]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/forcedeth.c
Merge branch 'agp-patches' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[mirror_ubuntu-artful-kernel.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,5,6 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Changelog:
33 * 0.01: 05 Oct 2003: First release that compiles without warnings.
34 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35 * Check all PCI BARs for the register window.
36 * udelay added to mii_rw.
37 * 0.03: 06 Oct 2003: Initialize dev->irq.
38 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41 * irq mask updated
42 * 0.07: 14 Oct 2003: Further irq mask updates.
43 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44 * added into irq handler, NULL check for drain_ring.
45 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46 * requested interrupt sources.
47 * 0.10: 20 Oct 2003: First cleanup for release.
48 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49 * MAC Address init fix, set_multicast cleanup.
50 * 0.12: 23 Oct 2003: Cleanups for release.
51 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52 * Set link speed correctly. start rx before starting
53 * tx (nv_start_rx sets the link speed).
54 * 0.14: 25 Oct 2003: Nic dependant irq mask.
55 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56 * open.
57 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58 * increased to 1628 bytes.
59 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60 * the tx length.
61 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63 * addresses, really stop rx if already running
64 * in nv_start_rx, clean up a bit.
65 * 0.20: 07 Dec 2003: alloc fixes
66 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68 * on close.
69 * 0.23: 26 Jan 2004: various small cleanups
70 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71 * 0.25: 09 Mar 2004: wol support
72 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74 * added CK804/MCP04 device IDs, code fixes
75 * for registers, link status and other minor fixes.
76 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
78 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79 * into nv_close, otherwise reenabling for wol can
80 * cause DMA to kfree'd memory.
81 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
82 * capabilities.
83 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
84 * 0.33: 16 May 2005: Support for MCP51 added.
85 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86 * 0.35: 26 Jun 2005: Support for MCP55 added.
87 * 0.36: 28 Jun 2005: Add jumbo frame support.
88 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90 * per-packet flags.
91 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
92 * 0.40: 19 Jul 2005: Add support for mac address change.
93 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94 * of nv_remove
95 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
96 * in the second (and later) nv_open call
97 * 0.43: 10 Aug 2005: Add support for tx checksum.
98 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100 * 0.46: 20 Oct 2005: Add irq optimization modes.
101 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103 * 0.49: 10 Dec 2005: Fix tso for large buffers.
104 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
105 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
107 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109 * 0.55: 22 Mar 2006: Add flow control (pause frame).
110 * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111 * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112 * 0.58: 30 Oct 2006: Added support for sideband management unit.
113 * 0.59: 30 Oct 2006: Added support for recoverable error.
114 * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
115 *
116 * Known bugs:
117 * We suspect that on some hardware no TX done interrupts are generated.
118 * This means recovery from netif_stop_queue only happens if the hw timer
119 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
120 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
121 * If your hardware reliably generates tx done interrupts, then you can remove
122 * DEV_NEED_TIMERIRQ from the driver_data flags.
123 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
124 * superfluous timer interrupts from the nic.
125 */
126 #ifdef CONFIG_FORCEDETH_NAPI
127 #define DRIVERNAPI "-NAPI"
128 #else
129 #define DRIVERNAPI
130 #endif
131 #define FORCEDETH_VERSION "0.60"
132 #define DRV_NAME "forcedeth"
133
134 #include <linux/module.h>
135 #include <linux/types.h>
136 #include <linux/pci.h>
137 #include <linux/interrupt.h>
138 #include <linux/netdevice.h>
139 #include <linux/etherdevice.h>
140 #include <linux/delay.h>
141 #include <linux/spinlock.h>
142 #include <linux/ethtool.h>
143 #include <linux/timer.h>
144 #include <linux/skbuff.h>
145 #include <linux/mii.h>
146 #include <linux/random.h>
147 #include <linux/init.h>
148 #include <linux/if_vlan.h>
149 #include <linux/dma-mapping.h>
150
151 #include <asm/irq.h>
152 #include <asm/io.h>
153 #include <asm/uaccess.h>
154 #include <asm/system.h>
155
156 #if 0
157 #define dprintk printk
158 #else
159 #define dprintk(x...) do { } while (0)
160 #endif
161
162
163 /*
164 * Hardware access:
165 */
166
167 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
168 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
169 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
170 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
171 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
172 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
173 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
174 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
175 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
176 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
177 #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
178 #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
179 #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
180 #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
181 #define DEV_HAS_CORRECT_MACADDR 0x4000 /* device supports correct mac address order */
182
183 enum {
184 NvRegIrqStatus = 0x000,
185 #define NVREG_IRQSTAT_MIIEVENT 0x040
186 #define NVREG_IRQSTAT_MASK 0x81ff
187 NvRegIrqMask = 0x004,
188 #define NVREG_IRQ_RX_ERROR 0x0001
189 #define NVREG_IRQ_RX 0x0002
190 #define NVREG_IRQ_RX_NOBUF 0x0004
191 #define NVREG_IRQ_TX_ERR 0x0008
192 #define NVREG_IRQ_TX_OK 0x0010
193 #define NVREG_IRQ_TIMER 0x0020
194 #define NVREG_IRQ_LINK 0x0040
195 #define NVREG_IRQ_RX_FORCED 0x0080
196 #define NVREG_IRQ_TX_FORCED 0x0100
197 #define NVREG_IRQ_RECOVER_ERROR 0x8000
198 #define NVREG_IRQMASK_THROUGHPUT 0x00df
199 #define NVREG_IRQMASK_CPU 0x0060
200 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
201 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
202 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
203
204 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
205 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
206 NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
207
208 NvRegUnknownSetupReg6 = 0x008,
209 #define NVREG_UNKSETUP6_VAL 3
210
211 /*
212 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
213 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
214 */
215 NvRegPollingInterval = 0x00c,
216 #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
217 #define NVREG_POLL_DEFAULT_CPU 13
218 NvRegMSIMap0 = 0x020,
219 NvRegMSIMap1 = 0x024,
220 NvRegMSIIrqMask = 0x030,
221 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
222 NvRegMisc1 = 0x080,
223 #define NVREG_MISC1_PAUSE_TX 0x01
224 #define NVREG_MISC1_HD 0x02
225 #define NVREG_MISC1_FORCE 0x3b0f3c
226
227 NvRegMacReset = 0x3c,
228 #define NVREG_MAC_RESET_ASSERT 0x0F3
229 NvRegTransmitterControl = 0x084,
230 #define NVREG_XMITCTL_START 0x01
231 #define NVREG_XMITCTL_MGMT_ST 0x40000000
232 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
233 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
234 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
235 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
236 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
237 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
238 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
239 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
240 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
241 NvRegTransmitterStatus = 0x088,
242 #define NVREG_XMITSTAT_BUSY 0x01
243
244 NvRegPacketFilterFlags = 0x8c,
245 #define NVREG_PFF_PAUSE_RX 0x08
246 #define NVREG_PFF_ALWAYS 0x7F0000
247 #define NVREG_PFF_PROMISC 0x80
248 #define NVREG_PFF_MYADDR 0x20
249 #define NVREG_PFF_LOOPBACK 0x10
250
251 NvRegOffloadConfig = 0x90,
252 #define NVREG_OFFLOAD_HOMEPHY 0x601
253 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
254 NvRegReceiverControl = 0x094,
255 #define NVREG_RCVCTL_START 0x01
256 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
257 NvRegReceiverStatus = 0x98,
258 #define NVREG_RCVSTAT_BUSY 0x01
259
260 NvRegRandomSeed = 0x9c,
261 #define NVREG_RNDSEED_MASK 0x00ff
262 #define NVREG_RNDSEED_FORCE 0x7f00
263 #define NVREG_RNDSEED_FORCE2 0x2d00
264 #define NVREG_RNDSEED_FORCE3 0x7400
265
266 NvRegTxDeferral = 0xA0,
267 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
268 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
269 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
270 NvRegRxDeferral = 0xA4,
271 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
272 NvRegMacAddrA = 0xA8,
273 NvRegMacAddrB = 0xAC,
274 NvRegMulticastAddrA = 0xB0,
275 #define NVREG_MCASTADDRA_FORCE 0x01
276 NvRegMulticastAddrB = 0xB4,
277 NvRegMulticastMaskA = 0xB8,
278 NvRegMulticastMaskB = 0xBC,
279
280 NvRegPhyInterface = 0xC0,
281 #define PHY_RGMII 0x10000000
282
283 NvRegTxRingPhysAddr = 0x100,
284 NvRegRxRingPhysAddr = 0x104,
285 NvRegRingSizes = 0x108,
286 #define NVREG_RINGSZ_TXSHIFT 0
287 #define NVREG_RINGSZ_RXSHIFT 16
288 NvRegTransmitPoll = 0x10c,
289 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
290 NvRegLinkSpeed = 0x110,
291 #define NVREG_LINKSPEED_FORCE 0x10000
292 #define NVREG_LINKSPEED_10 1000
293 #define NVREG_LINKSPEED_100 100
294 #define NVREG_LINKSPEED_1000 50
295 #define NVREG_LINKSPEED_MASK (0xFFF)
296 NvRegUnknownSetupReg5 = 0x130,
297 #define NVREG_UNKSETUP5_BIT31 (1<<31)
298 NvRegTxWatermark = 0x13c,
299 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
300 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
301 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
302 NvRegTxRxControl = 0x144,
303 #define NVREG_TXRXCTL_KICK 0x0001
304 #define NVREG_TXRXCTL_BIT1 0x0002
305 #define NVREG_TXRXCTL_BIT2 0x0004
306 #define NVREG_TXRXCTL_IDLE 0x0008
307 #define NVREG_TXRXCTL_RESET 0x0010
308 #define NVREG_TXRXCTL_RXCHECK 0x0400
309 #define NVREG_TXRXCTL_DESC_1 0
310 #define NVREG_TXRXCTL_DESC_2 0x002100
311 #define NVREG_TXRXCTL_DESC_3 0xc02200
312 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
313 #define NVREG_TXRXCTL_VLANINS 0x00080
314 NvRegTxRingPhysAddrHigh = 0x148,
315 NvRegRxRingPhysAddrHigh = 0x14C,
316 NvRegTxPauseFrame = 0x170,
317 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
318 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
319 NvRegMIIStatus = 0x180,
320 #define NVREG_MIISTAT_ERROR 0x0001
321 #define NVREG_MIISTAT_LINKCHANGE 0x0008
322 #define NVREG_MIISTAT_MASK 0x000f
323 #define NVREG_MIISTAT_MASK2 0x000f
324 NvRegMIIMask = 0x184,
325 #define NVREG_MII_LINKCHANGE 0x0008
326
327 NvRegAdapterControl = 0x188,
328 #define NVREG_ADAPTCTL_START 0x02
329 #define NVREG_ADAPTCTL_LINKUP 0x04
330 #define NVREG_ADAPTCTL_PHYVALID 0x40000
331 #define NVREG_ADAPTCTL_RUNNING 0x100000
332 #define NVREG_ADAPTCTL_PHYSHIFT 24
333 NvRegMIISpeed = 0x18c,
334 #define NVREG_MIISPEED_BIT8 (1<<8)
335 #define NVREG_MIIDELAY 5
336 NvRegMIIControl = 0x190,
337 #define NVREG_MIICTL_INUSE 0x08000
338 #define NVREG_MIICTL_WRITE 0x00400
339 #define NVREG_MIICTL_ADDRSHIFT 5
340 NvRegMIIData = 0x194,
341 NvRegWakeUpFlags = 0x200,
342 #define NVREG_WAKEUPFLAGS_VAL 0x7770
343 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
344 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
345 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
346 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
347 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
348 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
349 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
350 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
351 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
352 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
353
354 NvRegPatternCRC = 0x204,
355 NvRegPatternMask = 0x208,
356 NvRegPowerCap = 0x268,
357 #define NVREG_POWERCAP_D3SUPP (1<<30)
358 #define NVREG_POWERCAP_D2SUPP (1<<26)
359 #define NVREG_POWERCAP_D1SUPP (1<<25)
360 NvRegPowerState = 0x26c,
361 #define NVREG_POWERSTATE_POWEREDUP 0x8000
362 #define NVREG_POWERSTATE_VALID 0x0100
363 #define NVREG_POWERSTATE_MASK 0x0003
364 #define NVREG_POWERSTATE_D0 0x0000
365 #define NVREG_POWERSTATE_D1 0x0001
366 #define NVREG_POWERSTATE_D2 0x0002
367 #define NVREG_POWERSTATE_D3 0x0003
368 NvRegTxCnt = 0x280,
369 NvRegTxZeroReXmt = 0x284,
370 NvRegTxOneReXmt = 0x288,
371 NvRegTxManyReXmt = 0x28c,
372 NvRegTxLateCol = 0x290,
373 NvRegTxUnderflow = 0x294,
374 NvRegTxLossCarrier = 0x298,
375 NvRegTxExcessDef = 0x29c,
376 NvRegTxRetryErr = 0x2a0,
377 NvRegRxFrameErr = 0x2a4,
378 NvRegRxExtraByte = 0x2a8,
379 NvRegRxLateCol = 0x2ac,
380 NvRegRxRunt = 0x2b0,
381 NvRegRxFrameTooLong = 0x2b4,
382 NvRegRxOverflow = 0x2b8,
383 NvRegRxFCSErr = 0x2bc,
384 NvRegRxFrameAlignErr = 0x2c0,
385 NvRegRxLenErr = 0x2c4,
386 NvRegRxUnicast = 0x2c8,
387 NvRegRxMulticast = 0x2cc,
388 NvRegRxBroadcast = 0x2d0,
389 NvRegTxDef = 0x2d4,
390 NvRegTxFrame = 0x2d8,
391 NvRegRxCnt = 0x2dc,
392 NvRegTxPause = 0x2e0,
393 NvRegRxPause = 0x2e4,
394 NvRegRxDropFrame = 0x2e8,
395 NvRegVlanControl = 0x300,
396 #define NVREG_VLANCONTROL_ENABLE 0x2000
397 NvRegMSIXMap0 = 0x3e0,
398 NvRegMSIXMap1 = 0x3e4,
399 NvRegMSIXIrqStatus = 0x3f0,
400
401 NvRegPowerState2 = 0x600,
402 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
403 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
404 };
405
406 /* Big endian: should work, but is untested */
407 struct ring_desc {
408 __le32 buf;
409 __le32 flaglen;
410 };
411
412 struct ring_desc_ex {
413 __le32 bufhigh;
414 __le32 buflow;
415 __le32 txvlan;
416 __le32 flaglen;
417 };
418
419 union ring_type {
420 struct ring_desc* orig;
421 struct ring_desc_ex* ex;
422 };
423
424 #define FLAG_MASK_V1 0xffff0000
425 #define FLAG_MASK_V2 0xffffc000
426 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
427 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
428
429 #define NV_TX_LASTPACKET (1<<16)
430 #define NV_TX_RETRYERROR (1<<19)
431 #define NV_TX_FORCED_INTERRUPT (1<<24)
432 #define NV_TX_DEFERRED (1<<26)
433 #define NV_TX_CARRIERLOST (1<<27)
434 #define NV_TX_LATECOLLISION (1<<28)
435 #define NV_TX_UNDERFLOW (1<<29)
436 #define NV_TX_ERROR (1<<30)
437 #define NV_TX_VALID (1<<31)
438
439 #define NV_TX2_LASTPACKET (1<<29)
440 #define NV_TX2_RETRYERROR (1<<18)
441 #define NV_TX2_FORCED_INTERRUPT (1<<30)
442 #define NV_TX2_DEFERRED (1<<25)
443 #define NV_TX2_CARRIERLOST (1<<26)
444 #define NV_TX2_LATECOLLISION (1<<27)
445 #define NV_TX2_UNDERFLOW (1<<28)
446 /* error and valid are the same for both */
447 #define NV_TX2_ERROR (1<<30)
448 #define NV_TX2_VALID (1<<31)
449 #define NV_TX2_TSO (1<<28)
450 #define NV_TX2_TSO_SHIFT 14
451 #define NV_TX2_TSO_MAX_SHIFT 14
452 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
453 #define NV_TX2_CHECKSUM_L3 (1<<27)
454 #define NV_TX2_CHECKSUM_L4 (1<<26)
455
456 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
457
458 #define NV_RX_DESCRIPTORVALID (1<<16)
459 #define NV_RX_MISSEDFRAME (1<<17)
460 #define NV_RX_SUBSTRACT1 (1<<18)
461 #define NV_RX_ERROR1 (1<<23)
462 #define NV_RX_ERROR2 (1<<24)
463 #define NV_RX_ERROR3 (1<<25)
464 #define NV_RX_ERROR4 (1<<26)
465 #define NV_RX_CRCERR (1<<27)
466 #define NV_RX_OVERFLOW (1<<28)
467 #define NV_RX_FRAMINGERR (1<<29)
468 #define NV_RX_ERROR (1<<30)
469 #define NV_RX_AVAIL (1<<31)
470
471 #define NV_RX2_CHECKSUMMASK (0x1C000000)
472 #define NV_RX2_CHECKSUMOK1 (0x10000000)
473 #define NV_RX2_CHECKSUMOK2 (0x14000000)
474 #define NV_RX2_CHECKSUMOK3 (0x18000000)
475 #define NV_RX2_DESCRIPTORVALID (1<<29)
476 #define NV_RX2_SUBSTRACT1 (1<<25)
477 #define NV_RX2_ERROR1 (1<<18)
478 #define NV_RX2_ERROR2 (1<<19)
479 #define NV_RX2_ERROR3 (1<<20)
480 #define NV_RX2_ERROR4 (1<<21)
481 #define NV_RX2_CRCERR (1<<22)
482 #define NV_RX2_OVERFLOW (1<<23)
483 #define NV_RX2_FRAMINGERR (1<<24)
484 /* error and avail are the same for both */
485 #define NV_RX2_ERROR (1<<30)
486 #define NV_RX2_AVAIL (1<<31)
487
488 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
489 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
490
491 /* Miscelaneous hardware related defines: */
492 #define NV_PCI_REGSZ_VER1 0x270
493 #define NV_PCI_REGSZ_VER2 0x2d4
494 #define NV_PCI_REGSZ_VER3 0x604
495
496 /* various timeout delays: all in usec */
497 #define NV_TXRX_RESET_DELAY 4
498 #define NV_TXSTOP_DELAY1 10
499 #define NV_TXSTOP_DELAY1MAX 500000
500 #define NV_TXSTOP_DELAY2 100
501 #define NV_RXSTOP_DELAY1 10
502 #define NV_RXSTOP_DELAY1MAX 500000
503 #define NV_RXSTOP_DELAY2 100
504 #define NV_SETUP5_DELAY 5
505 #define NV_SETUP5_DELAYMAX 50000
506 #define NV_POWERUP_DELAY 5
507 #define NV_POWERUP_DELAYMAX 5000
508 #define NV_MIIBUSY_DELAY 50
509 #define NV_MIIPHY_DELAY 10
510 #define NV_MIIPHY_DELAYMAX 10000
511 #define NV_MAC_RESET_DELAY 64
512
513 #define NV_WAKEUPPATTERNS 5
514 #define NV_WAKEUPMASKENTRIES 4
515
516 /* General driver defaults */
517 #define NV_WATCHDOG_TIMEO (5*HZ)
518
519 #define RX_RING_DEFAULT 128
520 #define TX_RING_DEFAULT 256
521 #define RX_RING_MIN 128
522 #define TX_RING_MIN 64
523 #define RING_MAX_DESC_VER_1 1024
524 #define RING_MAX_DESC_VER_2_3 16384
525
526 /* rx/tx mac addr + type + vlan + align + slack*/
527 #define NV_RX_HEADERS (64)
528 /* even more slack. */
529 #define NV_RX_ALLOC_PAD (64)
530
531 /* maximum mtu size */
532 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
533 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
534
535 #define OOM_REFILL (1+HZ/20)
536 #define POLL_WAIT (1+HZ/100)
537 #define LINK_TIMEOUT (3*HZ)
538 #define STATS_INTERVAL (10*HZ)
539
540 /*
541 * desc_ver values:
542 * The nic supports three different descriptor types:
543 * - DESC_VER_1: Original
544 * - DESC_VER_2: support for jumbo frames.
545 * - DESC_VER_3: 64-bit format.
546 */
547 #define DESC_VER_1 1
548 #define DESC_VER_2 2
549 #define DESC_VER_3 3
550
551 /* PHY defines */
552 #define PHY_OUI_MARVELL 0x5043
553 #define PHY_OUI_CICADA 0x03f1
554 #define PHY_OUI_VITESSE 0x01c1
555 #define PHY_OUI_REALTEK 0x0732
556 #define PHYID1_OUI_MASK 0x03ff
557 #define PHYID1_OUI_SHFT 6
558 #define PHYID2_OUI_MASK 0xfc00
559 #define PHYID2_OUI_SHFT 10
560 #define PHYID2_MODEL_MASK 0x03f0
561 #define PHY_MODEL_MARVELL_E3016 0x220
562 #define PHY_MARVELL_E3016_INITMASK 0x0300
563 #define PHY_CICADA_INIT1 0x0f000
564 #define PHY_CICADA_INIT2 0x0e00
565 #define PHY_CICADA_INIT3 0x01000
566 #define PHY_CICADA_INIT4 0x0200
567 #define PHY_CICADA_INIT5 0x0004
568 #define PHY_CICADA_INIT6 0x02000
569 #define PHY_VITESSE_INIT_REG1 0x1f
570 #define PHY_VITESSE_INIT_REG2 0x10
571 #define PHY_VITESSE_INIT_REG3 0x11
572 #define PHY_VITESSE_INIT_REG4 0x12
573 #define PHY_VITESSE_INIT_MSK1 0xc
574 #define PHY_VITESSE_INIT_MSK2 0x0180
575 #define PHY_VITESSE_INIT1 0x52b5
576 #define PHY_VITESSE_INIT2 0xaf8a
577 #define PHY_VITESSE_INIT3 0x8
578 #define PHY_VITESSE_INIT4 0x8f8a
579 #define PHY_VITESSE_INIT5 0xaf86
580 #define PHY_VITESSE_INIT6 0x8f86
581 #define PHY_VITESSE_INIT7 0xaf82
582 #define PHY_VITESSE_INIT8 0x0100
583 #define PHY_VITESSE_INIT9 0x8f82
584 #define PHY_VITESSE_INIT10 0x0
585 #define PHY_REALTEK_INIT_REG1 0x1f
586 #define PHY_REALTEK_INIT_REG2 0x19
587 #define PHY_REALTEK_INIT_REG3 0x13
588 #define PHY_REALTEK_INIT1 0x0000
589 #define PHY_REALTEK_INIT2 0x8e00
590 #define PHY_REALTEK_INIT3 0x0001
591 #define PHY_REALTEK_INIT4 0xad17
592
593 #define PHY_GIGABIT 0x0100
594
595 #define PHY_TIMEOUT 0x1
596 #define PHY_ERROR 0x2
597
598 #define PHY_100 0x1
599 #define PHY_1000 0x2
600 #define PHY_HALF 0x100
601
602 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
603 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
604 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
605 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
606 #define NV_PAUSEFRAME_RX_REQ 0x0010
607 #define NV_PAUSEFRAME_TX_REQ 0x0020
608 #define NV_PAUSEFRAME_AUTONEG 0x0040
609
610 /* MSI/MSI-X defines */
611 #define NV_MSI_X_MAX_VECTORS 8
612 #define NV_MSI_X_VECTORS_MASK 0x000f
613 #define NV_MSI_CAPABLE 0x0010
614 #define NV_MSI_X_CAPABLE 0x0020
615 #define NV_MSI_ENABLED 0x0040
616 #define NV_MSI_X_ENABLED 0x0080
617
618 #define NV_MSI_X_VECTOR_ALL 0x0
619 #define NV_MSI_X_VECTOR_RX 0x0
620 #define NV_MSI_X_VECTOR_TX 0x1
621 #define NV_MSI_X_VECTOR_OTHER 0x2
622
623 /* statistics */
624 struct nv_ethtool_str {
625 char name[ETH_GSTRING_LEN];
626 };
627
628 static const struct nv_ethtool_str nv_estats_str[] = {
629 { "tx_bytes" },
630 { "tx_zero_rexmt" },
631 { "tx_one_rexmt" },
632 { "tx_many_rexmt" },
633 { "tx_late_collision" },
634 { "tx_fifo_errors" },
635 { "tx_carrier_errors" },
636 { "tx_excess_deferral" },
637 { "tx_retry_error" },
638 { "rx_frame_error" },
639 { "rx_extra_byte" },
640 { "rx_late_collision" },
641 { "rx_runt" },
642 { "rx_frame_too_long" },
643 { "rx_over_errors" },
644 { "rx_crc_errors" },
645 { "rx_frame_align_error" },
646 { "rx_length_error" },
647 { "rx_unicast" },
648 { "rx_multicast" },
649 { "rx_broadcast" },
650 { "rx_packets" },
651 { "rx_errors_total" },
652 { "tx_errors_total" },
653
654 /* version 2 stats */
655 { "tx_deferral" },
656 { "tx_packets" },
657 { "rx_bytes" },
658 { "tx_pause" },
659 { "rx_pause" },
660 { "rx_drop_frame" }
661 };
662
663 struct nv_ethtool_stats {
664 u64 tx_bytes;
665 u64 tx_zero_rexmt;
666 u64 tx_one_rexmt;
667 u64 tx_many_rexmt;
668 u64 tx_late_collision;
669 u64 tx_fifo_errors;
670 u64 tx_carrier_errors;
671 u64 tx_excess_deferral;
672 u64 tx_retry_error;
673 u64 rx_frame_error;
674 u64 rx_extra_byte;
675 u64 rx_late_collision;
676 u64 rx_runt;
677 u64 rx_frame_too_long;
678 u64 rx_over_errors;
679 u64 rx_crc_errors;
680 u64 rx_frame_align_error;
681 u64 rx_length_error;
682 u64 rx_unicast;
683 u64 rx_multicast;
684 u64 rx_broadcast;
685 u64 rx_packets;
686 u64 rx_errors_total;
687 u64 tx_errors_total;
688
689 /* version 2 stats */
690 u64 tx_deferral;
691 u64 tx_packets;
692 u64 rx_bytes;
693 u64 tx_pause;
694 u64 rx_pause;
695 u64 rx_drop_frame;
696 };
697
698 #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
699 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
700
701 /* diagnostics */
702 #define NV_TEST_COUNT_BASE 3
703 #define NV_TEST_COUNT_EXTENDED 4
704
705 static const struct nv_ethtool_str nv_etests_str[] = {
706 { "link (online/offline)" },
707 { "register (offline) " },
708 { "interrupt (offline) " },
709 { "loopback (offline) " }
710 };
711
712 struct register_test {
713 __le32 reg;
714 __le32 mask;
715 };
716
717 static const struct register_test nv_registers_test[] = {
718 { NvRegUnknownSetupReg6, 0x01 },
719 { NvRegMisc1, 0x03c },
720 { NvRegOffloadConfig, 0x03ff },
721 { NvRegMulticastAddrA, 0xffffffff },
722 { NvRegTxWatermark, 0x0ff },
723 { NvRegWakeUpFlags, 0x07777 },
724 { 0,0 }
725 };
726
727 struct nv_skb_map {
728 struct sk_buff *skb;
729 dma_addr_t dma;
730 unsigned int dma_len;
731 };
732
733 /*
734 * SMP locking:
735 * All hardware access under dev->priv->lock, except the performance
736 * critical parts:
737 * - rx is (pseudo-) lockless: it relies on the single-threading provided
738 * by the arch code for interrupts.
739 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
740 * needs dev->priv->lock :-(
741 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
742 */
743
744 /* in dev: base, irq */
745 struct fe_priv {
746 spinlock_t lock;
747
748 /* General data:
749 * Locking: spin_lock(&np->lock); */
750 struct net_device_stats stats;
751 struct nv_ethtool_stats estats;
752 int in_shutdown;
753 u32 linkspeed;
754 int duplex;
755 int autoneg;
756 int fixed_mode;
757 int phyaddr;
758 int wolenabled;
759 unsigned int phy_oui;
760 unsigned int phy_model;
761 u16 gigabit;
762 int intr_test;
763 int recover_error;
764
765 /* General data: RO fields */
766 dma_addr_t ring_addr;
767 struct pci_dev *pci_dev;
768 u32 orig_mac[2];
769 u32 irqmask;
770 u32 desc_ver;
771 u32 txrxctl_bits;
772 u32 vlanctl_bits;
773 u32 driver_data;
774 u32 register_size;
775 int rx_csum;
776 u32 mac_in_use;
777
778 void __iomem *base;
779
780 /* rx specific fields.
781 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
782 */
783 union ring_type get_rx, put_rx, first_rx, last_rx;
784 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
785 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
786 struct nv_skb_map *rx_skb;
787
788 union ring_type rx_ring;
789 unsigned int rx_buf_sz;
790 unsigned int pkt_limit;
791 struct timer_list oom_kick;
792 struct timer_list nic_poll;
793 struct timer_list stats_poll;
794 u32 nic_poll_irq;
795 int rx_ring_size;
796
797 /* media detection workaround.
798 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
799 */
800 int need_linktimer;
801 unsigned long link_timeout;
802 /*
803 * tx specific fields.
804 */
805 union ring_type get_tx, put_tx, first_tx, last_tx;
806 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
807 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
808 struct nv_skb_map *tx_skb;
809
810 union ring_type tx_ring;
811 u32 tx_flags;
812 int tx_ring_size;
813 int tx_stop;
814
815 /* vlan fields */
816 struct vlan_group *vlangrp;
817
818 /* msi/msi-x fields */
819 u32 msi_flags;
820 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
821
822 /* flow control */
823 u32 pause_flags;
824 };
825
826 /*
827 * Maximum number of loops until we assume that a bit in the irq mask
828 * is stuck. Overridable with module param.
829 */
830 static int max_interrupt_work = 5;
831
832 /*
833 * Optimization can be either throuput mode or cpu mode
834 *
835 * Throughput Mode: Every tx and rx packet will generate an interrupt.
836 * CPU Mode: Interrupts are controlled by a timer.
837 */
838 enum {
839 NV_OPTIMIZATION_MODE_THROUGHPUT,
840 NV_OPTIMIZATION_MODE_CPU
841 };
842 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
843
844 /*
845 * Poll interval for timer irq
846 *
847 * This interval determines how frequent an interrupt is generated.
848 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
849 * Min = 0, and Max = 65535
850 */
851 static int poll_interval = -1;
852
853 /*
854 * MSI interrupts
855 */
856 enum {
857 NV_MSI_INT_DISABLED,
858 NV_MSI_INT_ENABLED
859 };
860 static int msi = NV_MSI_INT_ENABLED;
861
862 /*
863 * MSIX interrupts
864 */
865 enum {
866 NV_MSIX_INT_DISABLED,
867 NV_MSIX_INT_ENABLED
868 };
869 static int msix = NV_MSIX_INT_DISABLED;
870
871 /*
872 * DMA 64bit
873 */
874 enum {
875 NV_DMA_64BIT_DISABLED,
876 NV_DMA_64BIT_ENABLED
877 };
878 static int dma_64bit = NV_DMA_64BIT_ENABLED;
879
880 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
881 {
882 return netdev_priv(dev);
883 }
884
885 static inline u8 __iomem *get_hwbase(struct net_device *dev)
886 {
887 return ((struct fe_priv *)netdev_priv(dev))->base;
888 }
889
890 static inline void pci_push(u8 __iomem *base)
891 {
892 /* force out pending posted writes */
893 readl(base);
894 }
895
896 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
897 {
898 return le32_to_cpu(prd->flaglen)
899 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
900 }
901
902 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
903 {
904 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
905 }
906
907 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
908 int delay, int delaymax, const char *msg)
909 {
910 u8 __iomem *base = get_hwbase(dev);
911
912 pci_push(base);
913 do {
914 udelay(delay);
915 delaymax -= delay;
916 if (delaymax < 0) {
917 if (msg)
918 printk(msg);
919 return 1;
920 }
921 } while ((readl(base + offset) & mask) != target);
922 return 0;
923 }
924
925 #define NV_SETUP_RX_RING 0x01
926 #define NV_SETUP_TX_RING 0x02
927
928 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
929 {
930 struct fe_priv *np = get_nvpriv(dev);
931 u8 __iomem *base = get_hwbase(dev);
932
933 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
934 if (rxtx_flags & NV_SETUP_RX_RING) {
935 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
936 }
937 if (rxtx_flags & NV_SETUP_TX_RING) {
938 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
939 }
940 } else {
941 if (rxtx_flags & NV_SETUP_RX_RING) {
942 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
943 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
944 }
945 if (rxtx_flags & NV_SETUP_TX_RING) {
946 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
947 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
948 }
949 }
950 }
951
952 static void free_rings(struct net_device *dev)
953 {
954 struct fe_priv *np = get_nvpriv(dev);
955
956 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
957 if (np->rx_ring.orig)
958 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
959 np->rx_ring.orig, np->ring_addr);
960 } else {
961 if (np->rx_ring.ex)
962 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
963 np->rx_ring.ex, np->ring_addr);
964 }
965 if (np->rx_skb)
966 kfree(np->rx_skb);
967 if (np->tx_skb)
968 kfree(np->tx_skb);
969 }
970
971 static int using_multi_irqs(struct net_device *dev)
972 {
973 struct fe_priv *np = get_nvpriv(dev);
974
975 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
976 ((np->msi_flags & NV_MSI_X_ENABLED) &&
977 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
978 return 0;
979 else
980 return 1;
981 }
982
983 static void nv_enable_irq(struct net_device *dev)
984 {
985 struct fe_priv *np = get_nvpriv(dev);
986
987 if (!using_multi_irqs(dev)) {
988 if (np->msi_flags & NV_MSI_X_ENABLED)
989 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
990 else
991 enable_irq(dev->irq);
992 } else {
993 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
994 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
995 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
996 }
997 }
998
999 static void nv_disable_irq(struct net_device *dev)
1000 {
1001 struct fe_priv *np = get_nvpriv(dev);
1002
1003 if (!using_multi_irqs(dev)) {
1004 if (np->msi_flags & NV_MSI_X_ENABLED)
1005 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1006 else
1007 disable_irq(dev->irq);
1008 } else {
1009 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1010 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1011 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1012 }
1013 }
1014
1015 /* In MSIX mode, a write to irqmask behaves as XOR */
1016 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1017 {
1018 u8 __iomem *base = get_hwbase(dev);
1019
1020 writel(mask, base + NvRegIrqMask);
1021 }
1022
1023 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1024 {
1025 struct fe_priv *np = get_nvpriv(dev);
1026 u8 __iomem *base = get_hwbase(dev);
1027
1028 if (np->msi_flags & NV_MSI_X_ENABLED) {
1029 writel(mask, base + NvRegIrqMask);
1030 } else {
1031 if (np->msi_flags & NV_MSI_ENABLED)
1032 writel(0, base + NvRegMSIIrqMask);
1033 writel(0, base + NvRegIrqMask);
1034 }
1035 }
1036
1037 #define MII_READ (-1)
1038 /* mii_rw: read/write a register on the PHY.
1039 *
1040 * Caller must guarantee serialization
1041 */
1042 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1043 {
1044 u8 __iomem *base = get_hwbase(dev);
1045 u32 reg;
1046 int retval;
1047
1048 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1049
1050 reg = readl(base + NvRegMIIControl);
1051 if (reg & NVREG_MIICTL_INUSE) {
1052 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1053 udelay(NV_MIIBUSY_DELAY);
1054 }
1055
1056 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1057 if (value != MII_READ) {
1058 writel(value, base + NvRegMIIData);
1059 reg |= NVREG_MIICTL_WRITE;
1060 }
1061 writel(reg, base + NvRegMIIControl);
1062
1063 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1064 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1065 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1066 dev->name, miireg, addr);
1067 retval = -1;
1068 } else if (value != MII_READ) {
1069 /* it was a write operation - fewer failures are detectable */
1070 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1071 dev->name, value, miireg, addr);
1072 retval = 0;
1073 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1074 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1075 dev->name, miireg, addr);
1076 retval = -1;
1077 } else {
1078 retval = readl(base + NvRegMIIData);
1079 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1080 dev->name, miireg, addr, retval);
1081 }
1082
1083 return retval;
1084 }
1085
1086 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1087 {
1088 struct fe_priv *np = netdev_priv(dev);
1089 u32 miicontrol;
1090 unsigned int tries = 0;
1091
1092 miicontrol = BMCR_RESET | bmcr_setup;
1093 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1094 return -1;
1095 }
1096
1097 /* wait for 500ms */
1098 msleep(500);
1099
1100 /* must wait till reset is deasserted */
1101 while (miicontrol & BMCR_RESET) {
1102 msleep(10);
1103 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1104 /* FIXME: 100 tries seem excessive */
1105 if (tries++ > 100)
1106 return -1;
1107 }
1108 return 0;
1109 }
1110
1111 static int phy_init(struct net_device *dev)
1112 {
1113 struct fe_priv *np = get_nvpriv(dev);
1114 u8 __iomem *base = get_hwbase(dev);
1115 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1116
1117 /* phy errata for E3016 phy */
1118 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1119 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1120 reg &= ~PHY_MARVELL_E3016_INITMASK;
1121 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1122 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1123 return PHY_ERROR;
1124 }
1125 }
1126 if (np->phy_oui == PHY_OUI_REALTEK) {
1127 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1128 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1129 return PHY_ERROR;
1130 }
1131 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1132 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1133 return PHY_ERROR;
1134 }
1135 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1136 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1137 return PHY_ERROR;
1138 }
1139 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1140 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1141 return PHY_ERROR;
1142 }
1143 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1144 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1145 return PHY_ERROR;
1146 }
1147 }
1148
1149 /* set advertise register */
1150 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1151 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1152 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1153 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1154 return PHY_ERROR;
1155 }
1156
1157 /* get phy interface type */
1158 phyinterface = readl(base + NvRegPhyInterface);
1159
1160 /* see if gigabit phy */
1161 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1162 if (mii_status & PHY_GIGABIT) {
1163 np->gigabit = PHY_GIGABIT;
1164 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1165 mii_control_1000 &= ~ADVERTISE_1000HALF;
1166 if (phyinterface & PHY_RGMII)
1167 mii_control_1000 |= ADVERTISE_1000FULL;
1168 else
1169 mii_control_1000 &= ~ADVERTISE_1000FULL;
1170
1171 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1172 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1173 return PHY_ERROR;
1174 }
1175 }
1176 else
1177 np->gigabit = 0;
1178
1179 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1180 mii_control |= BMCR_ANENABLE;
1181
1182 /* reset the phy
1183 * (certain phys need bmcr to be setup with reset)
1184 */
1185 if (phy_reset(dev, mii_control)) {
1186 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1187 return PHY_ERROR;
1188 }
1189
1190 /* phy vendor specific configuration */
1191 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1192 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1193 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1194 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1195 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1196 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1197 return PHY_ERROR;
1198 }
1199 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1200 phy_reserved |= PHY_CICADA_INIT5;
1201 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1202 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1203 return PHY_ERROR;
1204 }
1205 }
1206 if (np->phy_oui == PHY_OUI_CICADA) {
1207 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1208 phy_reserved |= PHY_CICADA_INIT6;
1209 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1210 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1211 return PHY_ERROR;
1212 }
1213 }
1214 if (np->phy_oui == PHY_OUI_VITESSE) {
1215 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1216 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1217 return PHY_ERROR;
1218 }
1219 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1220 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1221 return PHY_ERROR;
1222 }
1223 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1224 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1225 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1226 return PHY_ERROR;
1227 }
1228 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1229 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1230 phy_reserved |= PHY_VITESSE_INIT3;
1231 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1232 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1233 return PHY_ERROR;
1234 }
1235 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1236 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1237 return PHY_ERROR;
1238 }
1239 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1240 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1241 return PHY_ERROR;
1242 }
1243 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1244 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1245 phy_reserved |= PHY_VITESSE_INIT3;
1246 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1247 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1248 return PHY_ERROR;
1249 }
1250 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1251 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1252 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1253 return PHY_ERROR;
1254 }
1255 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1256 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1257 return PHY_ERROR;
1258 }
1259 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1260 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1261 return PHY_ERROR;
1262 }
1263 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1264 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1265 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1266 return PHY_ERROR;
1267 }
1268 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1269 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1270 phy_reserved |= PHY_VITESSE_INIT8;
1271 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1272 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1273 return PHY_ERROR;
1274 }
1275 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1276 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1277 return PHY_ERROR;
1278 }
1279 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1280 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1281 return PHY_ERROR;
1282 }
1283 }
1284 if (np->phy_oui == PHY_OUI_REALTEK) {
1285 /* reset could have cleared these out, set them back */
1286 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1287 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1288 return PHY_ERROR;
1289 }
1290 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1291 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1292 return PHY_ERROR;
1293 }
1294 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1295 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1296 return PHY_ERROR;
1297 }
1298 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1299 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1300 return PHY_ERROR;
1301 }
1302 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1303 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1304 return PHY_ERROR;
1305 }
1306 }
1307
1308 /* some phys clear out pause advertisment on reset, set it back */
1309 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1310
1311 /* restart auto negotiation */
1312 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1313 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1314 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1315 return PHY_ERROR;
1316 }
1317
1318 return 0;
1319 }
1320
1321 static void nv_start_rx(struct net_device *dev)
1322 {
1323 struct fe_priv *np = netdev_priv(dev);
1324 u8 __iomem *base = get_hwbase(dev);
1325 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1326
1327 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1328 /* Already running? Stop it. */
1329 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1330 rx_ctrl &= ~NVREG_RCVCTL_START;
1331 writel(rx_ctrl, base + NvRegReceiverControl);
1332 pci_push(base);
1333 }
1334 writel(np->linkspeed, base + NvRegLinkSpeed);
1335 pci_push(base);
1336 rx_ctrl |= NVREG_RCVCTL_START;
1337 if (np->mac_in_use)
1338 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1339 writel(rx_ctrl, base + NvRegReceiverControl);
1340 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1341 dev->name, np->duplex, np->linkspeed);
1342 pci_push(base);
1343 }
1344
1345 static void nv_stop_rx(struct net_device *dev)
1346 {
1347 struct fe_priv *np = netdev_priv(dev);
1348 u8 __iomem *base = get_hwbase(dev);
1349 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1350
1351 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1352 if (!np->mac_in_use)
1353 rx_ctrl &= ~NVREG_RCVCTL_START;
1354 else
1355 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1356 writel(rx_ctrl, base + NvRegReceiverControl);
1357 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1358 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1359 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1360
1361 udelay(NV_RXSTOP_DELAY2);
1362 if (!np->mac_in_use)
1363 writel(0, base + NvRegLinkSpeed);
1364 }
1365
1366 static void nv_start_tx(struct net_device *dev)
1367 {
1368 struct fe_priv *np = netdev_priv(dev);
1369 u8 __iomem *base = get_hwbase(dev);
1370 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1371
1372 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1373 tx_ctrl |= NVREG_XMITCTL_START;
1374 if (np->mac_in_use)
1375 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1376 writel(tx_ctrl, base + NvRegTransmitterControl);
1377 pci_push(base);
1378 }
1379
1380 static void nv_stop_tx(struct net_device *dev)
1381 {
1382 struct fe_priv *np = netdev_priv(dev);
1383 u8 __iomem *base = get_hwbase(dev);
1384 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1385
1386 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1387 if (!np->mac_in_use)
1388 tx_ctrl &= ~NVREG_XMITCTL_START;
1389 else
1390 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1391 writel(tx_ctrl, base + NvRegTransmitterControl);
1392 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1393 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1394 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1395
1396 udelay(NV_TXSTOP_DELAY2);
1397 if (!np->mac_in_use)
1398 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1399 base + NvRegTransmitPoll);
1400 }
1401
1402 static void nv_txrx_reset(struct net_device *dev)
1403 {
1404 struct fe_priv *np = netdev_priv(dev);
1405 u8 __iomem *base = get_hwbase(dev);
1406
1407 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1408 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1409 pci_push(base);
1410 udelay(NV_TXRX_RESET_DELAY);
1411 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1412 pci_push(base);
1413 }
1414
1415 static void nv_mac_reset(struct net_device *dev)
1416 {
1417 struct fe_priv *np = netdev_priv(dev);
1418 u8 __iomem *base = get_hwbase(dev);
1419
1420 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1421 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1422 pci_push(base);
1423 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1424 pci_push(base);
1425 udelay(NV_MAC_RESET_DELAY);
1426 writel(0, base + NvRegMacReset);
1427 pci_push(base);
1428 udelay(NV_MAC_RESET_DELAY);
1429 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1430 pci_push(base);
1431 }
1432
1433 static void nv_get_hw_stats(struct net_device *dev)
1434 {
1435 struct fe_priv *np = netdev_priv(dev);
1436 u8 __iomem *base = get_hwbase(dev);
1437
1438 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1439 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1440 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1441 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1442 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1443 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1444 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1445 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1446 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1447 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1448 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1449 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1450 np->estats.rx_runt += readl(base + NvRegRxRunt);
1451 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1452 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1453 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1454 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1455 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1456 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1457 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1458 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1459 np->estats.rx_packets =
1460 np->estats.rx_unicast +
1461 np->estats.rx_multicast +
1462 np->estats.rx_broadcast;
1463 np->estats.rx_errors_total =
1464 np->estats.rx_crc_errors +
1465 np->estats.rx_over_errors +
1466 np->estats.rx_frame_error +
1467 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1468 np->estats.rx_late_collision +
1469 np->estats.rx_runt +
1470 np->estats.rx_frame_too_long;
1471 np->estats.tx_errors_total =
1472 np->estats.tx_late_collision +
1473 np->estats.tx_fifo_errors +
1474 np->estats.tx_carrier_errors +
1475 np->estats.tx_excess_deferral +
1476 np->estats.tx_retry_error;
1477
1478 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1479 np->estats.tx_deferral += readl(base + NvRegTxDef);
1480 np->estats.tx_packets += readl(base + NvRegTxFrame);
1481 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1482 np->estats.tx_pause += readl(base + NvRegTxPause);
1483 np->estats.rx_pause += readl(base + NvRegRxPause);
1484 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1485 }
1486 }
1487
1488 /*
1489 * nv_get_stats: dev->get_stats function
1490 * Get latest stats value from the nic.
1491 * Called with read_lock(&dev_base_lock) held for read -
1492 * only synchronized against unregister_netdevice.
1493 */
1494 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1495 {
1496 struct fe_priv *np = netdev_priv(dev);
1497
1498 /* If the nic supports hw counters then retrieve latest values */
1499 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
1500 nv_get_hw_stats(dev);
1501
1502 /* copy to net_device stats */
1503 np->stats.tx_bytes = np->estats.tx_bytes;
1504 np->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1505 np->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1506 np->stats.rx_crc_errors = np->estats.rx_crc_errors;
1507 np->stats.rx_over_errors = np->estats.rx_over_errors;
1508 np->stats.rx_errors = np->estats.rx_errors_total;
1509 np->stats.tx_errors = np->estats.tx_errors_total;
1510 }
1511 return &np->stats;
1512 }
1513
1514 /*
1515 * nv_alloc_rx: fill rx ring entries.
1516 * Return 1 if the allocations for the skbs failed and the
1517 * rx engine is without Available descriptors
1518 */
1519 static int nv_alloc_rx(struct net_device *dev)
1520 {
1521 struct fe_priv *np = netdev_priv(dev);
1522 struct ring_desc* less_rx;
1523
1524 less_rx = np->get_rx.orig;
1525 if (less_rx-- == np->first_rx.orig)
1526 less_rx = np->last_rx.orig;
1527
1528 while (np->put_rx.orig != less_rx) {
1529 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1530 if (skb) {
1531 np->put_rx_ctx->skb = skb;
1532 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1533 skb->data,
1534 skb_tailroom(skb),
1535 PCI_DMA_FROMDEVICE);
1536 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1537 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1538 wmb();
1539 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1540 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1541 np->put_rx.orig = np->first_rx.orig;
1542 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1543 np->put_rx_ctx = np->first_rx_ctx;
1544 } else {
1545 return 1;
1546 }
1547 }
1548 return 0;
1549 }
1550
1551 static int nv_alloc_rx_optimized(struct net_device *dev)
1552 {
1553 struct fe_priv *np = netdev_priv(dev);
1554 struct ring_desc_ex* less_rx;
1555
1556 less_rx = np->get_rx.ex;
1557 if (less_rx-- == np->first_rx.ex)
1558 less_rx = np->last_rx.ex;
1559
1560 while (np->put_rx.ex != less_rx) {
1561 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1562 if (skb) {
1563 np->put_rx_ctx->skb = skb;
1564 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1565 skb->data,
1566 skb_tailroom(skb),
1567 PCI_DMA_FROMDEVICE);
1568 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1569 np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
1570 np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
1571 wmb();
1572 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1573 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1574 np->put_rx.ex = np->first_rx.ex;
1575 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1576 np->put_rx_ctx = np->first_rx_ctx;
1577 } else {
1578 return 1;
1579 }
1580 }
1581 return 0;
1582 }
1583
1584 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1585 #ifdef CONFIG_FORCEDETH_NAPI
1586 static void nv_do_rx_refill(unsigned long data)
1587 {
1588 struct net_device *dev = (struct net_device *) data;
1589
1590 /* Just reschedule NAPI rx processing */
1591 netif_rx_schedule(dev);
1592 }
1593 #else
1594 static void nv_do_rx_refill(unsigned long data)
1595 {
1596 struct net_device *dev = (struct net_device *) data;
1597 struct fe_priv *np = netdev_priv(dev);
1598 int retcode;
1599
1600 if (!using_multi_irqs(dev)) {
1601 if (np->msi_flags & NV_MSI_X_ENABLED)
1602 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1603 else
1604 disable_irq(dev->irq);
1605 } else {
1606 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1607 }
1608 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1609 retcode = nv_alloc_rx(dev);
1610 else
1611 retcode = nv_alloc_rx_optimized(dev);
1612 if (retcode) {
1613 spin_lock_irq(&np->lock);
1614 if (!np->in_shutdown)
1615 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1616 spin_unlock_irq(&np->lock);
1617 }
1618 if (!using_multi_irqs(dev)) {
1619 if (np->msi_flags & NV_MSI_X_ENABLED)
1620 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1621 else
1622 enable_irq(dev->irq);
1623 } else {
1624 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1625 }
1626 }
1627 #endif
1628
1629 static void nv_init_rx(struct net_device *dev)
1630 {
1631 struct fe_priv *np = netdev_priv(dev);
1632 int i;
1633 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1634 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1635 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1636 else
1637 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1638 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1639 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1640
1641 for (i = 0; i < np->rx_ring_size; i++) {
1642 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1643 np->rx_ring.orig[i].flaglen = 0;
1644 np->rx_ring.orig[i].buf = 0;
1645 } else {
1646 np->rx_ring.ex[i].flaglen = 0;
1647 np->rx_ring.ex[i].txvlan = 0;
1648 np->rx_ring.ex[i].bufhigh = 0;
1649 np->rx_ring.ex[i].buflow = 0;
1650 }
1651 np->rx_skb[i].skb = NULL;
1652 np->rx_skb[i].dma = 0;
1653 }
1654 }
1655
1656 static void nv_init_tx(struct net_device *dev)
1657 {
1658 struct fe_priv *np = netdev_priv(dev);
1659 int i;
1660 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1661 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1662 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1663 else
1664 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1665 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1666 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1667
1668 for (i = 0; i < np->tx_ring_size; i++) {
1669 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1670 np->tx_ring.orig[i].flaglen = 0;
1671 np->tx_ring.orig[i].buf = 0;
1672 } else {
1673 np->tx_ring.ex[i].flaglen = 0;
1674 np->tx_ring.ex[i].txvlan = 0;
1675 np->tx_ring.ex[i].bufhigh = 0;
1676 np->tx_ring.ex[i].buflow = 0;
1677 }
1678 np->tx_skb[i].skb = NULL;
1679 np->tx_skb[i].dma = 0;
1680 }
1681 }
1682
1683 static int nv_init_ring(struct net_device *dev)
1684 {
1685 struct fe_priv *np = netdev_priv(dev);
1686
1687 nv_init_tx(dev);
1688 nv_init_rx(dev);
1689 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1690 return nv_alloc_rx(dev);
1691 else
1692 return nv_alloc_rx_optimized(dev);
1693 }
1694
1695 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1696 {
1697 struct fe_priv *np = netdev_priv(dev);
1698
1699 if (tx_skb->dma) {
1700 pci_unmap_page(np->pci_dev, tx_skb->dma,
1701 tx_skb->dma_len,
1702 PCI_DMA_TODEVICE);
1703 tx_skb->dma = 0;
1704 }
1705 if (tx_skb->skb) {
1706 dev_kfree_skb_any(tx_skb->skb);
1707 tx_skb->skb = NULL;
1708 return 1;
1709 } else {
1710 return 0;
1711 }
1712 }
1713
1714 static void nv_drain_tx(struct net_device *dev)
1715 {
1716 struct fe_priv *np = netdev_priv(dev);
1717 unsigned int i;
1718
1719 for (i = 0; i < np->tx_ring_size; i++) {
1720 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1721 np->tx_ring.orig[i].flaglen = 0;
1722 np->tx_ring.orig[i].buf = 0;
1723 } else {
1724 np->tx_ring.ex[i].flaglen = 0;
1725 np->tx_ring.ex[i].txvlan = 0;
1726 np->tx_ring.ex[i].bufhigh = 0;
1727 np->tx_ring.ex[i].buflow = 0;
1728 }
1729 if (nv_release_txskb(dev, &np->tx_skb[i]))
1730 np->stats.tx_dropped++;
1731 }
1732 }
1733
1734 static void nv_drain_rx(struct net_device *dev)
1735 {
1736 struct fe_priv *np = netdev_priv(dev);
1737 int i;
1738
1739 for (i = 0; i < np->rx_ring_size; i++) {
1740 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1741 np->rx_ring.orig[i].flaglen = 0;
1742 np->rx_ring.orig[i].buf = 0;
1743 } else {
1744 np->rx_ring.ex[i].flaglen = 0;
1745 np->rx_ring.ex[i].txvlan = 0;
1746 np->rx_ring.ex[i].bufhigh = 0;
1747 np->rx_ring.ex[i].buflow = 0;
1748 }
1749 wmb();
1750 if (np->rx_skb[i].skb) {
1751 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1752 (skb_end_pointer(np->rx_skb[i].skb) -
1753 np->rx_skb[i].skb->data),
1754 PCI_DMA_FROMDEVICE);
1755 dev_kfree_skb(np->rx_skb[i].skb);
1756 np->rx_skb[i].skb = NULL;
1757 }
1758 }
1759 }
1760
1761 static void drain_ring(struct net_device *dev)
1762 {
1763 nv_drain_tx(dev);
1764 nv_drain_rx(dev);
1765 }
1766
1767 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1768 {
1769 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1770 }
1771
1772 /*
1773 * nv_start_xmit: dev->hard_start_xmit function
1774 * Called with netif_tx_lock held.
1775 */
1776 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1777 {
1778 struct fe_priv *np = netdev_priv(dev);
1779 u32 tx_flags = 0;
1780 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1781 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1782 unsigned int i;
1783 u32 offset = 0;
1784 u32 bcnt;
1785 u32 size = skb->len-skb->data_len;
1786 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1787 u32 empty_slots;
1788 struct ring_desc* put_tx;
1789 struct ring_desc* start_tx;
1790 struct ring_desc* prev_tx;
1791 struct nv_skb_map* prev_tx_ctx;
1792
1793 /* add fragments to entries count */
1794 for (i = 0; i < fragments; i++) {
1795 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1796 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1797 }
1798
1799 empty_slots = nv_get_empty_tx_slots(np);
1800 if (unlikely(empty_slots <= entries)) {
1801 spin_lock_irq(&np->lock);
1802 netif_stop_queue(dev);
1803 np->tx_stop = 1;
1804 spin_unlock_irq(&np->lock);
1805 return NETDEV_TX_BUSY;
1806 }
1807
1808 start_tx = put_tx = np->put_tx.orig;
1809
1810 /* setup the header buffer */
1811 do {
1812 prev_tx = put_tx;
1813 prev_tx_ctx = np->put_tx_ctx;
1814 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1815 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1816 PCI_DMA_TODEVICE);
1817 np->put_tx_ctx->dma_len = bcnt;
1818 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1819 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1820
1821 tx_flags = np->tx_flags;
1822 offset += bcnt;
1823 size -= bcnt;
1824 if (unlikely(put_tx++ == np->last_tx.orig))
1825 put_tx = np->first_tx.orig;
1826 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1827 np->put_tx_ctx = np->first_tx_ctx;
1828 } while (size);
1829
1830 /* setup the fragments */
1831 for (i = 0; i < fragments; i++) {
1832 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1833 u32 size = frag->size;
1834 offset = 0;
1835
1836 do {
1837 prev_tx = put_tx;
1838 prev_tx_ctx = np->put_tx_ctx;
1839 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1840 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1841 PCI_DMA_TODEVICE);
1842 np->put_tx_ctx->dma_len = bcnt;
1843 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1844 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1845
1846 offset += bcnt;
1847 size -= bcnt;
1848 if (unlikely(put_tx++ == np->last_tx.orig))
1849 put_tx = np->first_tx.orig;
1850 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1851 np->put_tx_ctx = np->first_tx_ctx;
1852 } while (size);
1853 }
1854
1855 /* set last fragment flag */
1856 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1857
1858 /* save skb in this slot's context area */
1859 prev_tx_ctx->skb = skb;
1860
1861 if (skb_is_gso(skb))
1862 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1863 else
1864 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1865 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1866
1867 spin_lock_irq(&np->lock);
1868
1869 /* set tx flags */
1870 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1871 np->put_tx.orig = put_tx;
1872
1873 spin_unlock_irq(&np->lock);
1874
1875 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1876 dev->name, entries, tx_flags_extra);
1877 {
1878 int j;
1879 for (j=0; j<64; j++) {
1880 if ((j%16) == 0)
1881 dprintk("\n%03x:", j);
1882 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1883 }
1884 dprintk("\n");
1885 }
1886
1887 dev->trans_start = jiffies;
1888 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1889 return NETDEV_TX_OK;
1890 }
1891
1892 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1893 {
1894 struct fe_priv *np = netdev_priv(dev);
1895 u32 tx_flags = 0;
1896 u32 tx_flags_extra;
1897 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1898 unsigned int i;
1899 u32 offset = 0;
1900 u32 bcnt;
1901 u32 size = skb->len-skb->data_len;
1902 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1903 u32 empty_slots;
1904 struct ring_desc_ex* put_tx;
1905 struct ring_desc_ex* start_tx;
1906 struct ring_desc_ex* prev_tx;
1907 struct nv_skb_map* prev_tx_ctx;
1908
1909 /* add fragments to entries count */
1910 for (i = 0; i < fragments; i++) {
1911 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1912 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1913 }
1914
1915 empty_slots = nv_get_empty_tx_slots(np);
1916 if (unlikely(empty_slots <= entries)) {
1917 spin_lock_irq(&np->lock);
1918 netif_stop_queue(dev);
1919 np->tx_stop = 1;
1920 spin_unlock_irq(&np->lock);
1921 return NETDEV_TX_BUSY;
1922 }
1923
1924 start_tx = put_tx = np->put_tx.ex;
1925
1926 /* setup the header buffer */
1927 do {
1928 prev_tx = put_tx;
1929 prev_tx_ctx = np->put_tx_ctx;
1930 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1931 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1932 PCI_DMA_TODEVICE);
1933 np->put_tx_ctx->dma_len = bcnt;
1934 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1935 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1936 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1937
1938 tx_flags = NV_TX2_VALID;
1939 offset += bcnt;
1940 size -= bcnt;
1941 if (unlikely(put_tx++ == np->last_tx.ex))
1942 put_tx = np->first_tx.ex;
1943 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1944 np->put_tx_ctx = np->first_tx_ctx;
1945 } while (size);
1946
1947 /* setup the fragments */
1948 for (i = 0; i < fragments; i++) {
1949 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1950 u32 size = frag->size;
1951 offset = 0;
1952
1953 do {
1954 prev_tx = put_tx;
1955 prev_tx_ctx = np->put_tx_ctx;
1956 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1957 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1958 PCI_DMA_TODEVICE);
1959 np->put_tx_ctx->dma_len = bcnt;
1960 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1961 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1962 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1963
1964 offset += bcnt;
1965 size -= bcnt;
1966 if (unlikely(put_tx++ == np->last_tx.ex))
1967 put_tx = np->first_tx.ex;
1968 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1969 np->put_tx_ctx = np->first_tx_ctx;
1970 } while (size);
1971 }
1972
1973 /* set last fragment flag */
1974 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
1975
1976 /* save skb in this slot's context area */
1977 prev_tx_ctx->skb = skb;
1978
1979 if (skb_is_gso(skb))
1980 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1981 else
1982 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1983 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1984
1985 /* vlan tag */
1986 if (likely(!np->vlangrp)) {
1987 start_tx->txvlan = 0;
1988 } else {
1989 if (vlan_tx_tag_present(skb))
1990 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
1991 else
1992 start_tx->txvlan = 0;
1993 }
1994
1995 spin_lock_irq(&np->lock);
1996
1997 /* set tx flags */
1998 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1999 np->put_tx.ex = put_tx;
2000
2001 spin_unlock_irq(&np->lock);
2002
2003 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2004 dev->name, entries, tx_flags_extra);
2005 {
2006 int j;
2007 for (j=0; j<64; j++) {
2008 if ((j%16) == 0)
2009 dprintk("\n%03x:", j);
2010 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2011 }
2012 dprintk("\n");
2013 }
2014
2015 dev->trans_start = jiffies;
2016 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2017 return NETDEV_TX_OK;
2018 }
2019
2020 /*
2021 * nv_tx_done: check for completed packets, release the skbs.
2022 *
2023 * Caller must own np->lock.
2024 */
2025 static void nv_tx_done(struct net_device *dev)
2026 {
2027 struct fe_priv *np = netdev_priv(dev);
2028 u32 flags;
2029 struct ring_desc* orig_get_tx = np->get_tx.orig;
2030
2031 while ((np->get_tx.orig != np->put_tx.orig) &&
2032 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
2033
2034 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2035 dev->name, flags);
2036
2037 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2038 np->get_tx_ctx->dma_len,
2039 PCI_DMA_TODEVICE);
2040 np->get_tx_ctx->dma = 0;
2041
2042 if (np->desc_ver == DESC_VER_1) {
2043 if (flags & NV_TX_LASTPACKET) {
2044 if (flags & NV_TX_ERROR) {
2045 if (flags & NV_TX_UNDERFLOW)
2046 np->stats.tx_fifo_errors++;
2047 if (flags & NV_TX_CARRIERLOST)
2048 np->stats.tx_carrier_errors++;
2049 np->stats.tx_errors++;
2050 } else {
2051 np->stats.tx_packets++;
2052 np->stats.tx_bytes += np->get_tx_ctx->skb->len;
2053 }
2054 dev_kfree_skb_any(np->get_tx_ctx->skb);
2055 np->get_tx_ctx->skb = NULL;
2056 }
2057 } else {
2058 if (flags & NV_TX2_LASTPACKET) {
2059 if (flags & NV_TX2_ERROR) {
2060 if (flags & NV_TX2_UNDERFLOW)
2061 np->stats.tx_fifo_errors++;
2062 if (flags & NV_TX2_CARRIERLOST)
2063 np->stats.tx_carrier_errors++;
2064 np->stats.tx_errors++;
2065 } else {
2066 np->stats.tx_packets++;
2067 np->stats.tx_bytes += np->get_tx_ctx->skb->len;
2068 }
2069 dev_kfree_skb_any(np->get_tx_ctx->skb);
2070 np->get_tx_ctx->skb = NULL;
2071 }
2072 }
2073 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2074 np->get_tx.orig = np->first_tx.orig;
2075 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2076 np->get_tx_ctx = np->first_tx_ctx;
2077 }
2078 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2079 np->tx_stop = 0;
2080 netif_wake_queue(dev);
2081 }
2082 }
2083
2084 static void nv_tx_done_optimized(struct net_device *dev, int limit)
2085 {
2086 struct fe_priv *np = netdev_priv(dev);
2087 u32 flags;
2088 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2089
2090 while ((np->get_tx.ex != np->put_tx.ex) &&
2091 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2092 (limit-- > 0)) {
2093
2094 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2095 dev->name, flags);
2096
2097 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2098 np->get_tx_ctx->dma_len,
2099 PCI_DMA_TODEVICE);
2100 np->get_tx_ctx->dma = 0;
2101
2102 if (flags & NV_TX2_LASTPACKET) {
2103 if (!(flags & NV_TX2_ERROR))
2104 np->stats.tx_packets++;
2105 dev_kfree_skb_any(np->get_tx_ctx->skb);
2106 np->get_tx_ctx->skb = NULL;
2107 }
2108 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2109 np->get_tx.ex = np->first_tx.ex;
2110 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2111 np->get_tx_ctx = np->first_tx_ctx;
2112 }
2113 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2114 np->tx_stop = 0;
2115 netif_wake_queue(dev);
2116 }
2117 }
2118
2119 /*
2120 * nv_tx_timeout: dev->tx_timeout function
2121 * Called with netif_tx_lock held.
2122 */
2123 static void nv_tx_timeout(struct net_device *dev)
2124 {
2125 struct fe_priv *np = netdev_priv(dev);
2126 u8 __iomem *base = get_hwbase(dev);
2127 u32 status;
2128
2129 if (np->msi_flags & NV_MSI_X_ENABLED)
2130 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2131 else
2132 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2133
2134 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2135
2136 {
2137 int i;
2138
2139 printk(KERN_INFO "%s: Ring at %lx\n",
2140 dev->name, (unsigned long)np->ring_addr);
2141 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2142 for (i=0;i<=np->register_size;i+= 32) {
2143 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2144 i,
2145 readl(base + i + 0), readl(base + i + 4),
2146 readl(base + i + 8), readl(base + i + 12),
2147 readl(base + i + 16), readl(base + i + 20),
2148 readl(base + i + 24), readl(base + i + 28));
2149 }
2150 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2151 for (i=0;i<np->tx_ring_size;i+= 4) {
2152 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2153 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2154 i,
2155 le32_to_cpu(np->tx_ring.orig[i].buf),
2156 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2157 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2158 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2159 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2160 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2161 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2162 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2163 } else {
2164 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2165 i,
2166 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2167 le32_to_cpu(np->tx_ring.ex[i].buflow),
2168 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2169 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2170 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2171 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2172 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2173 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2174 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2175 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2176 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2177 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2178 }
2179 }
2180 }
2181
2182 spin_lock_irq(&np->lock);
2183
2184 /* 1) stop tx engine */
2185 nv_stop_tx(dev);
2186
2187 /* 2) check that the packets were not sent already: */
2188 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2189 nv_tx_done(dev);
2190 else
2191 nv_tx_done_optimized(dev, np->tx_ring_size);
2192
2193 /* 3) if there are dead entries: clear everything */
2194 if (np->get_tx_ctx != np->put_tx_ctx) {
2195 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2196 nv_drain_tx(dev);
2197 nv_init_tx(dev);
2198 setup_hw_rings(dev, NV_SETUP_TX_RING);
2199 }
2200
2201 netif_wake_queue(dev);
2202
2203 /* 4) restart tx engine */
2204 nv_start_tx(dev);
2205 spin_unlock_irq(&np->lock);
2206 }
2207
2208 /*
2209 * Called when the nic notices a mismatch between the actual data len on the
2210 * wire and the len indicated in the 802 header
2211 */
2212 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2213 {
2214 int hdrlen; /* length of the 802 header */
2215 int protolen; /* length as stored in the proto field */
2216
2217 /* 1) calculate len according to header */
2218 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2219 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2220 hdrlen = VLAN_HLEN;
2221 } else {
2222 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2223 hdrlen = ETH_HLEN;
2224 }
2225 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2226 dev->name, datalen, protolen, hdrlen);
2227 if (protolen > ETH_DATA_LEN)
2228 return datalen; /* Value in proto field not a len, no checks possible */
2229
2230 protolen += hdrlen;
2231 /* consistency checks: */
2232 if (datalen > ETH_ZLEN) {
2233 if (datalen >= protolen) {
2234 /* more data on wire than in 802 header, trim of
2235 * additional data.
2236 */
2237 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2238 dev->name, protolen);
2239 return protolen;
2240 } else {
2241 /* less data on wire than mentioned in header.
2242 * Discard the packet.
2243 */
2244 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2245 dev->name);
2246 return -1;
2247 }
2248 } else {
2249 /* short packet. Accept only if 802 values are also short */
2250 if (protolen > ETH_ZLEN) {
2251 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2252 dev->name);
2253 return -1;
2254 }
2255 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2256 dev->name, datalen);
2257 return datalen;
2258 }
2259 }
2260
2261 static int nv_rx_process(struct net_device *dev, int limit)
2262 {
2263 struct fe_priv *np = netdev_priv(dev);
2264 u32 flags;
2265 u32 rx_processed_cnt = 0;
2266 struct sk_buff *skb;
2267 int len;
2268
2269 while((np->get_rx.orig != np->put_rx.orig) &&
2270 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2271 (rx_processed_cnt++ < limit)) {
2272
2273 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2274 dev->name, flags);
2275
2276 /*
2277 * the packet is for us - immediately tear down the pci mapping.
2278 * TODO: check if a prefetch of the first cacheline improves
2279 * the performance.
2280 */
2281 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2282 np->get_rx_ctx->dma_len,
2283 PCI_DMA_FROMDEVICE);
2284 skb = np->get_rx_ctx->skb;
2285 np->get_rx_ctx->skb = NULL;
2286
2287 {
2288 int j;
2289 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2290 for (j=0; j<64; j++) {
2291 if ((j%16) == 0)
2292 dprintk("\n%03x:", j);
2293 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2294 }
2295 dprintk("\n");
2296 }
2297 /* look at what we actually got: */
2298 if (np->desc_ver == DESC_VER_1) {
2299 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2300 len = flags & LEN_MASK_V1;
2301 if (unlikely(flags & NV_RX_ERROR)) {
2302 if (flags & NV_RX_ERROR4) {
2303 len = nv_getlen(dev, skb->data, len);
2304 if (len < 0) {
2305 np->stats.rx_errors++;
2306 dev_kfree_skb(skb);
2307 goto next_pkt;
2308 }
2309 }
2310 /* framing errors are soft errors */
2311 else if (flags & NV_RX_FRAMINGERR) {
2312 if (flags & NV_RX_SUBSTRACT1) {
2313 len--;
2314 }
2315 }
2316 /* the rest are hard errors */
2317 else {
2318 if (flags & NV_RX_MISSEDFRAME)
2319 np->stats.rx_missed_errors++;
2320 if (flags & NV_RX_CRCERR)
2321 np->stats.rx_crc_errors++;
2322 if (flags & NV_RX_OVERFLOW)
2323 np->stats.rx_over_errors++;
2324 np->stats.rx_errors++;
2325 dev_kfree_skb(skb);
2326 goto next_pkt;
2327 }
2328 }
2329 } else {
2330 dev_kfree_skb(skb);
2331 goto next_pkt;
2332 }
2333 } else {
2334 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2335 len = flags & LEN_MASK_V2;
2336 if (unlikely(flags & NV_RX2_ERROR)) {
2337 if (flags & NV_RX2_ERROR4) {
2338 len = nv_getlen(dev, skb->data, len);
2339 if (len < 0) {
2340 np->stats.rx_errors++;
2341 dev_kfree_skb(skb);
2342 goto next_pkt;
2343 }
2344 }
2345 /* framing errors are soft errors */
2346 else if (flags & NV_RX2_FRAMINGERR) {
2347 if (flags & NV_RX2_SUBSTRACT1) {
2348 len--;
2349 }
2350 }
2351 /* the rest are hard errors */
2352 else {
2353 if (flags & NV_RX2_CRCERR)
2354 np->stats.rx_crc_errors++;
2355 if (flags & NV_RX2_OVERFLOW)
2356 np->stats.rx_over_errors++;
2357 np->stats.rx_errors++;
2358 dev_kfree_skb(skb);
2359 goto next_pkt;
2360 }
2361 }
2362 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2363 skb->ip_summed = CHECKSUM_UNNECESSARY;
2364 } else {
2365 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2366 (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2367 skb->ip_summed = CHECKSUM_UNNECESSARY;
2368 }
2369 }
2370 } else {
2371 dev_kfree_skb(skb);
2372 goto next_pkt;
2373 }
2374 }
2375 /* got a valid packet - forward it to the network core */
2376 skb_put(skb, len);
2377 skb->protocol = eth_type_trans(skb, dev);
2378 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2379 dev->name, len, skb->protocol);
2380 #ifdef CONFIG_FORCEDETH_NAPI
2381 netif_receive_skb(skb);
2382 #else
2383 netif_rx(skb);
2384 #endif
2385 dev->last_rx = jiffies;
2386 np->stats.rx_packets++;
2387 np->stats.rx_bytes += len;
2388 next_pkt:
2389 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2390 np->get_rx.orig = np->first_rx.orig;
2391 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2392 np->get_rx_ctx = np->first_rx_ctx;
2393 }
2394
2395 return rx_processed_cnt;
2396 }
2397
2398 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2399 {
2400 struct fe_priv *np = netdev_priv(dev);
2401 u32 flags;
2402 u32 vlanflags = 0;
2403 u32 rx_processed_cnt = 0;
2404 struct sk_buff *skb;
2405 int len;
2406
2407 while((np->get_rx.ex != np->put_rx.ex) &&
2408 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2409 (rx_processed_cnt++ < limit)) {
2410
2411 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2412 dev->name, flags);
2413
2414 /*
2415 * the packet is for us - immediately tear down the pci mapping.
2416 * TODO: check if a prefetch of the first cacheline improves
2417 * the performance.
2418 */
2419 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2420 np->get_rx_ctx->dma_len,
2421 PCI_DMA_FROMDEVICE);
2422 skb = np->get_rx_ctx->skb;
2423 np->get_rx_ctx->skb = NULL;
2424
2425 {
2426 int j;
2427 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2428 for (j=0; j<64; j++) {
2429 if ((j%16) == 0)
2430 dprintk("\n%03x:", j);
2431 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2432 }
2433 dprintk("\n");
2434 }
2435 /* look at what we actually got: */
2436 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2437 len = flags & LEN_MASK_V2;
2438 if (unlikely(flags & NV_RX2_ERROR)) {
2439 if (flags & NV_RX2_ERROR4) {
2440 len = nv_getlen(dev, skb->data, len);
2441 if (len < 0) {
2442 dev_kfree_skb(skb);
2443 goto next_pkt;
2444 }
2445 }
2446 /* framing errors are soft errors */
2447 else if (flags & NV_RX2_FRAMINGERR) {
2448 if (flags & NV_RX2_SUBSTRACT1) {
2449 len--;
2450 }
2451 }
2452 /* the rest are hard errors */
2453 else {
2454 dev_kfree_skb(skb);
2455 goto next_pkt;
2456 }
2457 }
2458
2459 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2460 skb->ip_summed = CHECKSUM_UNNECESSARY;
2461 } else {
2462 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2463 (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2464 skb->ip_summed = CHECKSUM_UNNECESSARY;
2465 }
2466 }
2467
2468 /* got a valid packet - forward it to the network core */
2469 skb_put(skb, len);
2470 skb->protocol = eth_type_trans(skb, dev);
2471 prefetch(skb->data);
2472
2473 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2474 dev->name, len, skb->protocol);
2475
2476 if (likely(!np->vlangrp)) {
2477 #ifdef CONFIG_FORCEDETH_NAPI
2478 netif_receive_skb(skb);
2479 #else
2480 netif_rx(skb);
2481 #endif
2482 } else {
2483 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2484 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2485 #ifdef CONFIG_FORCEDETH_NAPI
2486 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2487 vlanflags & NV_RX3_VLAN_TAG_MASK);
2488 #else
2489 vlan_hwaccel_rx(skb, np->vlangrp,
2490 vlanflags & NV_RX3_VLAN_TAG_MASK);
2491 #endif
2492 } else {
2493 #ifdef CONFIG_FORCEDETH_NAPI
2494 netif_receive_skb(skb);
2495 #else
2496 netif_rx(skb);
2497 #endif
2498 }
2499 }
2500
2501 dev->last_rx = jiffies;
2502 np->stats.rx_packets++;
2503 np->stats.rx_bytes += len;
2504 } else {
2505 dev_kfree_skb(skb);
2506 }
2507 next_pkt:
2508 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2509 np->get_rx.ex = np->first_rx.ex;
2510 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2511 np->get_rx_ctx = np->first_rx_ctx;
2512 }
2513
2514 return rx_processed_cnt;
2515 }
2516
2517 static void set_bufsize(struct net_device *dev)
2518 {
2519 struct fe_priv *np = netdev_priv(dev);
2520
2521 if (dev->mtu <= ETH_DATA_LEN)
2522 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2523 else
2524 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2525 }
2526
2527 /*
2528 * nv_change_mtu: dev->change_mtu function
2529 * Called with dev_base_lock held for read.
2530 */
2531 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2532 {
2533 struct fe_priv *np = netdev_priv(dev);
2534 int old_mtu;
2535
2536 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2537 return -EINVAL;
2538
2539 old_mtu = dev->mtu;
2540 dev->mtu = new_mtu;
2541
2542 /* return early if the buffer sizes will not change */
2543 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2544 return 0;
2545 if (old_mtu == new_mtu)
2546 return 0;
2547
2548 /* synchronized against open : rtnl_lock() held by caller */
2549 if (netif_running(dev)) {
2550 u8 __iomem *base = get_hwbase(dev);
2551 /*
2552 * It seems that the nic preloads valid ring entries into an
2553 * internal buffer. The procedure for flushing everything is
2554 * guessed, there is probably a simpler approach.
2555 * Changing the MTU is a rare event, it shouldn't matter.
2556 */
2557 nv_disable_irq(dev);
2558 netif_tx_lock_bh(dev);
2559 spin_lock(&np->lock);
2560 /* stop engines */
2561 nv_stop_rx(dev);
2562 nv_stop_tx(dev);
2563 nv_txrx_reset(dev);
2564 /* drain rx queue */
2565 nv_drain_rx(dev);
2566 nv_drain_tx(dev);
2567 /* reinit driver view of the rx queue */
2568 set_bufsize(dev);
2569 if (nv_init_ring(dev)) {
2570 if (!np->in_shutdown)
2571 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2572 }
2573 /* reinit nic view of the rx queue */
2574 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2575 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2576 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2577 base + NvRegRingSizes);
2578 pci_push(base);
2579 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2580 pci_push(base);
2581
2582 /* restart rx engine */
2583 nv_start_rx(dev);
2584 nv_start_tx(dev);
2585 spin_unlock(&np->lock);
2586 netif_tx_unlock_bh(dev);
2587 nv_enable_irq(dev);
2588 }
2589 return 0;
2590 }
2591
2592 static void nv_copy_mac_to_hw(struct net_device *dev)
2593 {
2594 u8 __iomem *base = get_hwbase(dev);
2595 u32 mac[2];
2596
2597 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2598 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2599 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2600
2601 writel(mac[0], base + NvRegMacAddrA);
2602 writel(mac[1], base + NvRegMacAddrB);
2603 }
2604
2605 /*
2606 * nv_set_mac_address: dev->set_mac_address function
2607 * Called with rtnl_lock() held.
2608 */
2609 static int nv_set_mac_address(struct net_device *dev, void *addr)
2610 {
2611 struct fe_priv *np = netdev_priv(dev);
2612 struct sockaddr *macaddr = (struct sockaddr*)addr;
2613
2614 if (!is_valid_ether_addr(macaddr->sa_data))
2615 return -EADDRNOTAVAIL;
2616
2617 /* synchronized against open : rtnl_lock() held by caller */
2618 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2619
2620 if (netif_running(dev)) {
2621 netif_tx_lock_bh(dev);
2622 spin_lock_irq(&np->lock);
2623
2624 /* stop rx engine */
2625 nv_stop_rx(dev);
2626
2627 /* set mac address */
2628 nv_copy_mac_to_hw(dev);
2629
2630 /* restart rx engine */
2631 nv_start_rx(dev);
2632 spin_unlock_irq(&np->lock);
2633 netif_tx_unlock_bh(dev);
2634 } else {
2635 nv_copy_mac_to_hw(dev);
2636 }
2637 return 0;
2638 }
2639
2640 /*
2641 * nv_set_multicast: dev->set_multicast function
2642 * Called with netif_tx_lock held.
2643 */
2644 static void nv_set_multicast(struct net_device *dev)
2645 {
2646 struct fe_priv *np = netdev_priv(dev);
2647 u8 __iomem *base = get_hwbase(dev);
2648 u32 addr[2];
2649 u32 mask[2];
2650 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2651
2652 memset(addr, 0, sizeof(addr));
2653 memset(mask, 0, sizeof(mask));
2654
2655 if (dev->flags & IFF_PROMISC) {
2656 pff |= NVREG_PFF_PROMISC;
2657 } else {
2658 pff |= NVREG_PFF_MYADDR;
2659
2660 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2661 u32 alwaysOff[2];
2662 u32 alwaysOn[2];
2663
2664 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2665 if (dev->flags & IFF_ALLMULTI) {
2666 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2667 } else {
2668 struct dev_mc_list *walk;
2669
2670 walk = dev->mc_list;
2671 while (walk != NULL) {
2672 u32 a, b;
2673 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2674 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2675 alwaysOn[0] &= a;
2676 alwaysOff[0] &= ~a;
2677 alwaysOn[1] &= b;
2678 alwaysOff[1] &= ~b;
2679 walk = walk->next;
2680 }
2681 }
2682 addr[0] = alwaysOn[0];
2683 addr[1] = alwaysOn[1];
2684 mask[0] = alwaysOn[0] | alwaysOff[0];
2685 mask[1] = alwaysOn[1] | alwaysOff[1];
2686 }
2687 }
2688 addr[0] |= NVREG_MCASTADDRA_FORCE;
2689 pff |= NVREG_PFF_ALWAYS;
2690 spin_lock_irq(&np->lock);
2691 nv_stop_rx(dev);
2692 writel(addr[0], base + NvRegMulticastAddrA);
2693 writel(addr[1], base + NvRegMulticastAddrB);
2694 writel(mask[0], base + NvRegMulticastMaskA);
2695 writel(mask[1], base + NvRegMulticastMaskB);
2696 writel(pff, base + NvRegPacketFilterFlags);
2697 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2698 dev->name);
2699 nv_start_rx(dev);
2700 spin_unlock_irq(&np->lock);
2701 }
2702
2703 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2704 {
2705 struct fe_priv *np = netdev_priv(dev);
2706 u8 __iomem *base = get_hwbase(dev);
2707
2708 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2709
2710 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2711 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2712 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2713 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2714 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2715 } else {
2716 writel(pff, base + NvRegPacketFilterFlags);
2717 }
2718 }
2719 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2720 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2721 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2722 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2723 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2724 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2725 } else {
2726 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2727 writel(regmisc, base + NvRegMisc1);
2728 }
2729 }
2730 }
2731
2732 /**
2733 * nv_update_linkspeed: Setup the MAC according to the link partner
2734 * @dev: Network device to be configured
2735 *
2736 * The function queries the PHY and checks if there is a link partner.
2737 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2738 * set to 10 MBit HD.
2739 *
2740 * The function returns 0 if there is no link partner and 1 if there is
2741 * a good link partner.
2742 */
2743 static int nv_update_linkspeed(struct net_device *dev)
2744 {
2745 struct fe_priv *np = netdev_priv(dev);
2746 u8 __iomem *base = get_hwbase(dev);
2747 int adv = 0;
2748 int lpa = 0;
2749 int adv_lpa, adv_pause, lpa_pause;
2750 int newls = np->linkspeed;
2751 int newdup = np->duplex;
2752 int mii_status;
2753 int retval = 0;
2754 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2755
2756 /* BMSR_LSTATUS is latched, read it twice:
2757 * we want the current value.
2758 */
2759 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2760 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2761
2762 if (!(mii_status & BMSR_LSTATUS)) {
2763 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2764 dev->name);
2765 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2766 newdup = 0;
2767 retval = 0;
2768 goto set_speed;
2769 }
2770
2771 if (np->autoneg == 0) {
2772 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2773 dev->name, np->fixed_mode);
2774 if (np->fixed_mode & LPA_100FULL) {
2775 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2776 newdup = 1;
2777 } else if (np->fixed_mode & LPA_100HALF) {
2778 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2779 newdup = 0;
2780 } else if (np->fixed_mode & LPA_10FULL) {
2781 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2782 newdup = 1;
2783 } else {
2784 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2785 newdup = 0;
2786 }
2787 retval = 1;
2788 goto set_speed;
2789 }
2790 /* check auto negotiation is complete */
2791 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2792 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2793 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2794 newdup = 0;
2795 retval = 0;
2796 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2797 goto set_speed;
2798 }
2799
2800 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2801 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2802 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2803 dev->name, adv, lpa);
2804
2805 retval = 1;
2806 if (np->gigabit == PHY_GIGABIT) {
2807 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2808 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2809
2810 if ((control_1000 & ADVERTISE_1000FULL) &&
2811 (status_1000 & LPA_1000FULL)) {
2812 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2813 dev->name);
2814 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2815 newdup = 1;
2816 goto set_speed;
2817 }
2818 }
2819
2820 /* FIXME: handle parallel detection properly */
2821 adv_lpa = lpa & adv;
2822 if (adv_lpa & LPA_100FULL) {
2823 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2824 newdup = 1;
2825 } else if (adv_lpa & LPA_100HALF) {
2826 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2827 newdup = 0;
2828 } else if (adv_lpa & LPA_10FULL) {
2829 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2830 newdup = 1;
2831 } else if (adv_lpa & LPA_10HALF) {
2832 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2833 newdup = 0;
2834 } else {
2835 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2836 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2837 newdup = 0;
2838 }
2839
2840 set_speed:
2841 if (np->duplex == newdup && np->linkspeed == newls)
2842 return retval;
2843
2844 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2845 dev->name, np->linkspeed, np->duplex, newls, newdup);
2846
2847 np->duplex = newdup;
2848 np->linkspeed = newls;
2849
2850 if (np->gigabit == PHY_GIGABIT) {
2851 phyreg = readl(base + NvRegRandomSeed);
2852 phyreg &= ~(0x3FF00);
2853 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2854 phyreg |= NVREG_RNDSEED_FORCE3;
2855 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2856 phyreg |= NVREG_RNDSEED_FORCE2;
2857 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2858 phyreg |= NVREG_RNDSEED_FORCE;
2859 writel(phyreg, base + NvRegRandomSeed);
2860 }
2861
2862 phyreg = readl(base + NvRegPhyInterface);
2863 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2864 if (np->duplex == 0)
2865 phyreg |= PHY_HALF;
2866 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2867 phyreg |= PHY_100;
2868 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2869 phyreg |= PHY_1000;
2870 writel(phyreg, base + NvRegPhyInterface);
2871
2872 if (phyreg & PHY_RGMII) {
2873 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2874 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2875 else
2876 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2877 } else {
2878 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2879 }
2880 writel(txreg, base + NvRegTxDeferral);
2881
2882 if (np->desc_ver == DESC_VER_1) {
2883 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2884 } else {
2885 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2886 txreg = NVREG_TX_WM_DESC2_3_1000;
2887 else
2888 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2889 }
2890 writel(txreg, base + NvRegTxWatermark);
2891
2892 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2893 base + NvRegMisc1);
2894 pci_push(base);
2895 writel(np->linkspeed, base + NvRegLinkSpeed);
2896 pci_push(base);
2897
2898 pause_flags = 0;
2899 /* setup pause frame */
2900 if (np->duplex != 0) {
2901 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2902 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2903 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2904
2905 switch (adv_pause) {
2906 case ADVERTISE_PAUSE_CAP:
2907 if (lpa_pause & LPA_PAUSE_CAP) {
2908 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2909 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2910 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2911 }
2912 break;
2913 case ADVERTISE_PAUSE_ASYM:
2914 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2915 {
2916 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2917 }
2918 break;
2919 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2920 if (lpa_pause & LPA_PAUSE_CAP)
2921 {
2922 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2923 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2924 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2925 }
2926 if (lpa_pause == LPA_PAUSE_ASYM)
2927 {
2928 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2929 }
2930 break;
2931 }
2932 } else {
2933 pause_flags = np->pause_flags;
2934 }
2935 }
2936 nv_update_pause(dev, pause_flags);
2937
2938 return retval;
2939 }
2940
2941 static void nv_linkchange(struct net_device *dev)
2942 {
2943 if (nv_update_linkspeed(dev)) {
2944 if (!netif_carrier_ok(dev)) {
2945 netif_carrier_on(dev);
2946 printk(KERN_INFO "%s: link up.\n", dev->name);
2947 nv_start_rx(dev);
2948 }
2949 } else {
2950 if (netif_carrier_ok(dev)) {
2951 netif_carrier_off(dev);
2952 printk(KERN_INFO "%s: link down.\n", dev->name);
2953 nv_stop_rx(dev);
2954 }
2955 }
2956 }
2957
2958 static void nv_link_irq(struct net_device *dev)
2959 {
2960 u8 __iomem *base = get_hwbase(dev);
2961 u32 miistat;
2962
2963 miistat = readl(base + NvRegMIIStatus);
2964 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2965 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2966
2967 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2968 nv_linkchange(dev);
2969 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2970 }
2971
2972 static irqreturn_t nv_nic_irq(int foo, void *data)
2973 {
2974 struct net_device *dev = (struct net_device *) data;
2975 struct fe_priv *np = netdev_priv(dev);
2976 u8 __iomem *base = get_hwbase(dev);
2977 u32 events;
2978 int i;
2979
2980 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2981
2982 for (i=0; ; i++) {
2983 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2984 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2985 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2986 } else {
2987 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2988 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2989 }
2990 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2991 if (!(events & np->irqmask))
2992 break;
2993
2994 spin_lock(&np->lock);
2995 nv_tx_done(dev);
2996 spin_unlock(&np->lock);
2997
2998 #ifdef CONFIG_FORCEDETH_NAPI
2999 if (events & NVREG_IRQ_RX_ALL) {
3000 netif_rx_schedule(dev);
3001
3002 /* Disable furthur receive irq's */
3003 spin_lock(&np->lock);
3004 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3005
3006 if (np->msi_flags & NV_MSI_X_ENABLED)
3007 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3008 else
3009 writel(np->irqmask, base + NvRegIrqMask);
3010 spin_unlock(&np->lock);
3011 }
3012 #else
3013 if (nv_rx_process(dev, dev->weight)) {
3014 if (unlikely(nv_alloc_rx(dev))) {
3015 spin_lock(&np->lock);
3016 if (!np->in_shutdown)
3017 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3018 spin_unlock(&np->lock);
3019 }
3020 }
3021 #endif
3022 if (unlikely(events & NVREG_IRQ_LINK)) {
3023 spin_lock(&np->lock);
3024 nv_link_irq(dev);
3025 spin_unlock(&np->lock);
3026 }
3027 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3028 spin_lock(&np->lock);
3029 nv_linkchange(dev);
3030 spin_unlock(&np->lock);
3031 np->link_timeout = jiffies + LINK_TIMEOUT;
3032 }
3033 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3034 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3035 dev->name, events);
3036 }
3037 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3038 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3039 dev->name, events);
3040 }
3041 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3042 spin_lock(&np->lock);
3043 /* disable interrupts on the nic */
3044 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3045 writel(0, base + NvRegIrqMask);
3046 else
3047 writel(np->irqmask, base + NvRegIrqMask);
3048 pci_push(base);
3049
3050 if (!np->in_shutdown) {
3051 np->nic_poll_irq = np->irqmask;
3052 np->recover_error = 1;
3053 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3054 }
3055 spin_unlock(&np->lock);
3056 break;
3057 }
3058 if (unlikely(i > max_interrupt_work)) {
3059 spin_lock(&np->lock);
3060 /* disable interrupts on the nic */
3061 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3062 writel(0, base + NvRegIrqMask);
3063 else
3064 writel(np->irqmask, base + NvRegIrqMask);
3065 pci_push(base);
3066
3067 if (!np->in_shutdown) {
3068 np->nic_poll_irq = np->irqmask;
3069 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3070 }
3071 spin_unlock(&np->lock);
3072 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3073 break;
3074 }
3075
3076 }
3077 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3078
3079 return IRQ_RETVAL(i);
3080 }
3081
3082 #define TX_WORK_PER_LOOP 64
3083 #define RX_WORK_PER_LOOP 64
3084 /**
3085 * All _optimized functions are used to help increase performance
3086 * (reduce CPU and increase throughput). They use descripter version 3,
3087 * compiler directives, and reduce memory accesses.
3088 */
3089 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3090 {
3091 struct net_device *dev = (struct net_device *) data;
3092 struct fe_priv *np = netdev_priv(dev);
3093 u8 __iomem *base = get_hwbase(dev);
3094 u32 events;
3095 int i;
3096
3097 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3098
3099 for (i=0; ; i++) {
3100 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3101 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3102 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3103 } else {
3104 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3105 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3106 }
3107 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3108 if (!(events & np->irqmask))
3109 break;
3110
3111 spin_lock(&np->lock);
3112 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3113 spin_unlock(&np->lock);
3114
3115 #ifdef CONFIG_FORCEDETH_NAPI
3116 if (events & NVREG_IRQ_RX_ALL) {
3117 netif_rx_schedule(dev);
3118
3119 /* Disable furthur receive irq's */
3120 spin_lock(&np->lock);
3121 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3122
3123 if (np->msi_flags & NV_MSI_X_ENABLED)
3124 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3125 else
3126 writel(np->irqmask, base + NvRegIrqMask);
3127 spin_unlock(&np->lock);
3128 }
3129 #else
3130 if (nv_rx_process_optimized(dev, dev->weight)) {
3131 if (unlikely(nv_alloc_rx_optimized(dev))) {
3132 spin_lock(&np->lock);
3133 if (!np->in_shutdown)
3134 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3135 spin_unlock(&np->lock);
3136 }
3137 }
3138 #endif
3139 if (unlikely(events & NVREG_IRQ_LINK)) {
3140 spin_lock(&np->lock);
3141 nv_link_irq(dev);
3142 spin_unlock(&np->lock);
3143 }
3144 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3145 spin_lock(&np->lock);
3146 nv_linkchange(dev);
3147 spin_unlock(&np->lock);
3148 np->link_timeout = jiffies + LINK_TIMEOUT;
3149 }
3150 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3151 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3152 dev->name, events);
3153 }
3154 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3155 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3156 dev->name, events);
3157 }
3158 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3159 spin_lock(&np->lock);
3160 /* disable interrupts on the nic */
3161 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3162 writel(0, base + NvRegIrqMask);
3163 else
3164 writel(np->irqmask, base + NvRegIrqMask);
3165 pci_push(base);
3166
3167 if (!np->in_shutdown) {
3168 np->nic_poll_irq = np->irqmask;
3169 np->recover_error = 1;
3170 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3171 }
3172 spin_unlock(&np->lock);
3173 break;
3174 }
3175
3176 if (unlikely(i > max_interrupt_work)) {
3177 spin_lock(&np->lock);
3178 /* disable interrupts on the nic */
3179 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3180 writel(0, base + NvRegIrqMask);
3181 else
3182 writel(np->irqmask, base + NvRegIrqMask);
3183 pci_push(base);
3184
3185 if (!np->in_shutdown) {
3186 np->nic_poll_irq = np->irqmask;
3187 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3188 }
3189 spin_unlock(&np->lock);
3190 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3191 break;
3192 }
3193
3194 }
3195 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3196
3197 return IRQ_RETVAL(i);
3198 }
3199
3200 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3201 {
3202 struct net_device *dev = (struct net_device *) data;
3203 struct fe_priv *np = netdev_priv(dev);
3204 u8 __iomem *base = get_hwbase(dev);
3205 u32 events;
3206 int i;
3207 unsigned long flags;
3208
3209 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3210
3211 for (i=0; ; i++) {
3212 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3213 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3214 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3215 if (!(events & np->irqmask))
3216 break;
3217
3218 spin_lock_irqsave(&np->lock, flags);
3219 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3220 spin_unlock_irqrestore(&np->lock, flags);
3221
3222 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3223 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3224 dev->name, events);
3225 }
3226 if (unlikely(i > max_interrupt_work)) {
3227 spin_lock_irqsave(&np->lock, flags);
3228 /* disable interrupts on the nic */
3229 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3230 pci_push(base);
3231
3232 if (!np->in_shutdown) {
3233 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3234 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3235 }
3236 spin_unlock_irqrestore(&np->lock, flags);
3237 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3238 break;
3239 }
3240
3241 }
3242 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3243
3244 return IRQ_RETVAL(i);
3245 }
3246
3247 #ifdef CONFIG_FORCEDETH_NAPI
3248 static int nv_napi_poll(struct net_device *dev, int *budget)
3249 {
3250 int pkts, limit = min(*budget, dev->quota);
3251 struct fe_priv *np = netdev_priv(dev);
3252 u8 __iomem *base = get_hwbase(dev);
3253 unsigned long flags;
3254 int retcode;
3255
3256 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3257 pkts = nv_rx_process(dev, limit);
3258 retcode = nv_alloc_rx(dev);
3259 } else {
3260 pkts = nv_rx_process_optimized(dev, limit);
3261 retcode = nv_alloc_rx_optimized(dev);
3262 }
3263
3264 if (retcode) {
3265 spin_lock_irqsave(&np->lock, flags);
3266 if (!np->in_shutdown)
3267 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3268 spin_unlock_irqrestore(&np->lock, flags);
3269 }
3270
3271 if (pkts < limit) {
3272 /* all done, no more packets present */
3273 netif_rx_complete(dev);
3274
3275 /* re-enable receive interrupts */
3276 spin_lock_irqsave(&np->lock, flags);
3277
3278 np->irqmask |= NVREG_IRQ_RX_ALL;
3279 if (np->msi_flags & NV_MSI_X_ENABLED)
3280 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3281 else
3282 writel(np->irqmask, base + NvRegIrqMask);
3283
3284 spin_unlock_irqrestore(&np->lock, flags);
3285 return 0;
3286 } else {
3287 /* used up our quantum, so reschedule */
3288 dev->quota -= pkts;
3289 *budget -= pkts;
3290 return 1;
3291 }
3292 }
3293 #endif
3294
3295 #ifdef CONFIG_FORCEDETH_NAPI
3296 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3297 {
3298 struct net_device *dev = (struct net_device *) data;
3299 u8 __iomem *base = get_hwbase(dev);
3300 u32 events;
3301
3302 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3303 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3304
3305 if (events) {
3306 netif_rx_schedule(dev);
3307 /* disable receive interrupts on the nic */
3308 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3309 pci_push(base);
3310 }
3311 return IRQ_HANDLED;
3312 }
3313 #else
3314 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3315 {
3316 struct net_device *dev = (struct net_device *) data;
3317 struct fe_priv *np = netdev_priv(dev);
3318 u8 __iomem *base = get_hwbase(dev);
3319 u32 events;
3320 int i;
3321 unsigned long flags;
3322
3323 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3324
3325 for (i=0; ; i++) {
3326 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3327 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3328 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3329 if (!(events & np->irqmask))
3330 break;
3331
3332 if (nv_rx_process_optimized(dev, dev->weight)) {
3333 if (unlikely(nv_alloc_rx_optimized(dev))) {
3334 spin_lock_irqsave(&np->lock, flags);
3335 if (!np->in_shutdown)
3336 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3337 spin_unlock_irqrestore(&np->lock, flags);
3338 }
3339 }
3340
3341 if (unlikely(i > max_interrupt_work)) {
3342 spin_lock_irqsave(&np->lock, flags);
3343 /* disable interrupts on the nic */
3344 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3345 pci_push(base);
3346
3347 if (!np->in_shutdown) {
3348 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3349 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3350 }
3351 spin_unlock_irqrestore(&np->lock, flags);
3352 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3353 break;
3354 }
3355 }
3356 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3357
3358 return IRQ_RETVAL(i);
3359 }
3360 #endif
3361
3362 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3363 {
3364 struct net_device *dev = (struct net_device *) data;
3365 struct fe_priv *np = netdev_priv(dev);
3366 u8 __iomem *base = get_hwbase(dev);
3367 u32 events;
3368 int i;
3369 unsigned long flags;
3370
3371 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3372
3373 for (i=0; ; i++) {
3374 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3375 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3376 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3377 if (!(events & np->irqmask))
3378 break;
3379
3380 /* check tx in case we reached max loop limit in tx isr */
3381 spin_lock_irqsave(&np->lock, flags);
3382 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3383 spin_unlock_irqrestore(&np->lock, flags);
3384
3385 if (events & NVREG_IRQ_LINK) {
3386 spin_lock_irqsave(&np->lock, flags);
3387 nv_link_irq(dev);
3388 spin_unlock_irqrestore(&np->lock, flags);
3389 }
3390 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3391 spin_lock_irqsave(&np->lock, flags);
3392 nv_linkchange(dev);
3393 spin_unlock_irqrestore(&np->lock, flags);
3394 np->link_timeout = jiffies + LINK_TIMEOUT;
3395 }
3396 if (events & NVREG_IRQ_RECOVER_ERROR) {
3397 spin_lock_irq(&np->lock);
3398 /* disable interrupts on the nic */
3399 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3400 pci_push(base);
3401
3402 if (!np->in_shutdown) {
3403 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3404 np->recover_error = 1;
3405 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3406 }
3407 spin_unlock_irq(&np->lock);
3408 break;
3409 }
3410 if (events & (NVREG_IRQ_UNKNOWN)) {
3411 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3412 dev->name, events);
3413 }
3414 if (unlikely(i > max_interrupt_work)) {
3415 spin_lock_irqsave(&np->lock, flags);
3416 /* disable interrupts on the nic */
3417 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3418 pci_push(base);
3419
3420 if (!np->in_shutdown) {
3421 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3422 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3423 }
3424 spin_unlock_irqrestore(&np->lock, flags);
3425 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3426 break;
3427 }
3428
3429 }
3430 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3431
3432 return IRQ_RETVAL(i);
3433 }
3434
3435 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3436 {
3437 struct net_device *dev = (struct net_device *) data;
3438 struct fe_priv *np = netdev_priv(dev);
3439 u8 __iomem *base = get_hwbase(dev);
3440 u32 events;
3441
3442 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3443
3444 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3445 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3446 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3447 } else {
3448 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3449 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3450 }
3451 pci_push(base);
3452 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3453 if (!(events & NVREG_IRQ_TIMER))
3454 return IRQ_RETVAL(0);
3455
3456 spin_lock(&np->lock);
3457 np->intr_test = 1;
3458 spin_unlock(&np->lock);
3459
3460 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3461
3462 return IRQ_RETVAL(1);
3463 }
3464
3465 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3466 {
3467 u8 __iomem *base = get_hwbase(dev);
3468 int i;
3469 u32 msixmap = 0;
3470
3471 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3472 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3473 * the remaining 8 interrupts.
3474 */
3475 for (i = 0; i < 8; i++) {
3476 if ((irqmask >> i) & 0x1) {
3477 msixmap |= vector << (i << 2);
3478 }
3479 }
3480 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3481
3482 msixmap = 0;
3483 for (i = 0; i < 8; i++) {
3484 if ((irqmask >> (i + 8)) & 0x1) {
3485 msixmap |= vector << (i << 2);
3486 }
3487 }
3488 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3489 }
3490
3491 static int nv_request_irq(struct net_device *dev, int intr_test)
3492 {
3493 struct fe_priv *np = get_nvpriv(dev);
3494 u8 __iomem *base = get_hwbase(dev);
3495 int ret = 1;
3496 int i;
3497 irqreturn_t (*handler)(int foo, void *data);
3498
3499 if (intr_test) {
3500 handler = nv_nic_irq_test;
3501 } else {
3502 if (np->desc_ver == DESC_VER_3)
3503 handler = nv_nic_irq_optimized;
3504 else
3505 handler = nv_nic_irq;
3506 }
3507
3508 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3509 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3510 np->msi_x_entry[i].entry = i;
3511 }
3512 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3513 np->msi_flags |= NV_MSI_X_ENABLED;
3514 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3515 /* Request irq for rx handling */
3516 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3517 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3518 pci_disable_msix(np->pci_dev);
3519 np->msi_flags &= ~NV_MSI_X_ENABLED;
3520 goto out_err;
3521 }
3522 /* Request irq for tx handling */
3523 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3524 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3525 pci_disable_msix(np->pci_dev);
3526 np->msi_flags &= ~NV_MSI_X_ENABLED;
3527 goto out_free_rx;
3528 }
3529 /* Request irq for link and timer handling */
3530 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3531 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3532 pci_disable_msix(np->pci_dev);
3533 np->msi_flags &= ~NV_MSI_X_ENABLED;
3534 goto out_free_tx;
3535 }
3536 /* map interrupts to their respective vector */
3537 writel(0, base + NvRegMSIXMap0);
3538 writel(0, base + NvRegMSIXMap1);
3539 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3540 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3541 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3542 } else {
3543 /* Request irq for all interrupts */
3544 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3545 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3546 pci_disable_msix(np->pci_dev);
3547 np->msi_flags &= ~NV_MSI_X_ENABLED;
3548 goto out_err;
3549 }
3550
3551 /* map interrupts to vector 0 */
3552 writel(0, base + NvRegMSIXMap0);
3553 writel(0, base + NvRegMSIXMap1);
3554 }
3555 }
3556 }
3557 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3558 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3559 np->msi_flags |= NV_MSI_ENABLED;
3560 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3561 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3562 pci_disable_msi(np->pci_dev);
3563 np->msi_flags &= ~NV_MSI_ENABLED;
3564 goto out_err;
3565 }
3566
3567 /* map interrupts to vector 0 */
3568 writel(0, base + NvRegMSIMap0);
3569 writel(0, base + NvRegMSIMap1);
3570 /* enable msi vector 0 */
3571 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3572 }
3573 }
3574 if (ret != 0) {
3575 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3576 goto out_err;
3577
3578 }
3579
3580 return 0;
3581 out_free_tx:
3582 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3583 out_free_rx:
3584 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3585 out_err:
3586 return 1;
3587 }
3588
3589 static void nv_free_irq(struct net_device *dev)
3590 {
3591 struct fe_priv *np = get_nvpriv(dev);
3592 int i;
3593
3594 if (np->msi_flags & NV_MSI_X_ENABLED) {
3595 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3596 free_irq(np->msi_x_entry[i].vector, dev);
3597 }
3598 pci_disable_msix(np->pci_dev);
3599 np->msi_flags &= ~NV_MSI_X_ENABLED;
3600 } else {
3601 free_irq(np->pci_dev->irq, dev);
3602 if (np->msi_flags & NV_MSI_ENABLED) {
3603 pci_disable_msi(np->pci_dev);
3604 np->msi_flags &= ~NV_MSI_ENABLED;
3605 }
3606 }
3607 }
3608
3609 static void nv_do_nic_poll(unsigned long data)
3610 {
3611 struct net_device *dev = (struct net_device *) data;
3612 struct fe_priv *np = netdev_priv(dev);
3613 u8 __iomem *base = get_hwbase(dev);
3614 u32 mask = 0;
3615
3616 /*
3617 * First disable irq(s) and then
3618 * reenable interrupts on the nic, we have to do this before calling
3619 * nv_nic_irq because that may decide to do otherwise
3620 */
3621
3622 if (!using_multi_irqs(dev)) {
3623 if (np->msi_flags & NV_MSI_X_ENABLED)
3624 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3625 else
3626 disable_irq_lockdep(dev->irq);
3627 mask = np->irqmask;
3628 } else {
3629 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3630 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3631 mask |= NVREG_IRQ_RX_ALL;
3632 }
3633 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3634 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3635 mask |= NVREG_IRQ_TX_ALL;
3636 }
3637 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3638 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3639 mask |= NVREG_IRQ_OTHER;
3640 }
3641 }
3642 np->nic_poll_irq = 0;
3643
3644 if (np->recover_error) {
3645 np->recover_error = 0;
3646 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3647 if (netif_running(dev)) {
3648 netif_tx_lock_bh(dev);
3649 spin_lock(&np->lock);
3650 /* stop engines */
3651 nv_stop_rx(dev);
3652 nv_stop_tx(dev);
3653 nv_txrx_reset(dev);
3654 /* drain rx queue */
3655 nv_drain_rx(dev);
3656 nv_drain_tx(dev);
3657 /* reinit driver view of the rx queue */
3658 set_bufsize(dev);
3659 if (nv_init_ring(dev)) {
3660 if (!np->in_shutdown)
3661 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3662 }
3663 /* reinit nic view of the rx queue */
3664 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3665 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3666 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3667 base + NvRegRingSizes);
3668 pci_push(base);
3669 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3670 pci_push(base);
3671
3672 /* restart rx engine */
3673 nv_start_rx(dev);
3674 nv_start_tx(dev);
3675 spin_unlock(&np->lock);
3676 netif_tx_unlock_bh(dev);
3677 }
3678 }
3679
3680 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
3681
3682 writel(mask, base + NvRegIrqMask);
3683 pci_push(base);
3684
3685 if (!using_multi_irqs(dev)) {
3686 if (np->desc_ver == DESC_VER_3)
3687 nv_nic_irq_optimized(0, dev);
3688 else
3689 nv_nic_irq(0, dev);
3690 if (np->msi_flags & NV_MSI_X_ENABLED)
3691 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3692 else
3693 enable_irq_lockdep(dev->irq);
3694 } else {
3695 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3696 nv_nic_irq_rx(0, dev);
3697 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3698 }
3699 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3700 nv_nic_irq_tx(0, dev);
3701 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3702 }
3703 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3704 nv_nic_irq_other(0, dev);
3705 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3706 }
3707 }
3708 }
3709
3710 #ifdef CONFIG_NET_POLL_CONTROLLER
3711 static void nv_poll_controller(struct net_device *dev)
3712 {
3713 nv_do_nic_poll((unsigned long) dev);
3714 }
3715 #endif
3716
3717 static void nv_do_stats_poll(unsigned long data)
3718 {
3719 struct net_device *dev = (struct net_device *) data;
3720 struct fe_priv *np = netdev_priv(dev);
3721
3722 nv_get_hw_stats(dev);
3723
3724 if (!np->in_shutdown)
3725 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3726 }
3727
3728 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3729 {
3730 struct fe_priv *np = netdev_priv(dev);
3731 strcpy(info->driver, "forcedeth");
3732 strcpy(info->version, FORCEDETH_VERSION);
3733 strcpy(info->bus_info, pci_name(np->pci_dev));
3734 }
3735
3736 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3737 {
3738 struct fe_priv *np = netdev_priv(dev);
3739 wolinfo->supported = WAKE_MAGIC;
3740
3741 spin_lock_irq(&np->lock);
3742 if (np->wolenabled)
3743 wolinfo->wolopts = WAKE_MAGIC;
3744 spin_unlock_irq(&np->lock);
3745 }
3746
3747 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3748 {
3749 struct fe_priv *np = netdev_priv(dev);
3750 u8 __iomem *base = get_hwbase(dev);
3751 u32 flags = 0;
3752
3753 if (wolinfo->wolopts == 0) {
3754 np->wolenabled = 0;
3755 } else if (wolinfo->wolopts & WAKE_MAGIC) {
3756 np->wolenabled = 1;
3757 flags = NVREG_WAKEUPFLAGS_ENABLE;
3758 }
3759 if (netif_running(dev)) {
3760 spin_lock_irq(&np->lock);
3761 writel(flags, base + NvRegWakeUpFlags);
3762 spin_unlock_irq(&np->lock);
3763 }
3764 return 0;
3765 }
3766
3767 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3768 {
3769 struct fe_priv *np = netdev_priv(dev);
3770 int adv;
3771
3772 spin_lock_irq(&np->lock);
3773 ecmd->port = PORT_MII;
3774 if (!netif_running(dev)) {
3775 /* We do not track link speed / duplex setting if the
3776 * interface is disabled. Force a link check */
3777 if (nv_update_linkspeed(dev)) {
3778 if (!netif_carrier_ok(dev))
3779 netif_carrier_on(dev);
3780 } else {
3781 if (netif_carrier_ok(dev))
3782 netif_carrier_off(dev);
3783 }
3784 }
3785
3786 if (netif_carrier_ok(dev)) {
3787 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3788 case NVREG_LINKSPEED_10:
3789 ecmd->speed = SPEED_10;
3790 break;
3791 case NVREG_LINKSPEED_100:
3792 ecmd->speed = SPEED_100;
3793 break;
3794 case NVREG_LINKSPEED_1000:
3795 ecmd->speed = SPEED_1000;
3796 break;
3797 }
3798 ecmd->duplex = DUPLEX_HALF;
3799 if (np->duplex)
3800 ecmd->duplex = DUPLEX_FULL;
3801 } else {
3802 ecmd->speed = -1;
3803 ecmd->duplex = -1;
3804 }
3805
3806 ecmd->autoneg = np->autoneg;
3807
3808 ecmd->advertising = ADVERTISED_MII;
3809 if (np->autoneg) {
3810 ecmd->advertising |= ADVERTISED_Autoneg;
3811 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3812 if (adv & ADVERTISE_10HALF)
3813 ecmd->advertising |= ADVERTISED_10baseT_Half;
3814 if (adv & ADVERTISE_10FULL)
3815 ecmd->advertising |= ADVERTISED_10baseT_Full;
3816 if (adv & ADVERTISE_100HALF)
3817 ecmd->advertising |= ADVERTISED_100baseT_Half;
3818 if (adv & ADVERTISE_100FULL)
3819 ecmd->advertising |= ADVERTISED_100baseT_Full;
3820 if (np->gigabit == PHY_GIGABIT) {
3821 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3822 if (adv & ADVERTISE_1000FULL)
3823 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3824 }
3825 }
3826 ecmd->supported = (SUPPORTED_Autoneg |
3827 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3828 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3829 SUPPORTED_MII);
3830 if (np->gigabit == PHY_GIGABIT)
3831 ecmd->supported |= SUPPORTED_1000baseT_Full;
3832
3833 ecmd->phy_address = np->phyaddr;
3834 ecmd->transceiver = XCVR_EXTERNAL;
3835
3836 /* ignore maxtxpkt, maxrxpkt for now */
3837 spin_unlock_irq(&np->lock);
3838 return 0;
3839 }
3840
3841 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3842 {
3843 struct fe_priv *np = netdev_priv(dev);
3844
3845 if (ecmd->port != PORT_MII)
3846 return -EINVAL;
3847 if (ecmd->transceiver != XCVR_EXTERNAL)
3848 return -EINVAL;
3849 if (ecmd->phy_address != np->phyaddr) {
3850 /* TODO: support switching between multiple phys. Should be
3851 * trivial, but not enabled due to lack of test hardware. */
3852 return -EINVAL;
3853 }
3854 if (ecmd->autoneg == AUTONEG_ENABLE) {
3855 u32 mask;
3856
3857 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3858 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3859 if (np->gigabit == PHY_GIGABIT)
3860 mask |= ADVERTISED_1000baseT_Full;
3861
3862 if ((ecmd->advertising & mask) == 0)
3863 return -EINVAL;
3864
3865 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3866 /* Note: autonegotiation disable, speed 1000 intentionally
3867 * forbidden - noone should need that. */
3868
3869 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3870 return -EINVAL;
3871 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3872 return -EINVAL;
3873 } else {
3874 return -EINVAL;
3875 }
3876
3877 netif_carrier_off(dev);
3878 if (netif_running(dev)) {
3879 nv_disable_irq(dev);
3880 netif_tx_lock_bh(dev);
3881 spin_lock(&np->lock);
3882 /* stop engines */
3883 nv_stop_rx(dev);
3884 nv_stop_tx(dev);
3885 spin_unlock(&np->lock);
3886 netif_tx_unlock_bh(dev);
3887 }
3888
3889 if (ecmd->autoneg == AUTONEG_ENABLE) {
3890 int adv, bmcr;
3891
3892 np->autoneg = 1;
3893
3894 /* advertise only what has been requested */
3895 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3896 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3897 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3898 adv |= ADVERTISE_10HALF;
3899 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3900 adv |= ADVERTISE_10FULL;
3901 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3902 adv |= ADVERTISE_100HALF;
3903 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3904 adv |= ADVERTISE_100FULL;
3905 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3906 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3907 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3908 adv |= ADVERTISE_PAUSE_ASYM;
3909 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3910
3911 if (np->gigabit == PHY_GIGABIT) {
3912 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3913 adv &= ~ADVERTISE_1000FULL;
3914 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3915 adv |= ADVERTISE_1000FULL;
3916 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3917 }
3918
3919 if (netif_running(dev))
3920 printk(KERN_INFO "%s: link down.\n", dev->name);
3921 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3922 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3923 bmcr |= BMCR_ANENABLE;
3924 /* reset the phy in order for settings to stick,
3925 * and cause autoneg to start */
3926 if (phy_reset(dev, bmcr)) {
3927 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3928 return -EINVAL;
3929 }
3930 } else {
3931 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3932 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3933 }
3934 } else {
3935 int adv, bmcr;
3936
3937 np->autoneg = 0;
3938
3939 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3940 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3941 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3942 adv |= ADVERTISE_10HALF;
3943 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3944 adv |= ADVERTISE_10FULL;
3945 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3946 adv |= ADVERTISE_100HALF;
3947 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3948 adv |= ADVERTISE_100FULL;
3949 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3950 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3951 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3952 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3953 }
3954 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3955 adv |= ADVERTISE_PAUSE_ASYM;
3956 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3957 }
3958 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3959 np->fixed_mode = adv;
3960
3961 if (np->gigabit == PHY_GIGABIT) {
3962 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3963 adv &= ~ADVERTISE_1000FULL;
3964 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3965 }
3966
3967 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3968 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3969 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3970 bmcr |= BMCR_FULLDPLX;
3971 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3972 bmcr |= BMCR_SPEED100;
3973 if (np->phy_oui == PHY_OUI_MARVELL) {
3974 /* reset the phy in order for forced mode settings to stick */
3975 if (phy_reset(dev, bmcr)) {
3976 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3977 return -EINVAL;
3978 }
3979 } else {
3980 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3981 if (netif_running(dev)) {
3982 /* Wait a bit and then reconfigure the nic. */
3983 udelay(10);
3984 nv_linkchange(dev);
3985 }
3986 }
3987 }
3988
3989 if (netif_running(dev)) {
3990 nv_start_rx(dev);
3991 nv_start_tx(dev);
3992 nv_enable_irq(dev);
3993 }
3994
3995 return 0;
3996 }
3997
3998 #define FORCEDETH_REGS_VER 1
3999
4000 static int nv_get_regs_len(struct net_device *dev)
4001 {
4002 struct fe_priv *np = netdev_priv(dev);
4003 return np->register_size;
4004 }
4005
4006 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4007 {
4008 struct fe_priv *np = netdev_priv(dev);
4009 u8 __iomem *base = get_hwbase(dev);
4010 u32 *rbuf = buf;
4011 int i;
4012
4013 regs->version = FORCEDETH_REGS_VER;
4014 spin_lock_irq(&np->lock);
4015 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4016 rbuf[i] = readl(base + i*sizeof(u32));
4017 spin_unlock_irq(&np->lock);
4018 }
4019
4020 static int nv_nway_reset(struct net_device *dev)
4021 {
4022 struct fe_priv *np = netdev_priv(dev);
4023 int ret;
4024
4025 if (np->autoneg) {
4026 int bmcr;
4027
4028 netif_carrier_off(dev);
4029 if (netif_running(dev)) {
4030 nv_disable_irq(dev);
4031 netif_tx_lock_bh(dev);
4032 spin_lock(&np->lock);
4033 /* stop engines */
4034 nv_stop_rx(dev);
4035 nv_stop_tx(dev);
4036 spin_unlock(&np->lock);
4037 netif_tx_unlock_bh(dev);
4038 printk(KERN_INFO "%s: link down.\n", dev->name);
4039 }
4040
4041 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4042 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4043 bmcr |= BMCR_ANENABLE;
4044 /* reset the phy in order for settings to stick*/
4045 if (phy_reset(dev, bmcr)) {
4046 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4047 return -EINVAL;
4048 }
4049 } else {
4050 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4051 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4052 }
4053
4054 if (netif_running(dev)) {
4055 nv_start_rx(dev);
4056 nv_start_tx(dev);
4057 nv_enable_irq(dev);
4058 }
4059 ret = 0;
4060 } else {
4061 ret = -EINVAL;
4062 }
4063
4064 return ret;
4065 }
4066
4067 static int nv_set_tso(struct net_device *dev, u32 value)
4068 {
4069 struct fe_priv *np = netdev_priv(dev);
4070
4071 if ((np->driver_data & DEV_HAS_CHECKSUM))
4072 return ethtool_op_set_tso(dev, value);
4073 else
4074 return -EOPNOTSUPP;
4075 }
4076
4077 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4078 {
4079 struct fe_priv *np = netdev_priv(dev);
4080
4081 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4082 ring->rx_mini_max_pending = 0;
4083 ring->rx_jumbo_max_pending = 0;
4084 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4085
4086 ring->rx_pending = np->rx_ring_size;
4087 ring->rx_mini_pending = 0;
4088 ring->rx_jumbo_pending = 0;
4089 ring->tx_pending = np->tx_ring_size;
4090 }
4091
4092 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4093 {
4094 struct fe_priv *np = netdev_priv(dev);
4095 u8 __iomem *base = get_hwbase(dev);
4096 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4097 dma_addr_t ring_addr;
4098
4099 if (ring->rx_pending < RX_RING_MIN ||
4100 ring->tx_pending < TX_RING_MIN ||
4101 ring->rx_mini_pending != 0 ||
4102 ring->rx_jumbo_pending != 0 ||
4103 (np->desc_ver == DESC_VER_1 &&
4104 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4105 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4106 (np->desc_ver != DESC_VER_1 &&
4107 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4108 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4109 return -EINVAL;
4110 }
4111
4112 /* allocate new rings */
4113 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4114 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4115 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4116 &ring_addr);
4117 } else {
4118 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4119 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4120 &ring_addr);
4121 }
4122 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4123 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4124 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4125 /* fall back to old rings */
4126 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4127 if (rxtx_ring)
4128 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4129 rxtx_ring, ring_addr);
4130 } else {
4131 if (rxtx_ring)
4132 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4133 rxtx_ring, ring_addr);
4134 }
4135 if (rx_skbuff)
4136 kfree(rx_skbuff);
4137 if (tx_skbuff)
4138 kfree(tx_skbuff);
4139 goto exit;
4140 }
4141
4142 if (netif_running(dev)) {
4143 nv_disable_irq(dev);
4144 netif_tx_lock_bh(dev);
4145 spin_lock(&np->lock);
4146 /* stop engines */
4147 nv_stop_rx(dev);
4148 nv_stop_tx(dev);
4149 nv_txrx_reset(dev);
4150 /* drain queues */
4151 nv_drain_rx(dev);
4152 nv_drain_tx(dev);
4153 /* delete queues */
4154 free_rings(dev);
4155 }
4156
4157 /* set new values */
4158 np->rx_ring_size = ring->rx_pending;
4159 np->tx_ring_size = ring->tx_pending;
4160 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4161 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4162 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4163 } else {
4164 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4165 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4166 }
4167 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4168 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4169 np->ring_addr = ring_addr;
4170
4171 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4172 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4173
4174 if (netif_running(dev)) {
4175 /* reinit driver view of the queues */
4176 set_bufsize(dev);
4177 if (nv_init_ring(dev)) {
4178 if (!np->in_shutdown)
4179 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4180 }
4181
4182 /* reinit nic view of the queues */
4183 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4184 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4185 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4186 base + NvRegRingSizes);
4187 pci_push(base);
4188 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4189 pci_push(base);
4190
4191 /* restart engines */
4192 nv_start_rx(dev);
4193 nv_start_tx(dev);
4194 spin_unlock(&np->lock);
4195 netif_tx_unlock_bh(dev);
4196 nv_enable_irq(dev);
4197 }
4198 return 0;
4199 exit:
4200 return -ENOMEM;
4201 }
4202
4203 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4204 {
4205 struct fe_priv *np = netdev_priv(dev);
4206
4207 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4208 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4209 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4210 }
4211
4212 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4213 {
4214 struct fe_priv *np = netdev_priv(dev);
4215 int adv, bmcr;
4216
4217 if ((!np->autoneg && np->duplex == 0) ||
4218 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4219 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4220 dev->name);
4221 return -EINVAL;
4222 }
4223 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4224 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4225 return -EINVAL;
4226 }
4227
4228 netif_carrier_off(dev);
4229 if (netif_running(dev)) {
4230 nv_disable_irq(dev);
4231 netif_tx_lock_bh(dev);
4232 spin_lock(&np->lock);
4233 /* stop engines */
4234 nv_stop_rx(dev);
4235 nv_stop_tx(dev);
4236 spin_unlock(&np->lock);
4237 netif_tx_unlock_bh(dev);
4238 }
4239
4240 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4241 if (pause->rx_pause)
4242 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4243 if (pause->tx_pause)
4244 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4245
4246 if (np->autoneg && pause->autoneg) {
4247 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4248
4249 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4250 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4251 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4252 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4253 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4254 adv |= ADVERTISE_PAUSE_ASYM;
4255 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4256
4257 if (netif_running(dev))
4258 printk(KERN_INFO "%s: link down.\n", dev->name);
4259 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4260 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4261 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4262 } else {
4263 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4264 if (pause->rx_pause)
4265 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4266 if (pause->tx_pause)
4267 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4268
4269 if (!netif_running(dev))
4270 nv_update_linkspeed(dev);
4271 else
4272 nv_update_pause(dev, np->pause_flags);
4273 }
4274
4275 if (netif_running(dev)) {
4276 nv_start_rx(dev);
4277 nv_start_tx(dev);
4278 nv_enable_irq(dev);
4279 }
4280 return 0;
4281 }
4282
4283 static u32 nv_get_rx_csum(struct net_device *dev)
4284 {
4285 struct fe_priv *np = netdev_priv(dev);
4286 return (np->rx_csum) != 0;
4287 }
4288
4289 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4290 {
4291 struct fe_priv *np = netdev_priv(dev);
4292 u8 __iomem *base = get_hwbase(dev);
4293 int retcode = 0;
4294
4295 if (np->driver_data & DEV_HAS_CHECKSUM) {
4296 if (data) {
4297 np->rx_csum = 1;
4298 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4299 } else {
4300 np->rx_csum = 0;
4301 /* vlan is dependent on rx checksum offload */
4302 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4303 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4304 }
4305 if (netif_running(dev)) {
4306 spin_lock_irq(&np->lock);
4307 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4308 spin_unlock_irq(&np->lock);
4309 }
4310 } else {
4311 return -EINVAL;
4312 }
4313
4314 return retcode;
4315 }
4316
4317 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4318 {
4319 struct fe_priv *np = netdev_priv(dev);
4320
4321 if (np->driver_data & DEV_HAS_CHECKSUM)
4322 return ethtool_op_set_tx_hw_csum(dev, data);
4323 else
4324 return -EOPNOTSUPP;
4325 }
4326
4327 static int nv_set_sg(struct net_device *dev, u32 data)
4328 {
4329 struct fe_priv *np = netdev_priv(dev);
4330
4331 if (np->driver_data & DEV_HAS_CHECKSUM)
4332 return ethtool_op_set_sg(dev, data);
4333 else
4334 return -EOPNOTSUPP;
4335 }
4336
4337 static int nv_get_stats_count(struct net_device *dev)
4338 {
4339 struct fe_priv *np = netdev_priv(dev);
4340
4341 if (np->driver_data & DEV_HAS_STATISTICS_V1)
4342 return NV_DEV_STATISTICS_V1_COUNT;
4343 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4344 return NV_DEV_STATISTICS_V2_COUNT;
4345 else
4346 return 0;
4347 }
4348
4349 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4350 {
4351 struct fe_priv *np = netdev_priv(dev);
4352
4353 /* update stats */
4354 nv_do_stats_poll((unsigned long)dev);
4355
4356 memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
4357 }
4358
4359 static int nv_self_test_count(struct net_device *dev)
4360 {
4361 struct fe_priv *np = netdev_priv(dev);
4362
4363 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4364 return NV_TEST_COUNT_EXTENDED;
4365 else
4366 return NV_TEST_COUNT_BASE;
4367 }
4368
4369 static int nv_link_test(struct net_device *dev)
4370 {
4371 struct fe_priv *np = netdev_priv(dev);
4372 int mii_status;
4373
4374 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4375 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4376
4377 /* check phy link status */
4378 if (!(mii_status & BMSR_LSTATUS))
4379 return 0;
4380 else
4381 return 1;
4382 }
4383
4384 static int nv_register_test(struct net_device *dev)
4385 {
4386 u8 __iomem *base = get_hwbase(dev);
4387 int i = 0;
4388 u32 orig_read, new_read;
4389
4390 do {
4391 orig_read = readl(base + nv_registers_test[i].reg);
4392
4393 /* xor with mask to toggle bits */
4394 orig_read ^= nv_registers_test[i].mask;
4395
4396 writel(orig_read, base + nv_registers_test[i].reg);
4397
4398 new_read = readl(base + nv_registers_test[i].reg);
4399
4400 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4401 return 0;
4402
4403 /* restore original value */
4404 orig_read ^= nv_registers_test[i].mask;
4405 writel(orig_read, base + nv_registers_test[i].reg);
4406
4407 } while (nv_registers_test[++i].reg != 0);
4408
4409 return 1;
4410 }
4411
4412 static int nv_interrupt_test(struct net_device *dev)
4413 {
4414 struct fe_priv *np = netdev_priv(dev);
4415 u8 __iomem *base = get_hwbase(dev);
4416 int ret = 1;
4417 int testcnt;
4418 u32 save_msi_flags, save_poll_interval = 0;
4419
4420 if (netif_running(dev)) {
4421 /* free current irq */
4422 nv_free_irq(dev);
4423 save_poll_interval = readl(base+NvRegPollingInterval);
4424 }
4425
4426 /* flag to test interrupt handler */
4427 np->intr_test = 0;
4428
4429 /* setup test irq */
4430 save_msi_flags = np->msi_flags;
4431 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4432 np->msi_flags |= 0x001; /* setup 1 vector */
4433 if (nv_request_irq(dev, 1))
4434 return 0;
4435
4436 /* setup timer interrupt */
4437 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4438 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4439
4440 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4441
4442 /* wait for at least one interrupt */
4443 msleep(100);
4444
4445 spin_lock_irq(&np->lock);
4446
4447 /* flag should be set within ISR */
4448 testcnt = np->intr_test;
4449 if (!testcnt)
4450 ret = 2;
4451
4452 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4453 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4454 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4455 else
4456 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4457
4458 spin_unlock_irq(&np->lock);
4459
4460 nv_free_irq(dev);
4461
4462 np->msi_flags = save_msi_flags;
4463
4464 if (netif_running(dev)) {
4465 writel(save_poll_interval, base + NvRegPollingInterval);
4466 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4467 /* restore original irq */
4468 if (nv_request_irq(dev, 0))
4469 return 0;
4470 }
4471
4472 return ret;
4473 }
4474
4475 static int nv_loopback_test(struct net_device *dev)
4476 {
4477 struct fe_priv *np = netdev_priv(dev);
4478 u8 __iomem *base = get_hwbase(dev);
4479 struct sk_buff *tx_skb, *rx_skb;
4480 dma_addr_t test_dma_addr;
4481 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4482 u32 flags;
4483 int len, i, pkt_len;
4484 u8 *pkt_data;
4485 u32 filter_flags = 0;
4486 u32 misc1_flags = 0;
4487 int ret = 1;
4488
4489 if (netif_running(dev)) {
4490 nv_disable_irq(dev);
4491 filter_flags = readl(base + NvRegPacketFilterFlags);
4492 misc1_flags = readl(base + NvRegMisc1);
4493 } else {
4494 nv_txrx_reset(dev);
4495 }
4496
4497 /* reinit driver view of the rx queue */
4498 set_bufsize(dev);
4499 nv_init_ring(dev);
4500
4501 /* setup hardware for loopback */
4502 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4503 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4504
4505 /* reinit nic view of the rx queue */
4506 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4507 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4508 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4509 base + NvRegRingSizes);
4510 pci_push(base);
4511
4512 /* restart rx engine */
4513 nv_start_rx(dev);
4514 nv_start_tx(dev);
4515
4516 /* setup packet for tx */
4517 pkt_len = ETH_DATA_LEN;
4518 tx_skb = dev_alloc_skb(pkt_len);
4519 if (!tx_skb) {
4520 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4521 " of %s\n", dev->name);
4522 ret = 0;
4523 goto out;
4524 }
4525 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4526 skb_tailroom(tx_skb),
4527 PCI_DMA_FROMDEVICE);
4528 pkt_data = skb_put(tx_skb, pkt_len);
4529 for (i = 0; i < pkt_len; i++)
4530 pkt_data[i] = (u8)(i & 0xff);
4531
4532 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4533 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4534 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4535 } else {
4536 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
4537 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
4538 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4539 }
4540 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4541 pci_push(get_hwbase(dev));
4542
4543 msleep(500);
4544
4545 /* check for rx of the packet */
4546 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4547 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4548 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4549
4550 } else {
4551 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4552 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4553 }
4554
4555 if (flags & NV_RX_AVAIL) {
4556 ret = 0;
4557 } else if (np->desc_ver == DESC_VER_1) {
4558 if (flags & NV_RX_ERROR)
4559 ret = 0;
4560 } else {
4561 if (flags & NV_RX2_ERROR) {
4562 ret = 0;
4563 }
4564 }
4565
4566 if (ret) {
4567 if (len != pkt_len) {
4568 ret = 0;
4569 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4570 dev->name, len, pkt_len);
4571 } else {
4572 rx_skb = np->rx_skb[0].skb;
4573 for (i = 0; i < pkt_len; i++) {
4574 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4575 ret = 0;
4576 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4577 dev->name, i);
4578 break;
4579 }
4580 }
4581 }
4582 } else {
4583 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4584 }
4585
4586 pci_unmap_page(np->pci_dev, test_dma_addr,
4587 (skb_end_pointer(tx_skb) - tx_skb->data),
4588 PCI_DMA_TODEVICE);
4589 dev_kfree_skb_any(tx_skb);
4590 out:
4591 /* stop engines */
4592 nv_stop_rx(dev);
4593 nv_stop_tx(dev);
4594 nv_txrx_reset(dev);
4595 /* drain rx queue */
4596 nv_drain_rx(dev);
4597 nv_drain_tx(dev);
4598
4599 if (netif_running(dev)) {
4600 writel(misc1_flags, base + NvRegMisc1);
4601 writel(filter_flags, base + NvRegPacketFilterFlags);
4602 nv_enable_irq(dev);
4603 }
4604
4605 return ret;
4606 }
4607
4608 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4609 {
4610 struct fe_priv *np = netdev_priv(dev);
4611 u8 __iomem *base = get_hwbase(dev);
4612 int result;
4613 memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
4614
4615 if (!nv_link_test(dev)) {
4616 test->flags |= ETH_TEST_FL_FAILED;
4617 buffer[0] = 1;
4618 }
4619
4620 if (test->flags & ETH_TEST_FL_OFFLINE) {
4621 if (netif_running(dev)) {
4622 netif_stop_queue(dev);
4623 netif_poll_disable(dev);
4624 netif_tx_lock_bh(dev);
4625 spin_lock_irq(&np->lock);
4626 nv_disable_hw_interrupts(dev, np->irqmask);
4627 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4628 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4629 } else {
4630 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4631 }
4632 /* stop engines */
4633 nv_stop_rx(dev);
4634 nv_stop_tx(dev);
4635 nv_txrx_reset(dev);
4636 /* drain rx queue */
4637 nv_drain_rx(dev);
4638 nv_drain_tx(dev);
4639 spin_unlock_irq(&np->lock);
4640 netif_tx_unlock_bh(dev);
4641 }
4642
4643 if (!nv_register_test(dev)) {
4644 test->flags |= ETH_TEST_FL_FAILED;
4645 buffer[1] = 1;
4646 }
4647
4648 result = nv_interrupt_test(dev);
4649 if (result != 1) {
4650 test->flags |= ETH_TEST_FL_FAILED;
4651 buffer[2] = 1;
4652 }
4653 if (result == 0) {
4654 /* bail out */
4655 return;
4656 }
4657
4658 if (!nv_loopback_test(dev)) {
4659 test->flags |= ETH_TEST_FL_FAILED;
4660 buffer[3] = 1;
4661 }
4662
4663 if (netif_running(dev)) {
4664 /* reinit driver view of the rx queue */
4665 set_bufsize(dev);
4666 if (nv_init_ring(dev)) {
4667 if (!np->in_shutdown)
4668 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4669 }
4670 /* reinit nic view of the rx queue */
4671 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4672 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4673 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4674 base + NvRegRingSizes);
4675 pci_push(base);
4676 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4677 pci_push(base);
4678 /* restart rx engine */
4679 nv_start_rx(dev);
4680 nv_start_tx(dev);
4681 netif_start_queue(dev);
4682 netif_poll_enable(dev);
4683 nv_enable_hw_interrupts(dev, np->irqmask);
4684 }
4685 }
4686 }
4687
4688 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4689 {
4690 switch (stringset) {
4691 case ETH_SS_STATS:
4692 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
4693 break;
4694 case ETH_SS_TEST:
4695 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
4696 break;
4697 }
4698 }
4699
4700 static const struct ethtool_ops ops = {
4701 .get_drvinfo = nv_get_drvinfo,
4702 .get_link = ethtool_op_get_link,
4703 .get_wol = nv_get_wol,
4704 .set_wol = nv_set_wol,
4705 .get_settings = nv_get_settings,
4706 .set_settings = nv_set_settings,
4707 .get_regs_len = nv_get_regs_len,
4708 .get_regs = nv_get_regs,
4709 .nway_reset = nv_nway_reset,
4710 .get_tso = ethtool_op_get_tso,
4711 .set_tso = nv_set_tso,
4712 .get_ringparam = nv_get_ringparam,
4713 .set_ringparam = nv_set_ringparam,
4714 .get_pauseparam = nv_get_pauseparam,
4715 .set_pauseparam = nv_set_pauseparam,
4716 .get_rx_csum = nv_get_rx_csum,
4717 .set_rx_csum = nv_set_rx_csum,
4718 .get_tx_csum = ethtool_op_get_tx_csum,
4719 .set_tx_csum = nv_set_tx_csum,
4720 .get_sg = ethtool_op_get_sg,
4721 .set_sg = nv_set_sg,
4722 .get_strings = nv_get_strings,
4723 .get_stats_count = nv_get_stats_count,
4724 .get_ethtool_stats = nv_get_ethtool_stats,
4725 .self_test_count = nv_self_test_count,
4726 .self_test = nv_self_test,
4727 };
4728
4729 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4730 {
4731 struct fe_priv *np = get_nvpriv(dev);
4732
4733 spin_lock_irq(&np->lock);
4734
4735 /* save vlan group */
4736 np->vlangrp = grp;
4737
4738 if (grp) {
4739 /* enable vlan on MAC */
4740 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4741 } else {
4742 /* disable vlan on MAC */
4743 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4744 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4745 }
4746
4747 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4748
4749 spin_unlock_irq(&np->lock);
4750 }
4751
4752 /* The mgmt unit and driver use a semaphore to access the phy during init */
4753 static int nv_mgmt_acquire_sema(struct net_device *dev)
4754 {
4755 u8 __iomem *base = get_hwbase(dev);
4756 int i;
4757 u32 tx_ctrl, mgmt_sema;
4758
4759 for (i = 0; i < 10; i++) {
4760 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4761 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4762 break;
4763 msleep(500);
4764 }
4765
4766 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4767 return 0;
4768
4769 for (i = 0; i < 2; i++) {
4770 tx_ctrl = readl(base + NvRegTransmitterControl);
4771 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4772 writel(tx_ctrl, base + NvRegTransmitterControl);
4773
4774 /* verify that semaphore was acquired */
4775 tx_ctrl = readl(base + NvRegTransmitterControl);
4776 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4777 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4778 return 1;
4779 else
4780 udelay(50);
4781 }
4782
4783 return 0;
4784 }
4785
4786 static int nv_open(struct net_device *dev)
4787 {
4788 struct fe_priv *np = netdev_priv(dev);
4789 u8 __iomem *base = get_hwbase(dev);
4790 int ret = 1;
4791 int oom, i;
4792
4793 dprintk(KERN_DEBUG "nv_open: begin\n");
4794
4795 /* erase previous misconfiguration */
4796 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4797 nv_mac_reset(dev);
4798 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4799 writel(0, base + NvRegMulticastAddrB);
4800 writel(0, base + NvRegMulticastMaskA);
4801 writel(0, base + NvRegMulticastMaskB);
4802 writel(0, base + NvRegPacketFilterFlags);
4803
4804 writel(0, base + NvRegTransmitterControl);
4805 writel(0, base + NvRegReceiverControl);
4806
4807 writel(0, base + NvRegAdapterControl);
4808
4809 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4810 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
4811
4812 /* initialize descriptor rings */
4813 set_bufsize(dev);
4814 oom = nv_init_ring(dev);
4815
4816 writel(0, base + NvRegLinkSpeed);
4817 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4818 nv_txrx_reset(dev);
4819 writel(0, base + NvRegUnknownSetupReg6);
4820
4821 np->in_shutdown = 0;
4822
4823 /* give hw rings */
4824 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4825 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4826 base + NvRegRingSizes);
4827
4828 writel(np->linkspeed, base + NvRegLinkSpeed);
4829 if (np->desc_ver == DESC_VER_1)
4830 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4831 else
4832 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4833 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4834 writel(np->vlanctl_bits, base + NvRegVlanControl);
4835 pci_push(base);
4836 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4837 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4838 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4839 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4840
4841 writel(0, base + NvRegMIIMask);
4842 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4843 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4844
4845 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4846 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4847 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4848 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4849
4850 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4851 get_random_bytes(&i, sizeof(i));
4852 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4853 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4854 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4855 if (poll_interval == -1) {
4856 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4857 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4858 else
4859 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4860 }
4861 else
4862 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4863 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4864 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4865 base + NvRegAdapterControl);
4866 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4867 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
4868 if (np->wolenabled)
4869 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4870
4871 i = readl(base + NvRegPowerState);
4872 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4873 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4874
4875 pci_push(base);
4876 udelay(10);
4877 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4878
4879 nv_disable_hw_interrupts(dev, np->irqmask);
4880 pci_push(base);
4881 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4882 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4883 pci_push(base);
4884
4885 if (nv_request_irq(dev, 0)) {
4886 goto out_drain;
4887 }
4888
4889 /* ask for interrupts */
4890 nv_enable_hw_interrupts(dev, np->irqmask);
4891
4892 spin_lock_irq(&np->lock);
4893 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4894 writel(0, base + NvRegMulticastAddrB);
4895 writel(0, base + NvRegMulticastMaskA);
4896 writel(0, base + NvRegMulticastMaskB);
4897 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4898 /* One manual link speed update: Interrupts are enabled, future link
4899 * speed changes cause interrupts and are handled by nv_link_irq().
4900 */
4901 {
4902 u32 miistat;
4903 miistat = readl(base + NvRegMIIStatus);
4904 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4905 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4906 }
4907 /* set linkspeed to invalid value, thus force nv_update_linkspeed
4908 * to init hw */
4909 np->linkspeed = 0;
4910 ret = nv_update_linkspeed(dev);
4911 nv_start_rx(dev);
4912 nv_start_tx(dev);
4913 netif_start_queue(dev);
4914 netif_poll_enable(dev);
4915
4916 if (ret) {
4917 netif_carrier_on(dev);
4918 } else {
4919 printk("%s: no link during initialization.\n", dev->name);
4920 netif_carrier_off(dev);
4921 }
4922 if (oom)
4923 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4924
4925 /* start statistics timer */
4926 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
4927 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4928
4929 spin_unlock_irq(&np->lock);
4930
4931 return 0;
4932 out_drain:
4933 drain_ring(dev);
4934 return ret;
4935 }
4936
4937 static int nv_close(struct net_device *dev)
4938 {
4939 struct fe_priv *np = netdev_priv(dev);
4940 u8 __iomem *base;
4941
4942 spin_lock_irq(&np->lock);
4943 np->in_shutdown = 1;
4944 spin_unlock_irq(&np->lock);
4945 netif_poll_disable(dev);
4946 synchronize_irq(dev->irq);
4947
4948 del_timer_sync(&np->oom_kick);
4949 del_timer_sync(&np->nic_poll);
4950 del_timer_sync(&np->stats_poll);
4951
4952 netif_stop_queue(dev);
4953 spin_lock_irq(&np->lock);
4954 nv_stop_tx(dev);
4955 nv_stop_rx(dev);
4956 nv_txrx_reset(dev);
4957
4958 /* disable interrupts on the nic or we will lock up */
4959 base = get_hwbase(dev);
4960 nv_disable_hw_interrupts(dev, np->irqmask);
4961 pci_push(base);
4962 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4963
4964 spin_unlock_irq(&np->lock);
4965
4966 nv_free_irq(dev);
4967
4968 drain_ring(dev);
4969
4970 if (np->wolenabled) {
4971 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4972 nv_start_rx(dev);
4973 }
4974
4975 /* FIXME: power down nic */
4976
4977 return 0;
4978 }
4979
4980 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4981 {
4982 struct net_device *dev;
4983 struct fe_priv *np;
4984 unsigned long addr;
4985 u8 __iomem *base;
4986 int err, i;
4987 u32 powerstate, txreg;
4988 u32 phystate_orig = 0, phystate;
4989 int phyinitialized = 0;
4990
4991 dev = alloc_etherdev(sizeof(struct fe_priv));
4992 err = -ENOMEM;
4993 if (!dev)
4994 goto out;
4995
4996 np = netdev_priv(dev);
4997 np->pci_dev = pci_dev;
4998 spin_lock_init(&np->lock);
4999 SET_MODULE_OWNER(dev);
5000 SET_NETDEV_DEV(dev, &pci_dev->dev);
5001
5002 init_timer(&np->oom_kick);
5003 np->oom_kick.data = (unsigned long) dev;
5004 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5005 init_timer(&np->nic_poll);
5006 np->nic_poll.data = (unsigned long) dev;
5007 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5008 init_timer(&np->stats_poll);
5009 np->stats_poll.data = (unsigned long) dev;
5010 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5011
5012 err = pci_enable_device(pci_dev);
5013 if (err) {
5014 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
5015 err, pci_name(pci_dev));
5016 goto out_free;
5017 }
5018
5019 pci_set_master(pci_dev);
5020
5021 err = pci_request_regions(pci_dev, DRV_NAME);
5022 if (err < 0)
5023 goto out_disable;
5024
5025 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
5026 np->register_size = NV_PCI_REGSZ_VER3;
5027 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5028 np->register_size = NV_PCI_REGSZ_VER2;
5029 else
5030 np->register_size = NV_PCI_REGSZ_VER1;
5031
5032 err = -EINVAL;
5033 addr = 0;
5034 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5035 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5036 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5037 pci_resource_len(pci_dev, i),
5038 pci_resource_flags(pci_dev, i));
5039 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5040 pci_resource_len(pci_dev, i) >= np->register_size) {
5041 addr = pci_resource_start(pci_dev, i);
5042 break;
5043 }
5044 }
5045 if (i == DEVICE_COUNT_RESOURCE) {
5046 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
5047 pci_name(pci_dev));
5048 goto out_relreg;
5049 }
5050
5051 /* copy of driver data */
5052 np->driver_data = id->driver_data;
5053
5054 /* handle different descriptor versions */
5055 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5056 /* packet format 3: supports 40-bit addressing */
5057 np->desc_ver = DESC_VER_3;
5058 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5059 if (dma_64bit) {
5060 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5061 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
5062 pci_name(pci_dev));
5063 } else {
5064 dev->features |= NETIF_F_HIGHDMA;
5065 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
5066 }
5067 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5068 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
5069 pci_name(pci_dev));
5070 }
5071 }
5072 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5073 /* packet format 2: supports jumbo frames */
5074 np->desc_ver = DESC_VER_2;
5075 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5076 } else {
5077 /* original packet format */
5078 np->desc_ver = DESC_VER_1;
5079 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5080 }
5081
5082 np->pkt_limit = NV_PKTLIMIT_1;
5083 if (id->driver_data & DEV_HAS_LARGEDESC)
5084 np->pkt_limit = NV_PKTLIMIT_2;
5085
5086 if (id->driver_data & DEV_HAS_CHECKSUM) {
5087 np->rx_csum = 1;
5088 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5089 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5090 dev->features |= NETIF_F_TSO;
5091 }
5092
5093 np->vlanctl_bits = 0;
5094 if (id->driver_data & DEV_HAS_VLAN) {
5095 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5096 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5097 dev->vlan_rx_register = nv_vlan_rx_register;
5098 }
5099
5100 np->msi_flags = 0;
5101 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5102 np->msi_flags |= NV_MSI_CAPABLE;
5103 }
5104 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5105 np->msi_flags |= NV_MSI_X_CAPABLE;
5106 }
5107
5108 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5109 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
5110 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5111 }
5112
5113
5114 err = -ENOMEM;
5115 np->base = ioremap(addr, np->register_size);
5116 if (!np->base)
5117 goto out_relreg;
5118 dev->base_addr = (unsigned long)np->base;
5119
5120 dev->irq = pci_dev->irq;
5121
5122 np->rx_ring_size = RX_RING_DEFAULT;
5123 np->tx_ring_size = TX_RING_DEFAULT;
5124
5125 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
5126 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5127 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5128 &np->ring_addr);
5129 if (!np->rx_ring.orig)
5130 goto out_unmap;
5131 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5132 } else {
5133 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5134 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5135 &np->ring_addr);
5136 if (!np->rx_ring.ex)
5137 goto out_unmap;
5138 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5139 }
5140 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5141 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5142 if (!np->rx_skb || !np->tx_skb)
5143 goto out_freering;
5144
5145 dev->open = nv_open;
5146 dev->stop = nv_close;
5147 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
5148 dev->hard_start_xmit = nv_start_xmit;
5149 else
5150 dev->hard_start_xmit = nv_start_xmit_optimized;
5151 dev->get_stats = nv_get_stats;
5152 dev->change_mtu = nv_change_mtu;
5153 dev->set_mac_address = nv_set_mac_address;
5154 dev->set_multicast_list = nv_set_multicast;
5155 #ifdef CONFIG_NET_POLL_CONTROLLER
5156 dev->poll_controller = nv_poll_controller;
5157 #endif
5158 dev->weight = RX_WORK_PER_LOOP;
5159 #ifdef CONFIG_FORCEDETH_NAPI
5160 dev->poll = nv_napi_poll;
5161 #endif
5162 SET_ETHTOOL_OPS(dev, &ops);
5163 dev->tx_timeout = nv_tx_timeout;
5164 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5165
5166 pci_set_drvdata(pci_dev, dev);
5167
5168 /* read the mac address */
5169 base = get_hwbase(dev);
5170 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5171 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5172
5173 /* check the workaround bit for correct mac address order */
5174 txreg = readl(base + NvRegTransmitPoll);
5175 if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
5176 (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
5177 /* mac address is already in correct order */
5178 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5179 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5180 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5181 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5182 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5183 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5184 } else {
5185 /* need to reverse mac address to correct order */
5186 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5187 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5188 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5189 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5190 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5191 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5192 /* set permanent address to be correct aswell */
5193 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
5194 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
5195 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
5196 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5197 }
5198 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5199
5200 if (!is_valid_ether_addr(dev->perm_addr)) {
5201 /*
5202 * Bad mac address. At least one bios sets the mac address
5203 * to 01:23:45:67:89:ab
5204 */
5205 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
5206 pci_name(pci_dev),
5207 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5208 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5209 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
5210 dev->dev_addr[0] = 0x00;
5211 dev->dev_addr[1] = 0x00;
5212 dev->dev_addr[2] = 0x6c;
5213 get_random_bytes(&dev->dev_addr[3], 3);
5214 }
5215
5216 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
5217 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5218 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5219
5220 /* set mac address */
5221 nv_copy_mac_to_hw(dev);
5222
5223 /* disable WOL */
5224 writel(0, base + NvRegWakeUpFlags);
5225 np->wolenabled = 0;
5226
5227 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5228
5229 /* take phy and nic out of low power mode */
5230 powerstate = readl(base + NvRegPowerState2);
5231 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5232 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5233 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5234 pci_dev->revision >= 0xA3)
5235 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5236 writel(powerstate, base + NvRegPowerState2);
5237 }
5238
5239 if (np->desc_ver == DESC_VER_1) {
5240 np->tx_flags = NV_TX_VALID;
5241 } else {
5242 np->tx_flags = NV_TX2_VALID;
5243 }
5244 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5245 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5246 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5247 np->msi_flags |= 0x0003;
5248 } else {
5249 np->irqmask = NVREG_IRQMASK_CPU;
5250 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5251 np->msi_flags |= 0x0001;
5252 }
5253
5254 if (id->driver_data & DEV_NEED_TIMERIRQ)
5255 np->irqmask |= NVREG_IRQ_TIMER;
5256 if (id->driver_data & DEV_NEED_LINKTIMER) {
5257 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5258 np->need_linktimer = 1;
5259 np->link_timeout = jiffies + LINK_TIMEOUT;
5260 } else {
5261 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5262 np->need_linktimer = 0;
5263 }
5264
5265 /* clear phy state and temporarily halt phy interrupts */
5266 writel(0, base + NvRegMIIMask);
5267 phystate = readl(base + NvRegAdapterControl);
5268 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5269 phystate_orig = 1;
5270 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5271 writel(phystate, base + NvRegAdapterControl);
5272 }
5273 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
5274
5275 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5276 /* management unit running on the mac? */
5277 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5278 np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5279 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5280 for (i = 0; i < 5000; i++) {
5281 msleep(1);
5282 if (nv_mgmt_acquire_sema(dev)) {
5283 /* management unit setup the phy already? */
5284 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5285 NVREG_XMITCTL_SYNC_PHY_INIT) {
5286 /* phy is inited by mgmt unit */
5287 phyinitialized = 1;
5288 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5289 } else {
5290 /* we need to init the phy */
5291 }
5292 break;
5293 }
5294 }
5295 }
5296 }
5297
5298 /* find a suitable phy */
5299 for (i = 1; i <= 32; i++) {
5300 int id1, id2;
5301 int phyaddr = i & 0x1F;
5302
5303 spin_lock_irq(&np->lock);
5304 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5305 spin_unlock_irq(&np->lock);
5306 if (id1 < 0 || id1 == 0xffff)
5307 continue;
5308 spin_lock_irq(&np->lock);
5309 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5310 spin_unlock_irq(&np->lock);
5311 if (id2 < 0 || id2 == 0xffff)
5312 continue;
5313
5314 np->phy_model = id2 & PHYID2_MODEL_MASK;
5315 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5316 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5317 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5318 pci_name(pci_dev), id1, id2, phyaddr);
5319 np->phyaddr = phyaddr;
5320 np->phy_oui = id1 | id2;
5321 break;
5322 }
5323 if (i == 33) {
5324 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
5325 pci_name(pci_dev));
5326 goto out_error;
5327 }
5328
5329 if (!phyinitialized) {
5330 /* reset it */
5331 phy_init(dev);
5332 } else {
5333 /* see if it is a gigabit phy */
5334 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5335 if (mii_status & PHY_GIGABIT) {
5336 np->gigabit = PHY_GIGABIT;
5337 }
5338 }
5339
5340 /* set default link speed settings */
5341 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5342 np->duplex = 0;
5343 np->autoneg = 1;
5344
5345 err = register_netdev(dev);
5346 if (err) {
5347 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
5348 goto out_error;
5349 }
5350 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
5351 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
5352 pci_name(pci_dev));
5353
5354 return 0;
5355
5356 out_error:
5357 if (phystate_orig)
5358 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5359 pci_set_drvdata(pci_dev, NULL);
5360 out_freering:
5361 free_rings(dev);
5362 out_unmap:
5363 iounmap(get_hwbase(dev));
5364 out_relreg:
5365 pci_release_regions(pci_dev);
5366 out_disable:
5367 pci_disable_device(pci_dev);
5368 out_free:
5369 free_netdev(dev);
5370 out:
5371 return err;
5372 }
5373
5374 static void __devexit nv_remove(struct pci_dev *pci_dev)
5375 {
5376 struct net_device *dev = pci_get_drvdata(pci_dev);
5377 struct fe_priv *np = netdev_priv(dev);
5378 u8 __iomem *base = get_hwbase(dev);
5379
5380 unregister_netdev(dev);
5381
5382 /* special op: write back the misordered MAC address - otherwise
5383 * the next nv_probe would see a wrong address.
5384 */
5385 writel(np->orig_mac[0], base + NvRegMacAddrA);
5386 writel(np->orig_mac[1], base + NvRegMacAddrB);
5387
5388 /* free all structures */
5389 free_rings(dev);
5390 iounmap(get_hwbase(dev));
5391 pci_release_regions(pci_dev);
5392 pci_disable_device(pci_dev);
5393 free_netdev(dev);
5394 pci_set_drvdata(pci_dev, NULL);
5395 }
5396
5397 #ifdef CONFIG_PM
5398 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5399 {
5400 struct net_device *dev = pci_get_drvdata(pdev);
5401 struct fe_priv *np = netdev_priv(dev);
5402
5403 if (!netif_running(dev))
5404 goto out;
5405
5406 netif_device_detach(dev);
5407
5408 // Gross.
5409 nv_close(dev);
5410
5411 pci_save_state(pdev);
5412 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5413 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5414 out:
5415 return 0;
5416 }
5417
5418 static int nv_resume(struct pci_dev *pdev)
5419 {
5420 struct net_device *dev = pci_get_drvdata(pdev);
5421 int rc = 0;
5422
5423 if (!netif_running(dev))
5424 goto out;
5425
5426 netif_device_attach(dev);
5427
5428 pci_set_power_state(pdev, PCI_D0);
5429 pci_restore_state(pdev);
5430 pci_enable_wake(pdev, PCI_D0, 0);
5431
5432 rc = nv_open(dev);
5433 out:
5434 return rc;
5435 }
5436 #else
5437 #define nv_suspend NULL
5438 #define nv_resume NULL
5439 #endif /* CONFIG_PM */
5440
5441 static struct pci_device_id pci_tbl[] = {
5442 { /* nForce Ethernet Controller */
5443 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
5444 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5445 },
5446 { /* nForce2 Ethernet Controller */
5447 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
5448 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5449 },
5450 { /* nForce3 Ethernet Controller */
5451 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
5452 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5453 },
5454 { /* nForce3 Ethernet Controller */
5455 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
5456 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5457 },
5458 { /* nForce3 Ethernet Controller */
5459 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
5460 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5461 },
5462 { /* nForce3 Ethernet Controller */
5463 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
5464 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5465 },
5466 { /* nForce3 Ethernet Controller */
5467 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
5468 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5469 },
5470 { /* CK804 Ethernet Controller */
5471 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
5472 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5473 },
5474 { /* CK804 Ethernet Controller */
5475 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
5476 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5477 },
5478 { /* MCP04 Ethernet Controller */
5479 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
5480 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5481 },
5482 { /* MCP04 Ethernet Controller */
5483 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
5484 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5485 },
5486 { /* MCP51 Ethernet Controller */
5487 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
5488 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5489 },
5490 { /* MCP51 Ethernet Controller */
5491 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
5492 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5493 },
5494 { /* MCP55 Ethernet Controller */
5495 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
5496 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5497 },
5498 { /* MCP55 Ethernet Controller */
5499 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
5500 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5501 },
5502 { /* MCP61 Ethernet Controller */
5503 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
5504 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5505 },
5506 { /* MCP61 Ethernet Controller */
5507 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
5508 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5509 },
5510 { /* MCP61 Ethernet Controller */
5511 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
5512 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5513 },
5514 { /* MCP61 Ethernet Controller */
5515 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
5516 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5517 },
5518 { /* MCP65 Ethernet Controller */
5519 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
5520 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5521 },
5522 { /* MCP65 Ethernet Controller */
5523 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
5524 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5525 },
5526 { /* MCP65 Ethernet Controller */
5527 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
5528 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5529 },
5530 { /* MCP65 Ethernet Controller */
5531 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
5532 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5533 },
5534 { /* MCP67 Ethernet Controller */
5535 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
5536 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5537 },
5538 { /* MCP67 Ethernet Controller */
5539 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
5540 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5541 },
5542 { /* MCP67 Ethernet Controller */
5543 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
5544 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5545 },
5546 { /* MCP67 Ethernet Controller */
5547 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
5548 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5549 },
5550 { /* MCP73 Ethernet Controller */
5551 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
5552 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5553 },
5554 { /* MCP73 Ethernet Controller */
5555 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
5556 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5557 },
5558 { /* MCP73 Ethernet Controller */
5559 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
5560 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5561 },
5562 { /* MCP73 Ethernet Controller */
5563 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
5564 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5565 },
5566 {0,},
5567 };
5568
5569 static struct pci_driver driver = {
5570 .name = "forcedeth",
5571 .id_table = pci_tbl,
5572 .probe = nv_probe,
5573 .remove = __devexit_p(nv_remove),
5574 .suspend = nv_suspend,
5575 .resume = nv_resume,
5576 };
5577
5578 static int __init init_nic(void)
5579 {
5580 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
5581 return pci_register_driver(&driver);
5582 }
5583
5584 static void __exit exit_nic(void)
5585 {
5586 pci_unregister_driver(&driver);
5587 }
5588
5589 module_param(max_interrupt_work, int, 0);
5590 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
5591 module_param(optimization_mode, int, 0);
5592 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
5593 module_param(poll_interval, int, 0);
5594 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
5595 module_param(msi, int, 0);
5596 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
5597 module_param(msix, int, 0);
5598 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
5599 module_param(dma_64bit, int, 0);
5600 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
5601
5602 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
5603 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
5604 MODULE_LICENSE("GPL");
5605
5606 MODULE_DEVICE_TABLE(pci, pci_tbl);
5607
5608 module_init(init_nic);
5609 module_exit(exit_nic);