]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/gianfar.c
Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
33 *
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
39 *
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
56 * skb.
57 *
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
66 */
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 static void gfar_configure_serdes(struct net_device *dev);
134 extern int gfar_local_mdio_write(struct gfar_mii *regs, int mii_id, int regnum, u16 value);
135 extern int gfar_local_mdio_read(struct gfar_mii *regs, int mii_id, int regnum);
136 #ifdef CONFIG_GFAR_NAPI
137 static int gfar_poll(struct net_device *dev, int *budget);
138 #endif
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
143 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
144 static void gfar_vlan_rx_register(struct net_device *netdev,
145 struct vlan_group *grp);
146 void gfar_halt(struct net_device *dev);
147 void gfar_start(struct net_device *dev);
148 static void gfar_clear_exact_match(struct net_device *dev);
149 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
150
151 extern const struct ethtool_ops gfar_ethtool_ops;
152
153 MODULE_AUTHOR("Freescale Semiconductor, Inc");
154 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
155 MODULE_LICENSE("GPL");
156
157 /* Returns 1 if incoming frames use an FCB */
158 static inline int gfar_uses_fcb(struct gfar_private *priv)
159 {
160 return (priv->vlan_enable || priv->rx_csum_enable);
161 }
162
163 /* Set up the ethernet device structure, private data,
164 * and anything else we need before we start */
165 static int gfar_probe(struct platform_device *pdev)
166 {
167 u32 tempval;
168 struct net_device *dev = NULL;
169 struct gfar_private *priv = NULL;
170 struct gianfar_platform_data *einfo;
171 struct resource *r;
172 int idx;
173 int err = 0;
174
175 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
176
177 if (NULL == einfo) {
178 printk(KERN_ERR "gfar %d: Missing additional data!\n",
179 pdev->id);
180
181 return -ENODEV;
182 }
183
184 /* Create an ethernet device instance */
185 dev = alloc_etherdev(sizeof (*priv));
186
187 if (NULL == dev)
188 return -ENOMEM;
189
190 priv = netdev_priv(dev);
191
192 /* Set the info in the priv to the current info */
193 priv->einfo = einfo;
194
195 /* fill out IRQ fields */
196 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
197 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
198 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
199 priv->interruptError = platform_get_irq_byname(pdev, "error");
200 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
201 goto regs_fail;
202 } else {
203 priv->interruptTransmit = platform_get_irq(pdev, 0);
204 if (priv->interruptTransmit < 0)
205 goto regs_fail;
206 }
207
208 /* get a pointer to the register memory */
209 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
210 priv->regs = ioremap(r->start, sizeof (struct gfar));
211
212 if (NULL == priv->regs) {
213 err = -ENOMEM;
214 goto regs_fail;
215 }
216
217 spin_lock_init(&priv->txlock);
218 spin_lock_init(&priv->rxlock);
219
220 platform_set_drvdata(pdev, dev);
221
222 /* Stop the DMA engine now, in case it was running before */
223 /* (The firmware could have used it, and left it running). */
224 /* To do this, we write Graceful Receive Stop and Graceful */
225 /* Transmit Stop, and then wait until the corresponding bits */
226 /* in IEVENT indicate the stops have completed. */
227 tempval = gfar_read(&priv->regs->dmactrl);
228 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
229 gfar_write(&priv->regs->dmactrl, tempval);
230
231 tempval = gfar_read(&priv->regs->dmactrl);
232 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
233 gfar_write(&priv->regs->dmactrl, tempval);
234
235 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
236 cpu_relax();
237
238 /* Reset MAC layer */
239 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
240
241 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
242 gfar_write(&priv->regs->maccfg1, tempval);
243
244 /* Initialize MACCFG2. */
245 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
246
247 /* Initialize ECNTRL */
248 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
249
250 /* Copy the station address into the dev structure, */
251 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
252
253 /* Set the dev->base_addr to the gfar reg region */
254 dev->base_addr = (unsigned long) (priv->regs);
255
256 SET_MODULE_OWNER(dev);
257 SET_NETDEV_DEV(dev, &pdev->dev);
258
259 /* Fill in the dev structure */
260 dev->open = gfar_enet_open;
261 dev->hard_start_xmit = gfar_start_xmit;
262 dev->tx_timeout = gfar_timeout;
263 dev->watchdog_timeo = TX_TIMEOUT;
264 #ifdef CONFIG_GFAR_NAPI
265 dev->poll = gfar_poll;
266 dev->weight = GFAR_DEV_WEIGHT;
267 #endif
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269 dev->poll_controller = gfar_netpoll;
270 #endif
271 dev->stop = gfar_close;
272 dev->get_stats = gfar_get_stats;
273 dev->change_mtu = gfar_change_mtu;
274 dev->mtu = 1500;
275 dev->set_multicast_list = gfar_set_multi;
276
277 dev->ethtool_ops = &gfar_ethtool_ops;
278
279 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
280 priv->rx_csum_enable = 1;
281 dev->features |= NETIF_F_IP_CSUM;
282 } else
283 priv->rx_csum_enable = 0;
284
285 priv->vlgrp = NULL;
286
287 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
288 dev->vlan_rx_register = gfar_vlan_rx_register;
289
290 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
291
292 priv->vlan_enable = 1;
293 }
294
295 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
296 priv->extended_hash = 1;
297 priv->hash_width = 9;
298
299 priv->hash_regs[0] = &priv->regs->igaddr0;
300 priv->hash_regs[1] = &priv->regs->igaddr1;
301 priv->hash_regs[2] = &priv->regs->igaddr2;
302 priv->hash_regs[3] = &priv->regs->igaddr3;
303 priv->hash_regs[4] = &priv->regs->igaddr4;
304 priv->hash_regs[5] = &priv->regs->igaddr5;
305 priv->hash_regs[6] = &priv->regs->igaddr6;
306 priv->hash_regs[7] = &priv->regs->igaddr7;
307 priv->hash_regs[8] = &priv->regs->gaddr0;
308 priv->hash_regs[9] = &priv->regs->gaddr1;
309 priv->hash_regs[10] = &priv->regs->gaddr2;
310 priv->hash_regs[11] = &priv->regs->gaddr3;
311 priv->hash_regs[12] = &priv->regs->gaddr4;
312 priv->hash_regs[13] = &priv->regs->gaddr5;
313 priv->hash_regs[14] = &priv->regs->gaddr6;
314 priv->hash_regs[15] = &priv->regs->gaddr7;
315
316 } else {
317 priv->extended_hash = 0;
318 priv->hash_width = 8;
319
320 priv->hash_regs[0] = &priv->regs->gaddr0;
321 priv->hash_regs[1] = &priv->regs->gaddr1;
322 priv->hash_regs[2] = &priv->regs->gaddr2;
323 priv->hash_regs[3] = &priv->regs->gaddr3;
324 priv->hash_regs[4] = &priv->regs->gaddr4;
325 priv->hash_regs[5] = &priv->regs->gaddr5;
326 priv->hash_regs[6] = &priv->regs->gaddr6;
327 priv->hash_regs[7] = &priv->regs->gaddr7;
328 }
329
330 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
331 priv->padding = DEFAULT_PADDING;
332 else
333 priv->padding = 0;
334
335 if (dev->features & NETIF_F_IP_CSUM)
336 dev->hard_header_len += GMAC_FCB_LEN;
337
338 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
339 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
340 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
341
342 priv->txcoalescing = DEFAULT_TX_COALESCE;
343 priv->txcount = DEFAULT_TXCOUNT;
344 priv->txtime = DEFAULT_TXTIME;
345 priv->rxcoalescing = DEFAULT_RX_COALESCE;
346 priv->rxcount = DEFAULT_RXCOUNT;
347 priv->rxtime = DEFAULT_RXTIME;
348
349 /* Enable most messages by default */
350 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
351
352 err = register_netdev(dev);
353
354 if (err) {
355 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
356 dev->name);
357 goto register_fail;
358 }
359
360 /* Create all the sysfs files */
361 gfar_init_sysfs(dev);
362
363 /* Print out the device info */
364 printk(KERN_INFO DEVICE_NAME, dev->name);
365 for (idx = 0; idx < 6; idx++)
366 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
367 printk("\n");
368
369 /* Even more device info helps when determining which kernel */
370 /* provided which set of benchmarks. */
371 #ifdef CONFIG_GFAR_NAPI
372 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
373 #else
374 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
375 #endif
376 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
377 dev->name, priv->rx_ring_size, priv->tx_ring_size);
378
379 return 0;
380
381 register_fail:
382 iounmap(priv->regs);
383 regs_fail:
384 free_netdev(dev);
385 return err;
386 }
387
388 static int gfar_remove(struct platform_device *pdev)
389 {
390 struct net_device *dev = platform_get_drvdata(pdev);
391 struct gfar_private *priv = netdev_priv(dev);
392
393 platform_set_drvdata(pdev, NULL);
394
395 iounmap(priv->regs);
396 free_netdev(dev);
397
398 return 0;
399 }
400
401
402 /* Reads the controller's registers to determine what interface
403 * connects it to the PHY.
404 */
405 static phy_interface_t gfar_get_interface(struct net_device *dev)
406 {
407 struct gfar_private *priv = netdev_priv(dev);
408 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
409
410 if (ecntrl & ECNTRL_SGMII_MODE)
411 return PHY_INTERFACE_MODE_SGMII;
412
413 if (ecntrl & ECNTRL_TBI_MODE) {
414 if (ecntrl & ECNTRL_REDUCED_MODE)
415 return PHY_INTERFACE_MODE_RTBI;
416 else
417 return PHY_INTERFACE_MODE_TBI;
418 }
419
420 if (ecntrl & ECNTRL_REDUCED_MODE) {
421 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
422 return PHY_INTERFACE_MODE_RMII;
423 else
424 return PHY_INTERFACE_MODE_RGMII;
425 }
426
427 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
428 return PHY_INTERFACE_MODE_GMII;
429
430 return PHY_INTERFACE_MODE_MII;
431 }
432
433
434 /* Initializes driver's PHY state, and attaches to the PHY.
435 * Returns 0 on success.
436 */
437 static int init_phy(struct net_device *dev)
438 {
439 struct gfar_private *priv = netdev_priv(dev);
440 uint gigabit_support =
441 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
442 SUPPORTED_1000baseT_Full : 0;
443 struct phy_device *phydev;
444 char phy_id[BUS_ID_SIZE];
445 phy_interface_t interface;
446
447 priv->oldlink = 0;
448 priv->oldspeed = 0;
449 priv->oldduplex = -1;
450
451 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
452
453 interface = gfar_get_interface(dev);
454
455 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
456
457 if (interface == PHY_INTERFACE_MODE_SGMII)
458 gfar_configure_serdes(dev);
459
460 if (IS_ERR(phydev)) {
461 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
462 return PTR_ERR(phydev);
463 }
464
465 /* Remove any features not supported by the controller */
466 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
467 phydev->advertising = phydev->supported;
468
469 priv->phydev = phydev;
470
471 return 0;
472 }
473
474 static void gfar_configure_serdes(struct net_device *dev)
475 {
476 struct gfar_private *priv = netdev_priv(dev);
477 struct gfar_mii __iomem *regs =
478 (void __iomem *)&priv->regs->gfar_mii_regs;
479
480 /* Initialise TBI i/f to communicate with serdes (lynx phy) */
481
482 /* Single clk mode, mii mode off(for aerdes communication) */
483 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT);
484
485 /* Supported pause and full-duplex, no half-duplex */
486 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE,
487 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
488 ADVERTISE_1000XPSE_ASYM);
489
490 /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
491 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE |
492 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
493 }
494
495 static void init_registers(struct net_device *dev)
496 {
497 struct gfar_private *priv = netdev_priv(dev);
498
499 /* Clear IEVENT */
500 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
501
502 /* Initialize IMASK */
503 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
504
505 /* Init hash registers to zero */
506 gfar_write(&priv->regs->igaddr0, 0);
507 gfar_write(&priv->regs->igaddr1, 0);
508 gfar_write(&priv->regs->igaddr2, 0);
509 gfar_write(&priv->regs->igaddr3, 0);
510 gfar_write(&priv->regs->igaddr4, 0);
511 gfar_write(&priv->regs->igaddr5, 0);
512 gfar_write(&priv->regs->igaddr6, 0);
513 gfar_write(&priv->regs->igaddr7, 0);
514
515 gfar_write(&priv->regs->gaddr0, 0);
516 gfar_write(&priv->regs->gaddr1, 0);
517 gfar_write(&priv->regs->gaddr2, 0);
518 gfar_write(&priv->regs->gaddr3, 0);
519 gfar_write(&priv->regs->gaddr4, 0);
520 gfar_write(&priv->regs->gaddr5, 0);
521 gfar_write(&priv->regs->gaddr6, 0);
522 gfar_write(&priv->regs->gaddr7, 0);
523
524 /* Zero out the rmon mib registers if it has them */
525 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
526 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
527
528 /* Mask off the CAM interrupts */
529 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
530 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
531 }
532
533 /* Initialize the max receive buffer length */
534 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
535
536 /* Initialize the Minimum Frame Length Register */
537 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
538
539 /* Assign the TBI an address which won't conflict with the PHYs */
540 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
541 }
542
543
544 /* Halt the receive and transmit queues */
545 void gfar_halt(struct net_device *dev)
546 {
547 struct gfar_private *priv = netdev_priv(dev);
548 struct gfar __iomem *regs = priv->regs;
549 u32 tempval;
550
551 /* Mask all interrupts */
552 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
553
554 /* Clear all interrupts */
555 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
556
557 /* Stop the DMA, and wait for it to stop */
558 tempval = gfar_read(&priv->regs->dmactrl);
559 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
560 != (DMACTRL_GRS | DMACTRL_GTS)) {
561 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
562 gfar_write(&priv->regs->dmactrl, tempval);
563
564 while (!(gfar_read(&priv->regs->ievent) &
565 (IEVENT_GRSC | IEVENT_GTSC)))
566 cpu_relax();
567 }
568
569 /* Disable Rx and Tx */
570 tempval = gfar_read(&regs->maccfg1);
571 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
572 gfar_write(&regs->maccfg1, tempval);
573 }
574
575 void stop_gfar(struct net_device *dev)
576 {
577 struct gfar_private *priv = netdev_priv(dev);
578 struct gfar __iomem *regs = priv->regs;
579 unsigned long flags;
580
581 phy_stop(priv->phydev);
582
583 /* Lock it down */
584 spin_lock_irqsave(&priv->txlock, flags);
585 spin_lock(&priv->rxlock);
586
587 gfar_halt(dev);
588
589 spin_unlock(&priv->rxlock);
590 spin_unlock_irqrestore(&priv->txlock, flags);
591
592 /* Free the IRQs */
593 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
594 free_irq(priv->interruptError, dev);
595 free_irq(priv->interruptTransmit, dev);
596 free_irq(priv->interruptReceive, dev);
597 } else {
598 free_irq(priv->interruptTransmit, dev);
599 }
600
601 free_skb_resources(priv);
602
603 dma_free_coherent(NULL,
604 sizeof(struct txbd8)*priv->tx_ring_size
605 + sizeof(struct rxbd8)*priv->rx_ring_size,
606 priv->tx_bd_base,
607 gfar_read(&regs->tbase0));
608 }
609
610 /* If there are any tx skbs or rx skbs still around, free them.
611 * Then free tx_skbuff and rx_skbuff */
612 static void free_skb_resources(struct gfar_private *priv)
613 {
614 struct rxbd8 *rxbdp;
615 struct txbd8 *txbdp;
616 int i;
617
618 /* Go through all the buffer descriptors and free their data buffers */
619 txbdp = priv->tx_bd_base;
620
621 for (i = 0; i < priv->tx_ring_size; i++) {
622
623 if (priv->tx_skbuff[i]) {
624 dma_unmap_single(NULL, txbdp->bufPtr,
625 txbdp->length,
626 DMA_TO_DEVICE);
627 dev_kfree_skb_any(priv->tx_skbuff[i]);
628 priv->tx_skbuff[i] = NULL;
629 }
630 }
631
632 kfree(priv->tx_skbuff);
633
634 rxbdp = priv->rx_bd_base;
635
636 /* rx_skbuff is not guaranteed to be allocated, so only
637 * free it and its contents if it is allocated */
638 if(priv->rx_skbuff != NULL) {
639 for (i = 0; i < priv->rx_ring_size; i++) {
640 if (priv->rx_skbuff[i]) {
641 dma_unmap_single(NULL, rxbdp->bufPtr,
642 priv->rx_buffer_size,
643 DMA_FROM_DEVICE);
644
645 dev_kfree_skb_any(priv->rx_skbuff[i]);
646 priv->rx_skbuff[i] = NULL;
647 }
648
649 rxbdp->status = 0;
650 rxbdp->length = 0;
651 rxbdp->bufPtr = 0;
652
653 rxbdp++;
654 }
655
656 kfree(priv->rx_skbuff);
657 }
658 }
659
660 void gfar_start(struct net_device *dev)
661 {
662 struct gfar_private *priv = netdev_priv(dev);
663 struct gfar __iomem *regs = priv->regs;
664 u32 tempval;
665
666 /* Enable Rx and Tx in MACCFG1 */
667 tempval = gfar_read(&regs->maccfg1);
668 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
669 gfar_write(&regs->maccfg1, tempval);
670
671 /* Initialize DMACTRL to have WWR and WOP */
672 tempval = gfar_read(&priv->regs->dmactrl);
673 tempval |= DMACTRL_INIT_SETTINGS;
674 gfar_write(&priv->regs->dmactrl, tempval);
675
676 /* Make sure we aren't stopped */
677 tempval = gfar_read(&priv->regs->dmactrl);
678 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
679 gfar_write(&priv->regs->dmactrl, tempval);
680
681 /* Clear THLT/RHLT, so that the DMA starts polling now */
682 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
683 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
684
685 /* Unmask the interrupts we look for */
686 gfar_write(&regs->imask, IMASK_DEFAULT);
687 }
688
689 /* Bring the controller up and running */
690 int startup_gfar(struct net_device *dev)
691 {
692 struct txbd8 *txbdp;
693 struct rxbd8 *rxbdp;
694 dma_addr_t addr;
695 unsigned long vaddr;
696 int i;
697 struct gfar_private *priv = netdev_priv(dev);
698 struct gfar __iomem *regs = priv->regs;
699 int err = 0;
700 u32 rctrl = 0;
701 u32 attrs = 0;
702
703 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
704
705 /* Allocate memory for the buffer descriptors */
706 vaddr = (unsigned long) dma_alloc_coherent(NULL,
707 sizeof (struct txbd8) * priv->tx_ring_size +
708 sizeof (struct rxbd8) * priv->rx_ring_size,
709 &addr, GFP_KERNEL);
710
711 if (vaddr == 0) {
712 if (netif_msg_ifup(priv))
713 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
714 dev->name);
715 return -ENOMEM;
716 }
717
718 priv->tx_bd_base = (struct txbd8 *) vaddr;
719
720 /* enet DMA only understands physical addresses */
721 gfar_write(&regs->tbase0, addr);
722
723 /* Start the rx descriptor ring where the tx ring leaves off */
724 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
725 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
726 priv->rx_bd_base = (struct rxbd8 *) vaddr;
727 gfar_write(&regs->rbase0, addr);
728
729 /* Setup the skbuff rings */
730 priv->tx_skbuff =
731 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
732 priv->tx_ring_size, GFP_KERNEL);
733
734 if (NULL == priv->tx_skbuff) {
735 if (netif_msg_ifup(priv))
736 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
737 dev->name);
738 err = -ENOMEM;
739 goto tx_skb_fail;
740 }
741
742 for (i = 0; i < priv->tx_ring_size; i++)
743 priv->tx_skbuff[i] = NULL;
744
745 priv->rx_skbuff =
746 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
747 priv->rx_ring_size, GFP_KERNEL);
748
749 if (NULL == priv->rx_skbuff) {
750 if (netif_msg_ifup(priv))
751 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
752 dev->name);
753 err = -ENOMEM;
754 goto rx_skb_fail;
755 }
756
757 for (i = 0; i < priv->rx_ring_size; i++)
758 priv->rx_skbuff[i] = NULL;
759
760 /* Initialize some variables in our dev structure */
761 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
762 priv->cur_rx = priv->rx_bd_base;
763 priv->skb_curtx = priv->skb_dirtytx = 0;
764 priv->skb_currx = 0;
765
766 /* Initialize Transmit Descriptor Ring */
767 txbdp = priv->tx_bd_base;
768 for (i = 0; i < priv->tx_ring_size; i++) {
769 txbdp->status = 0;
770 txbdp->length = 0;
771 txbdp->bufPtr = 0;
772 txbdp++;
773 }
774
775 /* Set the last descriptor in the ring to indicate wrap */
776 txbdp--;
777 txbdp->status |= TXBD_WRAP;
778
779 rxbdp = priv->rx_bd_base;
780 for (i = 0; i < priv->rx_ring_size; i++) {
781 struct sk_buff *skb = NULL;
782
783 rxbdp->status = 0;
784
785 skb = gfar_new_skb(dev, rxbdp);
786
787 priv->rx_skbuff[i] = skb;
788
789 rxbdp++;
790 }
791
792 /* Set the last descriptor in the ring to wrap */
793 rxbdp--;
794 rxbdp->status |= RXBD_WRAP;
795
796 /* If the device has multiple interrupts, register for
797 * them. Otherwise, only register for the one */
798 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
799 /* Install our interrupt handlers for Error,
800 * Transmit, and Receive */
801 if (request_irq(priv->interruptError, gfar_error,
802 0, "enet_error", dev) < 0) {
803 if (netif_msg_intr(priv))
804 printk(KERN_ERR "%s: Can't get IRQ %d\n",
805 dev->name, priv->interruptError);
806
807 err = -1;
808 goto err_irq_fail;
809 }
810
811 if (request_irq(priv->interruptTransmit, gfar_transmit,
812 0, "enet_tx", dev) < 0) {
813 if (netif_msg_intr(priv))
814 printk(KERN_ERR "%s: Can't get IRQ %d\n",
815 dev->name, priv->interruptTransmit);
816
817 err = -1;
818
819 goto tx_irq_fail;
820 }
821
822 if (request_irq(priv->interruptReceive, gfar_receive,
823 0, "enet_rx", dev) < 0) {
824 if (netif_msg_intr(priv))
825 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
826 dev->name, priv->interruptReceive);
827
828 err = -1;
829 goto rx_irq_fail;
830 }
831 } else {
832 if (request_irq(priv->interruptTransmit, gfar_interrupt,
833 0, "gfar_interrupt", dev) < 0) {
834 if (netif_msg_intr(priv))
835 printk(KERN_ERR "%s: Can't get IRQ %d\n",
836 dev->name, priv->interruptError);
837
838 err = -1;
839 goto err_irq_fail;
840 }
841 }
842
843 phy_start(priv->phydev);
844
845 /* Configure the coalescing support */
846 if (priv->txcoalescing)
847 gfar_write(&regs->txic,
848 mk_ic_value(priv->txcount, priv->txtime));
849 else
850 gfar_write(&regs->txic, 0);
851
852 if (priv->rxcoalescing)
853 gfar_write(&regs->rxic,
854 mk_ic_value(priv->rxcount, priv->rxtime));
855 else
856 gfar_write(&regs->rxic, 0);
857
858 if (priv->rx_csum_enable)
859 rctrl |= RCTRL_CHECKSUMMING;
860
861 if (priv->extended_hash) {
862 rctrl |= RCTRL_EXTHASH;
863
864 gfar_clear_exact_match(dev);
865 rctrl |= RCTRL_EMEN;
866 }
867
868 if (priv->vlan_enable)
869 rctrl |= RCTRL_VLAN;
870
871 if (priv->padding) {
872 rctrl &= ~RCTRL_PAL_MASK;
873 rctrl |= RCTRL_PADDING(priv->padding);
874 }
875
876 /* Init rctrl based on our settings */
877 gfar_write(&priv->regs->rctrl, rctrl);
878
879 if (dev->features & NETIF_F_IP_CSUM)
880 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
881
882 /* Set the extraction length and index */
883 attrs = ATTRELI_EL(priv->rx_stash_size) |
884 ATTRELI_EI(priv->rx_stash_index);
885
886 gfar_write(&priv->regs->attreli, attrs);
887
888 /* Start with defaults, and add stashing or locking
889 * depending on the approprate variables */
890 attrs = ATTR_INIT_SETTINGS;
891
892 if (priv->bd_stash_en)
893 attrs |= ATTR_BDSTASH;
894
895 if (priv->rx_stash_size != 0)
896 attrs |= ATTR_BUFSTASH;
897
898 gfar_write(&priv->regs->attr, attrs);
899
900 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
901 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
902 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
903
904 /* Start the controller */
905 gfar_start(dev);
906
907 return 0;
908
909 rx_irq_fail:
910 free_irq(priv->interruptTransmit, dev);
911 tx_irq_fail:
912 free_irq(priv->interruptError, dev);
913 err_irq_fail:
914 rx_skb_fail:
915 free_skb_resources(priv);
916 tx_skb_fail:
917 dma_free_coherent(NULL,
918 sizeof(struct txbd8)*priv->tx_ring_size
919 + sizeof(struct rxbd8)*priv->rx_ring_size,
920 priv->tx_bd_base,
921 gfar_read(&regs->tbase0));
922
923 return err;
924 }
925
926 /* Called when something needs to use the ethernet device */
927 /* Returns 0 for success. */
928 static int gfar_enet_open(struct net_device *dev)
929 {
930 int err;
931
932 /* Initialize a bunch of registers */
933 init_registers(dev);
934
935 gfar_set_mac_address(dev);
936
937 err = init_phy(dev);
938
939 if(err)
940 return err;
941
942 err = startup_gfar(dev);
943
944 netif_start_queue(dev);
945
946 return err;
947 }
948
949 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
950 {
951 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
952
953 memset(fcb, 0, GMAC_FCB_LEN);
954
955 return fcb;
956 }
957
958 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
959 {
960 u8 flags = 0;
961
962 /* If we're here, it's a IP packet with a TCP or UDP
963 * payload. We set it to checksum, using a pseudo-header
964 * we provide
965 */
966 flags = TXFCB_DEFAULT;
967
968 /* Tell the controller what the protocol is */
969 /* And provide the already calculated phcs */
970 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
971 flags |= TXFCB_UDP;
972 fcb->phcs = udp_hdr(skb)->check;
973 } else
974 fcb->phcs = tcp_hdr(skb)->check;
975
976 /* l3os is the distance between the start of the
977 * frame (skb->data) and the start of the IP hdr.
978 * l4os is the distance between the start of the
979 * l3 hdr and the l4 hdr */
980 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
981 fcb->l4os = skb_network_header_len(skb);
982
983 fcb->flags = flags;
984 }
985
986 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
987 {
988 fcb->flags |= TXFCB_VLN;
989 fcb->vlctl = vlan_tx_tag_get(skb);
990 }
991
992 /* This is called by the kernel when a frame is ready for transmission. */
993 /* It is pointed to by the dev->hard_start_xmit function pointer */
994 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
995 {
996 struct gfar_private *priv = netdev_priv(dev);
997 struct txfcb *fcb = NULL;
998 struct txbd8 *txbdp;
999 u16 status;
1000 unsigned long flags;
1001
1002 /* Update transmit stats */
1003 priv->stats.tx_bytes += skb->len;
1004
1005 /* Lock priv now */
1006 spin_lock_irqsave(&priv->txlock, flags);
1007
1008 /* Point at the first free tx descriptor */
1009 txbdp = priv->cur_tx;
1010
1011 /* Clear all but the WRAP status flags */
1012 status = txbdp->status & TXBD_WRAP;
1013
1014 /* Set up checksumming */
1015 if (likely((dev->features & NETIF_F_IP_CSUM)
1016 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1017 fcb = gfar_add_fcb(skb, txbdp);
1018 status |= TXBD_TOE;
1019 gfar_tx_checksum(skb, fcb);
1020 }
1021
1022 if (priv->vlan_enable &&
1023 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1024 if (unlikely(NULL == fcb)) {
1025 fcb = gfar_add_fcb(skb, txbdp);
1026 status |= TXBD_TOE;
1027 }
1028
1029 gfar_tx_vlan(skb, fcb);
1030 }
1031
1032 /* Set buffer length and pointer */
1033 txbdp->length = skb->len;
1034 txbdp->bufPtr = dma_map_single(NULL, skb->data,
1035 skb->len, DMA_TO_DEVICE);
1036
1037 /* Save the skb pointer so we can free it later */
1038 priv->tx_skbuff[priv->skb_curtx] = skb;
1039
1040 /* Update the current skb pointer (wrapping if this was the last) */
1041 priv->skb_curtx =
1042 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1043
1044 /* Flag the BD as interrupt-causing */
1045 status |= TXBD_INTERRUPT;
1046
1047 /* Flag the BD as ready to go, last in frame, and */
1048 /* in need of CRC */
1049 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1050
1051 dev->trans_start = jiffies;
1052
1053 /* The powerpc-specific eieio() is used, as wmb() has too strong
1054 * semantics (it requires synchronization between cacheable and
1055 * uncacheable mappings, which eieio doesn't provide and which we
1056 * don't need), thus requiring a more expensive sync instruction. At
1057 * some point, the set of architecture-independent barrier functions
1058 * should be expanded to include weaker barriers.
1059 */
1060
1061 eieio();
1062 txbdp->status = status;
1063
1064 /* If this was the last BD in the ring, the next one */
1065 /* is at the beginning of the ring */
1066 if (txbdp->status & TXBD_WRAP)
1067 txbdp = priv->tx_bd_base;
1068 else
1069 txbdp++;
1070
1071 /* If the next BD still needs to be cleaned up, then the bds
1072 are full. We need to tell the kernel to stop sending us stuff. */
1073 if (txbdp == priv->dirty_tx) {
1074 netif_stop_queue(dev);
1075
1076 priv->stats.tx_fifo_errors++;
1077 }
1078
1079 /* Update the current txbd to the next one */
1080 priv->cur_tx = txbdp;
1081
1082 /* Tell the DMA to go go go */
1083 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1084
1085 /* Unlock priv */
1086 spin_unlock_irqrestore(&priv->txlock, flags);
1087
1088 return 0;
1089 }
1090
1091 /* Stops the kernel queue, and halts the controller */
1092 static int gfar_close(struct net_device *dev)
1093 {
1094 struct gfar_private *priv = netdev_priv(dev);
1095 stop_gfar(dev);
1096
1097 /* Disconnect from the PHY */
1098 phy_disconnect(priv->phydev);
1099 priv->phydev = NULL;
1100
1101 netif_stop_queue(dev);
1102
1103 return 0;
1104 }
1105
1106 /* returns a net_device_stats structure pointer */
1107 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1108 {
1109 struct gfar_private *priv = netdev_priv(dev);
1110
1111 return &(priv->stats);
1112 }
1113
1114 /* Changes the mac address if the controller is not running. */
1115 int gfar_set_mac_address(struct net_device *dev)
1116 {
1117 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1118
1119 return 0;
1120 }
1121
1122
1123 /* Enables and disables VLAN insertion/extraction */
1124 static void gfar_vlan_rx_register(struct net_device *dev,
1125 struct vlan_group *grp)
1126 {
1127 struct gfar_private *priv = netdev_priv(dev);
1128 unsigned long flags;
1129 u32 tempval;
1130
1131 spin_lock_irqsave(&priv->rxlock, flags);
1132
1133 priv->vlgrp = grp;
1134
1135 if (grp) {
1136 /* Enable VLAN tag insertion */
1137 tempval = gfar_read(&priv->regs->tctrl);
1138 tempval |= TCTRL_VLINS;
1139
1140 gfar_write(&priv->regs->tctrl, tempval);
1141
1142 /* Enable VLAN tag extraction */
1143 tempval = gfar_read(&priv->regs->rctrl);
1144 tempval |= RCTRL_VLEX;
1145 gfar_write(&priv->regs->rctrl, tempval);
1146 } else {
1147 /* Disable VLAN tag insertion */
1148 tempval = gfar_read(&priv->regs->tctrl);
1149 tempval &= ~TCTRL_VLINS;
1150 gfar_write(&priv->regs->tctrl, tempval);
1151
1152 /* Disable VLAN tag extraction */
1153 tempval = gfar_read(&priv->regs->rctrl);
1154 tempval &= ~RCTRL_VLEX;
1155 gfar_write(&priv->regs->rctrl, tempval);
1156 }
1157
1158 spin_unlock_irqrestore(&priv->rxlock, flags);
1159 }
1160
1161 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1162 {
1163 int tempsize, tempval;
1164 struct gfar_private *priv = netdev_priv(dev);
1165 int oldsize = priv->rx_buffer_size;
1166 int frame_size = new_mtu + ETH_HLEN;
1167
1168 if (priv->vlan_enable)
1169 frame_size += VLAN_ETH_HLEN;
1170
1171 if (gfar_uses_fcb(priv))
1172 frame_size += GMAC_FCB_LEN;
1173
1174 frame_size += priv->padding;
1175
1176 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1177 if (netif_msg_drv(priv))
1178 printk(KERN_ERR "%s: Invalid MTU setting\n",
1179 dev->name);
1180 return -EINVAL;
1181 }
1182
1183 tempsize =
1184 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1185 INCREMENTAL_BUFFER_SIZE;
1186
1187 /* Only stop and start the controller if it isn't already
1188 * stopped, and we changed something */
1189 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1190 stop_gfar(dev);
1191
1192 priv->rx_buffer_size = tempsize;
1193
1194 dev->mtu = new_mtu;
1195
1196 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1197 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1198
1199 /* If the mtu is larger than the max size for standard
1200 * ethernet frames (ie, a jumbo frame), then set maccfg2
1201 * to allow huge frames, and to check the length */
1202 tempval = gfar_read(&priv->regs->maccfg2);
1203
1204 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1205 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1206 else
1207 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1208
1209 gfar_write(&priv->regs->maccfg2, tempval);
1210
1211 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1212 startup_gfar(dev);
1213
1214 return 0;
1215 }
1216
1217 /* gfar_timeout gets called when a packet has not been
1218 * transmitted after a set amount of time.
1219 * For now, assume that clearing out all the structures, and
1220 * starting over will fix the problem. */
1221 static void gfar_timeout(struct net_device *dev)
1222 {
1223 struct gfar_private *priv = netdev_priv(dev);
1224
1225 priv->stats.tx_errors++;
1226
1227 if (dev->flags & IFF_UP) {
1228 stop_gfar(dev);
1229 startup_gfar(dev);
1230 }
1231
1232 netif_schedule(dev);
1233 }
1234
1235 /* Interrupt Handler for Transmit complete */
1236 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1237 {
1238 struct net_device *dev = (struct net_device *) dev_id;
1239 struct gfar_private *priv = netdev_priv(dev);
1240 struct txbd8 *bdp;
1241
1242 /* Clear IEVENT */
1243 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1244
1245 /* Lock priv */
1246 spin_lock(&priv->txlock);
1247 bdp = priv->dirty_tx;
1248 while ((bdp->status & TXBD_READY) == 0) {
1249 /* If dirty_tx and cur_tx are the same, then either the */
1250 /* ring is empty or full now (it could only be full in the beginning, */
1251 /* obviously). If it is empty, we are done. */
1252 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1253 break;
1254
1255 priv->stats.tx_packets++;
1256
1257 /* Deferred means some collisions occurred during transmit, */
1258 /* but we eventually sent the packet. */
1259 if (bdp->status & TXBD_DEF)
1260 priv->stats.collisions++;
1261
1262 /* Free the sk buffer associated with this TxBD */
1263 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1264 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1265 priv->skb_dirtytx =
1266 (priv->skb_dirtytx +
1267 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1268
1269 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1270 if (bdp->status & TXBD_WRAP)
1271 bdp = priv->tx_bd_base;
1272 else
1273 bdp++;
1274
1275 /* Move dirty_tx to be the next bd */
1276 priv->dirty_tx = bdp;
1277
1278 /* We freed a buffer, so now we can restart transmission */
1279 if (netif_queue_stopped(dev))
1280 netif_wake_queue(dev);
1281 } /* while ((bdp->status & TXBD_READY) == 0) */
1282
1283 /* If we are coalescing the interrupts, reset the timer */
1284 /* Otherwise, clear it */
1285 if (priv->txcoalescing)
1286 gfar_write(&priv->regs->txic,
1287 mk_ic_value(priv->txcount, priv->txtime));
1288 else
1289 gfar_write(&priv->regs->txic, 0);
1290
1291 spin_unlock(&priv->txlock);
1292
1293 return IRQ_HANDLED;
1294 }
1295
1296 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1297 {
1298 unsigned int alignamount;
1299 struct gfar_private *priv = netdev_priv(dev);
1300 struct sk_buff *skb = NULL;
1301 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1302
1303 /* We have to allocate the skb, so keep trying till we succeed */
1304 while ((!skb) && timeout--)
1305 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1306
1307 if (NULL == skb)
1308 return NULL;
1309
1310 alignamount = RXBUF_ALIGNMENT -
1311 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1312
1313 /* We need the data buffer to be aligned properly. We will reserve
1314 * as many bytes as needed to align the data properly
1315 */
1316 skb_reserve(skb, alignamount);
1317
1318 bdp->bufPtr = dma_map_single(NULL, skb->data,
1319 priv->rx_buffer_size, DMA_FROM_DEVICE);
1320
1321 bdp->length = 0;
1322
1323 /* Mark the buffer empty */
1324 eieio();
1325 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1326
1327 return skb;
1328 }
1329
1330 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1331 {
1332 struct net_device_stats *stats = &priv->stats;
1333 struct gfar_extra_stats *estats = &priv->extra_stats;
1334
1335 /* If the packet was truncated, none of the other errors
1336 * matter */
1337 if (status & RXBD_TRUNCATED) {
1338 stats->rx_length_errors++;
1339
1340 estats->rx_trunc++;
1341
1342 return;
1343 }
1344 /* Count the errors, if there were any */
1345 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1346 stats->rx_length_errors++;
1347
1348 if (status & RXBD_LARGE)
1349 estats->rx_large++;
1350 else
1351 estats->rx_short++;
1352 }
1353 if (status & RXBD_NONOCTET) {
1354 stats->rx_frame_errors++;
1355 estats->rx_nonoctet++;
1356 }
1357 if (status & RXBD_CRCERR) {
1358 estats->rx_crcerr++;
1359 stats->rx_crc_errors++;
1360 }
1361 if (status & RXBD_OVERRUN) {
1362 estats->rx_overrun++;
1363 stats->rx_crc_errors++;
1364 }
1365 }
1366
1367 irqreturn_t gfar_receive(int irq, void *dev_id)
1368 {
1369 struct net_device *dev = (struct net_device *) dev_id;
1370 struct gfar_private *priv = netdev_priv(dev);
1371 #ifdef CONFIG_GFAR_NAPI
1372 u32 tempval;
1373 #else
1374 unsigned long flags;
1375 #endif
1376
1377 /* Clear IEVENT, so rx interrupt isn't called again
1378 * because of this interrupt */
1379 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1380
1381 /* support NAPI */
1382 #ifdef CONFIG_GFAR_NAPI
1383 if (netif_rx_schedule_prep(dev)) {
1384 tempval = gfar_read(&priv->regs->imask);
1385 tempval &= IMASK_RX_DISABLED;
1386 gfar_write(&priv->regs->imask, tempval);
1387
1388 __netif_rx_schedule(dev);
1389 } else {
1390 if (netif_msg_rx_err(priv))
1391 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1392 dev->name, gfar_read(&priv->regs->ievent),
1393 gfar_read(&priv->regs->imask));
1394 }
1395 #else
1396
1397 spin_lock_irqsave(&priv->rxlock, flags);
1398 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1399
1400 /* If we are coalescing interrupts, update the timer */
1401 /* Otherwise, clear it */
1402 if (priv->rxcoalescing)
1403 gfar_write(&priv->regs->rxic,
1404 mk_ic_value(priv->rxcount, priv->rxtime));
1405 else
1406 gfar_write(&priv->regs->rxic, 0);
1407
1408 spin_unlock_irqrestore(&priv->rxlock, flags);
1409 #endif
1410
1411 return IRQ_HANDLED;
1412 }
1413
1414 static inline int gfar_rx_vlan(struct sk_buff *skb,
1415 struct vlan_group *vlgrp, unsigned short vlctl)
1416 {
1417 #ifdef CONFIG_GFAR_NAPI
1418 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1419 #else
1420 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1421 #endif
1422 }
1423
1424 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1425 {
1426 /* If valid headers were found, and valid sums
1427 * were verified, then we tell the kernel that no
1428 * checksumming is necessary. Otherwise, it is */
1429 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1430 skb->ip_summed = CHECKSUM_UNNECESSARY;
1431 else
1432 skb->ip_summed = CHECKSUM_NONE;
1433 }
1434
1435
1436 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1437 {
1438 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1439
1440 /* Remove the FCB from the skb */
1441 skb_pull(skb, GMAC_FCB_LEN);
1442
1443 return fcb;
1444 }
1445
1446 /* gfar_process_frame() -- handle one incoming packet if skb
1447 * isn't NULL. */
1448 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1449 int length)
1450 {
1451 struct gfar_private *priv = netdev_priv(dev);
1452 struct rxfcb *fcb = NULL;
1453
1454 if (NULL == skb) {
1455 if (netif_msg_rx_err(priv))
1456 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1457 priv->stats.rx_dropped++;
1458 priv->extra_stats.rx_skbmissing++;
1459 } else {
1460 int ret;
1461
1462 /* Prep the skb for the packet */
1463 skb_put(skb, length);
1464
1465 /* Grab the FCB if there is one */
1466 if (gfar_uses_fcb(priv))
1467 fcb = gfar_get_fcb(skb);
1468
1469 /* Remove the padded bytes, if there are any */
1470 if (priv->padding)
1471 skb_pull(skb, priv->padding);
1472
1473 if (priv->rx_csum_enable)
1474 gfar_rx_checksum(skb, fcb);
1475
1476 /* Tell the skb what kind of packet this is */
1477 skb->protocol = eth_type_trans(skb, dev);
1478
1479 /* Send the packet up the stack */
1480 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1481 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1482 else
1483 ret = RECEIVE(skb);
1484
1485 if (NET_RX_DROP == ret)
1486 priv->extra_stats.kernel_dropped++;
1487 }
1488
1489 return 0;
1490 }
1491
1492 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1493 * until the budget/quota has been reached. Returns the number
1494 * of frames handled
1495 */
1496 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1497 {
1498 struct rxbd8 *bdp;
1499 struct sk_buff *skb;
1500 u16 pkt_len;
1501 int howmany = 0;
1502 struct gfar_private *priv = netdev_priv(dev);
1503
1504 /* Get the first full descriptor */
1505 bdp = priv->cur_rx;
1506
1507 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1508 rmb();
1509 skb = priv->rx_skbuff[priv->skb_currx];
1510
1511 if (!(bdp->status &
1512 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1513 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1514 /* Increment the number of packets */
1515 priv->stats.rx_packets++;
1516 howmany++;
1517
1518 /* Remove the FCS from the packet length */
1519 pkt_len = bdp->length - 4;
1520
1521 gfar_process_frame(dev, skb, pkt_len);
1522
1523 priv->stats.rx_bytes += pkt_len;
1524 } else {
1525 count_errors(bdp->status, priv);
1526
1527 if (skb)
1528 dev_kfree_skb_any(skb);
1529
1530 priv->rx_skbuff[priv->skb_currx] = NULL;
1531 }
1532
1533 dev->last_rx = jiffies;
1534
1535 /* Clear the status flags for this buffer */
1536 bdp->status &= ~RXBD_STATS;
1537
1538 /* Add another skb for the future */
1539 skb = gfar_new_skb(dev, bdp);
1540 priv->rx_skbuff[priv->skb_currx] = skb;
1541
1542 /* Update to the next pointer */
1543 if (bdp->status & RXBD_WRAP)
1544 bdp = priv->rx_bd_base;
1545 else
1546 bdp++;
1547
1548 /* update to point at the next skb */
1549 priv->skb_currx =
1550 (priv->skb_currx +
1551 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1552
1553 }
1554
1555 /* Update the current rxbd pointer to be the next one */
1556 priv->cur_rx = bdp;
1557
1558 return howmany;
1559 }
1560
1561 #ifdef CONFIG_GFAR_NAPI
1562 static int gfar_poll(struct net_device *dev, int *budget)
1563 {
1564 int howmany;
1565 struct gfar_private *priv = netdev_priv(dev);
1566 int rx_work_limit = *budget;
1567
1568 if (rx_work_limit > dev->quota)
1569 rx_work_limit = dev->quota;
1570
1571 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1572
1573 dev->quota -= howmany;
1574 rx_work_limit -= howmany;
1575 *budget -= howmany;
1576
1577 if (rx_work_limit > 0) {
1578 netif_rx_complete(dev);
1579
1580 /* Clear the halt bit in RSTAT */
1581 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1582
1583 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1584
1585 /* If we are coalescing interrupts, update the timer */
1586 /* Otherwise, clear it */
1587 if (priv->rxcoalescing)
1588 gfar_write(&priv->regs->rxic,
1589 mk_ic_value(priv->rxcount, priv->rxtime));
1590 else
1591 gfar_write(&priv->regs->rxic, 0);
1592 }
1593
1594 /* Return 1 if there's more work to do */
1595 return (rx_work_limit > 0) ? 0 : 1;
1596 }
1597 #endif
1598
1599 #ifdef CONFIG_NET_POLL_CONTROLLER
1600 /*
1601 * Polling 'interrupt' - used by things like netconsole to send skbs
1602 * without having to re-enable interrupts. It's not called while
1603 * the interrupt routine is executing.
1604 */
1605 static void gfar_netpoll(struct net_device *dev)
1606 {
1607 struct gfar_private *priv = netdev_priv(dev);
1608
1609 /* If the device has multiple interrupts, run tx/rx */
1610 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1611 disable_irq(priv->interruptTransmit);
1612 disable_irq(priv->interruptReceive);
1613 disable_irq(priv->interruptError);
1614 gfar_interrupt(priv->interruptTransmit, dev);
1615 enable_irq(priv->interruptError);
1616 enable_irq(priv->interruptReceive);
1617 enable_irq(priv->interruptTransmit);
1618 } else {
1619 disable_irq(priv->interruptTransmit);
1620 gfar_interrupt(priv->interruptTransmit, dev);
1621 enable_irq(priv->interruptTransmit);
1622 }
1623 }
1624 #endif
1625
1626 /* The interrupt handler for devices with one interrupt */
1627 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1628 {
1629 struct net_device *dev = dev_id;
1630 struct gfar_private *priv = netdev_priv(dev);
1631
1632 /* Save ievent for future reference */
1633 u32 events = gfar_read(&priv->regs->ievent);
1634
1635 /* Check for reception */
1636 if (events & IEVENT_RX_MASK)
1637 gfar_receive(irq, dev_id);
1638
1639 /* Check for transmit completion */
1640 if (events & IEVENT_TX_MASK)
1641 gfar_transmit(irq, dev_id);
1642
1643 /* Check for errors */
1644 if (events & IEVENT_ERR_MASK)
1645 gfar_error(irq, dev_id);
1646
1647 return IRQ_HANDLED;
1648 }
1649
1650 /* Called every time the controller might need to be made
1651 * aware of new link state. The PHY code conveys this
1652 * information through variables in the phydev structure, and this
1653 * function converts those variables into the appropriate
1654 * register values, and can bring down the device if needed.
1655 */
1656 static void adjust_link(struct net_device *dev)
1657 {
1658 struct gfar_private *priv = netdev_priv(dev);
1659 struct gfar __iomem *regs = priv->regs;
1660 unsigned long flags;
1661 struct phy_device *phydev = priv->phydev;
1662 int new_state = 0;
1663
1664 spin_lock_irqsave(&priv->txlock, flags);
1665 if (phydev->link) {
1666 u32 tempval = gfar_read(&regs->maccfg2);
1667 u32 ecntrl = gfar_read(&regs->ecntrl);
1668
1669 /* Now we make sure that we can be in full duplex mode.
1670 * If not, we operate in half-duplex mode. */
1671 if (phydev->duplex != priv->oldduplex) {
1672 new_state = 1;
1673 if (!(phydev->duplex))
1674 tempval &= ~(MACCFG2_FULL_DUPLEX);
1675 else
1676 tempval |= MACCFG2_FULL_DUPLEX;
1677
1678 priv->oldduplex = phydev->duplex;
1679 }
1680
1681 if (phydev->speed != priv->oldspeed) {
1682 new_state = 1;
1683 switch (phydev->speed) {
1684 case 1000:
1685 tempval =
1686 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1687 break;
1688 case 100:
1689 case 10:
1690 tempval =
1691 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1692
1693 /* Reduced mode distinguishes
1694 * between 10 and 100 */
1695 if (phydev->speed == SPEED_100)
1696 ecntrl |= ECNTRL_R100;
1697 else
1698 ecntrl &= ~(ECNTRL_R100);
1699 break;
1700 default:
1701 if (netif_msg_link(priv))
1702 printk(KERN_WARNING
1703 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1704 dev->name, phydev->speed);
1705 break;
1706 }
1707
1708 priv->oldspeed = phydev->speed;
1709 }
1710
1711 gfar_write(&regs->maccfg2, tempval);
1712 gfar_write(&regs->ecntrl, ecntrl);
1713
1714 if (!priv->oldlink) {
1715 new_state = 1;
1716 priv->oldlink = 1;
1717 netif_schedule(dev);
1718 }
1719 } else if (priv->oldlink) {
1720 new_state = 1;
1721 priv->oldlink = 0;
1722 priv->oldspeed = 0;
1723 priv->oldduplex = -1;
1724 }
1725
1726 if (new_state && netif_msg_link(priv))
1727 phy_print_status(phydev);
1728
1729 spin_unlock_irqrestore(&priv->txlock, flags);
1730 }
1731
1732 /* Update the hash table based on the current list of multicast
1733 * addresses we subscribe to. Also, change the promiscuity of
1734 * the device based on the flags (this function is called
1735 * whenever dev->flags is changed */
1736 static void gfar_set_multi(struct net_device *dev)
1737 {
1738 struct dev_mc_list *mc_ptr;
1739 struct gfar_private *priv = netdev_priv(dev);
1740 struct gfar __iomem *regs = priv->regs;
1741 u32 tempval;
1742
1743 if(dev->flags & IFF_PROMISC) {
1744 /* Set RCTRL to PROM */
1745 tempval = gfar_read(&regs->rctrl);
1746 tempval |= RCTRL_PROM;
1747 gfar_write(&regs->rctrl, tempval);
1748 } else {
1749 /* Set RCTRL to not PROM */
1750 tempval = gfar_read(&regs->rctrl);
1751 tempval &= ~(RCTRL_PROM);
1752 gfar_write(&regs->rctrl, tempval);
1753 }
1754
1755 if(dev->flags & IFF_ALLMULTI) {
1756 /* Set the hash to rx all multicast frames */
1757 gfar_write(&regs->igaddr0, 0xffffffff);
1758 gfar_write(&regs->igaddr1, 0xffffffff);
1759 gfar_write(&regs->igaddr2, 0xffffffff);
1760 gfar_write(&regs->igaddr3, 0xffffffff);
1761 gfar_write(&regs->igaddr4, 0xffffffff);
1762 gfar_write(&regs->igaddr5, 0xffffffff);
1763 gfar_write(&regs->igaddr6, 0xffffffff);
1764 gfar_write(&regs->igaddr7, 0xffffffff);
1765 gfar_write(&regs->gaddr0, 0xffffffff);
1766 gfar_write(&regs->gaddr1, 0xffffffff);
1767 gfar_write(&regs->gaddr2, 0xffffffff);
1768 gfar_write(&regs->gaddr3, 0xffffffff);
1769 gfar_write(&regs->gaddr4, 0xffffffff);
1770 gfar_write(&regs->gaddr5, 0xffffffff);
1771 gfar_write(&regs->gaddr6, 0xffffffff);
1772 gfar_write(&regs->gaddr7, 0xffffffff);
1773 } else {
1774 int em_num;
1775 int idx;
1776
1777 /* zero out the hash */
1778 gfar_write(&regs->igaddr0, 0x0);
1779 gfar_write(&regs->igaddr1, 0x0);
1780 gfar_write(&regs->igaddr2, 0x0);
1781 gfar_write(&regs->igaddr3, 0x0);
1782 gfar_write(&regs->igaddr4, 0x0);
1783 gfar_write(&regs->igaddr5, 0x0);
1784 gfar_write(&regs->igaddr6, 0x0);
1785 gfar_write(&regs->igaddr7, 0x0);
1786 gfar_write(&regs->gaddr0, 0x0);
1787 gfar_write(&regs->gaddr1, 0x0);
1788 gfar_write(&regs->gaddr2, 0x0);
1789 gfar_write(&regs->gaddr3, 0x0);
1790 gfar_write(&regs->gaddr4, 0x0);
1791 gfar_write(&regs->gaddr5, 0x0);
1792 gfar_write(&regs->gaddr6, 0x0);
1793 gfar_write(&regs->gaddr7, 0x0);
1794
1795 /* If we have extended hash tables, we need to
1796 * clear the exact match registers to prepare for
1797 * setting them */
1798 if (priv->extended_hash) {
1799 em_num = GFAR_EM_NUM + 1;
1800 gfar_clear_exact_match(dev);
1801 idx = 1;
1802 } else {
1803 idx = 0;
1804 em_num = 0;
1805 }
1806
1807 if(dev->mc_count == 0)
1808 return;
1809
1810 /* Parse the list, and set the appropriate bits */
1811 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1812 if (idx < em_num) {
1813 gfar_set_mac_for_addr(dev, idx,
1814 mc_ptr->dmi_addr);
1815 idx++;
1816 } else
1817 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1818 }
1819 }
1820
1821 return;
1822 }
1823
1824
1825 /* Clears each of the exact match registers to zero, so they
1826 * don't interfere with normal reception */
1827 static void gfar_clear_exact_match(struct net_device *dev)
1828 {
1829 int idx;
1830 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1831
1832 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1833 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1834 }
1835
1836 /* Set the appropriate hash bit for the given addr */
1837 /* The algorithm works like so:
1838 * 1) Take the Destination Address (ie the multicast address), and
1839 * do a CRC on it (little endian), and reverse the bits of the
1840 * result.
1841 * 2) Use the 8 most significant bits as a hash into a 256-entry
1842 * table. The table is controlled through 8 32-bit registers:
1843 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1844 * gaddr7. This means that the 3 most significant bits in the
1845 * hash index which gaddr register to use, and the 5 other bits
1846 * indicate which bit (assuming an IBM numbering scheme, which
1847 * for PowerPC (tm) is usually the case) in the register holds
1848 * the entry. */
1849 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1850 {
1851 u32 tempval;
1852 struct gfar_private *priv = netdev_priv(dev);
1853 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1854 int width = priv->hash_width;
1855 u8 whichbit = (result >> (32 - width)) & 0x1f;
1856 u8 whichreg = result >> (32 - width + 5);
1857 u32 value = (1 << (31-whichbit));
1858
1859 tempval = gfar_read(priv->hash_regs[whichreg]);
1860 tempval |= value;
1861 gfar_write(priv->hash_regs[whichreg], tempval);
1862
1863 return;
1864 }
1865
1866
1867 /* There are multiple MAC Address register pairs on some controllers
1868 * This function sets the numth pair to a given address
1869 */
1870 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1871 {
1872 struct gfar_private *priv = netdev_priv(dev);
1873 int idx;
1874 char tmpbuf[MAC_ADDR_LEN];
1875 u32 tempval;
1876 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1877
1878 macptr += num*2;
1879
1880 /* Now copy it into the mac registers backwards, cuz */
1881 /* little endian is silly */
1882 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1883 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1884
1885 gfar_write(macptr, *((u32 *) (tmpbuf)));
1886
1887 tempval = *((u32 *) (tmpbuf + 4));
1888
1889 gfar_write(macptr+1, tempval);
1890 }
1891
1892 /* GFAR error interrupt handler */
1893 static irqreturn_t gfar_error(int irq, void *dev_id)
1894 {
1895 struct net_device *dev = dev_id;
1896 struct gfar_private *priv = netdev_priv(dev);
1897
1898 /* Save ievent for future reference */
1899 u32 events = gfar_read(&priv->regs->ievent);
1900
1901 /* Clear IEVENT */
1902 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1903
1904 /* Hmm... */
1905 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1906 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1907 dev->name, events, gfar_read(&priv->regs->imask));
1908
1909 /* Update the error counters */
1910 if (events & IEVENT_TXE) {
1911 priv->stats.tx_errors++;
1912
1913 if (events & IEVENT_LC)
1914 priv->stats.tx_window_errors++;
1915 if (events & IEVENT_CRL)
1916 priv->stats.tx_aborted_errors++;
1917 if (events & IEVENT_XFUN) {
1918 if (netif_msg_tx_err(priv))
1919 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1920 "packet dropped.\n", dev->name);
1921 priv->stats.tx_dropped++;
1922 priv->extra_stats.tx_underrun++;
1923
1924 /* Reactivate the Tx Queues */
1925 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1926 }
1927 if (netif_msg_tx_err(priv))
1928 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1929 }
1930 if (events & IEVENT_BSY) {
1931 priv->stats.rx_errors++;
1932 priv->extra_stats.rx_bsy++;
1933
1934 gfar_receive(irq, dev_id);
1935
1936 #ifndef CONFIG_GFAR_NAPI
1937 /* Clear the halt bit in RSTAT */
1938 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1939 #endif
1940
1941 if (netif_msg_rx_err(priv))
1942 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
1943 dev->name, gfar_read(&priv->regs->rstat));
1944 }
1945 if (events & IEVENT_BABR) {
1946 priv->stats.rx_errors++;
1947 priv->extra_stats.rx_babr++;
1948
1949 if (netif_msg_rx_err(priv))
1950 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
1951 }
1952 if (events & IEVENT_EBERR) {
1953 priv->extra_stats.eberr++;
1954 if (netif_msg_rx_err(priv))
1955 printk(KERN_DEBUG "%s: bus error\n", dev->name);
1956 }
1957 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1958 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1959
1960 if (events & IEVENT_BABT) {
1961 priv->extra_stats.tx_babt++;
1962 if (netif_msg_tx_err(priv))
1963 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
1964 }
1965 return IRQ_HANDLED;
1966 }
1967
1968 /* Structure for a device driver */
1969 static struct platform_driver gfar_driver = {
1970 .probe = gfar_probe,
1971 .remove = gfar_remove,
1972 .driver = {
1973 .name = "fsl-gianfar",
1974 },
1975 };
1976
1977 static int __init gfar_init(void)
1978 {
1979 int err = gfar_mdio_init();
1980
1981 if (err)
1982 return err;
1983
1984 err = platform_driver_register(&gfar_driver);
1985
1986 if (err)
1987 gfar_mdio_exit();
1988
1989 return err;
1990 }
1991
1992 static void __exit gfar_exit(void)
1993 {
1994 platform_driver_unregister(&gfar_driver);
1995 gfar_mdio_exit();
1996 }
1997
1998 module_init(gfar_init);
1999 module_exit(gfar_exit);
2000