]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/hyperv/netvsc_drv.c
ntb: ntb_test: ensure the link is up before trying to configure the mws
[mirror_ubuntu-artful-kernel.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42
43 #include "hyperv_net.h"
44
45 #define RING_SIZE_MIN 64
46 #define LINKCHANGE_INT (2 * HZ)
47
48 static int ring_size = 128;
49 module_param(ring_size, int, S_IRUGO);
50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51
52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 NETIF_MSG_TX_ERR;
56
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO);
59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61 static void netvsc_set_multicast_list(struct net_device *net)
62 {
63 struct net_device_context *net_device_ctx = netdev_priv(net);
64 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
65
66 rndis_filter_update(nvdev);
67 }
68
69 static int netvsc_open(struct net_device *net)
70 {
71 struct net_device_context *ndev_ctx = netdev_priv(net);
72 struct netvsc_device *nvdev = ndev_ctx->nvdev;
73 struct rndis_device *rdev;
74 int ret = 0;
75
76 netif_carrier_off(net);
77
78 /* Open up the device */
79 ret = rndis_filter_open(nvdev);
80 if (ret != 0) {
81 netdev_err(net, "unable to open device (ret %d).\n", ret);
82 return ret;
83 }
84
85 netif_tx_wake_all_queues(net);
86
87 rdev = nvdev->extension;
88 if (!rdev->link_state && !ndev_ctx->datapath)
89 netif_carrier_on(net);
90
91 return ret;
92 }
93
94 static int netvsc_close(struct net_device *net)
95 {
96 struct net_device_context *net_device_ctx = netdev_priv(net);
97 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
98 int ret;
99 u32 aread, i, msec = 10, retry = 0, retry_max = 20;
100 struct vmbus_channel *chn;
101
102 netif_tx_disable(net);
103
104 ret = rndis_filter_close(nvdev);
105 if (ret != 0) {
106 netdev_err(net, "unable to close device (ret %d).\n", ret);
107 return ret;
108 }
109
110 /* Ensure pending bytes in ring are read */
111 while (true) {
112 aread = 0;
113 for (i = 0; i < nvdev->num_chn; i++) {
114 chn = nvdev->chan_table[i].channel;
115 if (!chn)
116 continue;
117
118 aread = hv_get_bytes_to_read(&chn->inbound);
119 if (aread)
120 break;
121
122 aread = hv_get_bytes_to_read(&chn->outbound);
123 if (aread)
124 break;
125 }
126
127 retry++;
128 if (retry > retry_max || aread == 0)
129 break;
130
131 msleep(msec);
132
133 if (msec < 1000)
134 msec *= 2;
135 }
136
137 if (aread) {
138 netdev_err(net, "Ring buffer not empty after closing rndis\n");
139 ret = -ETIMEDOUT;
140 }
141
142 return ret;
143 }
144
145 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
146 int pkt_type)
147 {
148 struct rndis_packet *rndis_pkt;
149 struct rndis_per_packet_info *ppi;
150
151 rndis_pkt = &msg->msg.pkt;
152 rndis_pkt->data_offset += ppi_size;
153
154 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
155 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
156
157 ppi->size = ppi_size;
158 ppi->type = pkt_type;
159 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
160
161 rndis_pkt->per_pkt_info_len += ppi_size;
162
163 return ppi;
164 }
165
166 /* Azure hosts don't support non-TCP port numbers in hashing yet. We compute
167 * hash for non-TCP traffic with only IP numbers.
168 */
169 static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk)
170 {
171 struct flow_keys flow;
172 u32 hash;
173 static u32 hashrnd __read_mostly;
174
175 net_get_random_once(&hashrnd, sizeof(hashrnd));
176
177 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
178 return 0;
179
180 if (flow.basic.ip_proto == IPPROTO_TCP) {
181 return skb_get_hash(skb);
182 } else {
183 if (flow.basic.n_proto == htons(ETH_P_IP))
184 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
185 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
186 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
187 else
188 hash = 0;
189
190 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
191 }
192
193 return hash;
194 }
195
196 static inline int netvsc_get_tx_queue(struct net_device *ndev,
197 struct sk_buff *skb, int old_idx)
198 {
199 const struct net_device_context *ndc = netdev_priv(ndev);
200 struct sock *sk = skb->sk;
201 int q_idx;
202
203 q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) &
204 (VRSS_SEND_TAB_SIZE - 1)];
205
206 /* If queue index changed record the new value */
207 if (q_idx != old_idx &&
208 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
209 sk_tx_queue_set(sk, q_idx);
210
211 return q_idx;
212 }
213
214 /*
215 * Select queue for transmit.
216 *
217 * If a valid queue has already been assigned, then use that.
218 * Otherwise compute tx queue based on hash and the send table.
219 *
220 * This is basically similar to default (__netdev_pick_tx) with the added step
221 * of using the host send_table when no other queue has been assigned.
222 *
223 * TODO support XPS - but get_xps_queue not exported
224 */
225 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
226 void *accel_priv, select_queue_fallback_t fallback)
227 {
228 unsigned int num_tx_queues = ndev->real_num_tx_queues;
229 int q_idx = sk_tx_queue_get(skb->sk);
230
231 if (q_idx < 0 || skb->ooo_okay) {
232 /* If forwarding a packet, we use the recorded queue when
233 * available for better cache locality.
234 */
235 if (skb_rx_queue_recorded(skb))
236 q_idx = skb_get_rx_queue(skb);
237 else
238 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
239 }
240
241 while (unlikely(q_idx >= num_tx_queues))
242 q_idx -= num_tx_queues;
243
244 return q_idx;
245 }
246
247 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
248 struct hv_page_buffer *pb)
249 {
250 int j = 0;
251
252 /* Deal with compund pages by ignoring unused part
253 * of the page.
254 */
255 page += (offset >> PAGE_SHIFT);
256 offset &= ~PAGE_MASK;
257
258 while (len > 0) {
259 unsigned long bytes;
260
261 bytes = PAGE_SIZE - offset;
262 if (bytes > len)
263 bytes = len;
264 pb[j].pfn = page_to_pfn(page);
265 pb[j].offset = offset;
266 pb[j].len = bytes;
267
268 offset += bytes;
269 len -= bytes;
270
271 if (offset == PAGE_SIZE && len) {
272 page++;
273 offset = 0;
274 j++;
275 }
276 }
277
278 return j + 1;
279 }
280
281 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
282 struct hv_netvsc_packet *packet,
283 struct hv_page_buffer **page_buf)
284 {
285 struct hv_page_buffer *pb = *page_buf;
286 u32 slots_used = 0;
287 char *data = skb->data;
288 int frags = skb_shinfo(skb)->nr_frags;
289 int i;
290
291 /* The packet is laid out thus:
292 * 1. hdr: RNDIS header and PPI
293 * 2. skb linear data
294 * 3. skb fragment data
295 */
296 if (hdr != NULL)
297 slots_used += fill_pg_buf(virt_to_page(hdr),
298 offset_in_page(hdr),
299 len, &pb[slots_used]);
300
301 packet->rmsg_size = len;
302 packet->rmsg_pgcnt = slots_used;
303
304 slots_used += fill_pg_buf(virt_to_page(data),
305 offset_in_page(data),
306 skb_headlen(skb), &pb[slots_used]);
307
308 for (i = 0; i < frags; i++) {
309 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
310
311 slots_used += fill_pg_buf(skb_frag_page(frag),
312 frag->page_offset,
313 skb_frag_size(frag), &pb[slots_used]);
314 }
315 return slots_used;
316 }
317
318 /* Estimate number of page buffers neede to transmit
319 * Need at most 2 for RNDIS header plus skb body and fragments.
320 */
321 static unsigned int netvsc_get_slots(const struct sk_buff *skb)
322 {
323 return PFN_UP(offset_in_page(skb->data) + skb_headlen(skb))
324 + skb_shinfo(skb)->nr_frags
325 + 2;
326 }
327
328 static u32 net_checksum_info(struct sk_buff *skb)
329 {
330 if (skb->protocol == htons(ETH_P_IP)) {
331 struct iphdr *ip = ip_hdr(skb);
332
333 if (ip->protocol == IPPROTO_TCP)
334 return TRANSPORT_INFO_IPV4_TCP;
335 else if (ip->protocol == IPPROTO_UDP)
336 return TRANSPORT_INFO_IPV4_UDP;
337 } else {
338 struct ipv6hdr *ip6 = ipv6_hdr(skb);
339
340 if (ip6->nexthdr == IPPROTO_TCP)
341 return TRANSPORT_INFO_IPV6_TCP;
342 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
343 return TRANSPORT_INFO_IPV6_UDP;
344 }
345
346 return TRANSPORT_INFO_NOT_IP;
347 }
348
349 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
350 {
351 struct net_device_context *net_device_ctx = netdev_priv(net);
352 struct hv_netvsc_packet *packet = NULL;
353 int ret;
354 unsigned int num_data_pgs;
355 struct rndis_message *rndis_msg;
356 struct rndis_packet *rndis_pkt;
357 u32 rndis_msg_size;
358 struct rndis_per_packet_info *ppi;
359 u32 hash;
360 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
361 struct hv_page_buffer *pb = page_buf;
362
363 /* We can only transmit MAX_PAGE_BUFFER_COUNT number
364 * of pages in a single packet. If skb is scattered around
365 * more pages we try linearizing it.
366 */
367 num_data_pgs = netvsc_get_slots(skb);
368 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
369 ++net_device_ctx->eth_stats.tx_scattered;
370
371 if (skb_linearize(skb))
372 goto no_memory;
373
374 num_data_pgs = netvsc_get_slots(skb);
375 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
376 ++net_device_ctx->eth_stats.tx_too_big;
377 goto drop;
378 }
379 }
380
381 /*
382 * Place the rndis header in the skb head room and
383 * the skb->cb will be used for hv_netvsc_packet
384 * structure.
385 */
386 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
387 if (ret)
388 goto no_memory;
389
390 /* Use the skb control buffer for building up the packet */
391 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
392 FIELD_SIZEOF(struct sk_buff, cb));
393 packet = (struct hv_netvsc_packet *)skb->cb;
394
395 packet->q_idx = skb_get_queue_mapping(skb);
396
397 packet->total_data_buflen = skb->len;
398 packet->total_bytes = skb->len;
399 packet->total_packets = 1;
400
401 rndis_msg = (struct rndis_message *)skb->head;
402
403 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
404
405 /* Add the rndis header */
406 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
407 rndis_msg->msg_len = packet->total_data_buflen;
408 rndis_pkt = &rndis_msg->msg.pkt;
409 rndis_pkt->data_offset = sizeof(struct rndis_packet);
410 rndis_pkt->data_len = packet->total_data_buflen;
411 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
412
413 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
414
415 hash = skb_get_hash_raw(skb);
416 if (hash != 0 && net->real_num_tx_queues > 1) {
417 rndis_msg_size += NDIS_HASH_PPI_SIZE;
418 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
419 NBL_HASH_VALUE);
420 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
421 }
422
423 if (skb_vlan_tag_present(skb)) {
424 struct ndis_pkt_8021q_info *vlan;
425
426 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
427 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
428 IEEE_8021Q_INFO);
429 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
430 ppi->ppi_offset);
431 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
432 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
433 VLAN_PRIO_SHIFT;
434 }
435
436 if (skb_is_gso(skb)) {
437 struct ndis_tcp_lso_info *lso_info;
438
439 rndis_msg_size += NDIS_LSO_PPI_SIZE;
440 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
441 TCP_LARGESEND_PKTINFO);
442
443 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
444 ppi->ppi_offset);
445
446 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
447 if (skb->protocol == htons(ETH_P_IP)) {
448 lso_info->lso_v2_transmit.ip_version =
449 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
450 ip_hdr(skb)->tot_len = 0;
451 ip_hdr(skb)->check = 0;
452 tcp_hdr(skb)->check =
453 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
454 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
455 } else {
456 lso_info->lso_v2_transmit.ip_version =
457 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
458 ipv6_hdr(skb)->payload_len = 0;
459 tcp_hdr(skb)->check =
460 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
461 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
462 }
463 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
464 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
465 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
466 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
467 struct ndis_tcp_ip_checksum_info *csum_info;
468
469 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
470 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
471 TCPIP_CHKSUM_PKTINFO);
472
473 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
474 ppi->ppi_offset);
475
476 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
477
478 if (skb->protocol == htons(ETH_P_IP)) {
479 csum_info->transmit.is_ipv4 = 1;
480
481 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
482 csum_info->transmit.tcp_checksum = 1;
483 else
484 csum_info->transmit.udp_checksum = 1;
485 } else {
486 csum_info->transmit.is_ipv6 = 1;
487
488 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
489 csum_info->transmit.tcp_checksum = 1;
490 else
491 csum_info->transmit.udp_checksum = 1;
492 }
493 } else {
494 /* Can't do offload of this type of checksum */
495 if (skb_checksum_help(skb))
496 goto drop;
497 }
498 }
499
500 /* Start filling in the page buffers with the rndis hdr */
501 rndis_msg->msg_len += rndis_msg_size;
502 packet->total_data_buflen = rndis_msg->msg_len;
503 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
504 skb, packet, &pb);
505
506 /* timestamp packet in software */
507 skb_tx_timestamp(skb);
508 ret = netvsc_send(net_device_ctx->device_ctx, packet,
509 rndis_msg, &pb, skb);
510 if (likely(ret == 0))
511 return NETDEV_TX_OK;
512
513 if (ret == -EAGAIN) {
514 ++net_device_ctx->eth_stats.tx_busy;
515 return NETDEV_TX_BUSY;
516 }
517
518 if (ret == -ENOSPC)
519 ++net_device_ctx->eth_stats.tx_no_space;
520
521 drop:
522 dev_kfree_skb_any(skb);
523 net->stats.tx_dropped++;
524
525 return NETDEV_TX_OK;
526
527 no_memory:
528 ++net_device_ctx->eth_stats.tx_no_memory;
529 goto drop;
530 }
531 /*
532 * netvsc_linkstatus_callback - Link up/down notification
533 */
534 void netvsc_linkstatus_callback(struct hv_device *device_obj,
535 struct rndis_message *resp)
536 {
537 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
538 struct net_device *net;
539 struct net_device_context *ndev_ctx;
540 struct netvsc_reconfig *event;
541 unsigned long flags;
542
543 net = hv_get_drvdata(device_obj);
544
545 if (!net)
546 return;
547
548 ndev_ctx = netdev_priv(net);
549
550 /* Update the physical link speed when changing to another vSwitch */
551 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
552 u32 speed;
553
554 speed = *(u32 *)((void *)indicate + indicate->
555 status_buf_offset) / 10000;
556 ndev_ctx->speed = speed;
557 return;
558 }
559
560 /* Handle these link change statuses below */
561 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
562 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
563 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
564 return;
565
566 if (net->reg_state != NETREG_REGISTERED)
567 return;
568
569 event = kzalloc(sizeof(*event), GFP_ATOMIC);
570 if (!event)
571 return;
572 event->event = indicate->status;
573
574 spin_lock_irqsave(&ndev_ctx->lock, flags);
575 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
576 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
577
578 schedule_delayed_work(&ndev_ctx->dwork, 0);
579 }
580
581 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
582 struct napi_struct *napi,
583 const struct ndis_tcp_ip_checksum_info *csum_info,
584 const struct ndis_pkt_8021q_info *vlan,
585 void *data, u32 buflen)
586 {
587 struct sk_buff *skb;
588
589 skb = napi_alloc_skb(napi, buflen);
590 if (!skb)
591 return skb;
592
593 /*
594 * Copy to skb. This copy is needed here since the memory pointed by
595 * hv_netvsc_packet cannot be deallocated
596 */
597 skb_put_data(skb, data, buflen);
598
599 skb->protocol = eth_type_trans(skb, net);
600
601 /* skb is already created with CHECKSUM_NONE */
602 skb_checksum_none_assert(skb);
603
604 /*
605 * In Linux, the IP checksum is always checked.
606 * Do L4 checksum offload if enabled and present.
607 */
608 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
609 if (csum_info->receive.tcp_checksum_succeeded ||
610 csum_info->receive.udp_checksum_succeeded)
611 skb->ip_summed = CHECKSUM_UNNECESSARY;
612 }
613
614 if (vlan) {
615 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
616
617 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
618 vlan_tci);
619 }
620
621 return skb;
622 }
623
624 /*
625 * netvsc_recv_callback - Callback when we receive a packet from the
626 * "wire" on the specified device.
627 */
628 int netvsc_recv_callback(struct net_device *net,
629 struct vmbus_channel *channel,
630 void *data, u32 len,
631 const struct ndis_tcp_ip_checksum_info *csum_info,
632 const struct ndis_pkt_8021q_info *vlan)
633 {
634 struct net_device_context *net_device_ctx = netdev_priv(net);
635 struct netvsc_device *net_device;
636 u16 q_idx = channel->offermsg.offer.sub_channel_index;
637 struct netvsc_channel *nvchan;
638 struct net_device *vf_netdev;
639 struct sk_buff *skb;
640 struct netvsc_stats *rx_stats;
641
642 if (net->reg_state != NETREG_REGISTERED)
643 return NVSP_STAT_FAIL;
644
645 /*
646 * If necessary, inject this packet into the VF interface.
647 * On Hyper-V, multicast and brodcast packets are only delivered
648 * to the synthetic interface (after subjecting these to
649 * policy filters on the host). Deliver these via the VF
650 * interface in the guest.
651 */
652 rcu_read_lock();
653 net_device = rcu_dereference(net_device_ctx->nvdev);
654 if (unlikely(!net_device))
655 goto drop;
656
657 nvchan = &net_device->chan_table[q_idx];
658 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
659 if (vf_netdev && (vf_netdev->flags & IFF_UP))
660 net = vf_netdev;
661
662 /* Allocate a skb - TODO direct I/O to pages? */
663 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
664 csum_info, vlan, data, len);
665 if (unlikely(!skb)) {
666 drop:
667 ++net->stats.rx_dropped;
668 rcu_read_unlock();
669 return NVSP_STAT_FAIL;
670 }
671
672 if (net != vf_netdev)
673 skb_record_rx_queue(skb, q_idx);
674
675 /*
676 * Even if injecting the packet, record the statistics
677 * on the synthetic device because modifying the VF device
678 * statistics will not work correctly.
679 */
680 rx_stats = &nvchan->rx_stats;
681 u64_stats_update_begin(&rx_stats->syncp);
682 rx_stats->packets++;
683 rx_stats->bytes += len;
684
685 if (skb->pkt_type == PACKET_BROADCAST)
686 ++rx_stats->broadcast;
687 else if (skb->pkt_type == PACKET_MULTICAST)
688 ++rx_stats->multicast;
689 u64_stats_update_end(&rx_stats->syncp);
690
691 napi_gro_receive(&nvchan->napi, skb);
692 rcu_read_unlock();
693
694 return 0;
695 }
696
697 static void netvsc_get_drvinfo(struct net_device *net,
698 struct ethtool_drvinfo *info)
699 {
700 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
701 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
702 }
703
704 static void netvsc_get_channels(struct net_device *net,
705 struct ethtool_channels *channel)
706 {
707 struct net_device_context *net_device_ctx = netdev_priv(net);
708 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
709
710 if (nvdev) {
711 channel->max_combined = nvdev->max_chn;
712 channel->combined_count = nvdev->num_chn;
713 }
714 }
715
716 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev,
717 u32 num_chn)
718 {
719 struct netvsc_device_info device_info;
720 int ret;
721
722 memset(&device_info, 0, sizeof(device_info));
723 device_info.num_chn = num_chn;
724 device_info.ring_size = ring_size;
725 device_info.max_num_vrss_chns = num_chn;
726
727 ret = rndis_filter_device_add(dev, &device_info);
728 if (ret)
729 return ret;
730
731 ret = netif_set_real_num_tx_queues(net, num_chn);
732 if (ret)
733 return ret;
734
735 ret = netif_set_real_num_rx_queues(net, num_chn);
736
737 return ret;
738 }
739
740 static int netvsc_set_channels(struct net_device *net,
741 struct ethtool_channels *channels)
742 {
743 struct net_device_context *net_device_ctx = netdev_priv(net);
744 struct hv_device *dev = net_device_ctx->device_ctx;
745 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
746 unsigned int count = channels->combined_count;
747 bool was_running;
748 int ret;
749
750 /* We do not support separate count for rx, tx, or other */
751 if (count == 0 ||
752 channels->rx_count || channels->tx_count || channels->other_count)
753 return -EINVAL;
754
755 if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX)
756 return -EINVAL;
757
758 if (!nvdev || nvdev->destroy)
759 return -ENODEV;
760
761 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
762 return -EINVAL;
763
764 if (count > nvdev->max_chn)
765 return -EINVAL;
766
767 was_running = netif_running(net);
768 if (was_running) {
769 ret = netvsc_close(net);
770 if (ret)
771 return ret;
772 }
773
774 rndis_filter_device_remove(dev, nvdev);
775
776 ret = netvsc_set_queues(net, dev, count);
777 if (ret == 0)
778 nvdev->num_chn = count;
779 else
780 netvsc_set_queues(net, dev, nvdev->num_chn);
781
782 if (was_running)
783 ret = netvsc_open(net);
784
785 /* We may have missed link change notifications */
786 schedule_delayed_work(&net_device_ctx->dwork, 0);
787
788 return ret;
789 }
790
791 static bool
792 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
793 {
794 struct ethtool_link_ksettings diff1 = *cmd;
795 struct ethtool_link_ksettings diff2 = {};
796
797 diff1.base.speed = 0;
798 diff1.base.duplex = 0;
799 /* advertising and cmd are usually set */
800 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
801 diff1.base.cmd = 0;
802 /* We set port to PORT_OTHER */
803 diff2.base.port = PORT_OTHER;
804
805 return !memcmp(&diff1, &diff2, sizeof(diff1));
806 }
807
808 static void netvsc_init_settings(struct net_device *dev)
809 {
810 struct net_device_context *ndc = netdev_priv(dev);
811
812 ndc->speed = SPEED_UNKNOWN;
813 ndc->duplex = DUPLEX_FULL;
814 }
815
816 static int netvsc_get_link_ksettings(struct net_device *dev,
817 struct ethtool_link_ksettings *cmd)
818 {
819 struct net_device_context *ndc = netdev_priv(dev);
820
821 cmd->base.speed = ndc->speed;
822 cmd->base.duplex = ndc->duplex;
823 cmd->base.port = PORT_OTHER;
824
825 return 0;
826 }
827
828 static int netvsc_set_link_ksettings(struct net_device *dev,
829 const struct ethtool_link_ksettings *cmd)
830 {
831 struct net_device_context *ndc = netdev_priv(dev);
832 u32 speed;
833
834 speed = cmd->base.speed;
835 if (!ethtool_validate_speed(speed) ||
836 !ethtool_validate_duplex(cmd->base.duplex) ||
837 !netvsc_validate_ethtool_ss_cmd(cmd))
838 return -EINVAL;
839
840 ndc->speed = speed;
841 ndc->duplex = cmd->base.duplex;
842
843 return 0;
844 }
845
846 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
847 {
848 struct net_device_context *ndevctx = netdev_priv(ndev);
849 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
850 struct hv_device *hdev = ndevctx->device_ctx;
851 struct netvsc_device_info device_info;
852 bool was_running;
853 int ret = 0;
854
855 if (!nvdev || nvdev->destroy)
856 return -ENODEV;
857
858 was_running = netif_running(ndev);
859 if (was_running) {
860 ret = netvsc_close(ndev);
861 if (ret)
862 return ret;
863 }
864
865 memset(&device_info, 0, sizeof(device_info));
866 device_info.ring_size = ring_size;
867 device_info.num_chn = nvdev->num_chn;
868 device_info.max_num_vrss_chns = nvdev->num_chn;
869
870 rndis_filter_device_remove(hdev, nvdev);
871
872 /* 'nvdev' has been freed in rndis_filter_device_remove() ->
873 * netvsc_device_remove () -> free_netvsc_device().
874 * We mustn't access it before it's re-created in
875 * rndis_filter_device_add() -> netvsc_device_add().
876 */
877
878 ndev->mtu = mtu;
879
880 rndis_filter_device_add(hdev, &device_info);
881
882 if (was_running)
883 ret = netvsc_open(ndev);
884
885 /* We may have missed link change notifications */
886 schedule_delayed_work(&ndevctx->dwork, 0);
887
888 return ret;
889 }
890
891 static void netvsc_get_stats64(struct net_device *net,
892 struct rtnl_link_stats64 *t)
893 {
894 struct net_device_context *ndev_ctx = netdev_priv(net);
895 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
896 int i;
897
898 if (!nvdev)
899 return;
900
901 for (i = 0; i < nvdev->num_chn; i++) {
902 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
903 const struct netvsc_stats *stats;
904 u64 packets, bytes, multicast;
905 unsigned int start;
906
907 stats = &nvchan->tx_stats;
908 do {
909 start = u64_stats_fetch_begin_irq(&stats->syncp);
910 packets = stats->packets;
911 bytes = stats->bytes;
912 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
913
914 t->tx_bytes += bytes;
915 t->tx_packets += packets;
916
917 stats = &nvchan->rx_stats;
918 do {
919 start = u64_stats_fetch_begin_irq(&stats->syncp);
920 packets = stats->packets;
921 bytes = stats->bytes;
922 multicast = stats->multicast + stats->broadcast;
923 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
924
925 t->rx_bytes += bytes;
926 t->rx_packets += packets;
927 t->multicast += multicast;
928 }
929
930 t->tx_dropped = net->stats.tx_dropped;
931 t->tx_errors = net->stats.tx_errors;
932
933 t->rx_dropped = net->stats.rx_dropped;
934 t->rx_errors = net->stats.rx_errors;
935 }
936
937 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
938 {
939 struct sockaddr *addr = p;
940 char save_adr[ETH_ALEN];
941 unsigned char save_aatype;
942 int err;
943
944 memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
945 save_aatype = ndev->addr_assign_type;
946
947 err = eth_mac_addr(ndev, p);
948 if (err != 0)
949 return err;
950
951 err = rndis_filter_set_device_mac(ndev, addr->sa_data);
952 if (err != 0) {
953 /* roll back to saved MAC */
954 memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
955 ndev->addr_assign_type = save_aatype;
956 }
957
958 return err;
959 }
960
961 static const struct {
962 char name[ETH_GSTRING_LEN];
963 u16 offset;
964 } netvsc_stats[] = {
965 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
966 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
967 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
968 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
969 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
970 };
971
972 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
973
974 /* 4 statistics per queue (rx/tx packets/bytes) */
975 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
976
977 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
978 {
979 struct net_device_context *ndc = netdev_priv(dev);
980 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
981
982 if (!nvdev)
983 return -ENODEV;
984
985 switch (string_set) {
986 case ETH_SS_STATS:
987 return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev);
988 default:
989 return -EINVAL;
990 }
991 }
992
993 static void netvsc_get_ethtool_stats(struct net_device *dev,
994 struct ethtool_stats *stats, u64 *data)
995 {
996 struct net_device_context *ndc = netdev_priv(dev);
997 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
998 const void *nds = &ndc->eth_stats;
999 const struct netvsc_stats *qstats;
1000 unsigned int start;
1001 u64 packets, bytes;
1002 int i, j;
1003
1004 if (!nvdev)
1005 return;
1006
1007 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1008 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1009
1010 for (j = 0; j < nvdev->num_chn; j++) {
1011 qstats = &nvdev->chan_table[j].tx_stats;
1012
1013 do {
1014 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1015 packets = qstats->packets;
1016 bytes = qstats->bytes;
1017 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1018 data[i++] = packets;
1019 data[i++] = bytes;
1020
1021 qstats = &nvdev->chan_table[j].rx_stats;
1022 do {
1023 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1024 packets = qstats->packets;
1025 bytes = qstats->bytes;
1026 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1027 data[i++] = packets;
1028 data[i++] = bytes;
1029 }
1030 }
1031
1032 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1033 {
1034 struct net_device_context *ndc = netdev_priv(dev);
1035 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1036 u8 *p = data;
1037 int i;
1038
1039 if (!nvdev)
1040 return;
1041
1042 switch (stringset) {
1043 case ETH_SS_STATS:
1044 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1045 memcpy(p + i * ETH_GSTRING_LEN,
1046 netvsc_stats[i].name, ETH_GSTRING_LEN);
1047
1048 p += i * ETH_GSTRING_LEN;
1049 for (i = 0; i < nvdev->num_chn; i++) {
1050 sprintf(p, "tx_queue_%u_packets", i);
1051 p += ETH_GSTRING_LEN;
1052 sprintf(p, "tx_queue_%u_bytes", i);
1053 p += ETH_GSTRING_LEN;
1054 sprintf(p, "rx_queue_%u_packets", i);
1055 p += ETH_GSTRING_LEN;
1056 sprintf(p, "rx_queue_%u_bytes", i);
1057 p += ETH_GSTRING_LEN;
1058 }
1059
1060 break;
1061 }
1062 }
1063
1064 static int
1065 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
1066 struct ethtool_rxnfc *info)
1067 {
1068 info->data = RXH_IP_SRC | RXH_IP_DST;
1069
1070 switch (info->flow_type) {
1071 case TCP_V4_FLOW:
1072 case TCP_V6_FLOW:
1073 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1074 /* fallthrough */
1075 case UDP_V4_FLOW:
1076 case UDP_V6_FLOW:
1077 case IPV4_FLOW:
1078 case IPV6_FLOW:
1079 break;
1080 default:
1081 info->data = 0;
1082 break;
1083 }
1084
1085 return 0;
1086 }
1087
1088 static int
1089 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1090 u32 *rules)
1091 {
1092 struct net_device_context *ndc = netdev_priv(dev);
1093 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1094
1095 if (!nvdev)
1096 return -ENODEV;
1097
1098 switch (info->cmd) {
1099 case ETHTOOL_GRXRINGS:
1100 info->data = nvdev->num_chn;
1101 return 0;
1102
1103 case ETHTOOL_GRXFH:
1104 return netvsc_get_rss_hash_opts(nvdev, info);
1105 }
1106 return -EOPNOTSUPP;
1107 }
1108
1109 #ifdef CONFIG_NET_POLL_CONTROLLER
1110 static void netvsc_poll_controller(struct net_device *dev)
1111 {
1112 struct net_device_context *ndc = netdev_priv(dev);
1113 struct netvsc_device *ndev;
1114 int i;
1115
1116 rcu_read_lock();
1117 ndev = rcu_dereference(ndc->nvdev);
1118 if (ndev) {
1119 for (i = 0; i < ndev->num_chn; i++) {
1120 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1121
1122 napi_schedule(&nvchan->napi);
1123 }
1124 }
1125 rcu_read_unlock();
1126 }
1127 #endif
1128
1129 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1130 {
1131 return NETVSC_HASH_KEYLEN;
1132 }
1133
1134 static u32 netvsc_rss_indir_size(struct net_device *dev)
1135 {
1136 return ITAB_NUM;
1137 }
1138
1139 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1140 u8 *hfunc)
1141 {
1142 struct net_device_context *ndc = netdev_priv(dev);
1143 struct netvsc_device *ndev = rcu_dereference(ndc->nvdev);
1144 struct rndis_device *rndis_dev;
1145 int i;
1146
1147 if (!ndev)
1148 return -ENODEV;
1149
1150 if (hfunc)
1151 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1152
1153 rndis_dev = ndev->extension;
1154 if (indir) {
1155 for (i = 0; i < ITAB_NUM; i++)
1156 indir[i] = rndis_dev->ind_table[i];
1157 }
1158
1159 if (key)
1160 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1161
1162 return 0;
1163 }
1164
1165 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1166 const u8 *key, const u8 hfunc)
1167 {
1168 struct net_device_context *ndc = netdev_priv(dev);
1169 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1170 struct rndis_device *rndis_dev;
1171 int i;
1172
1173 if (!ndev)
1174 return -ENODEV;
1175
1176 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1177 return -EOPNOTSUPP;
1178
1179 rndis_dev = ndev->extension;
1180 if (indir) {
1181 for (i = 0; i < ITAB_NUM; i++)
1182 if (indir[i] >= VRSS_CHANNEL_MAX)
1183 return -EINVAL;
1184
1185 for (i = 0; i < ITAB_NUM; i++)
1186 rndis_dev->ind_table[i] = indir[i];
1187 }
1188
1189 if (!key) {
1190 if (!indir)
1191 return 0;
1192
1193 key = rndis_dev->rss_key;
1194 }
1195
1196 return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
1197 }
1198
1199 static const struct ethtool_ops ethtool_ops = {
1200 .get_drvinfo = netvsc_get_drvinfo,
1201 .get_link = ethtool_op_get_link,
1202 .get_ethtool_stats = netvsc_get_ethtool_stats,
1203 .get_sset_count = netvsc_get_sset_count,
1204 .get_strings = netvsc_get_strings,
1205 .get_channels = netvsc_get_channels,
1206 .set_channels = netvsc_set_channels,
1207 .get_ts_info = ethtool_op_get_ts_info,
1208 .get_rxnfc = netvsc_get_rxnfc,
1209 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1210 .get_rxfh_indir_size = netvsc_rss_indir_size,
1211 .get_rxfh = netvsc_get_rxfh,
1212 .set_rxfh = netvsc_set_rxfh,
1213 .get_link_ksettings = netvsc_get_link_ksettings,
1214 .set_link_ksettings = netvsc_set_link_ksettings,
1215 };
1216
1217 static const struct net_device_ops device_ops = {
1218 .ndo_open = netvsc_open,
1219 .ndo_stop = netvsc_close,
1220 .ndo_start_xmit = netvsc_start_xmit,
1221 .ndo_set_rx_mode = netvsc_set_multicast_list,
1222 .ndo_change_mtu = netvsc_change_mtu,
1223 .ndo_validate_addr = eth_validate_addr,
1224 .ndo_set_mac_address = netvsc_set_mac_addr,
1225 .ndo_select_queue = netvsc_select_queue,
1226 .ndo_get_stats64 = netvsc_get_stats64,
1227 #ifdef CONFIG_NET_POLL_CONTROLLER
1228 .ndo_poll_controller = netvsc_poll_controller,
1229 #endif
1230 };
1231
1232 /*
1233 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1234 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1235 * present send GARP packet to network peers with netif_notify_peers().
1236 */
1237 static void netvsc_link_change(struct work_struct *w)
1238 {
1239 struct net_device_context *ndev_ctx =
1240 container_of(w, struct net_device_context, dwork.work);
1241 struct hv_device *device_obj = ndev_ctx->device_ctx;
1242 struct net_device *net = hv_get_drvdata(device_obj);
1243 struct netvsc_device *net_device;
1244 struct rndis_device *rdev;
1245 struct netvsc_reconfig *event = NULL;
1246 bool notify = false, reschedule = false;
1247 unsigned long flags, next_reconfig, delay;
1248
1249 rtnl_lock();
1250 net_device = rtnl_dereference(ndev_ctx->nvdev);
1251 if (!net_device)
1252 goto out_unlock;
1253
1254 rdev = net_device->extension;
1255
1256 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1257 if (time_is_after_jiffies(next_reconfig)) {
1258 /* link_watch only sends one notification with current state
1259 * per second, avoid doing reconfig more frequently. Handle
1260 * wrap around.
1261 */
1262 delay = next_reconfig - jiffies;
1263 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1264 schedule_delayed_work(&ndev_ctx->dwork, delay);
1265 goto out_unlock;
1266 }
1267 ndev_ctx->last_reconfig = jiffies;
1268
1269 spin_lock_irqsave(&ndev_ctx->lock, flags);
1270 if (!list_empty(&ndev_ctx->reconfig_events)) {
1271 event = list_first_entry(&ndev_ctx->reconfig_events,
1272 struct netvsc_reconfig, list);
1273 list_del(&event->list);
1274 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1275 }
1276 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1277
1278 if (!event)
1279 goto out_unlock;
1280
1281 switch (event->event) {
1282 /* Only the following events are possible due to the check in
1283 * netvsc_linkstatus_callback()
1284 */
1285 case RNDIS_STATUS_MEDIA_CONNECT:
1286 if (rdev->link_state) {
1287 rdev->link_state = false;
1288 if (!ndev_ctx->datapath)
1289 netif_carrier_on(net);
1290 netif_tx_wake_all_queues(net);
1291 } else {
1292 notify = true;
1293 }
1294 kfree(event);
1295 break;
1296 case RNDIS_STATUS_MEDIA_DISCONNECT:
1297 if (!rdev->link_state) {
1298 rdev->link_state = true;
1299 netif_carrier_off(net);
1300 netif_tx_stop_all_queues(net);
1301 }
1302 kfree(event);
1303 break;
1304 case RNDIS_STATUS_NETWORK_CHANGE:
1305 /* Only makes sense if carrier is present */
1306 if (!rdev->link_state) {
1307 rdev->link_state = true;
1308 netif_carrier_off(net);
1309 netif_tx_stop_all_queues(net);
1310 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1311 spin_lock_irqsave(&ndev_ctx->lock, flags);
1312 list_add(&event->list, &ndev_ctx->reconfig_events);
1313 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1314 reschedule = true;
1315 }
1316 break;
1317 }
1318
1319 rtnl_unlock();
1320
1321 if (notify)
1322 netdev_notify_peers(net);
1323
1324 /* link_watch only sends one notification with current state per
1325 * second, handle next reconfig event in 2 seconds.
1326 */
1327 if (reschedule)
1328 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1329
1330 return;
1331
1332 out_unlock:
1333 rtnl_unlock();
1334 }
1335
1336 static struct net_device *get_netvsc_bymac(const u8 *mac)
1337 {
1338 struct net_device *dev;
1339
1340 ASSERT_RTNL();
1341
1342 for_each_netdev(&init_net, dev) {
1343 if (dev->netdev_ops != &device_ops)
1344 continue; /* not a netvsc device */
1345
1346 if (ether_addr_equal(mac, dev->perm_addr))
1347 return dev;
1348 }
1349
1350 return NULL;
1351 }
1352
1353 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1354 {
1355 struct net_device *dev;
1356
1357 ASSERT_RTNL();
1358
1359 for_each_netdev(&init_net, dev) {
1360 struct net_device_context *net_device_ctx;
1361
1362 if (dev->netdev_ops != &device_ops)
1363 continue; /* not a netvsc device */
1364
1365 net_device_ctx = netdev_priv(dev);
1366 if (net_device_ctx->nvdev == NULL)
1367 continue; /* device is removed */
1368
1369 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1370 return dev; /* a match */
1371 }
1372
1373 return NULL;
1374 }
1375
1376 static int netvsc_register_vf(struct net_device *vf_netdev)
1377 {
1378 struct net_device *ndev;
1379 struct net_device_context *net_device_ctx;
1380 struct netvsc_device *netvsc_dev;
1381
1382 if (vf_netdev->addr_len != ETH_ALEN)
1383 return NOTIFY_DONE;
1384
1385 /*
1386 * We will use the MAC address to locate the synthetic interface to
1387 * associate with the VF interface. If we don't find a matching
1388 * synthetic interface, move on.
1389 */
1390 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1391 if (!ndev)
1392 return NOTIFY_DONE;
1393
1394 net_device_ctx = netdev_priv(ndev);
1395 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1396 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1397 return NOTIFY_DONE;
1398
1399 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1400 /*
1401 * Take a reference on the module.
1402 */
1403 try_module_get(THIS_MODULE);
1404
1405 dev_hold(vf_netdev);
1406 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1407 return NOTIFY_OK;
1408 }
1409
1410 static int netvsc_vf_up(struct net_device *vf_netdev)
1411 {
1412 struct net_device *ndev;
1413 struct netvsc_device *netvsc_dev;
1414 struct net_device_context *net_device_ctx;
1415
1416 ndev = get_netvsc_byref(vf_netdev);
1417 if (!ndev)
1418 return NOTIFY_DONE;
1419
1420 net_device_ctx = netdev_priv(ndev);
1421 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1422
1423 netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1424
1425 /*
1426 * Open the device before switching data path.
1427 */
1428 rndis_filter_open(netvsc_dev);
1429
1430 /*
1431 * notify the host to switch the data path.
1432 */
1433 netvsc_switch_datapath(ndev, true);
1434 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1435
1436 netif_carrier_off(ndev);
1437
1438 /* Now notify peers through VF device. */
1439 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1440
1441 return NOTIFY_OK;
1442 }
1443
1444 static int netvsc_vf_down(struct net_device *vf_netdev)
1445 {
1446 struct net_device *ndev;
1447 struct netvsc_device *netvsc_dev;
1448 struct net_device_context *net_device_ctx;
1449
1450 ndev = get_netvsc_byref(vf_netdev);
1451 if (!ndev)
1452 return NOTIFY_DONE;
1453
1454 net_device_ctx = netdev_priv(ndev);
1455 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1456
1457 netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1458 netvsc_switch_datapath(ndev, false);
1459 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1460 rndis_filter_close(netvsc_dev);
1461 netif_carrier_on(ndev);
1462
1463 /* Now notify peers through netvsc device. */
1464 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1465
1466 return NOTIFY_OK;
1467 }
1468
1469 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1470 {
1471 struct net_device *ndev;
1472 struct net_device_context *net_device_ctx;
1473
1474 ndev = get_netvsc_byref(vf_netdev);
1475 if (!ndev)
1476 return NOTIFY_DONE;
1477
1478 net_device_ctx = netdev_priv(ndev);
1479
1480 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1481
1482 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1483 dev_put(vf_netdev);
1484 module_put(THIS_MODULE);
1485 return NOTIFY_OK;
1486 }
1487
1488 static int netvsc_probe(struct hv_device *dev,
1489 const struct hv_vmbus_device_id *dev_id)
1490 {
1491 struct net_device *net = NULL;
1492 struct net_device_context *net_device_ctx;
1493 struct netvsc_device_info device_info;
1494 struct netvsc_device *nvdev;
1495 int ret;
1496
1497 net = alloc_etherdev_mq(sizeof(struct net_device_context),
1498 VRSS_CHANNEL_MAX);
1499 if (!net)
1500 return -ENOMEM;
1501
1502 netif_carrier_off(net);
1503
1504 netvsc_init_settings(net);
1505
1506 net_device_ctx = netdev_priv(net);
1507 net_device_ctx->device_ctx = dev;
1508 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1509 if (netif_msg_probe(net_device_ctx))
1510 netdev_dbg(net, "netvsc msg_enable: %d\n",
1511 net_device_ctx->msg_enable);
1512
1513 hv_set_drvdata(dev, net);
1514
1515 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1516
1517 spin_lock_init(&net_device_ctx->lock);
1518 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1519
1520 net->netdev_ops = &device_ops;
1521 net->ethtool_ops = &ethtool_ops;
1522 SET_NETDEV_DEV(net, &dev->device);
1523
1524 /* We always need headroom for rndis header */
1525 net->needed_headroom = RNDIS_AND_PPI_SIZE;
1526
1527 /* Notify the netvsc driver of the new device */
1528 memset(&device_info, 0, sizeof(device_info));
1529 device_info.ring_size = ring_size;
1530 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1531 ret = rndis_filter_device_add(dev, &device_info);
1532 if (ret != 0) {
1533 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1534 free_netdev(net);
1535 hv_set_drvdata(dev, NULL);
1536 return ret;
1537 }
1538 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1539
1540 /* hw_features computed in rndis_filter_device_add */
1541 net->features = net->hw_features |
1542 NETIF_F_HIGHDMA | NETIF_F_SG |
1543 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1544 net->vlan_features = net->features;
1545
1546 /* RCU not necessary here, device not registered */
1547 nvdev = net_device_ctx->nvdev;
1548 netif_set_real_num_tx_queues(net, nvdev->num_chn);
1549 netif_set_real_num_rx_queues(net, nvdev->num_chn);
1550
1551 /* MTU range: 68 - 1500 or 65521 */
1552 net->min_mtu = NETVSC_MTU_MIN;
1553 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1554 net->max_mtu = NETVSC_MTU - ETH_HLEN;
1555 else
1556 net->max_mtu = ETH_DATA_LEN;
1557
1558 ret = register_netdev(net);
1559 if (ret != 0) {
1560 pr_err("Unable to register netdev.\n");
1561 rndis_filter_device_remove(dev, nvdev);
1562 free_netdev(net);
1563 }
1564
1565 return ret;
1566 }
1567
1568 static int netvsc_remove(struct hv_device *dev)
1569 {
1570 struct net_device *net;
1571 struct net_device_context *ndev_ctx;
1572
1573 net = hv_get_drvdata(dev);
1574
1575 if (net == NULL) {
1576 dev_err(&dev->device, "No net device to remove\n");
1577 return 0;
1578 }
1579
1580 ndev_ctx = netdev_priv(net);
1581
1582 netif_device_detach(net);
1583
1584 cancel_delayed_work_sync(&ndev_ctx->dwork);
1585
1586 /*
1587 * Call to the vsc driver to let it know that the device is being
1588 * removed. Also blocks mtu and channel changes.
1589 */
1590 rtnl_lock();
1591 rndis_filter_device_remove(dev, ndev_ctx->nvdev);
1592 rtnl_unlock();
1593
1594 unregister_netdev(net);
1595
1596 hv_set_drvdata(dev, NULL);
1597
1598 free_netdev(net);
1599 return 0;
1600 }
1601
1602 static const struct hv_vmbus_device_id id_table[] = {
1603 /* Network guid */
1604 { HV_NIC_GUID, },
1605 { },
1606 };
1607
1608 MODULE_DEVICE_TABLE(vmbus, id_table);
1609
1610 /* The one and only one */
1611 static struct hv_driver netvsc_drv = {
1612 .name = KBUILD_MODNAME,
1613 .id_table = id_table,
1614 .probe = netvsc_probe,
1615 .remove = netvsc_remove,
1616 };
1617
1618 /*
1619 * On Hyper-V, every VF interface is matched with a corresponding
1620 * synthetic interface. The synthetic interface is presented first
1621 * to the guest. When the corresponding VF instance is registered,
1622 * we will take care of switching the data path.
1623 */
1624 static int netvsc_netdev_event(struct notifier_block *this,
1625 unsigned long event, void *ptr)
1626 {
1627 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1628
1629 /* Skip our own events */
1630 if (event_dev->netdev_ops == &device_ops)
1631 return NOTIFY_DONE;
1632
1633 /* Avoid non-Ethernet type devices */
1634 if (event_dev->type != ARPHRD_ETHER)
1635 return NOTIFY_DONE;
1636
1637 /* Avoid Vlan dev with same MAC registering as VF */
1638 if (is_vlan_dev(event_dev))
1639 return NOTIFY_DONE;
1640
1641 /* Avoid Bonding master dev with same MAC registering as VF */
1642 if ((event_dev->priv_flags & IFF_BONDING) &&
1643 (event_dev->flags & IFF_MASTER))
1644 return NOTIFY_DONE;
1645
1646 switch (event) {
1647 case NETDEV_REGISTER:
1648 return netvsc_register_vf(event_dev);
1649 case NETDEV_UNREGISTER:
1650 return netvsc_unregister_vf(event_dev);
1651 case NETDEV_UP:
1652 return netvsc_vf_up(event_dev);
1653 case NETDEV_DOWN:
1654 return netvsc_vf_down(event_dev);
1655 default:
1656 return NOTIFY_DONE;
1657 }
1658 }
1659
1660 static struct notifier_block netvsc_netdev_notifier = {
1661 .notifier_call = netvsc_netdev_event,
1662 };
1663
1664 static void __exit netvsc_drv_exit(void)
1665 {
1666 unregister_netdevice_notifier(&netvsc_netdev_notifier);
1667 vmbus_driver_unregister(&netvsc_drv);
1668 }
1669
1670 static int __init netvsc_drv_init(void)
1671 {
1672 int ret;
1673
1674 if (ring_size < RING_SIZE_MIN) {
1675 ring_size = RING_SIZE_MIN;
1676 pr_info("Increased ring_size to %d (min allowed)\n",
1677 ring_size);
1678 }
1679 ret = vmbus_driver_register(&netvsc_drv);
1680
1681 if (ret)
1682 return ret;
1683
1684 register_netdevice_notifier(&netvsc_netdev_notifier);
1685 return 0;
1686 }
1687
1688 MODULE_LICENSE("GPL");
1689 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1690
1691 module_init(netvsc_drv_init);
1692 module_exit(netvsc_drv_exit);