]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/gtp.c
gtp: fix use-after-free in gtp_newlink()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / gtp.c
1 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060
2 *
3 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
4 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
5 *
6 * Author: Harald Welte <hwelte@sysmocom.de>
7 * Pablo Neira Ayuso <pablo@netfilter.org>
8 * Andreas Schultz <aschultz@travelping.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/skbuff.h>
20 #include <linux/udp.h>
21 #include <linux/rculist.h>
22 #include <linux/jhash.h>
23 #include <linux/if_tunnel.h>
24 #include <linux/net.h>
25 #include <linux/file.h>
26 #include <linux/gtp.h>
27
28 #include <net/net_namespace.h>
29 #include <net/protocol.h>
30 #include <net/ip.h>
31 #include <net/udp.h>
32 #include <net/udp_tunnel.h>
33 #include <net/icmp.h>
34 #include <net/xfrm.h>
35 #include <net/genetlink.h>
36 #include <net/netns/generic.h>
37 #include <net/gtp.h>
38
39 /* An active session for the subscriber. */
40 struct pdp_ctx {
41 struct hlist_node hlist_tid;
42 struct hlist_node hlist_addr;
43
44 union {
45 u64 tid;
46 struct {
47 u64 tid;
48 u16 flow;
49 } v0;
50 struct {
51 u32 i_tei;
52 u32 o_tei;
53 } v1;
54 } u;
55 u8 gtp_version;
56 u16 af;
57
58 struct in_addr ms_addr_ip4;
59 struct in_addr peer_addr_ip4;
60
61 struct sock *sk;
62 struct net_device *dev;
63
64 atomic_t tx_seq;
65 struct rcu_head rcu_head;
66 };
67
68 /* One instance of the GTP device. */
69 struct gtp_dev {
70 struct list_head list;
71
72 struct sock *sk0;
73 struct sock *sk1u;
74
75 struct net_device *dev;
76
77 unsigned int role;
78 unsigned int hash_size;
79 struct hlist_head *tid_hash;
80 struct hlist_head *addr_hash;
81 };
82
83 static unsigned int gtp_net_id __read_mostly;
84
85 struct gtp_net {
86 struct list_head gtp_dev_list;
87 };
88
89 static u32 gtp_h_initval;
90
91 static void pdp_context_delete(struct pdp_ctx *pctx);
92
93 static inline u32 gtp0_hashfn(u64 tid)
94 {
95 u32 *tid32 = (u32 *) &tid;
96 return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
97 }
98
99 static inline u32 gtp1u_hashfn(u32 tid)
100 {
101 return jhash_1word(tid, gtp_h_initval);
102 }
103
104 static inline u32 ipv4_hashfn(__be32 ip)
105 {
106 return jhash_1word((__force u32)ip, gtp_h_initval);
107 }
108
109 /* Resolve a PDP context structure based on the 64bit TID. */
110 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
111 {
112 struct hlist_head *head;
113 struct pdp_ctx *pdp;
114
115 head = &gtp->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
116
117 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
118 if (pdp->gtp_version == GTP_V0 &&
119 pdp->u.v0.tid == tid)
120 return pdp;
121 }
122 return NULL;
123 }
124
125 /* Resolve a PDP context structure based on the 32bit TEI. */
126 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
127 {
128 struct hlist_head *head;
129 struct pdp_ctx *pdp;
130
131 head = &gtp->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
132
133 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
134 if (pdp->gtp_version == GTP_V1 &&
135 pdp->u.v1.i_tei == tid)
136 return pdp;
137 }
138 return NULL;
139 }
140
141 /* Resolve a PDP context based on IPv4 address of MS. */
142 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
143 {
144 struct hlist_head *head;
145 struct pdp_ctx *pdp;
146
147 head = &gtp->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
148
149 hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
150 if (pdp->af == AF_INET &&
151 pdp->ms_addr_ip4.s_addr == ms_addr)
152 return pdp;
153 }
154
155 return NULL;
156 }
157
158 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
159 unsigned int hdrlen, unsigned int role)
160 {
161 struct iphdr *iph;
162
163 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
164 return false;
165
166 iph = (struct iphdr *)(skb->data + hdrlen);
167
168 if (role == GTP_ROLE_SGSN)
169 return iph->daddr == pctx->ms_addr_ip4.s_addr;
170 else
171 return iph->saddr == pctx->ms_addr_ip4.s_addr;
172 }
173
174 /* Check if the inner IP address in this packet is assigned to any
175 * existing mobile subscriber.
176 */
177 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
178 unsigned int hdrlen, unsigned int role)
179 {
180 switch (ntohs(skb->protocol)) {
181 case ETH_P_IP:
182 return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
183 }
184 return false;
185 }
186
187 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
188 unsigned int hdrlen, unsigned int role)
189 {
190 struct pcpu_sw_netstats *stats;
191
192 if (!gtp_check_ms(skb, pctx, hdrlen, role)) {
193 netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
194 return 1;
195 }
196
197 /* Get rid of the GTP + UDP headers. */
198 if (iptunnel_pull_header(skb, hdrlen, skb->protocol,
199 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev))))
200 return -1;
201
202 netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
203
204 /* Now that the UDP and the GTP header have been removed, set up the
205 * new network header. This is required by the upper layer to
206 * calculate the transport header.
207 */
208 skb_reset_network_header(skb);
209
210 skb->dev = pctx->dev;
211
212 stats = this_cpu_ptr(pctx->dev->tstats);
213 u64_stats_update_begin(&stats->syncp);
214 stats->rx_packets++;
215 stats->rx_bytes += skb->len;
216 u64_stats_update_end(&stats->syncp);
217
218 netif_rx(skb);
219 return 0;
220 }
221
222 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
223 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
224 {
225 unsigned int hdrlen = sizeof(struct udphdr) +
226 sizeof(struct gtp0_header);
227 struct gtp0_header *gtp0;
228 struct pdp_ctx *pctx;
229
230 if (!pskb_may_pull(skb, hdrlen))
231 return -1;
232
233 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
234
235 if ((gtp0->flags >> 5) != GTP_V0)
236 return 1;
237
238 if (gtp0->type != GTP_TPDU)
239 return 1;
240
241 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
242 if (!pctx) {
243 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
244 return 1;
245 }
246
247 return gtp_rx(pctx, skb, hdrlen, gtp->role);
248 }
249
250 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
251 {
252 unsigned int hdrlen = sizeof(struct udphdr) +
253 sizeof(struct gtp1_header);
254 struct gtp1_header *gtp1;
255 struct pdp_ctx *pctx;
256
257 if (!pskb_may_pull(skb, hdrlen))
258 return -1;
259
260 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
261
262 if ((gtp1->flags >> 5) != GTP_V1)
263 return 1;
264
265 if (gtp1->type != GTP_TPDU)
266 return 1;
267
268 /* From 29.060: "This field shall be present if and only if any one or
269 * more of the S, PN and E flags are set.".
270 *
271 * If any of the bit is set, then the remaining ones also have to be
272 * set.
273 */
274 if (gtp1->flags & GTP1_F_MASK)
275 hdrlen += 4;
276
277 /* Make sure the header is larger enough, including extensions. */
278 if (!pskb_may_pull(skb, hdrlen))
279 return -1;
280
281 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
282
283 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
284 if (!pctx) {
285 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
286 return 1;
287 }
288
289 return gtp_rx(pctx, skb, hdrlen, gtp->role);
290 }
291
292 static void __gtp_encap_destroy(struct sock *sk)
293 {
294 struct gtp_dev *gtp;
295
296 lock_sock(sk);
297 gtp = sk->sk_user_data;
298 if (gtp) {
299 if (gtp->sk0 == sk)
300 gtp->sk0 = NULL;
301 else
302 gtp->sk1u = NULL;
303 udp_sk(sk)->encap_type = 0;
304 rcu_assign_sk_user_data(sk, NULL);
305 sock_put(sk);
306 }
307 release_sock(sk);
308 }
309
310 static void gtp_encap_destroy(struct sock *sk)
311 {
312 rtnl_lock();
313 __gtp_encap_destroy(sk);
314 rtnl_unlock();
315 }
316
317 static void gtp_encap_disable_sock(struct sock *sk)
318 {
319 if (!sk)
320 return;
321
322 __gtp_encap_destroy(sk);
323 }
324
325 static void gtp_encap_disable(struct gtp_dev *gtp)
326 {
327 gtp_encap_disable_sock(gtp->sk0);
328 gtp_encap_disable_sock(gtp->sk1u);
329 }
330
331 /* UDP encapsulation receive handler. See net/ipv4/udp.c.
332 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
333 */
334 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
335 {
336 struct gtp_dev *gtp;
337 int ret = 0;
338
339 gtp = rcu_dereference_sk_user_data(sk);
340 if (!gtp)
341 return 1;
342
343 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
344
345 switch (udp_sk(sk)->encap_type) {
346 case UDP_ENCAP_GTP0:
347 netdev_dbg(gtp->dev, "received GTP0 packet\n");
348 ret = gtp0_udp_encap_recv(gtp, skb);
349 break;
350 case UDP_ENCAP_GTP1U:
351 netdev_dbg(gtp->dev, "received GTP1U packet\n");
352 ret = gtp1u_udp_encap_recv(gtp, skb);
353 break;
354 default:
355 ret = -1; /* Shouldn't happen. */
356 }
357
358 switch (ret) {
359 case 1:
360 netdev_dbg(gtp->dev, "pass up to the process\n");
361 break;
362 case 0:
363 break;
364 case -1:
365 netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
366 kfree_skb(skb);
367 ret = 0;
368 break;
369 }
370
371 return ret;
372 }
373
374 static int gtp_dev_init(struct net_device *dev)
375 {
376 struct gtp_dev *gtp = netdev_priv(dev);
377
378 gtp->dev = dev;
379
380 dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
381 if (!dev->tstats)
382 return -ENOMEM;
383
384 return 0;
385 }
386
387 static void gtp_dev_uninit(struct net_device *dev)
388 {
389 struct gtp_dev *gtp = netdev_priv(dev);
390
391 gtp_encap_disable(gtp);
392 free_percpu(dev->tstats);
393 }
394
395 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
396 const struct sock *sk,
397 __be32 daddr)
398 {
399 memset(fl4, 0, sizeof(*fl4));
400 fl4->flowi4_oif = sk->sk_bound_dev_if;
401 fl4->daddr = daddr;
402 fl4->saddr = inet_sk(sk)->inet_saddr;
403 fl4->flowi4_tos = RT_CONN_FLAGS(sk);
404 fl4->flowi4_proto = sk->sk_protocol;
405
406 return ip_route_output_key(sock_net(sk), fl4);
407 }
408
409 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
410 {
411 int payload_len = skb->len;
412 struct gtp0_header *gtp0;
413
414 gtp0 = skb_push(skb, sizeof(*gtp0));
415
416 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */
417 gtp0->type = GTP_TPDU;
418 gtp0->length = htons(payload_len);
419 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
420 gtp0->flow = htons(pctx->u.v0.flow);
421 gtp0->number = 0xff;
422 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff;
423 gtp0->tid = cpu_to_be64(pctx->u.v0.tid);
424 }
425
426 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
427 {
428 int payload_len = skb->len;
429 struct gtp1_header *gtp1;
430
431 gtp1 = skb_push(skb, sizeof(*gtp1));
432
433 /* Bits 8 7 6 5 4 3 2 1
434 * +--+--+--+--+--+--+--+--+
435 * |version |PT| 0| E| S|PN|
436 * +--+--+--+--+--+--+--+--+
437 * 0 0 1 1 1 0 0 0
438 */
439 gtp1->flags = 0x30; /* v1, GTP-non-prime. */
440 gtp1->type = GTP_TPDU;
441 gtp1->length = htons(payload_len);
442 gtp1->tid = htonl(pctx->u.v1.o_tei);
443
444 /* TODO: Suppport for extension header, sequence number and N-PDU.
445 * Update the length field if any of them is available.
446 */
447 }
448
449 struct gtp_pktinfo {
450 struct sock *sk;
451 struct iphdr *iph;
452 struct flowi4 fl4;
453 struct rtable *rt;
454 struct pdp_ctx *pctx;
455 struct net_device *dev;
456 __be16 gtph_port;
457 };
458
459 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
460 {
461 switch (pktinfo->pctx->gtp_version) {
462 case GTP_V0:
463 pktinfo->gtph_port = htons(GTP0_PORT);
464 gtp0_push_header(skb, pktinfo->pctx);
465 break;
466 case GTP_V1:
467 pktinfo->gtph_port = htons(GTP1U_PORT);
468 gtp1_push_header(skb, pktinfo->pctx);
469 break;
470 }
471 }
472
473 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
474 struct sock *sk, struct iphdr *iph,
475 struct pdp_ctx *pctx, struct rtable *rt,
476 struct flowi4 *fl4,
477 struct net_device *dev)
478 {
479 pktinfo->sk = sk;
480 pktinfo->iph = iph;
481 pktinfo->pctx = pctx;
482 pktinfo->rt = rt;
483 pktinfo->fl4 = *fl4;
484 pktinfo->dev = dev;
485 }
486
487 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
488 struct gtp_pktinfo *pktinfo)
489 {
490 struct gtp_dev *gtp = netdev_priv(dev);
491 struct pdp_ctx *pctx;
492 struct rtable *rt;
493 struct flowi4 fl4;
494 struct iphdr *iph;
495 __be16 df;
496 int mtu;
497
498 /* Read the IP destination address and resolve the PDP context.
499 * Prepend PDP header with TEI/TID from PDP ctx.
500 */
501 iph = ip_hdr(skb);
502 if (gtp->role == GTP_ROLE_SGSN)
503 pctx = ipv4_pdp_find(gtp, iph->saddr);
504 else
505 pctx = ipv4_pdp_find(gtp, iph->daddr);
506
507 if (!pctx) {
508 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
509 &iph->daddr);
510 return -ENOENT;
511 }
512 netdev_dbg(dev, "found PDP context %p\n", pctx);
513
514 rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr);
515 if (IS_ERR(rt)) {
516 netdev_dbg(dev, "no route to SSGN %pI4\n",
517 &pctx->peer_addr_ip4.s_addr);
518 dev->stats.tx_carrier_errors++;
519 goto err;
520 }
521
522 if (rt->dst.dev == dev) {
523 netdev_dbg(dev, "circular route to SSGN %pI4\n",
524 &pctx->peer_addr_ip4.s_addr);
525 dev->stats.collisions++;
526 goto err_rt;
527 }
528
529 skb_dst_drop(skb);
530
531 /* This is similar to tnl_update_pmtu(). */
532 df = iph->frag_off;
533 if (df) {
534 mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
535 sizeof(struct iphdr) - sizeof(struct udphdr);
536 switch (pctx->gtp_version) {
537 case GTP_V0:
538 mtu -= sizeof(struct gtp0_header);
539 break;
540 case GTP_V1:
541 mtu -= sizeof(struct gtp1_header);
542 break;
543 }
544 } else {
545 mtu = dst_mtu(&rt->dst);
546 }
547
548 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu);
549
550 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) &&
551 mtu < ntohs(iph->tot_len)) {
552 netdev_dbg(dev, "packet too big, fragmentation needed\n");
553 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
554 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
555 htonl(mtu));
556 goto err_rt;
557 }
558
559 gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev);
560 gtp_push_header(skb, pktinfo);
561
562 return 0;
563 err_rt:
564 ip_rt_put(rt);
565 err:
566 return -EBADMSG;
567 }
568
569 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
570 {
571 unsigned int proto = ntohs(skb->protocol);
572 struct gtp_pktinfo pktinfo;
573 int err;
574
575 /* Ensure there is sufficient headroom. */
576 if (skb_cow_head(skb, dev->needed_headroom))
577 goto tx_err;
578
579 skb_reset_inner_headers(skb);
580
581 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
582 rcu_read_lock();
583 switch (proto) {
584 case ETH_P_IP:
585 err = gtp_build_skb_ip4(skb, dev, &pktinfo);
586 break;
587 default:
588 err = -EOPNOTSUPP;
589 break;
590 }
591 rcu_read_unlock();
592
593 if (err < 0)
594 goto tx_err;
595
596 switch (proto) {
597 case ETH_P_IP:
598 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
599 &pktinfo.iph->saddr, &pktinfo.iph->daddr);
600 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
601 pktinfo.fl4.saddr, pktinfo.fl4.daddr,
602 pktinfo.iph->tos,
603 ip4_dst_hoplimit(&pktinfo.rt->dst),
604 0,
605 pktinfo.gtph_port, pktinfo.gtph_port,
606 true, false);
607 break;
608 }
609
610 return NETDEV_TX_OK;
611 tx_err:
612 dev->stats.tx_errors++;
613 dev_kfree_skb(skb);
614 return NETDEV_TX_OK;
615 }
616
617 static const struct net_device_ops gtp_netdev_ops = {
618 .ndo_init = gtp_dev_init,
619 .ndo_uninit = gtp_dev_uninit,
620 .ndo_start_xmit = gtp_dev_xmit,
621 .ndo_get_stats64 = ip_tunnel_get_stats64,
622 };
623
624 static void gtp_link_setup(struct net_device *dev)
625 {
626 dev->netdev_ops = &gtp_netdev_ops;
627 dev->needs_free_netdev = true;
628
629 dev->hard_header_len = 0;
630 dev->addr_len = 0;
631
632 /* Zero header length. */
633 dev->type = ARPHRD_NONE;
634 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
635
636 dev->priv_flags |= IFF_NO_QUEUE;
637 dev->features |= NETIF_F_LLTX;
638 netif_keep_dst(dev);
639
640 /* Assume largest header, ie. GTPv0. */
641 dev->needed_headroom = LL_MAX_HEADER +
642 sizeof(struct iphdr) +
643 sizeof(struct udphdr) +
644 sizeof(struct gtp0_header);
645 }
646
647 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
648 static void gtp_hashtable_free(struct gtp_dev *gtp);
649 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
650
651 static int gtp_newlink(struct net *src_net, struct net_device *dev,
652 struct nlattr *tb[], struct nlattr *data[],
653 struct netlink_ext_ack *extack)
654 {
655 struct gtp_dev *gtp;
656 struct gtp_net *gn;
657 int hashsize, err;
658
659 if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
660 return -EINVAL;
661
662 gtp = netdev_priv(dev);
663
664 err = gtp_encap_enable(gtp, data);
665 if (err < 0)
666 return err;
667
668 if (!data[IFLA_GTP_PDP_HASHSIZE])
669 hashsize = 1024;
670 else
671 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
672
673 err = gtp_hashtable_new(gtp, hashsize);
674 if (err < 0)
675 goto out_encap;
676
677 err = register_netdevice(dev);
678 if (err < 0) {
679 netdev_dbg(dev, "failed to register new netdev %d\n", err);
680 goto out_hashtable;
681 }
682
683 gn = net_generic(dev_net(dev), gtp_net_id);
684 list_add_rcu(&gtp->list, &gn->gtp_dev_list);
685
686 netdev_dbg(dev, "registered new GTP interface\n");
687
688 return 0;
689
690 out_hashtable:
691 gtp_hashtable_free(gtp);
692 out_encap:
693 gtp_encap_disable(gtp);
694 return err;
695 }
696
697 static void gtp_dellink(struct net_device *dev, struct list_head *head)
698 {
699 struct gtp_dev *gtp = netdev_priv(dev);
700
701 gtp_encap_disable(gtp);
702 gtp_hashtable_free(gtp);
703 list_del_rcu(&gtp->list);
704 unregister_netdevice_queue(dev, head);
705 }
706
707 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
708 [IFLA_GTP_FD0] = { .type = NLA_U32 },
709 [IFLA_GTP_FD1] = { .type = NLA_U32 },
710 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 },
711 [IFLA_GTP_ROLE] = { .type = NLA_U32 },
712 };
713
714 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
715 struct netlink_ext_ack *extack)
716 {
717 if (!data)
718 return -EINVAL;
719
720 return 0;
721 }
722
723 static size_t gtp_get_size(const struct net_device *dev)
724 {
725 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */
726 }
727
728 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
729 {
730 struct gtp_dev *gtp = netdev_priv(dev);
731
732 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
733 goto nla_put_failure;
734
735 return 0;
736
737 nla_put_failure:
738 return -EMSGSIZE;
739 }
740
741 static struct rtnl_link_ops gtp_link_ops __read_mostly = {
742 .kind = "gtp",
743 .maxtype = IFLA_GTP_MAX,
744 .policy = gtp_policy,
745 .priv_size = sizeof(struct gtp_dev),
746 .setup = gtp_link_setup,
747 .validate = gtp_validate,
748 .newlink = gtp_newlink,
749 .dellink = gtp_dellink,
750 .get_size = gtp_get_size,
751 .fill_info = gtp_fill_info,
752 };
753
754 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
755 {
756 int i;
757
758 gtp->addr_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL);
759 if (gtp->addr_hash == NULL)
760 return -ENOMEM;
761
762 gtp->tid_hash = kmalloc(sizeof(struct hlist_head) * hsize, GFP_KERNEL);
763 if (gtp->tid_hash == NULL)
764 goto err1;
765
766 gtp->hash_size = hsize;
767
768 for (i = 0; i < hsize; i++) {
769 INIT_HLIST_HEAD(&gtp->addr_hash[i]);
770 INIT_HLIST_HEAD(&gtp->tid_hash[i]);
771 }
772 return 0;
773 err1:
774 kfree(gtp->addr_hash);
775 return -ENOMEM;
776 }
777
778 static void gtp_hashtable_free(struct gtp_dev *gtp)
779 {
780 struct pdp_ctx *pctx;
781 int i;
782
783 for (i = 0; i < gtp->hash_size; i++)
784 hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i], hlist_tid)
785 pdp_context_delete(pctx);
786
787 synchronize_rcu();
788 kfree(gtp->addr_hash);
789 kfree(gtp->tid_hash);
790 }
791
792 static struct sock *gtp_encap_enable_socket(int fd, int type,
793 struct gtp_dev *gtp)
794 {
795 struct udp_tunnel_sock_cfg tuncfg = {NULL};
796 struct socket *sock;
797 struct sock *sk;
798 int err;
799
800 pr_debug("enable gtp on %d, %d\n", fd, type);
801
802 sock = sockfd_lookup(fd, &err);
803 if (!sock) {
804 pr_debug("gtp socket fd=%d not found\n", fd);
805 return NULL;
806 }
807
808 if (sock->sk->sk_protocol != IPPROTO_UDP) {
809 pr_debug("socket fd=%d not UDP\n", fd);
810 sk = ERR_PTR(-EINVAL);
811 goto out_sock;
812 }
813
814 lock_sock(sock->sk);
815 if (sock->sk->sk_user_data) {
816 sk = ERR_PTR(-EBUSY);
817 goto out_sock;
818 }
819
820 sk = sock->sk;
821 sock_hold(sk);
822
823 tuncfg.sk_user_data = gtp;
824 tuncfg.encap_type = type;
825 tuncfg.encap_rcv = gtp_encap_recv;
826 tuncfg.encap_destroy = gtp_encap_destroy;
827
828 setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
829
830 out_sock:
831 release_sock(sock->sk);
832 sockfd_put(sock);
833 return sk;
834 }
835
836 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
837 {
838 struct sock *sk1u = NULL;
839 struct sock *sk0 = NULL;
840 unsigned int role = GTP_ROLE_GGSN;
841
842 if (data[IFLA_GTP_FD0]) {
843 u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
844
845 sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
846 if (IS_ERR(sk0))
847 return PTR_ERR(sk0);
848 }
849
850 if (data[IFLA_GTP_FD1]) {
851 u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
852
853 sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
854 if (IS_ERR(sk1u)) {
855 if (sk0)
856 gtp_encap_disable_sock(sk0);
857 return PTR_ERR(sk1u);
858 }
859 }
860
861 if (data[IFLA_GTP_ROLE]) {
862 role = nla_get_u32(data[IFLA_GTP_ROLE]);
863 if (role > GTP_ROLE_SGSN) {
864 if (sk0)
865 gtp_encap_disable_sock(sk0);
866 if (sk1u)
867 gtp_encap_disable_sock(sk1u);
868 return -EINVAL;
869 }
870 }
871
872 gtp->sk0 = sk0;
873 gtp->sk1u = sk1u;
874 gtp->role = role;
875
876 return 0;
877 }
878
879 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
880 {
881 struct gtp_dev *gtp = NULL;
882 struct net_device *dev;
883 struct net *net;
884
885 /* Examine the link attributes and figure out which network namespace
886 * we are talking about.
887 */
888 if (nla[GTPA_NET_NS_FD])
889 net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
890 else
891 net = get_net(src_net);
892
893 if (IS_ERR(net))
894 return NULL;
895
896 /* Check if there's an existing gtpX device to configure */
897 dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
898 if (dev && dev->netdev_ops == &gtp_netdev_ops)
899 gtp = netdev_priv(dev);
900
901 put_net(net);
902 return gtp;
903 }
904
905 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
906 {
907 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
908 pctx->af = AF_INET;
909 pctx->peer_addr_ip4.s_addr =
910 nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
911 pctx->ms_addr_ip4.s_addr =
912 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
913
914 switch (pctx->gtp_version) {
915 case GTP_V0:
916 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
917 * label needs to be the same for uplink and downlink packets,
918 * so let's annotate this.
919 */
920 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
921 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
922 break;
923 case GTP_V1:
924 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
925 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
926 break;
927 default:
928 break;
929 }
930 }
931
932 static int ipv4_pdp_add(struct gtp_dev *gtp, struct sock *sk,
933 struct genl_info *info)
934 {
935 struct net_device *dev = gtp->dev;
936 u32 hash_ms, hash_tid = 0;
937 struct pdp_ctx *pctx;
938 bool found = false;
939 __be32 ms_addr;
940
941 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
942 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
943
944 hlist_for_each_entry_rcu(pctx, &gtp->addr_hash[hash_ms], hlist_addr) {
945 if (pctx->ms_addr_ip4.s_addr == ms_addr) {
946 found = true;
947 break;
948 }
949 }
950
951 if (found) {
952 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
953 return -EEXIST;
954 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
955 return -EOPNOTSUPP;
956
957 ipv4_pdp_fill(pctx, info);
958
959 if (pctx->gtp_version == GTP_V0)
960 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
961 pctx->u.v0.tid, pctx);
962 else if (pctx->gtp_version == GTP_V1)
963 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
964 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
965
966 return 0;
967
968 }
969
970 pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC);
971 if (pctx == NULL)
972 return -ENOMEM;
973
974 sock_hold(sk);
975 pctx->sk = sk;
976 pctx->dev = gtp->dev;
977 ipv4_pdp_fill(pctx, info);
978 atomic_set(&pctx->tx_seq, 0);
979
980 switch (pctx->gtp_version) {
981 case GTP_V0:
982 /* TS 09.60: "The flow label identifies unambiguously a GTP
983 * flow.". We use the tid for this instead, I cannot find a
984 * situation in which this doesn't unambiguosly identify the
985 * PDP context.
986 */
987 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
988 break;
989 case GTP_V1:
990 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
991 break;
992 }
993
994 hlist_add_head_rcu(&pctx->hlist_addr, &gtp->addr_hash[hash_ms]);
995 hlist_add_head_rcu(&pctx->hlist_tid, &gtp->tid_hash[hash_tid]);
996
997 switch (pctx->gtp_version) {
998 case GTP_V0:
999 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1000 pctx->u.v0.tid, &pctx->peer_addr_ip4,
1001 &pctx->ms_addr_ip4, pctx);
1002 break;
1003 case GTP_V1:
1004 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1005 pctx->u.v1.i_tei, pctx->u.v1.o_tei,
1006 &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx);
1007 break;
1008 }
1009
1010 return 0;
1011 }
1012
1013 static void pdp_context_free(struct rcu_head *head)
1014 {
1015 struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
1016
1017 sock_put(pctx->sk);
1018 kfree(pctx);
1019 }
1020
1021 static void pdp_context_delete(struct pdp_ctx *pctx)
1022 {
1023 hlist_del_rcu(&pctx->hlist_tid);
1024 hlist_del_rcu(&pctx->hlist_addr);
1025 call_rcu(&pctx->rcu_head, pdp_context_free);
1026 }
1027
1028 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
1029 {
1030 unsigned int version;
1031 struct gtp_dev *gtp;
1032 struct sock *sk;
1033 int err;
1034
1035 if (!info->attrs[GTPA_VERSION] ||
1036 !info->attrs[GTPA_LINK] ||
1037 !info->attrs[GTPA_PEER_ADDRESS] ||
1038 !info->attrs[GTPA_MS_ADDRESS])
1039 return -EINVAL;
1040
1041 version = nla_get_u32(info->attrs[GTPA_VERSION]);
1042
1043 switch (version) {
1044 case GTP_V0:
1045 if (!info->attrs[GTPA_TID] ||
1046 !info->attrs[GTPA_FLOW])
1047 return -EINVAL;
1048 break;
1049 case GTP_V1:
1050 if (!info->attrs[GTPA_I_TEI] ||
1051 !info->attrs[GTPA_O_TEI])
1052 return -EINVAL;
1053 break;
1054
1055 default:
1056 return -EINVAL;
1057 }
1058
1059 rtnl_lock();
1060 rcu_read_lock();
1061
1062 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1063 if (!gtp) {
1064 err = -ENODEV;
1065 goto out_unlock;
1066 }
1067
1068 if (version == GTP_V0)
1069 sk = gtp->sk0;
1070 else if (version == GTP_V1)
1071 sk = gtp->sk1u;
1072 else
1073 sk = NULL;
1074
1075 if (!sk) {
1076 err = -ENODEV;
1077 goto out_unlock;
1078 }
1079
1080 err = ipv4_pdp_add(gtp, sk, info);
1081
1082 out_unlock:
1083 rcu_read_unlock();
1084 rtnl_unlock();
1085 return err;
1086 }
1087
1088 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
1089 struct nlattr *nla[])
1090 {
1091 struct gtp_dev *gtp;
1092
1093 gtp = gtp_find_dev(net, nla);
1094 if (!gtp)
1095 return ERR_PTR(-ENODEV);
1096
1097 if (nla[GTPA_MS_ADDRESS]) {
1098 __be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
1099
1100 return ipv4_pdp_find(gtp, ip);
1101 } else if (nla[GTPA_VERSION]) {
1102 u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
1103
1104 if (gtp_version == GTP_V0 && nla[GTPA_TID])
1105 return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]));
1106 else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI])
1107 return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]));
1108 }
1109
1110 return ERR_PTR(-EINVAL);
1111 }
1112
1113 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
1114 {
1115 struct pdp_ctx *pctx;
1116
1117 if (nla[GTPA_LINK])
1118 pctx = gtp_find_pdp_by_link(net, nla);
1119 else
1120 pctx = ERR_PTR(-EINVAL);
1121
1122 if (!pctx)
1123 pctx = ERR_PTR(-ENOENT);
1124
1125 return pctx;
1126 }
1127
1128 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
1129 {
1130 struct pdp_ctx *pctx;
1131 int err = 0;
1132
1133 if (!info->attrs[GTPA_VERSION])
1134 return -EINVAL;
1135
1136 rcu_read_lock();
1137
1138 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1139 if (IS_ERR(pctx)) {
1140 err = PTR_ERR(pctx);
1141 goto out_unlock;
1142 }
1143
1144 if (pctx->gtp_version == GTP_V0)
1145 netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1146 pctx->u.v0.tid, pctx);
1147 else if (pctx->gtp_version == GTP_V1)
1148 netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1149 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1150
1151 pdp_context_delete(pctx);
1152
1153 out_unlock:
1154 rcu_read_unlock();
1155 return err;
1156 }
1157
1158 static struct genl_family gtp_genl_family;
1159
1160 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
1161 u32 type, struct pdp_ctx *pctx)
1162 {
1163 void *genlh;
1164
1165 genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, 0,
1166 type);
1167 if (genlh == NULL)
1168 goto nlmsg_failure;
1169
1170 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
1171 nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) ||
1172 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
1173 goto nla_put_failure;
1174
1175 switch (pctx->gtp_version) {
1176 case GTP_V0:
1177 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
1178 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
1179 goto nla_put_failure;
1180 break;
1181 case GTP_V1:
1182 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
1183 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
1184 goto nla_put_failure;
1185 break;
1186 }
1187 genlmsg_end(skb, genlh);
1188 return 0;
1189
1190 nlmsg_failure:
1191 nla_put_failure:
1192 genlmsg_cancel(skb, genlh);
1193 return -EMSGSIZE;
1194 }
1195
1196 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
1197 {
1198 struct pdp_ctx *pctx = NULL;
1199 struct sk_buff *skb2;
1200 int err;
1201
1202 if (!info->attrs[GTPA_VERSION])
1203 return -EINVAL;
1204
1205 rcu_read_lock();
1206
1207 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1208 if (IS_ERR(pctx)) {
1209 err = PTR_ERR(pctx);
1210 goto err_unlock;
1211 }
1212
1213 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
1214 if (skb2 == NULL) {
1215 err = -ENOMEM;
1216 goto err_unlock;
1217 }
1218
1219 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid,
1220 info->snd_seq, info->nlhdr->nlmsg_type, pctx);
1221 if (err < 0)
1222 goto err_unlock_free;
1223
1224 rcu_read_unlock();
1225 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
1226
1227 err_unlock_free:
1228 kfree_skb(skb2);
1229 err_unlock:
1230 rcu_read_unlock();
1231 return err;
1232 }
1233
1234 static int gtp_genl_dump_pdp(struct sk_buff *skb,
1235 struct netlink_callback *cb)
1236 {
1237 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
1238 struct net *net = sock_net(skb->sk);
1239 struct gtp_net *gn = net_generic(net, gtp_net_id);
1240 unsigned long tid = cb->args[1];
1241 int i, k = cb->args[0], ret;
1242 struct pdp_ctx *pctx;
1243
1244 if (cb->args[4])
1245 return 0;
1246
1247 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
1248 if (last_gtp && last_gtp != gtp)
1249 continue;
1250 else
1251 last_gtp = NULL;
1252
1253 for (i = k; i < gtp->hash_size; i++) {
1254 hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i], hlist_tid) {
1255 if (tid && tid != pctx->u.tid)
1256 continue;
1257 else
1258 tid = 0;
1259
1260 ret = gtp_genl_fill_info(skb,
1261 NETLINK_CB(cb->skb).portid,
1262 cb->nlh->nlmsg_seq,
1263 cb->nlh->nlmsg_type, pctx);
1264 if (ret < 0) {
1265 cb->args[0] = i;
1266 cb->args[1] = pctx->u.tid;
1267 cb->args[2] = (unsigned long)gtp;
1268 goto out;
1269 }
1270 }
1271 }
1272 }
1273 cb->args[4] = 1;
1274 out:
1275 return skb->len;
1276 }
1277
1278 static struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
1279 [GTPA_LINK] = { .type = NLA_U32, },
1280 [GTPA_VERSION] = { .type = NLA_U32, },
1281 [GTPA_TID] = { .type = NLA_U64, },
1282 [GTPA_PEER_ADDRESS] = { .type = NLA_U32, },
1283 [GTPA_MS_ADDRESS] = { .type = NLA_U32, },
1284 [GTPA_FLOW] = { .type = NLA_U16, },
1285 [GTPA_NET_NS_FD] = { .type = NLA_U32, },
1286 [GTPA_I_TEI] = { .type = NLA_U32, },
1287 [GTPA_O_TEI] = { .type = NLA_U32, },
1288 };
1289
1290 static const struct genl_ops gtp_genl_ops[] = {
1291 {
1292 .cmd = GTP_CMD_NEWPDP,
1293 .doit = gtp_genl_new_pdp,
1294 .policy = gtp_genl_policy,
1295 .flags = GENL_ADMIN_PERM,
1296 },
1297 {
1298 .cmd = GTP_CMD_DELPDP,
1299 .doit = gtp_genl_del_pdp,
1300 .policy = gtp_genl_policy,
1301 .flags = GENL_ADMIN_PERM,
1302 },
1303 {
1304 .cmd = GTP_CMD_GETPDP,
1305 .doit = gtp_genl_get_pdp,
1306 .dumpit = gtp_genl_dump_pdp,
1307 .policy = gtp_genl_policy,
1308 .flags = GENL_ADMIN_PERM,
1309 },
1310 };
1311
1312 static struct genl_family gtp_genl_family __ro_after_init = {
1313 .name = "gtp",
1314 .version = 0,
1315 .hdrsize = 0,
1316 .maxattr = GTPA_MAX,
1317 .netnsok = true,
1318 .module = THIS_MODULE,
1319 .ops = gtp_genl_ops,
1320 .n_ops = ARRAY_SIZE(gtp_genl_ops),
1321 };
1322
1323 static int __net_init gtp_net_init(struct net *net)
1324 {
1325 struct gtp_net *gn = net_generic(net, gtp_net_id);
1326
1327 INIT_LIST_HEAD(&gn->gtp_dev_list);
1328 return 0;
1329 }
1330
1331 static void __net_exit gtp_net_exit(struct net *net)
1332 {
1333 struct gtp_net *gn = net_generic(net, gtp_net_id);
1334 struct gtp_dev *gtp;
1335 LIST_HEAD(list);
1336
1337 rtnl_lock();
1338 list_for_each_entry(gtp, &gn->gtp_dev_list, list)
1339 gtp_dellink(gtp->dev, &list);
1340
1341 unregister_netdevice_many(&list);
1342 rtnl_unlock();
1343 }
1344
1345 static struct pernet_operations gtp_net_ops = {
1346 .init = gtp_net_init,
1347 .exit = gtp_net_exit,
1348 .id = &gtp_net_id,
1349 .size = sizeof(struct gtp_net),
1350 };
1351
1352 static int __init gtp_init(void)
1353 {
1354 int err;
1355
1356 get_random_bytes(&gtp_h_initval, sizeof(gtp_h_initval));
1357
1358 err = rtnl_link_register(&gtp_link_ops);
1359 if (err < 0)
1360 goto error_out;
1361
1362 err = genl_register_family(&gtp_genl_family);
1363 if (err < 0)
1364 goto unreg_rtnl_link;
1365
1366 err = register_pernet_subsys(&gtp_net_ops);
1367 if (err < 0)
1368 goto unreg_genl_family;
1369
1370 pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1371 sizeof(struct pdp_ctx));
1372 return 0;
1373
1374 unreg_genl_family:
1375 genl_unregister_family(&gtp_genl_family);
1376 unreg_rtnl_link:
1377 rtnl_link_unregister(&gtp_link_ops);
1378 error_out:
1379 pr_err("error loading GTP module loaded\n");
1380 return err;
1381 }
1382 late_initcall(gtp_init);
1383
1384 static void __exit gtp_fini(void)
1385 {
1386 genl_unregister_family(&gtp_genl_family);
1387 rtnl_link_unregister(&gtp_link_ops);
1388 unregister_pernet_subsys(&gtp_net_ops);
1389
1390 pr_info("GTP module unloaded\n");
1391 }
1392 module_exit(gtp_fini);
1393
1394 MODULE_LICENSE("GPL");
1395 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
1396 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
1397 MODULE_ALIAS_RTNL_LINK("gtp");
1398 MODULE_ALIAS_GENL_FAMILY("gtp");