]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/fs_enet/mac-scc.c
Merge branch 'for-2.6.34' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-artful-kernel.git] / drivers / net / fs_enet / mac-scc.c
1 /*
2 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/of_platform.h>
35
36 #include <asm/irq.h>
37 #include <asm/uaccess.h>
38
39 #ifdef CONFIG_8xx
40 #include <asm/8xx_immap.h>
41 #include <asm/pgtable.h>
42 #include <asm/mpc8xx.h>
43 #include <asm/cpm1.h>
44 #endif
45
46 #include "fs_enet.h"
47
48 /*************************************************/
49 #if defined(CONFIG_CPM1)
50 /* for a 8xx __raw_xxx's are sufficient */
51 #define __fs_out32(addr, x) __raw_writel(x, addr)
52 #define __fs_out16(addr, x) __raw_writew(x, addr)
53 #define __fs_out8(addr, x) __raw_writeb(x, addr)
54 #define __fs_in32(addr) __raw_readl(addr)
55 #define __fs_in16(addr) __raw_readw(addr)
56 #define __fs_in8(addr) __raw_readb(addr)
57 #else
58 /* for others play it safe */
59 #define __fs_out32(addr, x) out_be32(addr, x)
60 #define __fs_out16(addr, x) out_be16(addr, x)
61 #define __fs_in32(addr) in_be32(addr)
62 #define __fs_in16(addr) in_be16(addr)
63 #define __fs_out8(addr, x) out_8(addr, x)
64 #define __fs_in8(addr) in_8(addr)
65 #endif
66
67 /* write, read, set bits, clear bits */
68 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
69 #define R32(_p, _m) __fs_in32(&(_p)->_m)
70 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
71 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
72
73 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
74 #define R16(_p, _m) __fs_in16(&(_p)->_m)
75 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
76 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
77
78 #define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v))
79 #define R8(_p, _m) __fs_in8(&(_p)->_m)
80 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
81 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
82
83 #define SCC_MAX_MULTICAST_ADDRS 64
84
85 /*
86 * Delay to wait for SCC reset command to complete (in us)
87 */
88 #define SCC_RESET_DELAY 50
89
90 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
91 {
92 const struct fs_platform_info *fpi = fep->fpi;
93
94 return cpm_command(fpi->cp_command, op);
95 }
96
97 static int do_pd_setup(struct fs_enet_private *fep)
98 {
99 struct of_device *ofdev = to_of_device(fep->dev);
100
101 fep->interrupt = of_irq_to_resource(ofdev->node, 0, NULL);
102 if (fep->interrupt == NO_IRQ)
103 return -EINVAL;
104
105 fep->scc.sccp = of_iomap(ofdev->node, 0);
106 if (!fep->scc.sccp)
107 return -EINVAL;
108
109 fep->scc.ep = of_iomap(ofdev->node, 1);
110 if (!fep->scc.ep) {
111 iounmap(fep->scc.sccp);
112 return -EINVAL;
113 }
114
115 return 0;
116 }
117
118 #define SCC_NAPI_RX_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB)
119 #define SCC_RX_EVENT (SCCE_ENET_RXF)
120 #define SCC_TX_EVENT (SCCE_ENET_TXB)
121 #define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY)
122
123 static int setup_data(struct net_device *dev)
124 {
125 struct fs_enet_private *fep = netdev_priv(dev);
126
127 do_pd_setup(fep);
128
129 fep->scc.hthi = 0;
130 fep->scc.htlo = 0;
131
132 fep->ev_napi_rx = SCC_NAPI_RX_EVENT_MSK;
133 fep->ev_rx = SCC_RX_EVENT;
134 fep->ev_tx = SCC_TX_EVENT | SCCE_ENET_TXE;
135 fep->ev_err = SCC_ERR_EVENT_MSK;
136
137 return 0;
138 }
139
140 static int allocate_bd(struct net_device *dev)
141 {
142 struct fs_enet_private *fep = netdev_priv(dev);
143 const struct fs_platform_info *fpi = fep->fpi;
144
145 fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) *
146 sizeof(cbd_t), 8);
147 if (IS_ERR_VALUE(fep->ring_mem_addr))
148 return -ENOMEM;
149
150 fep->ring_base = (void __iomem __force*)
151 cpm_dpram_addr(fep->ring_mem_addr);
152
153 return 0;
154 }
155
156 static void free_bd(struct net_device *dev)
157 {
158 struct fs_enet_private *fep = netdev_priv(dev);
159
160 if (fep->ring_base)
161 cpm_dpfree(fep->ring_mem_addr);
162 }
163
164 static void cleanup_data(struct net_device *dev)
165 {
166 /* nothing */
167 }
168
169 static void set_promiscuous_mode(struct net_device *dev)
170 {
171 struct fs_enet_private *fep = netdev_priv(dev);
172 scc_t __iomem *sccp = fep->scc.sccp;
173
174 S16(sccp, scc_psmr, SCC_PSMR_PRO);
175 }
176
177 static void set_multicast_start(struct net_device *dev)
178 {
179 struct fs_enet_private *fep = netdev_priv(dev);
180 scc_enet_t __iomem *ep = fep->scc.ep;
181
182 W16(ep, sen_gaddr1, 0);
183 W16(ep, sen_gaddr2, 0);
184 W16(ep, sen_gaddr3, 0);
185 W16(ep, sen_gaddr4, 0);
186 }
187
188 static void set_multicast_one(struct net_device *dev, const u8 * mac)
189 {
190 struct fs_enet_private *fep = netdev_priv(dev);
191 scc_enet_t __iomem *ep = fep->scc.ep;
192 u16 taddrh, taddrm, taddrl;
193
194 taddrh = ((u16) mac[5] << 8) | mac[4];
195 taddrm = ((u16) mac[3] << 8) | mac[2];
196 taddrl = ((u16) mac[1] << 8) | mac[0];
197
198 W16(ep, sen_taddrh, taddrh);
199 W16(ep, sen_taddrm, taddrm);
200 W16(ep, sen_taddrl, taddrl);
201 scc_cr_cmd(fep, CPM_CR_SET_GADDR);
202 }
203
204 static void set_multicast_finish(struct net_device *dev)
205 {
206 struct fs_enet_private *fep = netdev_priv(dev);
207 scc_t __iomem *sccp = fep->scc.sccp;
208 scc_enet_t __iomem *ep = fep->scc.ep;
209
210 /* clear promiscuous always */
211 C16(sccp, scc_psmr, SCC_PSMR_PRO);
212
213 /* if all multi or too many multicasts; just enable all */
214 if ((dev->flags & IFF_ALLMULTI) != 0 ||
215 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
216
217 W16(ep, sen_gaddr1, 0xffff);
218 W16(ep, sen_gaddr2, 0xffff);
219 W16(ep, sen_gaddr3, 0xffff);
220 W16(ep, sen_gaddr4, 0xffff);
221 }
222 }
223
224 static void set_multicast_list(struct net_device *dev)
225 {
226 struct dev_mc_list *pmc;
227
228 if ((dev->flags & IFF_PROMISC) == 0) {
229 set_multicast_start(dev);
230 netdev_for_each_mc_addr(pmc, dev)
231 set_multicast_one(dev, pmc->dmi_addr);
232 set_multicast_finish(dev);
233 } else
234 set_promiscuous_mode(dev);
235 }
236
237 /*
238 * This function is called to start or restart the FEC during a link
239 * change. This only happens when switching between half and full
240 * duplex.
241 */
242 static void restart(struct net_device *dev)
243 {
244 struct fs_enet_private *fep = netdev_priv(dev);
245 scc_t __iomem *sccp = fep->scc.sccp;
246 scc_enet_t __iomem *ep = fep->scc.ep;
247 const struct fs_platform_info *fpi = fep->fpi;
248 u16 paddrh, paddrm, paddrl;
249 const unsigned char *mac;
250 int i;
251
252 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
253
254 /* clear everything (slow & steady does it) */
255 for (i = 0; i < sizeof(*ep); i++)
256 __fs_out8((u8 __iomem *)ep + i, 0);
257
258 /* point to bds */
259 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
260 W16(ep, sen_genscc.scc_tbase,
261 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
262
263 /* Initialize function code registers for big-endian.
264 */
265 #ifndef CONFIG_NOT_COHERENT_CACHE
266 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
267 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
268 #else
269 W8(ep, sen_genscc.scc_rfcr, SCC_EB);
270 W8(ep, sen_genscc.scc_tfcr, SCC_EB);
271 #endif
272
273 /* Set maximum bytes per receive buffer.
274 * This appears to be an Ethernet frame size, not the buffer
275 * fragment size. It must be a multiple of four.
276 */
277 W16(ep, sen_genscc.scc_mrblr, 0x5f0);
278
279 /* Set CRC preset and mask.
280 */
281 W32(ep, sen_cpres, 0xffffffff);
282 W32(ep, sen_cmask, 0xdebb20e3);
283
284 W32(ep, sen_crcec, 0); /* CRC Error counter */
285 W32(ep, sen_alec, 0); /* alignment error counter */
286 W32(ep, sen_disfc, 0); /* discard frame counter */
287
288 W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */
289 W16(ep, sen_retlim, 15); /* Retry limit threshold */
290
291 W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */
292
293 W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
294
295 W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */
296 W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */
297
298 /* Clear hash tables.
299 */
300 W16(ep, sen_gaddr1, 0);
301 W16(ep, sen_gaddr2, 0);
302 W16(ep, sen_gaddr3, 0);
303 W16(ep, sen_gaddr4, 0);
304 W16(ep, sen_iaddr1, 0);
305 W16(ep, sen_iaddr2, 0);
306 W16(ep, sen_iaddr3, 0);
307 W16(ep, sen_iaddr4, 0);
308
309 /* set address
310 */
311 mac = dev->dev_addr;
312 paddrh = ((u16) mac[5] << 8) | mac[4];
313 paddrm = ((u16) mac[3] << 8) | mac[2];
314 paddrl = ((u16) mac[1] << 8) | mac[0];
315
316 W16(ep, sen_paddrh, paddrh);
317 W16(ep, sen_paddrm, paddrm);
318 W16(ep, sen_paddrl, paddrl);
319
320 W16(ep, sen_pper, 0);
321 W16(ep, sen_taddrl, 0);
322 W16(ep, sen_taddrm, 0);
323 W16(ep, sen_taddrh, 0);
324
325 fs_init_bds(dev);
326
327 scc_cr_cmd(fep, CPM_CR_INIT_TRX);
328
329 W16(sccp, scc_scce, 0xffff);
330
331 /* Enable interrupts we wish to service.
332 */
333 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
334
335 /* Set GSMR_H to enable all normal operating modes.
336 * Set GSMR_L to enable Ethernet to MC68160.
337 */
338 W32(sccp, scc_gsmrh, 0);
339 W32(sccp, scc_gsmrl,
340 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
341 SCC_GSMRL_MODE_ENET);
342
343 /* Set sync/delimiters.
344 */
345 W16(sccp, scc_dsr, 0xd555);
346
347 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
348 * start frame search 22 bit times after RENA.
349 */
350 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
351
352 /* Set full duplex mode if needed */
353 if (fep->phydev->duplex)
354 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
355
356 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
357 }
358
359 static void stop(struct net_device *dev)
360 {
361 struct fs_enet_private *fep = netdev_priv(dev);
362 scc_t __iomem *sccp = fep->scc.sccp;
363 int i;
364
365 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
366 udelay(1);
367
368 if (i == SCC_RESET_DELAY)
369 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
370
371 W16(sccp, scc_sccm, 0);
372 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
373
374 fs_cleanup_bds(dev);
375 }
376
377 static void napi_clear_rx_event(struct net_device *dev)
378 {
379 struct fs_enet_private *fep = netdev_priv(dev);
380 scc_t __iomem *sccp = fep->scc.sccp;
381
382 W16(sccp, scc_scce, SCC_NAPI_RX_EVENT_MSK);
383 }
384
385 static void napi_enable_rx(struct net_device *dev)
386 {
387 struct fs_enet_private *fep = netdev_priv(dev);
388 scc_t __iomem *sccp = fep->scc.sccp;
389
390 S16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
391 }
392
393 static void napi_disable_rx(struct net_device *dev)
394 {
395 struct fs_enet_private *fep = netdev_priv(dev);
396 scc_t __iomem *sccp = fep->scc.sccp;
397
398 C16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
399 }
400
401 static void rx_bd_done(struct net_device *dev)
402 {
403 /* nothing */
404 }
405
406 static void tx_kickstart(struct net_device *dev)
407 {
408 /* nothing */
409 }
410
411 static u32 get_int_events(struct net_device *dev)
412 {
413 struct fs_enet_private *fep = netdev_priv(dev);
414 scc_t __iomem *sccp = fep->scc.sccp;
415
416 return (u32) R16(sccp, scc_scce);
417 }
418
419 static void clear_int_events(struct net_device *dev, u32 int_events)
420 {
421 struct fs_enet_private *fep = netdev_priv(dev);
422 scc_t __iomem *sccp = fep->scc.sccp;
423
424 W16(sccp, scc_scce, int_events & 0xffff);
425 }
426
427 static void ev_error(struct net_device *dev, u32 int_events)
428 {
429 struct fs_enet_private *fep = netdev_priv(dev);
430
431 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
432 }
433
434 static int get_regs(struct net_device *dev, void *p, int *sizep)
435 {
436 struct fs_enet_private *fep = netdev_priv(dev);
437
438 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
439 return -EINVAL;
440
441 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
442 p = (char *)p + sizeof(scc_t);
443
444 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
445
446 return 0;
447 }
448
449 static int get_regs_len(struct net_device *dev)
450 {
451 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
452 }
453
454 static void tx_restart(struct net_device *dev)
455 {
456 struct fs_enet_private *fep = netdev_priv(dev);
457
458 scc_cr_cmd(fep, CPM_CR_RESTART_TX);
459 }
460
461
462
463 /*************************************************************************/
464
465 const struct fs_ops fs_scc_ops = {
466 .setup_data = setup_data,
467 .cleanup_data = cleanup_data,
468 .set_multicast_list = set_multicast_list,
469 .restart = restart,
470 .stop = stop,
471 .napi_clear_rx_event = napi_clear_rx_event,
472 .napi_enable_rx = napi_enable_rx,
473 .napi_disable_rx = napi_disable_rx,
474 .rx_bd_done = rx_bd_done,
475 .tx_kickstart = tx_kickstart,
476 .get_int_events = get_int_events,
477 .clear_int_events = clear_int_events,
478 .ev_error = ev_error,
479 .get_regs = get_regs,
480 .get_regs_len = get_regs_len,
481 .tx_restart = tx_restart,
482 .allocate_bd = allocate_bd,
483 .free_bd = free_bd,
484 };