]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/hyperv/netvsc_drv.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40
41 #include "hyperv_net.h"
42
43 #define RING_SIZE_MIN 64
44 #define LINKCHANGE_INT (2 * HZ)
45
46 static int ring_size = 128;
47 module_param(ring_size, int, S_IRUGO);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49
50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53 NETIF_MSG_TX_ERR;
54
55 static int debug = -1;
56 module_param(debug, int, S_IRUGO);
57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59 static void do_set_multicast(struct work_struct *w)
60 {
61 struct net_device_context *ndevctx =
62 container_of(w, struct net_device_context, work);
63 struct hv_device *device_obj = ndevctx->device_ctx;
64 struct net_device *ndev = hv_get_drvdata(device_obj);
65 struct netvsc_device *nvdev = ndevctx->nvdev;
66 struct rndis_device *rdev;
67
68 if (!nvdev)
69 return;
70
71 rdev = nvdev->extension;
72 if (rdev == NULL)
73 return;
74
75 if (ndev->flags & IFF_PROMISC)
76 rndis_filter_set_packet_filter(rdev,
77 NDIS_PACKET_TYPE_PROMISCUOUS);
78 else
79 rndis_filter_set_packet_filter(rdev,
80 NDIS_PACKET_TYPE_BROADCAST |
81 NDIS_PACKET_TYPE_ALL_MULTICAST |
82 NDIS_PACKET_TYPE_DIRECTED);
83 }
84
85 static void netvsc_set_multicast_list(struct net_device *net)
86 {
87 struct net_device_context *net_device_ctx = netdev_priv(net);
88
89 schedule_work(&net_device_ctx->work);
90 }
91
92 static int netvsc_open(struct net_device *net)
93 {
94 struct netvsc_device *nvdev = net_device_to_netvsc_device(net);
95 struct rndis_device *rdev;
96 int ret = 0;
97
98 netif_carrier_off(net);
99
100 /* Open up the device */
101 ret = rndis_filter_open(nvdev);
102 if (ret != 0) {
103 netdev_err(net, "unable to open device (ret %d).\n", ret);
104 return ret;
105 }
106
107 netif_tx_wake_all_queues(net);
108
109 rdev = nvdev->extension;
110 if (!rdev->link_state)
111 netif_carrier_on(net);
112
113 return ret;
114 }
115
116 static int netvsc_close(struct net_device *net)
117 {
118 struct net_device_context *net_device_ctx = netdev_priv(net);
119 struct netvsc_device *nvdev = net_device_ctx->nvdev;
120 int ret;
121 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
122 struct vmbus_channel *chn;
123
124 netif_tx_disable(net);
125
126 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
127 cancel_work_sync(&net_device_ctx->work);
128 ret = rndis_filter_close(nvdev);
129 if (ret != 0) {
130 netdev_err(net, "unable to close device (ret %d).\n", ret);
131 return ret;
132 }
133
134 /* Ensure pending bytes in ring are read */
135 while (true) {
136 aread = 0;
137 for (i = 0; i < nvdev->num_chn; i++) {
138 chn = nvdev->chan_table[i].channel;
139 if (!chn)
140 continue;
141
142 hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
143 &awrite);
144
145 if (aread)
146 break;
147
148 hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
149 &awrite);
150
151 if (aread)
152 break;
153 }
154
155 retry++;
156 if (retry > retry_max || aread == 0)
157 break;
158
159 msleep(msec);
160
161 if (msec < 1000)
162 msec *= 2;
163 }
164
165 if (aread) {
166 netdev_err(net, "Ring buffer not empty after closing rndis\n");
167 ret = -ETIMEDOUT;
168 }
169
170 return ret;
171 }
172
173 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
174 int pkt_type)
175 {
176 struct rndis_packet *rndis_pkt;
177 struct rndis_per_packet_info *ppi;
178
179 rndis_pkt = &msg->msg.pkt;
180 rndis_pkt->data_offset += ppi_size;
181
182 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
183 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
184
185 ppi->size = ppi_size;
186 ppi->type = pkt_type;
187 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
188
189 rndis_pkt->per_pkt_info_len += ppi_size;
190
191 return ppi;
192 }
193
194 /*
195 * Select queue for transmit.
196 *
197 * If a valid queue has already been assigned, then use that.
198 * Otherwise compute tx queue based on hash and the send table.
199 *
200 * This is basically similar to default (__netdev_pick_tx) with the added step
201 * of using the host send_table when no other queue has been assigned.
202 *
203 * TODO support XPS - but get_xps_queue not exported
204 */
205 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
206 void *accel_priv, select_queue_fallback_t fallback)
207 {
208 struct net_device_context *net_device_ctx = netdev_priv(ndev);
209 unsigned int num_tx_queues = ndev->real_num_tx_queues;
210 struct sock *sk = skb->sk;
211 int q_idx = sk_tx_queue_get(sk);
212
213 if (q_idx < 0 || skb->ooo_okay || q_idx >= num_tx_queues) {
214 u16 hash = __skb_tx_hash(ndev, skb, VRSS_SEND_TAB_SIZE);
215 int new_idx;
216
217 new_idx = net_device_ctx->tx_send_table[hash] % num_tx_queues;
218
219 if (q_idx != new_idx && sk &&
220 sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
221 sk_tx_queue_set(sk, new_idx);
222
223 q_idx = new_idx;
224 }
225
226 return q_idx;
227 }
228
229 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
230 struct hv_page_buffer *pb)
231 {
232 int j = 0;
233
234 /* Deal with compund pages by ignoring unused part
235 * of the page.
236 */
237 page += (offset >> PAGE_SHIFT);
238 offset &= ~PAGE_MASK;
239
240 while (len > 0) {
241 unsigned long bytes;
242
243 bytes = PAGE_SIZE - offset;
244 if (bytes > len)
245 bytes = len;
246 pb[j].pfn = page_to_pfn(page);
247 pb[j].offset = offset;
248 pb[j].len = bytes;
249
250 offset += bytes;
251 len -= bytes;
252
253 if (offset == PAGE_SIZE && len) {
254 page++;
255 offset = 0;
256 j++;
257 }
258 }
259
260 return j + 1;
261 }
262
263 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
264 struct hv_netvsc_packet *packet,
265 struct hv_page_buffer **page_buf)
266 {
267 struct hv_page_buffer *pb = *page_buf;
268 u32 slots_used = 0;
269 char *data = skb->data;
270 int frags = skb_shinfo(skb)->nr_frags;
271 int i;
272
273 /* The packet is laid out thus:
274 * 1. hdr: RNDIS header and PPI
275 * 2. skb linear data
276 * 3. skb fragment data
277 */
278 if (hdr != NULL)
279 slots_used += fill_pg_buf(virt_to_page(hdr),
280 offset_in_page(hdr),
281 len, &pb[slots_used]);
282
283 packet->rmsg_size = len;
284 packet->rmsg_pgcnt = slots_used;
285
286 slots_used += fill_pg_buf(virt_to_page(data),
287 offset_in_page(data),
288 skb_headlen(skb), &pb[slots_used]);
289
290 for (i = 0; i < frags; i++) {
291 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
292
293 slots_used += fill_pg_buf(skb_frag_page(frag),
294 frag->page_offset,
295 skb_frag_size(frag), &pb[slots_used]);
296 }
297 return slots_used;
298 }
299
300 static int count_skb_frag_slots(struct sk_buff *skb)
301 {
302 int i, frags = skb_shinfo(skb)->nr_frags;
303 int pages = 0;
304
305 for (i = 0; i < frags; i++) {
306 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
307 unsigned long size = skb_frag_size(frag);
308 unsigned long offset = frag->page_offset;
309
310 /* Skip unused frames from start of page */
311 offset &= ~PAGE_MASK;
312 pages += PFN_UP(offset + size);
313 }
314 return pages;
315 }
316
317 static int netvsc_get_slots(struct sk_buff *skb)
318 {
319 char *data = skb->data;
320 unsigned int offset = offset_in_page(data);
321 unsigned int len = skb_headlen(skb);
322 int slots;
323 int frag_slots;
324
325 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
326 frag_slots = count_skb_frag_slots(skb);
327 return slots + frag_slots;
328 }
329
330 static u32 net_checksum_info(struct sk_buff *skb)
331 {
332 if (skb->protocol == htons(ETH_P_IP)) {
333 struct iphdr *ip = ip_hdr(skb);
334
335 if (ip->protocol == IPPROTO_TCP)
336 return TRANSPORT_INFO_IPV4_TCP;
337 else if (ip->protocol == IPPROTO_UDP)
338 return TRANSPORT_INFO_IPV4_UDP;
339 } else {
340 struct ipv6hdr *ip6 = ipv6_hdr(skb);
341
342 if (ip6->nexthdr == IPPROTO_TCP)
343 return TRANSPORT_INFO_IPV6_TCP;
344 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
345 return TRANSPORT_INFO_IPV6_UDP;
346 }
347
348 return TRANSPORT_INFO_NOT_IP;
349 }
350
351 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
352 {
353 struct net_device_context *net_device_ctx = netdev_priv(net);
354 struct hv_netvsc_packet *packet = NULL;
355 int ret;
356 unsigned int num_data_pgs;
357 struct rndis_message *rndis_msg;
358 struct rndis_packet *rndis_pkt;
359 u32 rndis_msg_size;
360 struct rndis_per_packet_info *ppi;
361 u32 hash;
362 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
363 struct hv_page_buffer *pb = page_buf;
364
365 /* We will atmost need two pages to describe the rndis
366 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
367 * of pages in a single packet. If skb is scattered around
368 * more pages we try linearizing it.
369 */
370
371 num_data_pgs = netvsc_get_slots(skb) + 2;
372
373 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
374 ++net_device_ctx->eth_stats.tx_scattered;
375
376 if (skb_linearize(skb))
377 goto no_memory;
378
379 num_data_pgs = netvsc_get_slots(skb) + 2;
380 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
381 ++net_device_ctx->eth_stats.tx_too_big;
382 goto drop;
383 }
384 }
385
386 /*
387 * Place the rndis header in the skb head room and
388 * the skb->cb will be used for hv_netvsc_packet
389 * structure.
390 */
391 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
392 if (ret)
393 goto no_memory;
394
395 /* Use the skb control buffer for building up the packet */
396 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
397 FIELD_SIZEOF(struct sk_buff, cb));
398 packet = (struct hv_netvsc_packet *)skb->cb;
399
400 packet->q_idx = skb_get_queue_mapping(skb);
401
402 packet->total_data_buflen = skb->len;
403 packet->total_bytes = skb->len;
404 packet->total_packets = 1;
405
406 rndis_msg = (struct rndis_message *)skb->head;
407
408 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
409
410 /* Add the rndis header */
411 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
412 rndis_msg->msg_len = packet->total_data_buflen;
413 rndis_pkt = &rndis_msg->msg.pkt;
414 rndis_pkt->data_offset = sizeof(struct rndis_packet);
415 rndis_pkt->data_len = packet->total_data_buflen;
416 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
417
418 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
419
420 hash = skb_get_hash_raw(skb);
421 if (hash != 0 && net->real_num_tx_queues > 1) {
422 rndis_msg_size += NDIS_HASH_PPI_SIZE;
423 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
424 NBL_HASH_VALUE);
425 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
426 }
427
428 if (skb_vlan_tag_present(skb)) {
429 struct ndis_pkt_8021q_info *vlan;
430
431 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
432 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
433 IEEE_8021Q_INFO);
434 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
435 ppi->ppi_offset);
436 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
437 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
438 VLAN_PRIO_SHIFT;
439 }
440
441 if (skb_is_gso(skb)) {
442 struct ndis_tcp_lso_info *lso_info;
443
444 rndis_msg_size += NDIS_LSO_PPI_SIZE;
445 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
446 TCP_LARGESEND_PKTINFO);
447
448 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
449 ppi->ppi_offset);
450
451 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
452 if (skb->protocol == htons(ETH_P_IP)) {
453 lso_info->lso_v2_transmit.ip_version =
454 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
455 ip_hdr(skb)->tot_len = 0;
456 ip_hdr(skb)->check = 0;
457 tcp_hdr(skb)->check =
458 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
459 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
460 } else {
461 lso_info->lso_v2_transmit.ip_version =
462 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
463 ipv6_hdr(skb)->payload_len = 0;
464 tcp_hdr(skb)->check =
465 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
466 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
467 }
468 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
469 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
470 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
471 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
472 struct ndis_tcp_ip_checksum_info *csum_info;
473
474 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
475 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
476 TCPIP_CHKSUM_PKTINFO);
477
478 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
479 ppi->ppi_offset);
480
481 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
482
483 if (skb->protocol == htons(ETH_P_IP)) {
484 csum_info->transmit.is_ipv4 = 1;
485
486 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
487 csum_info->transmit.tcp_checksum = 1;
488 else
489 csum_info->transmit.udp_checksum = 1;
490 } else {
491 csum_info->transmit.is_ipv6 = 1;
492
493 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
494 csum_info->transmit.tcp_checksum = 1;
495 else
496 csum_info->transmit.udp_checksum = 1;
497 }
498 } else {
499 /* Can't do offload of this type of checksum */
500 if (skb_checksum_help(skb))
501 goto drop;
502 }
503 }
504
505 /* Start filling in the page buffers with the rndis hdr */
506 rndis_msg->msg_len += rndis_msg_size;
507 packet->total_data_buflen = rndis_msg->msg_len;
508 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
509 skb, packet, &pb);
510
511 /* timestamp packet in software */
512 skb_tx_timestamp(skb);
513 ret = netvsc_send(net_device_ctx->device_ctx, packet,
514 rndis_msg, &pb, skb);
515 if (likely(ret == 0))
516 return NETDEV_TX_OK;
517
518 if (ret == -EAGAIN) {
519 ++net_device_ctx->eth_stats.tx_busy;
520 return NETDEV_TX_BUSY;
521 }
522
523 if (ret == -ENOSPC)
524 ++net_device_ctx->eth_stats.tx_no_space;
525
526 drop:
527 dev_kfree_skb_any(skb);
528 net->stats.tx_dropped++;
529
530 return NETDEV_TX_OK;
531
532 no_memory:
533 ++net_device_ctx->eth_stats.tx_no_memory;
534 goto drop;
535 }
536 /*
537 * netvsc_linkstatus_callback - Link up/down notification
538 */
539 void netvsc_linkstatus_callback(struct hv_device *device_obj,
540 struct rndis_message *resp)
541 {
542 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
543 struct net_device *net;
544 struct net_device_context *ndev_ctx;
545 struct netvsc_reconfig *event;
546 unsigned long flags;
547
548 net = hv_get_drvdata(device_obj);
549
550 if (!net)
551 return;
552
553 ndev_ctx = netdev_priv(net);
554
555 /* Update the physical link speed when changing to another vSwitch */
556 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
557 u32 speed;
558
559 speed = *(u32 *)((void *)indicate + indicate->
560 status_buf_offset) / 10000;
561 ndev_ctx->speed = speed;
562 return;
563 }
564
565 /* Handle these link change statuses below */
566 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
567 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
568 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
569 return;
570
571 if (net->reg_state != NETREG_REGISTERED)
572 return;
573
574 event = kzalloc(sizeof(*event), GFP_ATOMIC);
575 if (!event)
576 return;
577 event->event = indicate->status;
578
579 spin_lock_irqsave(&ndev_ctx->lock, flags);
580 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
581 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
582
583 schedule_delayed_work(&ndev_ctx->dwork, 0);
584 }
585
586 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
587 const struct ndis_tcp_ip_checksum_info *csum_info,
588 const struct ndis_pkt_8021q_info *vlan,
589 void *data, u32 buflen)
590 {
591 struct sk_buff *skb;
592
593 skb = netdev_alloc_skb_ip_align(net, buflen);
594 if (!skb)
595 return skb;
596
597 /*
598 * Copy to skb. This copy is needed here since the memory pointed by
599 * hv_netvsc_packet cannot be deallocated
600 */
601 memcpy(skb_put(skb, buflen), data, buflen);
602
603 skb->protocol = eth_type_trans(skb, net);
604
605 /* skb is already created with CHECKSUM_NONE */
606 skb_checksum_none_assert(skb);
607
608 /*
609 * In Linux, the IP checksum is always checked.
610 * Do L4 checksum offload if enabled and present.
611 */
612 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
613 if (csum_info->receive.tcp_checksum_succeeded ||
614 csum_info->receive.udp_checksum_succeeded)
615 skb->ip_summed = CHECKSUM_UNNECESSARY;
616 }
617
618 if (vlan) {
619 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
620
621 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
622 vlan_tci);
623 }
624
625 return skb;
626 }
627
628 /*
629 * netvsc_recv_callback - Callback when we receive a packet from the
630 * "wire" on the specified device.
631 */
632 int netvsc_recv_callback(struct net_device *net,
633 struct vmbus_channel *channel,
634 void *data, u32 len,
635 const struct ndis_tcp_ip_checksum_info *csum_info,
636 const struct ndis_pkt_8021q_info *vlan)
637 {
638 struct net_device_context *net_device_ctx = netdev_priv(net);
639 struct netvsc_device *net_device = net_device_ctx->nvdev;
640 struct net_device *vf_netdev;
641 struct sk_buff *skb;
642 struct netvsc_stats *rx_stats;
643 u16 q_idx = channel->offermsg.offer.sub_channel_index;
644
645
646 if (net->reg_state != NETREG_REGISTERED)
647 return NVSP_STAT_FAIL;
648
649 /*
650 * If necessary, inject this packet into the VF interface.
651 * On Hyper-V, multicast and brodcast packets are only delivered
652 * to the synthetic interface (after subjecting these to
653 * policy filters on the host). Deliver these via the VF
654 * interface in the guest.
655 */
656 rcu_read_lock();
657 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
658 if (vf_netdev && (vf_netdev->flags & IFF_UP))
659 net = vf_netdev;
660
661 /* Allocate a skb - TODO direct I/O to pages? */
662 skb = netvsc_alloc_recv_skb(net, csum_info, vlan, data, len);
663 if (unlikely(!skb)) {
664 ++net->stats.rx_dropped;
665 rcu_read_unlock();
666 return NVSP_STAT_FAIL;
667 }
668
669 if (net != vf_netdev)
670 skb_record_rx_queue(skb, q_idx);
671
672 /*
673 * Even if injecting the packet, record the statistics
674 * on the synthetic device because modifying the VF device
675 * statistics will not work correctly.
676 */
677 rx_stats = &net_device->chan_table[q_idx].rx_stats;
678 u64_stats_update_begin(&rx_stats->syncp);
679 rx_stats->packets++;
680 rx_stats->bytes += len;
681
682 if (skb->pkt_type == PACKET_BROADCAST)
683 ++rx_stats->broadcast;
684 else if (skb->pkt_type == PACKET_MULTICAST)
685 ++rx_stats->multicast;
686 u64_stats_update_end(&rx_stats->syncp);
687
688 /*
689 * Pass the skb back up. Network stack will deallocate the skb when it
690 * is done.
691 * TODO - use NAPI?
692 */
693 netif_receive_skb(skb);
694 rcu_read_unlock();
695
696 return 0;
697 }
698
699 static void netvsc_get_drvinfo(struct net_device *net,
700 struct ethtool_drvinfo *info)
701 {
702 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
703 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
704 }
705
706 static void netvsc_get_channels(struct net_device *net,
707 struct ethtool_channels *channel)
708 {
709 struct net_device_context *net_device_ctx = netdev_priv(net);
710 struct netvsc_device *nvdev = net_device_ctx->nvdev;
711
712 if (nvdev) {
713 channel->max_combined = nvdev->max_chn;
714 channel->combined_count = nvdev->num_chn;
715 }
716 }
717
718 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev,
719 u32 num_chn)
720 {
721 struct netvsc_device_info device_info;
722 int ret;
723
724 memset(&device_info, 0, sizeof(device_info));
725 device_info.num_chn = num_chn;
726 device_info.ring_size = ring_size;
727 device_info.max_num_vrss_chns = num_chn;
728
729 ret = rndis_filter_device_add(dev, &device_info);
730 if (ret)
731 return ret;
732
733 ret = netif_set_real_num_tx_queues(net, num_chn);
734 if (ret)
735 return ret;
736
737 ret = netif_set_real_num_rx_queues(net, num_chn);
738
739 return ret;
740 }
741
742 static int netvsc_set_channels(struct net_device *net,
743 struct ethtool_channels *channels)
744 {
745 struct net_device_context *net_device_ctx = netdev_priv(net);
746 struct hv_device *dev = net_device_ctx->device_ctx;
747 struct netvsc_device *nvdev = net_device_ctx->nvdev;
748 unsigned int count = channels->combined_count;
749 int ret;
750
751 /* We do not support separate count for rx, tx, or other */
752 if (count == 0 ||
753 channels->rx_count || channels->tx_count || channels->other_count)
754 return -EINVAL;
755
756 if (count > net->num_tx_queues || count > net->num_rx_queues)
757 return -EINVAL;
758
759 if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
760 return -ENODEV;
761
762 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
763 return -EINVAL;
764
765 if (count > nvdev->max_chn)
766 return -EINVAL;
767
768 ret = netvsc_close(net);
769 if (ret)
770 return ret;
771
772 net_device_ctx->start_remove = true;
773 rndis_filter_device_remove(dev, nvdev);
774
775 ret = netvsc_set_queues(net, dev, count);
776 if (ret == 0)
777 nvdev->num_chn = count;
778 else
779 netvsc_set_queues(net, dev, nvdev->num_chn);
780
781 netvsc_open(net);
782 net_device_ctx->start_remove = false;
783
784 /* We may have missed link change notifications */
785 schedule_delayed_work(&net_device_ctx->dwork, 0);
786
787 return ret;
788 }
789
790 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
791 {
792 struct ethtool_cmd diff1 = *cmd;
793 struct ethtool_cmd diff2 = {};
794
795 ethtool_cmd_speed_set(&diff1, 0);
796 diff1.duplex = 0;
797 /* advertising and cmd are usually set */
798 diff1.advertising = 0;
799 diff1.cmd = 0;
800 /* We set port to PORT_OTHER */
801 diff2.port = PORT_OTHER;
802
803 return !memcmp(&diff1, &diff2, sizeof(diff1));
804 }
805
806 static void netvsc_init_settings(struct net_device *dev)
807 {
808 struct net_device_context *ndc = netdev_priv(dev);
809
810 ndc->speed = SPEED_UNKNOWN;
811 ndc->duplex = DUPLEX_UNKNOWN;
812 }
813
814 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
815 {
816 struct net_device_context *ndc = netdev_priv(dev);
817
818 ethtool_cmd_speed_set(cmd, ndc->speed);
819 cmd->duplex = ndc->duplex;
820 cmd->port = PORT_OTHER;
821
822 return 0;
823 }
824
825 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
826 {
827 struct net_device_context *ndc = netdev_priv(dev);
828 u32 speed;
829
830 speed = ethtool_cmd_speed(cmd);
831 if (!ethtool_validate_speed(speed) ||
832 !ethtool_validate_duplex(cmd->duplex) ||
833 !netvsc_validate_ethtool_ss_cmd(cmd))
834 return -EINVAL;
835
836 ndc->speed = speed;
837 ndc->duplex = cmd->duplex;
838
839 return 0;
840 }
841
842 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
843 {
844 struct net_device_context *ndevctx = netdev_priv(ndev);
845 struct netvsc_device *nvdev = ndevctx->nvdev;
846 struct hv_device *hdev = ndevctx->device_ctx;
847 struct netvsc_device_info device_info;
848 int ret;
849
850 if (ndevctx->start_remove || !nvdev || nvdev->destroy)
851 return -ENODEV;
852
853 ret = netvsc_close(ndev);
854 if (ret)
855 goto out;
856
857 memset(&device_info, 0, sizeof(device_info));
858 device_info.ring_size = ring_size;
859 device_info.num_chn = nvdev->num_chn;
860 device_info.max_num_vrss_chns = nvdev->num_chn;
861
862 ndevctx->start_remove = true;
863 rndis_filter_device_remove(hdev, nvdev);
864
865 /* 'nvdev' has been freed in rndis_filter_device_remove() ->
866 * netvsc_device_remove () -> free_netvsc_device().
867 * We mustn't access it before it's re-created in
868 * rndis_filter_device_add() -> netvsc_device_add().
869 */
870
871 ndev->mtu = mtu;
872
873 rndis_filter_device_add(hdev, &device_info);
874
875 out:
876 netvsc_open(ndev);
877 ndevctx->start_remove = false;
878
879 /* We may have missed link change notifications */
880 schedule_delayed_work(&ndevctx->dwork, 0);
881
882 return ret;
883 }
884
885 static void netvsc_get_stats64(struct net_device *net,
886 struct rtnl_link_stats64 *t)
887 {
888 struct net_device_context *ndev_ctx = netdev_priv(net);
889 struct netvsc_device *nvdev = ndev_ctx->nvdev;
890 int i;
891
892 if (!nvdev)
893 return;
894
895 for (i = 0; i < nvdev->num_chn; i++) {
896 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
897 const struct netvsc_stats *stats;
898 u64 packets, bytes, multicast;
899 unsigned int start;
900
901 stats = &nvchan->tx_stats;
902 do {
903 start = u64_stats_fetch_begin_irq(&stats->syncp);
904 packets = stats->packets;
905 bytes = stats->bytes;
906 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
907
908 t->tx_bytes += bytes;
909 t->tx_packets += packets;
910
911 stats = &nvchan->rx_stats;
912 do {
913 start = u64_stats_fetch_begin_irq(&stats->syncp);
914 packets = stats->packets;
915 bytes = stats->bytes;
916 multicast = stats->multicast + stats->broadcast;
917 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
918
919 t->rx_bytes += bytes;
920 t->rx_packets += packets;
921 t->multicast += multicast;
922 }
923
924 t->tx_dropped = net->stats.tx_dropped;
925 t->tx_errors = net->stats.tx_errors;
926
927 t->rx_dropped = net->stats.rx_dropped;
928 t->rx_errors = net->stats.rx_errors;
929 }
930
931 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
932 {
933 struct sockaddr *addr = p;
934 char save_adr[ETH_ALEN];
935 unsigned char save_aatype;
936 int err;
937
938 memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
939 save_aatype = ndev->addr_assign_type;
940
941 err = eth_mac_addr(ndev, p);
942 if (err != 0)
943 return err;
944
945 err = rndis_filter_set_device_mac(ndev, addr->sa_data);
946 if (err != 0) {
947 /* roll back to saved MAC */
948 memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
949 ndev->addr_assign_type = save_aatype;
950 }
951
952 return err;
953 }
954
955 static const struct {
956 char name[ETH_GSTRING_LEN];
957 u16 offset;
958 } netvsc_stats[] = {
959 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
960 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
961 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
962 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
963 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
964 };
965
966 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
967
968 /* 4 statistics per queue (rx/tx packets/bytes) */
969 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
970
971 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
972 {
973 struct net_device_context *ndc = netdev_priv(dev);
974 struct netvsc_device *nvdev = ndc->nvdev;
975
976 switch (string_set) {
977 case ETH_SS_STATS:
978 return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev);
979 default:
980 return -EINVAL;
981 }
982 }
983
984 static void netvsc_get_ethtool_stats(struct net_device *dev,
985 struct ethtool_stats *stats, u64 *data)
986 {
987 struct net_device_context *ndc = netdev_priv(dev);
988 struct netvsc_device *nvdev = ndc->nvdev;
989 const void *nds = &ndc->eth_stats;
990 const struct netvsc_stats *qstats;
991 unsigned int start;
992 u64 packets, bytes;
993 int i, j;
994
995 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
996 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
997
998 for (j = 0; j < nvdev->num_chn; j++) {
999 qstats = &nvdev->chan_table[j].tx_stats;
1000
1001 do {
1002 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1003 packets = qstats->packets;
1004 bytes = qstats->bytes;
1005 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1006 data[i++] = packets;
1007 data[i++] = bytes;
1008
1009 qstats = &nvdev->chan_table[j].rx_stats;
1010 do {
1011 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1012 packets = qstats->packets;
1013 bytes = qstats->bytes;
1014 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1015 data[i++] = packets;
1016 data[i++] = bytes;
1017 }
1018 }
1019
1020 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1021 {
1022 struct net_device_context *ndc = netdev_priv(dev);
1023 struct netvsc_device *nvdev = ndc->nvdev;
1024 u8 *p = data;
1025 int i;
1026
1027 switch (stringset) {
1028 case ETH_SS_STATS:
1029 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1030 memcpy(p + i * ETH_GSTRING_LEN,
1031 netvsc_stats[i].name, ETH_GSTRING_LEN);
1032
1033 p += i * ETH_GSTRING_LEN;
1034 for (i = 0; i < nvdev->num_chn; i++) {
1035 sprintf(p, "tx_queue_%u_packets", i);
1036 p += ETH_GSTRING_LEN;
1037 sprintf(p, "tx_queue_%u_bytes", i);
1038 p += ETH_GSTRING_LEN;
1039 sprintf(p, "rx_queue_%u_packets", i);
1040 p += ETH_GSTRING_LEN;
1041 sprintf(p, "rx_queue_%u_bytes", i);
1042 p += ETH_GSTRING_LEN;
1043 }
1044
1045 break;
1046 }
1047 }
1048
1049 static int
1050 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
1051 struct ethtool_rxnfc *info)
1052 {
1053 info->data = RXH_IP_SRC | RXH_IP_DST;
1054
1055 switch (info->flow_type) {
1056 case TCP_V4_FLOW:
1057 case TCP_V6_FLOW:
1058 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1059 /* fallthrough */
1060 case UDP_V4_FLOW:
1061 case UDP_V6_FLOW:
1062 case IPV4_FLOW:
1063 case IPV6_FLOW:
1064 break;
1065 default:
1066 info->data = 0;
1067 break;
1068 }
1069
1070 return 0;
1071 }
1072
1073 static int
1074 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1075 u32 *rules)
1076 {
1077 struct net_device_context *ndc = netdev_priv(dev);
1078 struct netvsc_device *nvdev = ndc->nvdev;
1079
1080 switch (info->cmd) {
1081 case ETHTOOL_GRXRINGS:
1082 info->data = nvdev->num_chn;
1083 return 0;
1084
1085 case ETHTOOL_GRXFH:
1086 return netvsc_get_rss_hash_opts(nvdev, info);
1087 }
1088 return -EOPNOTSUPP;
1089 }
1090
1091 #ifdef CONFIG_NET_POLL_CONTROLLER
1092 static void netvsc_poll_controller(struct net_device *net)
1093 {
1094 /* As netvsc_start_xmit() works synchronous we don't have to
1095 * trigger anything here.
1096 */
1097 }
1098 #endif
1099
1100 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1101 {
1102 return NETVSC_HASH_KEYLEN;
1103 }
1104
1105 static u32 netvsc_rss_indir_size(struct net_device *dev)
1106 {
1107 return ITAB_NUM;
1108 }
1109
1110 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1111 u8 *hfunc)
1112 {
1113 struct net_device_context *ndc = netdev_priv(dev);
1114 struct netvsc_device *ndev = ndc->nvdev;
1115 struct rndis_device *rndis_dev = ndev->extension;
1116 int i;
1117
1118 if (hfunc)
1119 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1120
1121 if (indir) {
1122 for (i = 0; i < ITAB_NUM; i++)
1123 indir[i] = rndis_dev->ind_table[i];
1124 }
1125
1126 if (key)
1127 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1128
1129 return 0;
1130 }
1131
1132 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1133 const u8 *key, const u8 hfunc)
1134 {
1135 struct net_device_context *ndc = netdev_priv(dev);
1136 struct netvsc_device *ndev = ndc->nvdev;
1137 struct rndis_device *rndis_dev = ndev->extension;
1138 int i;
1139
1140 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1141 return -EOPNOTSUPP;
1142
1143 if (indir) {
1144 for (i = 0; i < ITAB_NUM; i++)
1145 if (indir[i] >= dev->num_rx_queues)
1146 return -EINVAL;
1147
1148 for (i = 0; i < ITAB_NUM; i++)
1149 rndis_dev->ind_table[i] = indir[i];
1150 }
1151
1152 if (!key) {
1153 if (!indir)
1154 return 0;
1155
1156 key = rndis_dev->rss_key;
1157 }
1158
1159 return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
1160 }
1161
1162 static const struct ethtool_ops ethtool_ops = {
1163 .get_drvinfo = netvsc_get_drvinfo,
1164 .get_link = ethtool_op_get_link,
1165 .get_ethtool_stats = netvsc_get_ethtool_stats,
1166 .get_sset_count = netvsc_get_sset_count,
1167 .get_strings = netvsc_get_strings,
1168 .get_channels = netvsc_get_channels,
1169 .set_channels = netvsc_set_channels,
1170 .get_ts_info = ethtool_op_get_ts_info,
1171 .get_settings = netvsc_get_settings,
1172 .set_settings = netvsc_set_settings,
1173 .get_rxnfc = netvsc_get_rxnfc,
1174 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1175 .get_rxfh_indir_size = netvsc_rss_indir_size,
1176 .get_rxfh = netvsc_get_rxfh,
1177 .set_rxfh = netvsc_set_rxfh,
1178 };
1179
1180 static const struct net_device_ops device_ops = {
1181 .ndo_open = netvsc_open,
1182 .ndo_stop = netvsc_close,
1183 .ndo_start_xmit = netvsc_start_xmit,
1184 .ndo_set_rx_mode = netvsc_set_multicast_list,
1185 .ndo_change_mtu = netvsc_change_mtu,
1186 .ndo_validate_addr = eth_validate_addr,
1187 .ndo_set_mac_address = netvsc_set_mac_addr,
1188 .ndo_select_queue = netvsc_select_queue,
1189 .ndo_get_stats64 = netvsc_get_stats64,
1190 #ifdef CONFIG_NET_POLL_CONTROLLER
1191 .ndo_poll_controller = netvsc_poll_controller,
1192 #endif
1193 };
1194
1195 /*
1196 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1197 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1198 * present send GARP packet to network peers with netif_notify_peers().
1199 */
1200 static void netvsc_link_change(struct work_struct *w)
1201 {
1202 struct net_device_context *ndev_ctx =
1203 container_of(w, struct net_device_context, dwork.work);
1204 struct hv_device *device_obj = ndev_ctx->device_ctx;
1205 struct net_device *net = hv_get_drvdata(device_obj);
1206 struct netvsc_device *net_device;
1207 struct rndis_device *rdev;
1208 struct netvsc_reconfig *event = NULL;
1209 bool notify = false, reschedule = false;
1210 unsigned long flags, next_reconfig, delay;
1211
1212 rtnl_lock();
1213 if (ndev_ctx->start_remove)
1214 goto out_unlock;
1215
1216 net_device = ndev_ctx->nvdev;
1217 rdev = net_device->extension;
1218
1219 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1220 if (time_is_after_jiffies(next_reconfig)) {
1221 /* link_watch only sends one notification with current state
1222 * per second, avoid doing reconfig more frequently. Handle
1223 * wrap around.
1224 */
1225 delay = next_reconfig - jiffies;
1226 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1227 schedule_delayed_work(&ndev_ctx->dwork, delay);
1228 goto out_unlock;
1229 }
1230 ndev_ctx->last_reconfig = jiffies;
1231
1232 spin_lock_irqsave(&ndev_ctx->lock, flags);
1233 if (!list_empty(&ndev_ctx->reconfig_events)) {
1234 event = list_first_entry(&ndev_ctx->reconfig_events,
1235 struct netvsc_reconfig, list);
1236 list_del(&event->list);
1237 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1238 }
1239 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1240
1241 if (!event)
1242 goto out_unlock;
1243
1244 switch (event->event) {
1245 /* Only the following events are possible due to the check in
1246 * netvsc_linkstatus_callback()
1247 */
1248 case RNDIS_STATUS_MEDIA_CONNECT:
1249 if (rdev->link_state) {
1250 rdev->link_state = false;
1251 netif_carrier_on(net);
1252 netif_tx_wake_all_queues(net);
1253 } else {
1254 notify = true;
1255 }
1256 kfree(event);
1257 break;
1258 case RNDIS_STATUS_MEDIA_DISCONNECT:
1259 if (!rdev->link_state) {
1260 rdev->link_state = true;
1261 netif_carrier_off(net);
1262 netif_tx_stop_all_queues(net);
1263 }
1264 kfree(event);
1265 break;
1266 case RNDIS_STATUS_NETWORK_CHANGE:
1267 /* Only makes sense if carrier is present */
1268 if (!rdev->link_state) {
1269 rdev->link_state = true;
1270 netif_carrier_off(net);
1271 netif_tx_stop_all_queues(net);
1272 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1273 spin_lock_irqsave(&ndev_ctx->lock, flags);
1274 list_add(&event->list, &ndev_ctx->reconfig_events);
1275 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1276 reschedule = true;
1277 }
1278 break;
1279 }
1280
1281 rtnl_unlock();
1282
1283 if (notify)
1284 netdev_notify_peers(net);
1285
1286 /* link_watch only sends one notification with current state per
1287 * second, handle next reconfig event in 2 seconds.
1288 */
1289 if (reschedule)
1290 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1291
1292 return;
1293
1294 out_unlock:
1295 rtnl_unlock();
1296 }
1297
1298 static struct net_device *get_netvsc_bymac(const u8 *mac)
1299 {
1300 struct net_device *dev;
1301
1302 ASSERT_RTNL();
1303
1304 for_each_netdev(&init_net, dev) {
1305 if (dev->netdev_ops != &device_ops)
1306 continue; /* not a netvsc device */
1307
1308 if (ether_addr_equal(mac, dev->perm_addr))
1309 return dev;
1310 }
1311
1312 return NULL;
1313 }
1314
1315 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1316 {
1317 struct net_device *dev;
1318
1319 ASSERT_RTNL();
1320
1321 for_each_netdev(&init_net, dev) {
1322 struct net_device_context *net_device_ctx;
1323
1324 if (dev->netdev_ops != &device_ops)
1325 continue; /* not a netvsc device */
1326
1327 net_device_ctx = netdev_priv(dev);
1328 if (net_device_ctx->nvdev == NULL)
1329 continue; /* device is removed */
1330
1331 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1332 return dev; /* a match */
1333 }
1334
1335 return NULL;
1336 }
1337
1338 static int netvsc_register_vf(struct net_device *vf_netdev)
1339 {
1340 struct net_device *ndev;
1341 struct net_device_context *net_device_ctx;
1342 struct netvsc_device *netvsc_dev;
1343
1344 if (vf_netdev->addr_len != ETH_ALEN)
1345 return NOTIFY_DONE;
1346
1347 /*
1348 * We will use the MAC address to locate the synthetic interface to
1349 * associate with the VF interface. If we don't find a matching
1350 * synthetic interface, move on.
1351 */
1352 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1353 if (!ndev)
1354 return NOTIFY_DONE;
1355
1356 net_device_ctx = netdev_priv(ndev);
1357 netvsc_dev = net_device_ctx->nvdev;
1358 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1359 return NOTIFY_DONE;
1360
1361 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1362 /*
1363 * Take a reference on the module.
1364 */
1365 try_module_get(THIS_MODULE);
1366
1367 dev_hold(vf_netdev);
1368 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1369 return NOTIFY_OK;
1370 }
1371
1372 static int netvsc_vf_up(struct net_device *vf_netdev)
1373 {
1374 struct net_device *ndev;
1375 struct netvsc_device *netvsc_dev;
1376 struct net_device_context *net_device_ctx;
1377
1378 ndev = get_netvsc_byref(vf_netdev);
1379 if (!ndev)
1380 return NOTIFY_DONE;
1381
1382 net_device_ctx = netdev_priv(ndev);
1383 netvsc_dev = net_device_ctx->nvdev;
1384
1385 netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1386
1387 /*
1388 * Open the device before switching data path.
1389 */
1390 rndis_filter_open(netvsc_dev);
1391
1392 /*
1393 * notify the host to switch the data path.
1394 */
1395 netvsc_switch_datapath(ndev, true);
1396 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1397
1398 netif_carrier_off(ndev);
1399
1400 /* Now notify peers through VF device. */
1401 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1402
1403 return NOTIFY_OK;
1404 }
1405
1406 static int netvsc_vf_down(struct net_device *vf_netdev)
1407 {
1408 struct net_device *ndev;
1409 struct netvsc_device *netvsc_dev;
1410 struct net_device_context *net_device_ctx;
1411
1412 ndev = get_netvsc_byref(vf_netdev);
1413 if (!ndev)
1414 return NOTIFY_DONE;
1415
1416 net_device_ctx = netdev_priv(ndev);
1417 netvsc_dev = net_device_ctx->nvdev;
1418
1419 netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1420 netvsc_switch_datapath(ndev, false);
1421 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1422 rndis_filter_close(netvsc_dev);
1423 netif_carrier_on(ndev);
1424
1425 /* Now notify peers through netvsc device. */
1426 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1427
1428 return NOTIFY_OK;
1429 }
1430
1431 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1432 {
1433 struct net_device *ndev;
1434 struct net_device_context *net_device_ctx;
1435
1436 ndev = get_netvsc_byref(vf_netdev);
1437 if (!ndev)
1438 return NOTIFY_DONE;
1439
1440 net_device_ctx = netdev_priv(ndev);
1441
1442 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1443
1444 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1445 dev_put(vf_netdev);
1446 module_put(THIS_MODULE);
1447 return NOTIFY_OK;
1448 }
1449
1450 static int netvsc_probe(struct hv_device *dev,
1451 const struct hv_vmbus_device_id *dev_id)
1452 {
1453 struct net_device *net = NULL;
1454 struct net_device_context *net_device_ctx;
1455 struct netvsc_device_info device_info;
1456 struct netvsc_device *nvdev;
1457 int ret;
1458
1459 net = alloc_etherdev_mq(sizeof(struct net_device_context),
1460 VRSS_CHANNEL_MAX);
1461 if (!net)
1462 return -ENOMEM;
1463
1464 netif_carrier_off(net);
1465
1466 netvsc_init_settings(net);
1467
1468 net_device_ctx = netdev_priv(net);
1469 net_device_ctx->device_ctx = dev;
1470 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1471 if (netif_msg_probe(net_device_ctx))
1472 netdev_dbg(net, "netvsc msg_enable: %d\n",
1473 net_device_ctx->msg_enable);
1474
1475 hv_set_drvdata(dev, net);
1476
1477 net_device_ctx->start_remove = false;
1478
1479 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1480 INIT_WORK(&net_device_ctx->work, do_set_multicast);
1481
1482 spin_lock_init(&net_device_ctx->lock);
1483 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1484
1485 net->netdev_ops = &device_ops;
1486 net->ethtool_ops = &ethtool_ops;
1487 SET_NETDEV_DEV(net, &dev->device);
1488
1489 /* We always need headroom for rndis header */
1490 net->needed_headroom = RNDIS_AND_PPI_SIZE;
1491
1492 /* Notify the netvsc driver of the new device */
1493 memset(&device_info, 0, sizeof(device_info));
1494 device_info.ring_size = ring_size;
1495 device_info.max_num_vrss_chns = min_t(u32, VRSS_CHANNEL_DEFAULT,
1496 num_online_cpus());
1497 ret = rndis_filter_device_add(dev, &device_info);
1498 if (ret != 0) {
1499 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1500 free_netdev(net);
1501 hv_set_drvdata(dev, NULL);
1502 return ret;
1503 }
1504 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1505
1506 /* hw_features computed in rndis_filter_device_add */
1507 net->features = net->hw_features |
1508 NETIF_F_HIGHDMA | NETIF_F_SG |
1509 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1510 net->vlan_features = net->features;
1511
1512 nvdev = net_device_ctx->nvdev;
1513 netif_set_real_num_tx_queues(net, nvdev->num_chn);
1514 netif_set_real_num_rx_queues(net, nvdev->num_chn);
1515
1516 /* MTU range: 68 - 1500 or 65521 */
1517 net->min_mtu = NETVSC_MTU_MIN;
1518 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1519 net->max_mtu = NETVSC_MTU - ETH_HLEN;
1520 else
1521 net->max_mtu = ETH_DATA_LEN;
1522
1523 ret = register_netdev(net);
1524 if (ret != 0) {
1525 pr_err("Unable to register netdev.\n");
1526 rndis_filter_device_remove(dev, nvdev);
1527 free_netdev(net);
1528 }
1529
1530 return ret;
1531 }
1532
1533 static int netvsc_remove(struct hv_device *dev)
1534 {
1535 struct net_device *net;
1536 struct net_device_context *ndev_ctx;
1537
1538 net = hv_get_drvdata(dev);
1539
1540 if (net == NULL) {
1541 dev_err(&dev->device, "No net device to remove\n");
1542 return 0;
1543 }
1544
1545 ndev_ctx = netdev_priv(net);
1546
1547 /* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
1548 * removing the device.
1549 */
1550 rtnl_lock();
1551 ndev_ctx->start_remove = true;
1552 rtnl_unlock();
1553
1554 cancel_delayed_work_sync(&ndev_ctx->dwork);
1555 cancel_work_sync(&ndev_ctx->work);
1556
1557 /* Stop outbound asap */
1558 netif_tx_disable(net);
1559
1560 unregister_netdev(net);
1561
1562 /*
1563 * Call to the vsc driver to let it know that the device is being
1564 * removed
1565 */
1566 rndis_filter_device_remove(dev, ndev_ctx->nvdev);
1567
1568 hv_set_drvdata(dev, NULL);
1569
1570 free_netdev(net);
1571 return 0;
1572 }
1573
1574 static const struct hv_vmbus_device_id id_table[] = {
1575 /* Network guid */
1576 { HV_NIC_GUID, },
1577 { },
1578 };
1579
1580 MODULE_DEVICE_TABLE(vmbus, id_table);
1581
1582 /* The one and only one */
1583 static struct hv_driver netvsc_drv = {
1584 .name = KBUILD_MODNAME,
1585 .id_table = id_table,
1586 .probe = netvsc_probe,
1587 .remove = netvsc_remove,
1588 };
1589
1590 /*
1591 * On Hyper-V, every VF interface is matched with a corresponding
1592 * synthetic interface. The synthetic interface is presented first
1593 * to the guest. When the corresponding VF instance is registered,
1594 * we will take care of switching the data path.
1595 */
1596 static int netvsc_netdev_event(struct notifier_block *this,
1597 unsigned long event, void *ptr)
1598 {
1599 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1600
1601 /* Skip our own events */
1602 if (event_dev->netdev_ops == &device_ops)
1603 return NOTIFY_DONE;
1604
1605 /* Avoid non-Ethernet type devices */
1606 if (event_dev->type != ARPHRD_ETHER)
1607 return NOTIFY_DONE;
1608
1609 /* Avoid Vlan dev with same MAC registering as VF */
1610 if (is_vlan_dev(event_dev))
1611 return NOTIFY_DONE;
1612
1613 /* Avoid Bonding master dev with same MAC registering as VF */
1614 if ((event_dev->priv_flags & IFF_BONDING) &&
1615 (event_dev->flags & IFF_MASTER))
1616 return NOTIFY_DONE;
1617
1618 switch (event) {
1619 case NETDEV_REGISTER:
1620 return netvsc_register_vf(event_dev);
1621 case NETDEV_UNREGISTER:
1622 return netvsc_unregister_vf(event_dev);
1623 case NETDEV_UP:
1624 return netvsc_vf_up(event_dev);
1625 case NETDEV_DOWN:
1626 return netvsc_vf_down(event_dev);
1627 default:
1628 return NOTIFY_DONE;
1629 }
1630 }
1631
1632 static struct notifier_block netvsc_netdev_notifier = {
1633 .notifier_call = netvsc_netdev_event,
1634 };
1635
1636 static void __exit netvsc_drv_exit(void)
1637 {
1638 unregister_netdevice_notifier(&netvsc_netdev_notifier);
1639 vmbus_driver_unregister(&netvsc_drv);
1640 }
1641
1642 static int __init netvsc_drv_init(void)
1643 {
1644 int ret;
1645
1646 if (ring_size < RING_SIZE_MIN) {
1647 ring_size = RING_SIZE_MIN;
1648 pr_info("Increased ring_size to %d (min allowed)\n",
1649 ring_size);
1650 }
1651 ret = vmbus_driver_register(&netvsc_drv);
1652
1653 if (ret)
1654 return ret;
1655
1656 register_netdevice_notifier(&netvsc_netdev_notifier);
1657 return 0;
1658 }
1659
1660 MODULE_LICENSE("GPL");
1661 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1662
1663 module_init(netvsc_drv_init);
1664 module_exit(netvsc_drv_exit);