
6403
6404 MODULE_DEVICE_TABLE(pci, pci_tbl);
6405
6406 module_init(init_nic);
6407 module_exit(exit_nic);