]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/gianfar.c
netdev: restore MAC address set and validate operations
[mirror_ubuntu-artful-kernel.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
95
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
98
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136 int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static const struct net_device_ops gfar_netdev_ops = {
151 .ndo_open = gfar_enet_open,
152 .ndo_start_xmit = gfar_start_xmit,
153 .ndo_stop = gfar_close,
154 .ndo_change_mtu = gfar_change_mtu,
155 .ndo_set_multicast_list = gfar_set_multi,
156 .ndo_tx_timeout = gfar_timeout,
157 .ndo_do_ioctl = gfar_ioctl,
158 .ndo_vlan_rx_register = gfar_vlan_rx_register,
159 .ndo_set_mac_address = eth_mac_addr,
160 .ndo_validate_addr = eth_validate_addr,
161 #ifdef CONFIG_NET_POLL_CONTROLLER
162 .ndo_poll_controller = gfar_netpoll,
163 #endif
164 };
165
166 /* Returns 1 if incoming frames use an FCB */
167 static inline int gfar_uses_fcb(struct gfar_private *priv)
168 {
169 return priv->vlgrp || priv->rx_csum_enable;
170 }
171
172 static int gfar_of_init(struct net_device *dev)
173 {
174 const char *model;
175 const char *ctype;
176 const void *mac_addr;
177 u64 addr, size;
178 int err = 0;
179 struct gfar_private *priv = netdev_priv(dev);
180 struct device_node *np = priv->node;
181 const u32 *stash;
182 const u32 *stash_len;
183 const u32 *stash_idx;
184
185 if (!np || !of_device_is_available(np))
186 return -ENODEV;
187
188 /* get a pointer to the register memory */
189 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
190 priv->regs = ioremap(addr, size);
191
192 if (priv->regs == NULL)
193 return -ENOMEM;
194
195 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
196
197 model = of_get_property(np, "model", NULL);
198
199 /* If we aren't the FEC we have multiple interrupts */
200 if (model && strcasecmp(model, "FEC")) {
201 priv->interruptReceive = irq_of_parse_and_map(np, 1);
202
203 priv->interruptError = irq_of_parse_and_map(np, 2);
204
205 if (priv->interruptTransmit < 0 ||
206 priv->interruptReceive < 0 ||
207 priv->interruptError < 0) {
208 err = -EINVAL;
209 goto err_out;
210 }
211 }
212
213 stash = of_get_property(np, "bd-stash", NULL);
214
215 if(stash) {
216 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
217 priv->bd_stash_en = 1;
218 }
219
220 stash_len = of_get_property(np, "rx-stash-len", NULL);
221
222 if (stash_len)
223 priv->rx_stash_size = *stash_len;
224
225 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
226
227 if (stash_idx)
228 priv->rx_stash_index = *stash_idx;
229
230 if (stash_len || stash_idx)
231 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
232
233 mac_addr = of_get_mac_address(np);
234 if (mac_addr)
235 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
236
237 if (model && !strcasecmp(model, "TSEC"))
238 priv->device_flags =
239 FSL_GIANFAR_DEV_HAS_GIGABIT |
240 FSL_GIANFAR_DEV_HAS_COALESCE |
241 FSL_GIANFAR_DEV_HAS_RMON |
242 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
243 if (model && !strcasecmp(model, "eTSEC"))
244 priv->device_flags =
245 FSL_GIANFAR_DEV_HAS_GIGABIT |
246 FSL_GIANFAR_DEV_HAS_COALESCE |
247 FSL_GIANFAR_DEV_HAS_RMON |
248 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
249 FSL_GIANFAR_DEV_HAS_PADDING |
250 FSL_GIANFAR_DEV_HAS_CSUM |
251 FSL_GIANFAR_DEV_HAS_VLAN |
252 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
253 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
254
255 ctype = of_get_property(np, "phy-connection-type", NULL);
256
257 /* We only care about rgmii-id. The rest are autodetected */
258 if (ctype && !strcmp(ctype, "rgmii-id"))
259 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
260 else
261 priv->interface = PHY_INTERFACE_MODE_MII;
262
263 if (of_get_property(np, "fsl,magic-packet", NULL))
264 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
265
266 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
267 if (!priv->phy_node) {
268 u32 *fixed_link;
269
270 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
271 if (!fixed_link) {
272 err = -ENODEV;
273 goto err_out;
274 }
275 }
276
277 /* Find the TBI PHY. If it's not there, we don't support SGMII */
278 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
279
280 return 0;
281
282 err_out:
283 iounmap(priv->regs);
284 return err;
285 }
286
287 /* Ioctl MII Interface */
288 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
289 {
290 struct gfar_private *priv = netdev_priv(dev);
291
292 if (!netif_running(dev))
293 return -EINVAL;
294
295 if (!priv->phydev)
296 return -ENODEV;
297
298 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
299 }
300
301 /* Set up the ethernet device structure, private data,
302 * and anything else we need before we start */
303 static int gfar_probe(struct of_device *ofdev,
304 const struct of_device_id *match)
305 {
306 u32 tempval;
307 struct net_device *dev = NULL;
308 struct gfar_private *priv = NULL;
309 DECLARE_MAC_BUF(mac);
310 int err = 0;
311 int len_devname;
312
313 /* Create an ethernet device instance */
314 dev = alloc_etherdev(sizeof (*priv));
315
316 if (NULL == dev)
317 return -ENOMEM;
318
319 priv = netdev_priv(dev);
320 priv->ndev = dev;
321 priv->ofdev = ofdev;
322 priv->node = ofdev->node;
323 SET_NETDEV_DEV(dev, &ofdev->dev);
324
325 err = gfar_of_init(dev);
326
327 if (err)
328 goto regs_fail;
329
330 spin_lock_init(&priv->txlock);
331 spin_lock_init(&priv->rxlock);
332 spin_lock_init(&priv->bflock);
333 INIT_WORK(&priv->reset_task, gfar_reset_task);
334
335 dev_set_drvdata(&ofdev->dev, priv);
336
337 /* Stop the DMA engine now, in case it was running before */
338 /* (The firmware could have used it, and left it running). */
339 gfar_halt(dev);
340
341 /* Reset MAC layer */
342 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
343
344 /* We need to delay at least 3 TX clocks */
345 udelay(2);
346
347 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
348 gfar_write(&priv->regs->maccfg1, tempval);
349
350 /* Initialize MACCFG2. */
351 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
352
353 /* Initialize ECNTRL */
354 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
355
356 /* Set the dev->base_addr to the gfar reg region */
357 dev->base_addr = (unsigned long) (priv->regs);
358
359 SET_NETDEV_DEV(dev, &ofdev->dev);
360
361 /* Fill in the dev structure */
362 dev->watchdog_timeo = TX_TIMEOUT;
363 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
364 dev->mtu = 1500;
365
366 dev->netdev_ops = &gfar_netdev_ops;
367 dev->ethtool_ops = &gfar_ethtool_ops;
368
369 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
370 priv->rx_csum_enable = 1;
371 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
372 } else
373 priv->rx_csum_enable = 0;
374
375 priv->vlgrp = NULL;
376
377 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
378 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
379
380 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
381 priv->extended_hash = 1;
382 priv->hash_width = 9;
383
384 priv->hash_regs[0] = &priv->regs->igaddr0;
385 priv->hash_regs[1] = &priv->regs->igaddr1;
386 priv->hash_regs[2] = &priv->regs->igaddr2;
387 priv->hash_regs[3] = &priv->regs->igaddr3;
388 priv->hash_regs[4] = &priv->regs->igaddr4;
389 priv->hash_regs[5] = &priv->regs->igaddr5;
390 priv->hash_regs[6] = &priv->regs->igaddr6;
391 priv->hash_regs[7] = &priv->regs->igaddr7;
392 priv->hash_regs[8] = &priv->regs->gaddr0;
393 priv->hash_regs[9] = &priv->regs->gaddr1;
394 priv->hash_regs[10] = &priv->regs->gaddr2;
395 priv->hash_regs[11] = &priv->regs->gaddr3;
396 priv->hash_regs[12] = &priv->regs->gaddr4;
397 priv->hash_regs[13] = &priv->regs->gaddr5;
398 priv->hash_regs[14] = &priv->regs->gaddr6;
399 priv->hash_regs[15] = &priv->regs->gaddr7;
400
401 } else {
402 priv->extended_hash = 0;
403 priv->hash_width = 8;
404
405 priv->hash_regs[0] = &priv->regs->gaddr0;
406 priv->hash_regs[1] = &priv->regs->gaddr1;
407 priv->hash_regs[2] = &priv->regs->gaddr2;
408 priv->hash_regs[3] = &priv->regs->gaddr3;
409 priv->hash_regs[4] = &priv->regs->gaddr4;
410 priv->hash_regs[5] = &priv->regs->gaddr5;
411 priv->hash_regs[6] = &priv->regs->gaddr6;
412 priv->hash_regs[7] = &priv->regs->gaddr7;
413 }
414
415 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
416 priv->padding = DEFAULT_PADDING;
417 else
418 priv->padding = 0;
419
420 if (dev->features & NETIF_F_IP_CSUM)
421 dev->hard_header_len += GMAC_FCB_LEN;
422
423 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
424 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
425 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
426 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
427
428 priv->txcoalescing = DEFAULT_TX_COALESCE;
429 priv->txic = DEFAULT_TXIC;
430 priv->rxcoalescing = DEFAULT_RX_COALESCE;
431 priv->rxic = DEFAULT_RXIC;
432
433 /* Enable most messages by default */
434 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
435
436 /* Carrier starts down, phylib will bring it up */
437 netif_carrier_off(dev);
438
439 err = register_netdev(dev);
440
441 if (err) {
442 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
443 dev->name);
444 goto register_fail;
445 }
446
447 device_init_wakeup(&dev->dev,
448 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
449
450 /* fill out IRQ number and name fields */
451 len_devname = strlen(dev->name);
452 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
453 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
454 strncpy(&priv->int_name_tx[len_devname],
455 "_tx", sizeof("_tx") + 1);
456
457 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
458 strncpy(&priv->int_name_rx[len_devname],
459 "_rx", sizeof("_rx") + 1);
460
461 strncpy(&priv->int_name_er[0], dev->name, len_devname);
462 strncpy(&priv->int_name_er[len_devname],
463 "_er", sizeof("_er") + 1);
464 } else
465 priv->int_name_tx[len_devname] = '\0';
466
467 /* Create all the sysfs files */
468 gfar_init_sysfs(dev);
469
470 /* Print out the device info */
471 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
472
473 /* Even more device info helps when determining which kernel */
474 /* provided which set of benchmarks. */
475 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
476 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
477 dev->name, priv->rx_ring_size, priv->tx_ring_size);
478
479 return 0;
480
481 register_fail:
482 iounmap(priv->regs);
483 regs_fail:
484 if (priv->phy_node)
485 of_node_put(priv->phy_node);
486 if (priv->tbi_node)
487 of_node_put(priv->tbi_node);
488 free_netdev(dev);
489 return err;
490 }
491
492 static int gfar_remove(struct of_device *ofdev)
493 {
494 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
495
496 if (priv->phy_node)
497 of_node_put(priv->phy_node);
498 if (priv->tbi_node)
499 of_node_put(priv->tbi_node);
500
501 dev_set_drvdata(&ofdev->dev, NULL);
502
503 iounmap(priv->regs);
504 free_netdev(priv->ndev);
505
506 return 0;
507 }
508
509 #ifdef CONFIG_PM
510 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
511 {
512 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
513 struct net_device *dev = priv->ndev;
514 unsigned long flags;
515 u32 tempval;
516
517 int magic_packet = priv->wol_en &&
518 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
519
520 netif_device_detach(dev);
521
522 if (netif_running(dev)) {
523 spin_lock_irqsave(&priv->txlock, flags);
524 spin_lock(&priv->rxlock);
525
526 gfar_halt_nodisable(dev);
527
528 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
529 tempval = gfar_read(&priv->regs->maccfg1);
530
531 tempval &= ~MACCFG1_TX_EN;
532
533 if (!magic_packet)
534 tempval &= ~MACCFG1_RX_EN;
535
536 gfar_write(&priv->regs->maccfg1, tempval);
537
538 spin_unlock(&priv->rxlock);
539 spin_unlock_irqrestore(&priv->txlock, flags);
540
541 napi_disable(&priv->napi);
542
543 if (magic_packet) {
544 /* Enable interrupt on Magic Packet */
545 gfar_write(&priv->regs->imask, IMASK_MAG);
546
547 /* Enable Magic Packet mode */
548 tempval = gfar_read(&priv->regs->maccfg2);
549 tempval |= MACCFG2_MPEN;
550 gfar_write(&priv->regs->maccfg2, tempval);
551 } else {
552 phy_stop(priv->phydev);
553 }
554 }
555
556 return 0;
557 }
558
559 static int gfar_resume(struct of_device *ofdev)
560 {
561 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
562 struct net_device *dev = priv->ndev;
563 unsigned long flags;
564 u32 tempval;
565 int magic_packet = priv->wol_en &&
566 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
567
568 if (!netif_running(dev)) {
569 netif_device_attach(dev);
570 return 0;
571 }
572
573 if (!magic_packet && priv->phydev)
574 phy_start(priv->phydev);
575
576 /* Disable Magic Packet mode, in case something
577 * else woke us up.
578 */
579
580 spin_lock_irqsave(&priv->txlock, flags);
581 spin_lock(&priv->rxlock);
582
583 tempval = gfar_read(&priv->regs->maccfg2);
584 tempval &= ~MACCFG2_MPEN;
585 gfar_write(&priv->regs->maccfg2, tempval);
586
587 gfar_start(dev);
588
589 spin_unlock(&priv->rxlock);
590 spin_unlock_irqrestore(&priv->txlock, flags);
591
592 netif_device_attach(dev);
593
594 napi_enable(&priv->napi);
595
596 return 0;
597 }
598 #else
599 #define gfar_suspend NULL
600 #define gfar_resume NULL
601 #endif
602
603 /* Reads the controller's registers to determine what interface
604 * connects it to the PHY.
605 */
606 static phy_interface_t gfar_get_interface(struct net_device *dev)
607 {
608 struct gfar_private *priv = netdev_priv(dev);
609 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
610
611 if (ecntrl & ECNTRL_SGMII_MODE)
612 return PHY_INTERFACE_MODE_SGMII;
613
614 if (ecntrl & ECNTRL_TBI_MODE) {
615 if (ecntrl & ECNTRL_REDUCED_MODE)
616 return PHY_INTERFACE_MODE_RTBI;
617 else
618 return PHY_INTERFACE_MODE_TBI;
619 }
620
621 if (ecntrl & ECNTRL_REDUCED_MODE) {
622 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
623 return PHY_INTERFACE_MODE_RMII;
624 else {
625 phy_interface_t interface = priv->interface;
626
627 /*
628 * This isn't autodetected right now, so it must
629 * be set by the device tree or platform code.
630 */
631 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
632 return PHY_INTERFACE_MODE_RGMII_ID;
633
634 return PHY_INTERFACE_MODE_RGMII;
635 }
636 }
637
638 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
639 return PHY_INTERFACE_MODE_GMII;
640
641 return PHY_INTERFACE_MODE_MII;
642 }
643
644
645 /* Initializes driver's PHY state, and attaches to the PHY.
646 * Returns 0 on success.
647 */
648 static int init_phy(struct net_device *dev)
649 {
650 struct gfar_private *priv = netdev_priv(dev);
651 uint gigabit_support =
652 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
653 SUPPORTED_1000baseT_Full : 0;
654 phy_interface_t interface;
655
656 priv->oldlink = 0;
657 priv->oldspeed = 0;
658 priv->oldduplex = -1;
659
660 interface = gfar_get_interface(dev);
661
662 if (priv->phy_node) {
663 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link,
664 0, interface);
665 if (!priv->phydev) {
666 dev_err(&dev->dev, "error: Could not attach to PHY\n");
667 return -ENODEV;
668 }
669 }
670
671 if (interface == PHY_INTERFACE_MODE_SGMII)
672 gfar_configure_serdes(dev);
673
674 /* Remove any features not supported by the controller */
675 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
676 priv->phydev->advertising = priv->phydev->supported;
677
678 return 0;
679 }
680
681 /*
682 * Initialize TBI PHY interface for communicating with the
683 * SERDES lynx PHY on the chip. We communicate with this PHY
684 * through the MDIO bus on each controller, treating it as a
685 * "normal" PHY at the address found in the TBIPA register. We assume
686 * that the TBIPA register is valid. Either the MDIO bus code will set
687 * it to a value that doesn't conflict with other PHYs on the bus, or the
688 * value doesn't matter, as there are no other PHYs on the bus.
689 */
690 static void gfar_configure_serdes(struct net_device *dev)
691 {
692 struct gfar_private *priv = netdev_priv(dev);
693 struct phy_device *tbiphy;
694
695 if (!priv->tbi_node) {
696 dev_warn(&dev->dev, "error: SGMII mode requires that the "
697 "device tree specify a tbi-handle\n");
698 return;
699 }
700
701 tbiphy = of_phy_find_device(priv->tbi_node);
702 if (!tbiphy) {
703 dev_err(&dev->dev, "error: Could not get TBI device\n");
704 return;
705 }
706
707 /*
708 * If the link is already up, we must already be ok, and don't need to
709 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
710 * everything for us? Resetting it takes the link down and requires
711 * several seconds for it to come back.
712 */
713 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
714 return;
715
716 /* Single clk mode, mii mode off(for serdes communication) */
717 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
718
719 phy_write(tbiphy, MII_ADVERTISE,
720 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
721 ADVERTISE_1000XPSE_ASYM);
722
723 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
724 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
725 }
726
727 static void init_registers(struct net_device *dev)
728 {
729 struct gfar_private *priv = netdev_priv(dev);
730
731 /* Clear IEVENT */
732 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
733
734 /* Initialize IMASK */
735 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
736
737 /* Init hash registers to zero */
738 gfar_write(&priv->regs->igaddr0, 0);
739 gfar_write(&priv->regs->igaddr1, 0);
740 gfar_write(&priv->regs->igaddr2, 0);
741 gfar_write(&priv->regs->igaddr3, 0);
742 gfar_write(&priv->regs->igaddr4, 0);
743 gfar_write(&priv->regs->igaddr5, 0);
744 gfar_write(&priv->regs->igaddr6, 0);
745 gfar_write(&priv->regs->igaddr7, 0);
746
747 gfar_write(&priv->regs->gaddr0, 0);
748 gfar_write(&priv->regs->gaddr1, 0);
749 gfar_write(&priv->regs->gaddr2, 0);
750 gfar_write(&priv->regs->gaddr3, 0);
751 gfar_write(&priv->regs->gaddr4, 0);
752 gfar_write(&priv->regs->gaddr5, 0);
753 gfar_write(&priv->regs->gaddr6, 0);
754 gfar_write(&priv->regs->gaddr7, 0);
755
756 /* Zero out the rmon mib registers if it has them */
757 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
758 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
759
760 /* Mask off the CAM interrupts */
761 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
762 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
763 }
764
765 /* Initialize the max receive buffer length */
766 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
767
768 /* Initialize the Minimum Frame Length Register */
769 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
770 }
771
772
773 /* Halt the receive and transmit queues */
774 static void gfar_halt_nodisable(struct net_device *dev)
775 {
776 struct gfar_private *priv = netdev_priv(dev);
777 struct gfar __iomem *regs = priv->regs;
778 u32 tempval;
779
780 /* Mask all interrupts */
781 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
782
783 /* Clear all interrupts */
784 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
785
786 /* Stop the DMA, and wait for it to stop */
787 tempval = gfar_read(&priv->regs->dmactrl);
788 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
789 != (DMACTRL_GRS | DMACTRL_GTS)) {
790 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
791 gfar_write(&priv->regs->dmactrl, tempval);
792
793 while (!(gfar_read(&priv->regs->ievent) &
794 (IEVENT_GRSC | IEVENT_GTSC)))
795 cpu_relax();
796 }
797 }
798
799 /* Halt the receive and transmit queues */
800 void gfar_halt(struct net_device *dev)
801 {
802 struct gfar_private *priv = netdev_priv(dev);
803 struct gfar __iomem *regs = priv->regs;
804 u32 tempval;
805
806 gfar_halt_nodisable(dev);
807
808 /* Disable Rx and Tx */
809 tempval = gfar_read(&regs->maccfg1);
810 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
811 gfar_write(&regs->maccfg1, tempval);
812 }
813
814 void stop_gfar(struct net_device *dev)
815 {
816 struct gfar_private *priv = netdev_priv(dev);
817 struct gfar __iomem *regs = priv->regs;
818 unsigned long flags;
819
820 phy_stop(priv->phydev);
821
822 /* Lock it down */
823 spin_lock_irqsave(&priv->txlock, flags);
824 spin_lock(&priv->rxlock);
825
826 gfar_halt(dev);
827
828 spin_unlock(&priv->rxlock);
829 spin_unlock_irqrestore(&priv->txlock, flags);
830
831 /* Free the IRQs */
832 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
833 free_irq(priv->interruptError, dev);
834 free_irq(priv->interruptTransmit, dev);
835 free_irq(priv->interruptReceive, dev);
836 } else {
837 free_irq(priv->interruptTransmit, dev);
838 }
839
840 free_skb_resources(priv);
841
842 dma_free_coherent(&priv->ofdev->dev,
843 sizeof(struct txbd8)*priv->tx_ring_size
844 + sizeof(struct rxbd8)*priv->rx_ring_size,
845 priv->tx_bd_base,
846 gfar_read(&regs->tbase0));
847 }
848
849 /* If there are any tx skbs or rx skbs still around, free them.
850 * Then free tx_skbuff and rx_skbuff */
851 static void free_skb_resources(struct gfar_private *priv)
852 {
853 struct rxbd8 *rxbdp;
854 struct txbd8 *txbdp;
855 int i, j;
856
857 /* Go through all the buffer descriptors and free their data buffers */
858 txbdp = priv->tx_bd_base;
859
860 for (i = 0; i < priv->tx_ring_size; i++) {
861 if (!priv->tx_skbuff[i])
862 continue;
863
864 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
865 txbdp->length, DMA_TO_DEVICE);
866 txbdp->lstatus = 0;
867 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
868 txbdp++;
869 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
870 txbdp->length, DMA_TO_DEVICE);
871 }
872 txbdp++;
873 dev_kfree_skb_any(priv->tx_skbuff[i]);
874 priv->tx_skbuff[i] = NULL;
875 }
876
877 kfree(priv->tx_skbuff);
878
879 rxbdp = priv->rx_bd_base;
880
881 /* rx_skbuff is not guaranteed to be allocated, so only
882 * free it and its contents if it is allocated */
883 if(priv->rx_skbuff != NULL) {
884 for (i = 0; i < priv->rx_ring_size; i++) {
885 if (priv->rx_skbuff[i]) {
886 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
887 priv->rx_buffer_size,
888 DMA_FROM_DEVICE);
889
890 dev_kfree_skb_any(priv->rx_skbuff[i]);
891 priv->rx_skbuff[i] = NULL;
892 }
893
894 rxbdp->lstatus = 0;
895 rxbdp->bufPtr = 0;
896
897 rxbdp++;
898 }
899
900 kfree(priv->rx_skbuff);
901 }
902 }
903
904 void gfar_start(struct net_device *dev)
905 {
906 struct gfar_private *priv = netdev_priv(dev);
907 struct gfar __iomem *regs = priv->regs;
908 u32 tempval;
909
910 /* Enable Rx and Tx in MACCFG1 */
911 tempval = gfar_read(&regs->maccfg1);
912 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
913 gfar_write(&regs->maccfg1, tempval);
914
915 /* Initialize DMACTRL to have WWR and WOP */
916 tempval = gfar_read(&priv->regs->dmactrl);
917 tempval |= DMACTRL_INIT_SETTINGS;
918 gfar_write(&priv->regs->dmactrl, tempval);
919
920 /* Make sure we aren't stopped */
921 tempval = gfar_read(&priv->regs->dmactrl);
922 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
923 gfar_write(&priv->regs->dmactrl, tempval);
924
925 /* Clear THLT/RHLT, so that the DMA starts polling now */
926 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
927 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
928
929 /* Unmask the interrupts we look for */
930 gfar_write(&regs->imask, IMASK_DEFAULT);
931
932 dev->trans_start = jiffies;
933 }
934
935 /* Bring the controller up and running */
936 int startup_gfar(struct net_device *dev)
937 {
938 struct txbd8 *txbdp;
939 struct rxbd8 *rxbdp;
940 dma_addr_t addr = 0;
941 unsigned long vaddr;
942 int i;
943 struct gfar_private *priv = netdev_priv(dev);
944 struct gfar __iomem *regs = priv->regs;
945 int err = 0;
946 u32 rctrl = 0;
947 u32 attrs = 0;
948
949 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
950
951 /* Allocate memory for the buffer descriptors */
952 vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
953 sizeof (struct txbd8) * priv->tx_ring_size +
954 sizeof (struct rxbd8) * priv->rx_ring_size,
955 &addr, GFP_KERNEL);
956
957 if (vaddr == 0) {
958 if (netif_msg_ifup(priv))
959 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
960 dev->name);
961 return -ENOMEM;
962 }
963
964 priv->tx_bd_base = (struct txbd8 *) vaddr;
965
966 /* enet DMA only understands physical addresses */
967 gfar_write(&regs->tbase0, addr);
968
969 /* Start the rx descriptor ring where the tx ring leaves off */
970 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
971 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
972 priv->rx_bd_base = (struct rxbd8 *) vaddr;
973 gfar_write(&regs->rbase0, addr);
974
975 /* Setup the skbuff rings */
976 priv->tx_skbuff =
977 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
978 priv->tx_ring_size, GFP_KERNEL);
979
980 if (NULL == priv->tx_skbuff) {
981 if (netif_msg_ifup(priv))
982 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
983 dev->name);
984 err = -ENOMEM;
985 goto tx_skb_fail;
986 }
987
988 for (i = 0; i < priv->tx_ring_size; i++)
989 priv->tx_skbuff[i] = NULL;
990
991 priv->rx_skbuff =
992 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
993 priv->rx_ring_size, GFP_KERNEL);
994
995 if (NULL == priv->rx_skbuff) {
996 if (netif_msg_ifup(priv))
997 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
998 dev->name);
999 err = -ENOMEM;
1000 goto rx_skb_fail;
1001 }
1002
1003 for (i = 0; i < priv->rx_ring_size; i++)
1004 priv->rx_skbuff[i] = NULL;
1005
1006 /* Initialize some variables in our dev structure */
1007 priv->num_txbdfree = priv->tx_ring_size;
1008 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1009 priv->cur_rx = priv->rx_bd_base;
1010 priv->skb_curtx = priv->skb_dirtytx = 0;
1011 priv->skb_currx = 0;
1012
1013 /* Initialize Transmit Descriptor Ring */
1014 txbdp = priv->tx_bd_base;
1015 for (i = 0; i < priv->tx_ring_size; i++) {
1016 txbdp->lstatus = 0;
1017 txbdp->bufPtr = 0;
1018 txbdp++;
1019 }
1020
1021 /* Set the last descriptor in the ring to indicate wrap */
1022 txbdp--;
1023 txbdp->status |= TXBD_WRAP;
1024
1025 rxbdp = priv->rx_bd_base;
1026 for (i = 0; i < priv->rx_ring_size; i++) {
1027 struct sk_buff *skb;
1028
1029 skb = gfar_new_skb(dev);
1030
1031 if (!skb) {
1032 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1033 dev->name);
1034
1035 goto err_rxalloc_fail;
1036 }
1037
1038 priv->rx_skbuff[i] = skb;
1039
1040 gfar_new_rxbdp(dev, rxbdp, skb);
1041
1042 rxbdp++;
1043 }
1044
1045 /* Set the last descriptor in the ring to wrap */
1046 rxbdp--;
1047 rxbdp->status |= RXBD_WRAP;
1048
1049 /* If the device has multiple interrupts, register for
1050 * them. Otherwise, only register for the one */
1051 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1052 /* Install our interrupt handlers for Error,
1053 * Transmit, and Receive */
1054 if (request_irq(priv->interruptError, gfar_error,
1055 0, priv->int_name_er, dev) < 0) {
1056 if (netif_msg_intr(priv))
1057 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1058 dev->name, priv->interruptError);
1059
1060 err = -1;
1061 goto err_irq_fail;
1062 }
1063
1064 if (request_irq(priv->interruptTransmit, gfar_transmit,
1065 0, priv->int_name_tx, dev) < 0) {
1066 if (netif_msg_intr(priv))
1067 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1068 dev->name, priv->interruptTransmit);
1069
1070 err = -1;
1071
1072 goto tx_irq_fail;
1073 }
1074
1075 if (request_irq(priv->interruptReceive, gfar_receive,
1076 0, priv->int_name_rx, dev) < 0) {
1077 if (netif_msg_intr(priv))
1078 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1079 dev->name, priv->interruptReceive);
1080
1081 err = -1;
1082 goto rx_irq_fail;
1083 }
1084 } else {
1085 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1086 0, priv->int_name_tx, dev) < 0) {
1087 if (netif_msg_intr(priv))
1088 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1089 dev->name, priv->interruptTransmit);
1090
1091 err = -1;
1092 goto err_irq_fail;
1093 }
1094 }
1095
1096 phy_start(priv->phydev);
1097
1098 /* Configure the coalescing support */
1099 gfar_write(&regs->txic, 0);
1100 if (priv->txcoalescing)
1101 gfar_write(&regs->txic, priv->txic);
1102
1103 gfar_write(&regs->rxic, 0);
1104 if (priv->rxcoalescing)
1105 gfar_write(&regs->rxic, priv->rxic);
1106
1107 if (priv->rx_csum_enable)
1108 rctrl |= RCTRL_CHECKSUMMING;
1109
1110 if (priv->extended_hash) {
1111 rctrl |= RCTRL_EXTHASH;
1112
1113 gfar_clear_exact_match(dev);
1114 rctrl |= RCTRL_EMEN;
1115 }
1116
1117 if (priv->padding) {
1118 rctrl &= ~RCTRL_PAL_MASK;
1119 rctrl |= RCTRL_PADDING(priv->padding);
1120 }
1121
1122 /* Init rctrl based on our settings */
1123 gfar_write(&priv->regs->rctrl, rctrl);
1124
1125 if (dev->features & NETIF_F_IP_CSUM)
1126 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1127
1128 /* Set the extraction length and index */
1129 attrs = ATTRELI_EL(priv->rx_stash_size) |
1130 ATTRELI_EI(priv->rx_stash_index);
1131
1132 gfar_write(&priv->regs->attreli, attrs);
1133
1134 /* Start with defaults, and add stashing or locking
1135 * depending on the approprate variables */
1136 attrs = ATTR_INIT_SETTINGS;
1137
1138 if (priv->bd_stash_en)
1139 attrs |= ATTR_BDSTASH;
1140
1141 if (priv->rx_stash_size != 0)
1142 attrs |= ATTR_BUFSTASH;
1143
1144 gfar_write(&priv->regs->attr, attrs);
1145
1146 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1147 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1148 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1149
1150 /* Start the controller */
1151 gfar_start(dev);
1152
1153 return 0;
1154
1155 rx_irq_fail:
1156 free_irq(priv->interruptTransmit, dev);
1157 tx_irq_fail:
1158 free_irq(priv->interruptError, dev);
1159 err_irq_fail:
1160 err_rxalloc_fail:
1161 rx_skb_fail:
1162 free_skb_resources(priv);
1163 tx_skb_fail:
1164 dma_free_coherent(&priv->ofdev->dev,
1165 sizeof(struct txbd8)*priv->tx_ring_size
1166 + sizeof(struct rxbd8)*priv->rx_ring_size,
1167 priv->tx_bd_base,
1168 gfar_read(&regs->tbase0));
1169
1170 return err;
1171 }
1172
1173 /* Called when something needs to use the ethernet device */
1174 /* Returns 0 for success. */
1175 static int gfar_enet_open(struct net_device *dev)
1176 {
1177 struct gfar_private *priv = netdev_priv(dev);
1178 int err;
1179
1180 napi_enable(&priv->napi);
1181
1182 skb_queue_head_init(&priv->rx_recycle);
1183
1184 /* Initialize a bunch of registers */
1185 init_registers(dev);
1186
1187 gfar_set_mac_address(dev);
1188
1189 err = init_phy(dev);
1190
1191 if(err) {
1192 napi_disable(&priv->napi);
1193 return err;
1194 }
1195
1196 err = startup_gfar(dev);
1197 if (err) {
1198 napi_disable(&priv->napi);
1199 return err;
1200 }
1201
1202 netif_start_queue(dev);
1203
1204 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1205
1206 return err;
1207 }
1208
1209 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1210 {
1211 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1212
1213 memset(fcb, 0, GMAC_FCB_LEN);
1214
1215 return fcb;
1216 }
1217
1218 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1219 {
1220 u8 flags = 0;
1221
1222 /* If we're here, it's a IP packet with a TCP or UDP
1223 * payload. We set it to checksum, using a pseudo-header
1224 * we provide
1225 */
1226 flags = TXFCB_DEFAULT;
1227
1228 /* Tell the controller what the protocol is */
1229 /* And provide the already calculated phcs */
1230 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1231 flags |= TXFCB_UDP;
1232 fcb->phcs = udp_hdr(skb)->check;
1233 } else
1234 fcb->phcs = tcp_hdr(skb)->check;
1235
1236 /* l3os is the distance between the start of the
1237 * frame (skb->data) and the start of the IP hdr.
1238 * l4os is the distance between the start of the
1239 * l3 hdr and the l4 hdr */
1240 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1241 fcb->l4os = skb_network_header_len(skb);
1242
1243 fcb->flags = flags;
1244 }
1245
1246 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1247 {
1248 fcb->flags |= TXFCB_VLN;
1249 fcb->vlctl = vlan_tx_tag_get(skb);
1250 }
1251
1252 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1253 struct txbd8 *base, int ring_size)
1254 {
1255 struct txbd8 *new_bd = bdp + stride;
1256
1257 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1258 }
1259
1260 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1261 int ring_size)
1262 {
1263 return skip_txbd(bdp, 1, base, ring_size);
1264 }
1265
1266 /* This is called by the kernel when a frame is ready for transmission. */
1267 /* It is pointed to by the dev->hard_start_xmit function pointer */
1268 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1269 {
1270 struct gfar_private *priv = netdev_priv(dev);
1271 struct txfcb *fcb = NULL;
1272 struct txbd8 *txbdp, *txbdp_start, *base;
1273 u32 lstatus;
1274 int i;
1275 u32 bufaddr;
1276 unsigned long flags;
1277 unsigned int nr_frags, length;
1278
1279 base = priv->tx_bd_base;
1280
1281 /* make space for additional header when fcb is needed */
1282 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1283 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1284 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1285 struct sk_buff *skb_new;
1286
1287 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1288 if (!skb_new) {
1289 dev->stats.tx_errors++;
1290 kfree_skb(skb);
1291 return NETDEV_TX_OK;
1292 }
1293 kfree_skb(skb);
1294 skb = skb_new;
1295 }
1296
1297 /* total number of fragments in the SKB */
1298 nr_frags = skb_shinfo(skb)->nr_frags;
1299
1300 spin_lock_irqsave(&priv->txlock, flags);
1301
1302 /* check if there is space to queue this packet */
1303 if ((nr_frags+1) > priv->num_txbdfree) {
1304 /* no space, stop the queue */
1305 netif_stop_queue(dev);
1306 dev->stats.tx_fifo_errors++;
1307 spin_unlock_irqrestore(&priv->txlock, flags);
1308 return NETDEV_TX_BUSY;
1309 }
1310
1311 /* Update transmit stats */
1312 dev->stats.tx_bytes += skb->len;
1313
1314 txbdp = txbdp_start = priv->cur_tx;
1315
1316 if (nr_frags == 0) {
1317 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1318 } else {
1319 /* Place the fragment addresses and lengths into the TxBDs */
1320 for (i = 0; i < nr_frags; i++) {
1321 /* Point at the next BD, wrapping as needed */
1322 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1323
1324 length = skb_shinfo(skb)->frags[i].size;
1325
1326 lstatus = txbdp->lstatus | length |
1327 BD_LFLAG(TXBD_READY);
1328
1329 /* Handle the last BD specially */
1330 if (i == nr_frags - 1)
1331 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1332
1333 bufaddr = dma_map_page(&priv->ofdev->dev,
1334 skb_shinfo(skb)->frags[i].page,
1335 skb_shinfo(skb)->frags[i].page_offset,
1336 length,
1337 DMA_TO_DEVICE);
1338
1339 /* set the TxBD length and buffer pointer */
1340 txbdp->bufPtr = bufaddr;
1341 txbdp->lstatus = lstatus;
1342 }
1343
1344 lstatus = txbdp_start->lstatus;
1345 }
1346
1347 /* Set up checksumming */
1348 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1349 fcb = gfar_add_fcb(skb);
1350 lstatus |= BD_LFLAG(TXBD_TOE);
1351 gfar_tx_checksum(skb, fcb);
1352 }
1353
1354 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1355 if (unlikely(NULL == fcb)) {
1356 fcb = gfar_add_fcb(skb);
1357 lstatus |= BD_LFLAG(TXBD_TOE);
1358 }
1359
1360 gfar_tx_vlan(skb, fcb);
1361 }
1362
1363 /* setup the TxBD length and buffer pointer for the first BD */
1364 priv->tx_skbuff[priv->skb_curtx] = skb;
1365 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1366 skb_headlen(skb), DMA_TO_DEVICE);
1367
1368 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1369
1370 /*
1371 * The powerpc-specific eieio() is used, as wmb() has too strong
1372 * semantics (it requires synchronization between cacheable and
1373 * uncacheable mappings, which eieio doesn't provide and which we
1374 * don't need), thus requiring a more expensive sync instruction. At
1375 * some point, the set of architecture-independent barrier functions
1376 * should be expanded to include weaker barriers.
1377 */
1378 eieio();
1379
1380 txbdp_start->lstatus = lstatus;
1381
1382 /* Update the current skb pointer to the next entry we will use
1383 * (wrapping if necessary) */
1384 priv->skb_curtx = (priv->skb_curtx + 1) &
1385 TX_RING_MOD_MASK(priv->tx_ring_size);
1386
1387 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1388
1389 /* reduce TxBD free count */
1390 priv->num_txbdfree -= (nr_frags + 1);
1391
1392 dev->trans_start = jiffies;
1393
1394 /* If the next BD still needs to be cleaned up, then the bds
1395 are full. We need to tell the kernel to stop sending us stuff. */
1396 if (!priv->num_txbdfree) {
1397 netif_stop_queue(dev);
1398
1399 dev->stats.tx_fifo_errors++;
1400 }
1401
1402 /* Tell the DMA to go go go */
1403 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1404
1405 /* Unlock priv */
1406 spin_unlock_irqrestore(&priv->txlock, flags);
1407
1408 return NETDEV_TX_OK;
1409 }
1410
1411 /* Stops the kernel queue, and halts the controller */
1412 static int gfar_close(struct net_device *dev)
1413 {
1414 struct gfar_private *priv = netdev_priv(dev);
1415
1416 napi_disable(&priv->napi);
1417
1418 skb_queue_purge(&priv->rx_recycle);
1419 cancel_work_sync(&priv->reset_task);
1420 stop_gfar(dev);
1421
1422 /* Disconnect from the PHY */
1423 phy_disconnect(priv->phydev);
1424 priv->phydev = NULL;
1425
1426 netif_stop_queue(dev);
1427
1428 return 0;
1429 }
1430
1431 /* Changes the mac address if the controller is not running. */
1432 static int gfar_set_mac_address(struct net_device *dev)
1433 {
1434 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1435
1436 return 0;
1437 }
1438
1439
1440 /* Enables and disables VLAN insertion/extraction */
1441 static void gfar_vlan_rx_register(struct net_device *dev,
1442 struct vlan_group *grp)
1443 {
1444 struct gfar_private *priv = netdev_priv(dev);
1445 unsigned long flags;
1446 u32 tempval;
1447
1448 spin_lock_irqsave(&priv->rxlock, flags);
1449
1450 priv->vlgrp = grp;
1451
1452 if (grp) {
1453 /* Enable VLAN tag insertion */
1454 tempval = gfar_read(&priv->regs->tctrl);
1455 tempval |= TCTRL_VLINS;
1456
1457 gfar_write(&priv->regs->tctrl, tempval);
1458
1459 /* Enable VLAN tag extraction */
1460 tempval = gfar_read(&priv->regs->rctrl);
1461 tempval |= RCTRL_VLEX;
1462 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1463 gfar_write(&priv->regs->rctrl, tempval);
1464 } else {
1465 /* Disable VLAN tag insertion */
1466 tempval = gfar_read(&priv->regs->tctrl);
1467 tempval &= ~TCTRL_VLINS;
1468 gfar_write(&priv->regs->tctrl, tempval);
1469
1470 /* Disable VLAN tag extraction */
1471 tempval = gfar_read(&priv->regs->rctrl);
1472 tempval &= ~RCTRL_VLEX;
1473 /* If parse is no longer required, then disable parser */
1474 if (tempval & RCTRL_REQ_PARSER)
1475 tempval |= RCTRL_PRSDEP_INIT;
1476 else
1477 tempval &= ~RCTRL_PRSDEP_INIT;
1478 gfar_write(&priv->regs->rctrl, tempval);
1479 }
1480
1481 gfar_change_mtu(dev, dev->mtu);
1482
1483 spin_unlock_irqrestore(&priv->rxlock, flags);
1484 }
1485
1486 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1487 {
1488 int tempsize, tempval;
1489 struct gfar_private *priv = netdev_priv(dev);
1490 int oldsize = priv->rx_buffer_size;
1491 int frame_size = new_mtu + ETH_HLEN;
1492
1493 if (priv->vlgrp)
1494 frame_size += VLAN_HLEN;
1495
1496 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1497 if (netif_msg_drv(priv))
1498 printk(KERN_ERR "%s: Invalid MTU setting\n",
1499 dev->name);
1500 return -EINVAL;
1501 }
1502
1503 if (gfar_uses_fcb(priv))
1504 frame_size += GMAC_FCB_LEN;
1505
1506 frame_size += priv->padding;
1507
1508 tempsize =
1509 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1510 INCREMENTAL_BUFFER_SIZE;
1511
1512 /* Only stop and start the controller if it isn't already
1513 * stopped, and we changed something */
1514 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1515 stop_gfar(dev);
1516
1517 priv->rx_buffer_size = tempsize;
1518
1519 dev->mtu = new_mtu;
1520
1521 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1522 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1523
1524 /* If the mtu is larger than the max size for standard
1525 * ethernet frames (ie, a jumbo frame), then set maccfg2
1526 * to allow huge frames, and to check the length */
1527 tempval = gfar_read(&priv->regs->maccfg2);
1528
1529 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1530 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1531 else
1532 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1533
1534 gfar_write(&priv->regs->maccfg2, tempval);
1535
1536 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1537 startup_gfar(dev);
1538
1539 return 0;
1540 }
1541
1542 /* gfar_reset_task gets scheduled when a packet has not been
1543 * transmitted after a set amount of time.
1544 * For now, assume that clearing out all the structures, and
1545 * starting over will fix the problem.
1546 */
1547 static void gfar_reset_task(struct work_struct *work)
1548 {
1549 struct gfar_private *priv = container_of(work, struct gfar_private,
1550 reset_task);
1551 struct net_device *dev = priv->ndev;
1552
1553 if (dev->flags & IFF_UP) {
1554 netif_stop_queue(dev);
1555 stop_gfar(dev);
1556 startup_gfar(dev);
1557 netif_start_queue(dev);
1558 }
1559
1560 netif_tx_schedule_all(dev);
1561 }
1562
1563 static void gfar_timeout(struct net_device *dev)
1564 {
1565 struct gfar_private *priv = netdev_priv(dev);
1566
1567 dev->stats.tx_errors++;
1568 schedule_work(&priv->reset_task);
1569 }
1570
1571 /* Interrupt Handler for Transmit complete */
1572 static int gfar_clean_tx_ring(struct net_device *dev)
1573 {
1574 struct gfar_private *priv = netdev_priv(dev);
1575 struct txbd8 *bdp;
1576 struct txbd8 *lbdp = NULL;
1577 struct txbd8 *base = priv->tx_bd_base;
1578 struct sk_buff *skb;
1579 int skb_dirtytx;
1580 int tx_ring_size = priv->tx_ring_size;
1581 int frags = 0;
1582 int i;
1583 int howmany = 0;
1584 u32 lstatus;
1585
1586 bdp = priv->dirty_tx;
1587 skb_dirtytx = priv->skb_dirtytx;
1588
1589 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1590 frags = skb_shinfo(skb)->nr_frags;
1591 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1592
1593 lstatus = lbdp->lstatus;
1594
1595 /* Only clean completed frames */
1596 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1597 (lstatus & BD_LENGTH_MASK))
1598 break;
1599
1600 dma_unmap_single(&priv->ofdev->dev,
1601 bdp->bufPtr,
1602 bdp->length,
1603 DMA_TO_DEVICE);
1604
1605 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1606 bdp = next_txbd(bdp, base, tx_ring_size);
1607
1608 for (i = 0; i < frags; i++) {
1609 dma_unmap_page(&priv->ofdev->dev,
1610 bdp->bufPtr,
1611 bdp->length,
1612 DMA_TO_DEVICE);
1613 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1614 bdp = next_txbd(bdp, base, tx_ring_size);
1615 }
1616
1617 /*
1618 * If there's room in the queue (limit it to rx_buffer_size)
1619 * we add this skb back into the pool, if it's the right size
1620 */
1621 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1622 skb_recycle_check(skb, priv->rx_buffer_size +
1623 RXBUF_ALIGNMENT))
1624 __skb_queue_head(&priv->rx_recycle, skb);
1625 else
1626 dev_kfree_skb_any(skb);
1627
1628 priv->tx_skbuff[skb_dirtytx] = NULL;
1629
1630 skb_dirtytx = (skb_dirtytx + 1) &
1631 TX_RING_MOD_MASK(tx_ring_size);
1632
1633 howmany++;
1634 priv->num_txbdfree += frags + 1;
1635 }
1636
1637 /* If we freed a buffer, we can restart transmission, if necessary */
1638 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1639 netif_wake_queue(dev);
1640
1641 /* Update dirty indicators */
1642 priv->skb_dirtytx = skb_dirtytx;
1643 priv->dirty_tx = bdp;
1644
1645 dev->stats.tx_packets += howmany;
1646
1647 return howmany;
1648 }
1649
1650 static void gfar_schedule_cleanup(struct net_device *dev)
1651 {
1652 struct gfar_private *priv = netdev_priv(dev);
1653 unsigned long flags;
1654
1655 spin_lock_irqsave(&priv->txlock, flags);
1656 spin_lock(&priv->rxlock);
1657
1658 if (napi_schedule_prep(&priv->napi)) {
1659 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1660 __napi_schedule(&priv->napi);
1661 } else {
1662 /*
1663 * Clear IEVENT, so interrupts aren't called again
1664 * because of the packets that have already arrived.
1665 */
1666 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1667 }
1668
1669 spin_unlock(&priv->rxlock);
1670 spin_unlock_irqrestore(&priv->txlock, flags);
1671 }
1672
1673 /* Interrupt Handler for Transmit complete */
1674 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1675 {
1676 gfar_schedule_cleanup((struct net_device *)dev_id);
1677 return IRQ_HANDLED;
1678 }
1679
1680 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1681 struct sk_buff *skb)
1682 {
1683 struct gfar_private *priv = netdev_priv(dev);
1684 u32 lstatus;
1685
1686 bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1687 priv->rx_buffer_size, DMA_FROM_DEVICE);
1688
1689 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1690
1691 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1692 lstatus |= BD_LFLAG(RXBD_WRAP);
1693
1694 eieio();
1695
1696 bdp->lstatus = lstatus;
1697 }
1698
1699
1700 struct sk_buff * gfar_new_skb(struct net_device *dev)
1701 {
1702 unsigned int alignamount;
1703 struct gfar_private *priv = netdev_priv(dev);
1704 struct sk_buff *skb = NULL;
1705
1706 skb = __skb_dequeue(&priv->rx_recycle);
1707 if (!skb)
1708 skb = netdev_alloc_skb(dev,
1709 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1710
1711 if (!skb)
1712 return NULL;
1713
1714 alignamount = RXBUF_ALIGNMENT -
1715 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1716
1717 /* We need the data buffer to be aligned properly. We will reserve
1718 * as many bytes as needed to align the data properly
1719 */
1720 skb_reserve(skb, alignamount);
1721
1722 return skb;
1723 }
1724
1725 static inline void count_errors(unsigned short status, struct net_device *dev)
1726 {
1727 struct gfar_private *priv = netdev_priv(dev);
1728 struct net_device_stats *stats = &dev->stats;
1729 struct gfar_extra_stats *estats = &priv->extra_stats;
1730
1731 /* If the packet was truncated, none of the other errors
1732 * matter */
1733 if (status & RXBD_TRUNCATED) {
1734 stats->rx_length_errors++;
1735
1736 estats->rx_trunc++;
1737
1738 return;
1739 }
1740 /* Count the errors, if there were any */
1741 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1742 stats->rx_length_errors++;
1743
1744 if (status & RXBD_LARGE)
1745 estats->rx_large++;
1746 else
1747 estats->rx_short++;
1748 }
1749 if (status & RXBD_NONOCTET) {
1750 stats->rx_frame_errors++;
1751 estats->rx_nonoctet++;
1752 }
1753 if (status & RXBD_CRCERR) {
1754 estats->rx_crcerr++;
1755 stats->rx_crc_errors++;
1756 }
1757 if (status & RXBD_OVERRUN) {
1758 estats->rx_overrun++;
1759 stats->rx_crc_errors++;
1760 }
1761 }
1762
1763 irqreturn_t gfar_receive(int irq, void *dev_id)
1764 {
1765 gfar_schedule_cleanup((struct net_device *)dev_id);
1766 return IRQ_HANDLED;
1767 }
1768
1769 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1770 {
1771 /* If valid headers were found, and valid sums
1772 * were verified, then we tell the kernel that no
1773 * checksumming is necessary. Otherwise, it is */
1774 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1775 skb->ip_summed = CHECKSUM_UNNECESSARY;
1776 else
1777 skb->ip_summed = CHECKSUM_NONE;
1778 }
1779
1780
1781 /* gfar_process_frame() -- handle one incoming packet if skb
1782 * isn't NULL. */
1783 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1784 int amount_pull)
1785 {
1786 struct gfar_private *priv = netdev_priv(dev);
1787 struct rxfcb *fcb = NULL;
1788
1789 int ret;
1790
1791 /* fcb is at the beginning if exists */
1792 fcb = (struct rxfcb *)skb->data;
1793
1794 /* Remove the FCB from the skb */
1795 /* Remove the padded bytes, if there are any */
1796 if (amount_pull)
1797 skb_pull(skb, amount_pull);
1798
1799 if (priv->rx_csum_enable)
1800 gfar_rx_checksum(skb, fcb);
1801
1802 /* Tell the skb what kind of packet this is */
1803 skb->protocol = eth_type_trans(skb, dev);
1804
1805 /* Send the packet up the stack */
1806 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1807 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1808 else
1809 ret = netif_receive_skb(skb);
1810
1811 if (NET_RX_DROP == ret)
1812 priv->extra_stats.kernel_dropped++;
1813
1814 return 0;
1815 }
1816
1817 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1818 * until the budget/quota has been reached. Returns the number
1819 * of frames handled
1820 */
1821 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1822 {
1823 struct rxbd8 *bdp, *base;
1824 struct sk_buff *skb;
1825 int pkt_len;
1826 int amount_pull;
1827 int howmany = 0;
1828 struct gfar_private *priv = netdev_priv(dev);
1829
1830 /* Get the first full descriptor */
1831 bdp = priv->cur_rx;
1832 base = priv->rx_bd_base;
1833
1834 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1835 priv->padding;
1836
1837 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1838 struct sk_buff *newskb;
1839 rmb();
1840
1841 /* Add another skb for the future */
1842 newskb = gfar_new_skb(dev);
1843
1844 skb = priv->rx_skbuff[priv->skb_currx];
1845
1846 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1847 priv->rx_buffer_size, DMA_FROM_DEVICE);
1848
1849 /* We drop the frame if we failed to allocate a new buffer */
1850 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1851 bdp->status & RXBD_ERR)) {
1852 count_errors(bdp->status, dev);
1853
1854 if (unlikely(!newskb))
1855 newskb = skb;
1856 else if (skb) {
1857 /*
1858 * We need to reset ->data to what it
1859 * was before gfar_new_skb() re-aligned
1860 * it to an RXBUF_ALIGNMENT boundary
1861 * before we put the skb back on the
1862 * recycle list.
1863 */
1864 skb->data = skb->head + NET_SKB_PAD;
1865 __skb_queue_head(&priv->rx_recycle, skb);
1866 }
1867 } else {
1868 /* Increment the number of packets */
1869 dev->stats.rx_packets++;
1870 howmany++;
1871
1872 if (likely(skb)) {
1873 pkt_len = bdp->length - ETH_FCS_LEN;
1874 /* Remove the FCS from the packet length */
1875 skb_put(skb, pkt_len);
1876 dev->stats.rx_bytes += pkt_len;
1877
1878 if (in_irq() || irqs_disabled())
1879 printk("Interrupt problem!\n");
1880 gfar_process_frame(dev, skb, amount_pull);
1881
1882 } else {
1883 if (netif_msg_rx_err(priv))
1884 printk(KERN_WARNING
1885 "%s: Missing skb!\n", dev->name);
1886 dev->stats.rx_dropped++;
1887 priv->extra_stats.rx_skbmissing++;
1888 }
1889
1890 }
1891
1892 priv->rx_skbuff[priv->skb_currx] = newskb;
1893
1894 /* Setup the new bdp */
1895 gfar_new_rxbdp(dev, bdp, newskb);
1896
1897 /* Update to the next pointer */
1898 bdp = next_bd(bdp, base, priv->rx_ring_size);
1899
1900 /* update to point at the next skb */
1901 priv->skb_currx =
1902 (priv->skb_currx + 1) &
1903 RX_RING_MOD_MASK(priv->rx_ring_size);
1904 }
1905
1906 /* Update the current rxbd pointer to be the next one */
1907 priv->cur_rx = bdp;
1908
1909 return howmany;
1910 }
1911
1912 static int gfar_poll(struct napi_struct *napi, int budget)
1913 {
1914 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1915 struct net_device *dev = priv->ndev;
1916 int tx_cleaned = 0;
1917 int rx_cleaned = 0;
1918 unsigned long flags;
1919
1920 /* Clear IEVENT, so interrupts aren't called again
1921 * because of the packets that have already arrived */
1922 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1923
1924 /* If we fail to get the lock, don't bother with the TX BDs */
1925 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1926 tx_cleaned = gfar_clean_tx_ring(dev);
1927 spin_unlock_irqrestore(&priv->txlock, flags);
1928 }
1929
1930 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1931
1932 if (tx_cleaned)
1933 return budget;
1934
1935 if (rx_cleaned < budget) {
1936 napi_complete(napi);
1937
1938 /* Clear the halt bit in RSTAT */
1939 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1940
1941 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1942
1943 /* If we are coalescing interrupts, update the timer */
1944 /* Otherwise, clear it */
1945 if (likely(priv->rxcoalescing)) {
1946 gfar_write(&priv->regs->rxic, 0);
1947 gfar_write(&priv->regs->rxic, priv->rxic);
1948 }
1949 if (likely(priv->txcoalescing)) {
1950 gfar_write(&priv->regs->txic, 0);
1951 gfar_write(&priv->regs->txic, priv->txic);
1952 }
1953 }
1954
1955 return rx_cleaned;
1956 }
1957
1958 #ifdef CONFIG_NET_POLL_CONTROLLER
1959 /*
1960 * Polling 'interrupt' - used by things like netconsole to send skbs
1961 * without having to re-enable interrupts. It's not called while
1962 * the interrupt routine is executing.
1963 */
1964 static void gfar_netpoll(struct net_device *dev)
1965 {
1966 struct gfar_private *priv = netdev_priv(dev);
1967
1968 /* If the device has multiple interrupts, run tx/rx */
1969 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1970 disable_irq(priv->interruptTransmit);
1971 disable_irq(priv->interruptReceive);
1972 disable_irq(priv->interruptError);
1973 gfar_interrupt(priv->interruptTransmit, dev);
1974 enable_irq(priv->interruptError);
1975 enable_irq(priv->interruptReceive);
1976 enable_irq(priv->interruptTransmit);
1977 } else {
1978 disable_irq(priv->interruptTransmit);
1979 gfar_interrupt(priv->interruptTransmit, dev);
1980 enable_irq(priv->interruptTransmit);
1981 }
1982 }
1983 #endif
1984
1985 /* The interrupt handler for devices with one interrupt */
1986 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1987 {
1988 struct net_device *dev = dev_id;
1989 struct gfar_private *priv = netdev_priv(dev);
1990
1991 /* Save ievent for future reference */
1992 u32 events = gfar_read(&priv->regs->ievent);
1993
1994 /* Check for reception */
1995 if (events & IEVENT_RX_MASK)
1996 gfar_receive(irq, dev_id);
1997
1998 /* Check for transmit completion */
1999 if (events & IEVENT_TX_MASK)
2000 gfar_transmit(irq, dev_id);
2001
2002 /* Check for errors */
2003 if (events & IEVENT_ERR_MASK)
2004 gfar_error(irq, dev_id);
2005
2006 return IRQ_HANDLED;
2007 }
2008
2009 /* Called every time the controller might need to be made
2010 * aware of new link state. The PHY code conveys this
2011 * information through variables in the phydev structure, and this
2012 * function converts those variables into the appropriate
2013 * register values, and can bring down the device if needed.
2014 */
2015 static void adjust_link(struct net_device *dev)
2016 {
2017 struct gfar_private *priv = netdev_priv(dev);
2018 struct gfar __iomem *regs = priv->regs;
2019 unsigned long flags;
2020 struct phy_device *phydev = priv->phydev;
2021 int new_state = 0;
2022
2023 spin_lock_irqsave(&priv->txlock, flags);
2024 if (phydev->link) {
2025 u32 tempval = gfar_read(&regs->maccfg2);
2026 u32 ecntrl = gfar_read(&regs->ecntrl);
2027
2028 /* Now we make sure that we can be in full duplex mode.
2029 * If not, we operate in half-duplex mode. */
2030 if (phydev->duplex != priv->oldduplex) {
2031 new_state = 1;
2032 if (!(phydev->duplex))
2033 tempval &= ~(MACCFG2_FULL_DUPLEX);
2034 else
2035 tempval |= MACCFG2_FULL_DUPLEX;
2036
2037 priv->oldduplex = phydev->duplex;
2038 }
2039
2040 if (phydev->speed != priv->oldspeed) {
2041 new_state = 1;
2042 switch (phydev->speed) {
2043 case 1000:
2044 tempval =
2045 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2046
2047 ecntrl &= ~(ECNTRL_R100);
2048 break;
2049 case 100:
2050 case 10:
2051 tempval =
2052 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2053
2054 /* Reduced mode distinguishes
2055 * between 10 and 100 */
2056 if (phydev->speed == SPEED_100)
2057 ecntrl |= ECNTRL_R100;
2058 else
2059 ecntrl &= ~(ECNTRL_R100);
2060 break;
2061 default:
2062 if (netif_msg_link(priv))
2063 printk(KERN_WARNING
2064 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2065 dev->name, phydev->speed);
2066 break;
2067 }
2068
2069 priv->oldspeed = phydev->speed;
2070 }
2071
2072 gfar_write(&regs->maccfg2, tempval);
2073 gfar_write(&regs->ecntrl, ecntrl);
2074
2075 if (!priv->oldlink) {
2076 new_state = 1;
2077 priv->oldlink = 1;
2078 }
2079 } else if (priv->oldlink) {
2080 new_state = 1;
2081 priv->oldlink = 0;
2082 priv->oldspeed = 0;
2083 priv->oldduplex = -1;
2084 }
2085
2086 if (new_state && netif_msg_link(priv))
2087 phy_print_status(phydev);
2088
2089 spin_unlock_irqrestore(&priv->txlock, flags);
2090 }
2091
2092 /* Update the hash table based on the current list of multicast
2093 * addresses we subscribe to. Also, change the promiscuity of
2094 * the device based on the flags (this function is called
2095 * whenever dev->flags is changed */
2096 static void gfar_set_multi(struct net_device *dev)
2097 {
2098 struct dev_mc_list *mc_ptr;
2099 struct gfar_private *priv = netdev_priv(dev);
2100 struct gfar __iomem *regs = priv->regs;
2101 u32 tempval;
2102
2103 if(dev->flags & IFF_PROMISC) {
2104 /* Set RCTRL to PROM */
2105 tempval = gfar_read(&regs->rctrl);
2106 tempval |= RCTRL_PROM;
2107 gfar_write(&regs->rctrl, tempval);
2108 } else {
2109 /* Set RCTRL to not PROM */
2110 tempval = gfar_read(&regs->rctrl);
2111 tempval &= ~(RCTRL_PROM);
2112 gfar_write(&regs->rctrl, tempval);
2113 }
2114
2115 if(dev->flags & IFF_ALLMULTI) {
2116 /* Set the hash to rx all multicast frames */
2117 gfar_write(&regs->igaddr0, 0xffffffff);
2118 gfar_write(&regs->igaddr1, 0xffffffff);
2119 gfar_write(&regs->igaddr2, 0xffffffff);
2120 gfar_write(&regs->igaddr3, 0xffffffff);
2121 gfar_write(&regs->igaddr4, 0xffffffff);
2122 gfar_write(&regs->igaddr5, 0xffffffff);
2123 gfar_write(&regs->igaddr6, 0xffffffff);
2124 gfar_write(&regs->igaddr7, 0xffffffff);
2125 gfar_write(&regs->gaddr0, 0xffffffff);
2126 gfar_write(&regs->gaddr1, 0xffffffff);
2127 gfar_write(&regs->gaddr2, 0xffffffff);
2128 gfar_write(&regs->gaddr3, 0xffffffff);
2129 gfar_write(&regs->gaddr4, 0xffffffff);
2130 gfar_write(&regs->gaddr5, 0xffffffff);
2131 gfar_write(&regs->gaddr6, 0xffffffff);
2132 gfar_write(&regs->gaddr7, 0xffffffff);
2133 } else {
2134 int em_num;
2135 int idx;
2136
2137 /* zero out the hash */
2138 gfar_write(&regs->igaddr0, 0x0);
2139 gfar_write(&regs->igaddr1, 0x0);
2140 gfar_write(&regs->igaddr2, 0x0);
2141 gfar_write(&regs->igaddr3, 0x0);
2142 gfar_write(&regs->igaddr4, 0x0);
2143 gfar_write(&regs->igaddr5, 0x0);
2144 gfar_write(&regs->igaddr6, 0x0);
2145 gfar_write(&regs->igaddr7, 0x0);
2146 gfar_write(&regs->gaddr0, 0x0);
2147 gfar_write(&regs->gaddr1, 0x0);
2148 gfar_write(&regs->gaddr2, 0x0);
2149 gfar_write(&regs->gaddr3, 0x0);
2150 gfar_write(&regs->gaddr4, 0x0);
2151 gfar_write(&regs->gaddr5, 0x0);
2152 gfar_write(&regs->gaddr6, 0x0);
2153 gfar_write(&regs->gaddr7, 0x0);
2154
2155 /* If we have extended hash tables, we need to
2156 * clear the exact match registers to prepare for
2157 * setting them */
2158 if (priv->extended_hash) {
2159 em_num = GFAR_EM_NUM + 1;
2160 gfar_clear_exact_match(dev);
2161 idx = 1;
2162 } else {
2163 idx = 0;
2164 em_num = 0;
2165 }
2166
2167 if(dev->mc_count == 0)
2168 return;
2169
2170 /* Parse the list, and set the appropriate bits */
2171 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2172 if (idx < em_num) {
2173 gfar_set_mac_for_addr(dev, idx,
2174 mc_ptr->dmi_addr);
2175 idx++;
2176 } else
2177 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2178 }
2179 }
2180
2181 return;
2182 }
2183
2184
2185 /* Clears each of the exact match registers to zero, so they
2186 * don't interfere with normal reception */
2187 static void gfar_clear_exact_match(struct net_device *dev)
2188 {
2189 int idx;
2190 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2191
2192 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2193 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2194 }
2195
2196 /* Set the appropriate hash bit for the given addr */
2197 /* The algorithm works like so:
2198 * 1) Take the Destination Address (ie the multicast address), and
2199 * do a CRC on it (little endian), and reverse the bits of the
2200 * result.
2201 * 2) Use the 8 most significant bits as a hash into a 256-entry
2202 * table. The table is controlled through 8 32-bit registers:
2203 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2204 * gaddr7. This means that the 3 most significant bits in the
2205 * hash index which gaddr register to use, and the 5 other bits
2206 * indicate which bit (assuming an IBM numbering scheme, which
2207 * for PowerPC (tm) is usually the case) in the register holds
2208 * the entry. */
2209 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2210 {
2211 u32 tempval;
2212 struct gfar_private *priv = netdev_priv(dev);
2213 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2214 int width = priv->hash_width;
2215 u8 whichbit = (result >> (32 - width)) & 0x1f;
2216 u8 whichreg = result >> (32 - width + 5);
2217 u32 value = (1 << (31-whichbit));
2218
2219 tempval = gfar_read(priv->hash_regs[whichreg]);
2220 tempval |= value;
2221 gfar_write(priv->hash_regs[whichreg], tempval);
2222
2223 return;
2224 }
2225
2226
2227 /* There are multiple MAC Address register pairs on some controllers
2228 * This function sets the numth pair to a given address
2229 */
2230 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2231 {
2232 struct gfar_private *priv = netdev_priv(dev);
2233 int idx;
2234 char tmpbuf[MAC_ADDR_LEN];
2235 u32 tempval;
2236 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2237
2238 macptr += num*2;
2239
2240 /* Now copy it into the mac registers backwards, cuz */
2241 /* little endian is silly */
2242 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2243 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2244
2245 gfar_write(macptr, *((u32 *) (tmpbuf)));
2246
2247 tempval = *((u32 *) (tmpbuf + 4));
2248
2249 gfar_write(macptr+1, tempval);
2250 }
2251
2252 /* GFAR error interrupt handler */
2253 static irqreturn_t gfar_error(int irq, void *dev_id)
2254 {
2255 struct net_device *dev = dev_id;
2256 struct gfar_private *priv = netdev_priv(dev);
2257
2258 /* Save ievent for future reference */
2259 u32 events = gfar_read(&priv->regs->ievent);
2260
2261 /* Clear IEVENT */
2262 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2263
2264 /* Magic Packet is not an error. */
2265 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2266 (events & IEVENT_MAG))
2267 events &= ~IEVENT_MAG;
2268
2269 /* Hmm... */
2270 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2271 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2272 dev->name, events, gfar_read(&priv->regs->imask));
2273
2274 /* Update the error counters */
2275 if (events & IEVENT_TXE) {
2276 dev->stats.tx_errors++;
2277
2278 if (events & IEVENT_LC)
2279 dev->stats.tx_window_errors++;
2280 if (events & IEVENT_CRL)
2281 dev->stats.tx_aborted_errors++;
2282 if (events & IEVENT_XFUN) {
2283 if (netif_msg_tx_err(priv))
2284 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2285 "packet dropped.\n", dev->name);
2286 dev->stats.tx_dropped++;
2287 priv->extra_stats.tx_underrun++;
2288
2289 /* Reactivate the Tx Queues */
2290 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2291 }
2292 if (netif_msg_tx_err(priv))
2293 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2294 }
2295 if (events & IEVENT_BSY) {
2296 dev->stats.rx_errors++;
2297 priv->extra_stats.rx_bsy++;
2298
2299 gfar_receive(irq, dev_id);
2300
2301 if (netif_msg_rx_err(priv))
2302 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2303 dev->name, gfar_read(&priv->regs->rstat));
2304 }
2305 if (events & IEVENT_BABR) {
2306 dev->stats.rx_errors++;
2307 priv->extra_stats.rx_babr++;
2308
2309 if (netif_msg_rx_err(priv))
2310 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2311 }
2312 if (events & IEVENT_EBERR) {
2313 priv->extra_stats.eberr++;
2314 if (netif_msg_rx_err(priv))
2315 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2316 }
2317 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2318 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2319
2320 if (events & IEVENT_BABT) {
2321 priv->extra_stats.tx_babt++;
2322 if (netif_msg_tx_err(priv))
2323 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2324 }
2325 return IRQ_HANDLED;
2326 }
2327
2328 /* work with hotplug and coldplug */
2329 MODULE_ALIAS("platform:fsl-gianfar");
2330
2331 static struct of_device_id gfar_match[] =
2332 {
2333 {
2334 .type = "network",
2335 .compatible = "gianfar",
2336 },
2337 {},
2338 };
2339
2340 /* Structure for a device driver */
2341 static struct of_platform_driver gfar_driver = {
2342 .name = "fsl-gianfar",
2343 .match_table = gfar_match,
2344
2345 .probe = gfar_probe,
2346 .remove = gfar_remove,
2347 .suspend = gfar_suspend,
2348 .resume = gfar_resume,
2349 };
2350
2351 static int __init gfar_init(void)
2352 {
2353 return of_register_platform_driver(&gfar_driver);
2354 }
2355
2356 static void __exit gfar_exit(void)
2357 {
2358 of_unregister_platform_driver(&gfar_driver);
2359 }
2360
2361 module_init(gfar_init);
2362 module_exit(gfar_exit);
2363