]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/hyperv/netvsc_drv.c
hv_netvsc: Fix netvsc_start_xmit's return type
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28 #include <linux/bpf.h>
29
30 #include <net/arp.h>
31 #include <net/route.h>
32 #include <net/sock.h>
33 #include <net/pkt_sched.h>
34 #include <net/checksum.h>
35 #include <net/ip6_checksum.h>
36
37 #include "hyperv_net.h"
38
39 #define RING_SIZE_MIN 64
40 #define RETRY_US_LO 5000
41 #define RETRY_US_HI 10000
42 #define RETRY_MAX 2000 /* >10 sec */
43
44 #define LINKCHANGE_INT (2 * HZ)
45 #define VF_TAKEOVER_INT (HZ / 10)
46
47 static unsigned int ring_size __ro_after_init = 128;
48 module_param(ring_size, uint, 0444);
49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
50 unsigned int netvsc_ring_bytes __ro_after_init;
51
52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 NETIF_MSG_TX_ERR;
56
57 static int debug = -1;
58 module_param(debug, int, 0444);
59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61 static LIST_HEAD(netvsc_dev_list);
62
63 static void netvsc_change_rx_flags(struct net_device *net, int change)
64 {
65 struct net_device_context *ndev_ctx = netdev_priv(net);
66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
67 int inc;
68
69 if (!vf_netdev)
70 return;
71
72 if (change & IFF_PROMISC) {
73 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
74 dev_set_promiscuity(vf_netdev, inc);
75 }
76
77 if (change & IFF_ALLMULTI) {
78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
79 dev_set_allmulti(vf_netdev, inc);
80 }
81 }
82
83 static void netvsc_set_rx_mode(struct net_device *net)
84 {
85 struct net_device_context *ndev_ctx = netdev_priv(net);
86 struct net_device *vf_netdev;
87 struct netvsc_device *nvdev;
88
89 rcu_read_lock();
90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
91 if (vf_netdev) {
92 dev_uc_sync(vf_netdev, net);
93 dev_mc_sync(vf_netdev, net);
94 }
95
96 nvdev = rcu_dereference(ndev_ctx->nvdev);
97 if (nvdev)
98 rndis_filter_update(nvdev);
99 rcu_read_unlock();
100 }
101
102 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
103 struct net_device *ndev)
104 {
105 nvscdev->tx_disable = false;
106 virt_wmb(); /* ensure queue wake up mechanism is on */
107
108 netif_tx_wake_all_queues(ndev);
109 }
110
111 static int netvsc_open(struct net_device *net)
112 {
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state) {
130 netif_carrier_on(net);
131 netvsc_tx_enable(nvdev, net);
132 }
133
134 if (vf_netdev) {
135 /* Setting synthetic device up transparently sets
136 * slave as up. If open fails, then slave will be
137 * still be offline (and not used).
138 */
139 ret = dev_open(vf_netdev, NULL);
140 if (ret)
141 netdev_warn(net,
142 "unable to open slave: %s: %d\n",
143 vf_netdev->name, ret);
144 }
145 return 0;
146 }
147
148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149 {
150 unsigned int retry = 0;
151 int i;
152
153 /* Ensure pending bytes in ring are read */
154 for (;;) {
155 u32 aread = 0;
156
157 for (i = 0; i < nvdev->num_chn; i++) {
158 struct vmbus_channel *chn
159 = nvdev->chan_table[i].channel;
160
161 if (!chn)
162 continue;
163
164 /* make sure receive not running now */
165 napi_synchronize(&nvdev->chan_table[i].napi);
166
167 aread = hv_get_bytes_to_read(&chn->inbound);
168 if (aread)
169 break;
170
171 aread = hv_get_bytes_to_read(&chn->outbound);
172 if (aread)
173 break;
174 }
175
176 if (aread == 0)
177 return 0;
178
179 if (++retry > RETRY_MAX)
180 return -ETIMEDOUT;
181
182 usleep_range(RETRY_US_LO, RETRY_US_HI);
183 }
184 }
185
186 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
187 struct net_device *ndev)
188 {
189 if (nvscdev) {
190 nvscdev->tx_disable = true;
191 virt_wmb(); /* ensure txq will not wake up after stop */
192 }
193
194 netif_tx_disable(ndev);
195 }
196
197 static int netvsc_close(struct net_device *net)
198 {
199 struct net_device_context *net_device_ctx = netdev_priv(net);
200 struct net_device *vf_netdev
201 = rtnl_dereference(net_device_ctx->vf_netdev);
202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203 int ret;
204
205 netvsc_tx_disable(nvdev, net);
206
207 /* No need to close rndis filter if it is removed already */
208 if (!nvdev)
209 return 0;
210
211 ret = rndis_filter_close(nvdev);
212 if (ret != 0) {
213 netdev_err(net, "unable to close device (ret %d).\n", ret);
214 return ret;
215 }
216
217 ret = netvsc_wait_until_empty(nvdev);
218 if (ret)
219 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220
221 if (vf_netdev)
222 dev_close(vf_netdev);
223
224 return ret;
225 }
226
227 static inline void *init_ppi_data(struct rndis_message *msg,
228 u32 ppi_size, u32 pkt_type)
229 {
230 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
231 struct rndis_per_packet_info *ppi;
232
233 rndis_pkt->data_offset += ppi_size;
234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
235 + rndis_pkt->per_pkt_info_len;
236
237 ppi->size = ppi_size;
238 ppi->type = pkt_type;
239 ppi->internal = 0;
240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241
242 rndis_pkt->per_pkt_info_len += ppi_size;
243
244 return ppi + 1;
245 }
246
247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
248 * packets. We can use ethtool to change UDP hash level when necessary.
249 */
250 static inline u32 netvsc_get_hash(
251 struct sk_buff *skb,
252 const struct net_device_context *ndc)
253 {
254 struct flow_keys flow;
255 u32 hash, pkt_proto = 0;
256 static u32 hashrnd __read_mostly;
257
258 net_get_random_once(&hashrnd, sizeof(hashrnd));
259
260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261 return 0;
262
263 switch (flow.basic.ip_proto) {
264 case IPPROTO_TCP:
265 if (flow.basic.n_proto == htons(ETH_P_IP))
266 pkt_proto = HV_TCP4_L4HASH;
267 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
268 pkt_proto = HV_TCP6_L4HASH;
269
270 break;
271
272 case IPPROTO_UDP:
273 if (flow.basic.n_proto == htons(ETH_P_IP))
274 pkt_proto = HV_UDP4_L4HASH;
275 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276 pkt_proto = HV_UDP6_L4HASH;
277
278 break;
279 }
280
281 if (pkt_proto & ndc->l4_hash) {
282 return skb_get_hash(skb);
283 } else {
284 if (flow.basic.n_proto == htons(ETH_P_IP))
285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
286 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
288 else
289 return 0;
290
291 __skb_set_sw_hash(skb, hash, false);
292 }
293
294 return hash;
295 }
296
297 static inline int netvsc_get_tx_queue(struct net_device *ndev,
298 struct sk_buff *skb, int old_idx)
299 {
300 const struct net_device_context *ndc = netdev_priv(ndev);
301 struct sock *sk = skb->sk;
302 int q_idx;
303
304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
305 (VRSS_SEND_TAB_SIZE - 1)];
306
307 /* If queue index changed record the new value */
308 if (q_idx != old_idx &&
309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
310 sk_tx_queue_set(sk, q_idx);
311
312 return q_idx;
313 }
314
315 /*
316 * Select queue for transmit.
317 *
318 * If a valid queue has already been assigned, then use that.
319 * Otherwise compute tx queue based on hash and the send table.
320 *
321 * This is basically similar to default (netdev_pick_tx) with the added step
322 * of using the host send_table when no other queue has been assigned.
323 *
324 * TODO support XPS - but get_xps_queue not exported
325 */
326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327 {
328 int q_idx = sk_tx_queue_get(skb->sk);
329
330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
331 /* If forwarding a packet, we use the recorded queue when
332 * available for better cache locality.
333 */
334 if (skb_rx_queue_recorded(skb))
335 q_idx = skb_get_rx_queue(skb);
336 else
337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
338 }
339
340 return q_idx;
341 }
342
343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
344 struct net_device *sb_dev)
345 {
346 struct net_device_context *ndc = netdev_priv(ndev);
347 struct net_device *vf_netdev;
348 u16 txq;
349
350 rcu_read_lock();
351 vf_netdev = rcu_dereference(ndc->vf_netdev);
352 if (vf_netdev) {
353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354
355 if (vf_ops->ndo_select_queue)
356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
357 else
358 txq = netdev_pick_tx(vf_netdev, skb, NULL);
359
360 /* Record the queue selected by VF so that it can be
361 * used for common case where VF has more queues than
362 * the synthetic device.
363 */
364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
365 } else {
366 txq = netvsc_pick_tx(ndev, skb);
367 }
368 rcu_read_unlock();
369
370 while (unlikely(txq >= ndev->real_num_tx_queues))
371 txq -= ndev->real_num_tx_queues;
372
373 return txq;
374 }
375
376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
377 struct hv_page_buffer *pb)
378 {
379 int j = 0;
380
381 /* Deal with compound pages by ignoring unused part
382 * of the page.
383 */
384 page += (offset >> PAGE_SHIFT);
385 offset &= ~PAGE_MASK;
386
387 while (len > 0) {
388 unsigned long bytes;
389
390 bytes = PAGE_SIZE - offset;
391 if (bytes > len)
392 bytes = len;
393 pb[j].pfn = page_to_pfn(page);
394 pb[j].offset = offset;
395 pb[j].len = bytes;
396
397 offset += bytes;
398 len -= bytes;
399
400 if (offset == PAGE_SIZE && len) {
401 page++;
402 offset = 0;
403 j++;
404 }
405 }
406
407 return j + 1;
408 }
409
410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
411 struct hv_netvsc_packet *packet,
412 struct hv_page_buffer *pb)
413 {
414 u32 slots_used = 0;
415 char *data = skb->data;
416 int frags = skb_shinfo(skb)->nr_frags;
417 int i;
418
419 /* The packet is laid out thus:
420 * 1. hdr: RNDIS header and PPI
421 * 2. skb linear data
422 * 3. skb fragment data
423 */
424 slots_used += fill_pg_buf(virt_to_page(hdr),
425 offset_in_page(hdr),
426 len, &pb[slots_used]);
427
428 packet->rmsg_size = len;
429 packet->rmsg_pgcnt = slots_used;
430
431 slots_used += fill_pg_buf(virt_to_page(data),
432 offset_in_page(data),
433 skb_headlen(skb), &pb[slots_used]);
434
435 for (i = 0; i < frags; i++) {
436 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437
438 slots_used += fill_pg_buf(skb_frag_page(frag),
439 skb_frag_off(frag),
440 skb_frag_size(frag), &pb[slots_used]);
441 }
442 return slots_used;
443 }
444
445 static int count_skb_frag_slots(struct sk_buff *skb)
446 {
447 int i, frags = skb_shinfo(skb)->nr_frags;
448 int pages = 0;
449
450 for (i = 0; i < frags; i++) {
451 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
452 unsigned long size = skb_frag_size(frag);
453 unsigned long offset = skb_frag_off(frag);
454
455 /* Skip unused frames from start of page */
456 offset &= ~PAGE_MASK;
457 pages += PFN_UP(offset + size);
458 }
459 return pages;
460 }
461
462 static int netvsc_get_slots(struct sk_buff *skb)
463 {
464 char *data = skb->data;
465 unsigned int offset = offset_in_page(data);
466 unsigned int len = skb_headlen(skb);
467 int slots;
468 int frag_slots;
469
470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
471 frag_slots = count_skb_frag_slots(skb);
472 return slots + frag_slots;
473 }
474
475 static u32 net_checksum_info(struct sk_buff *skb)
476 {
477 if (skb->protocol == htons(ETH_P_IP)) {
478 struct iphdr *ip = ip_hdr(skb);
479
480 if (ip->protocol == IPPROTO_TCP)
481 return TRANSPORT_INFO_IPV4_TCP;
482 else if (ip->protocol == IPPROTO_UDP)
483 return TRANSPORT_INFO_IPV4_UDP;
484 } else {
485 struct ipv6hdr *ip6 = ipv6_hdr(skb);
486
487 if (ip6->nexthdr == IPPROTO_TCP)
488 return TRANSPORT_INFO_IPV6_TCP;
489 else if (ip6->nexthdr == IPPROTO_UDP)
490 return TRANSPORT_INFO_IPV6_UDP;
491 }
492
493 return TRANSPORT_INFO_NOT_IP;
494 }
495
496 /* Send skb on the slave VF device. */
497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498 struct sk_buff *skb)
499 {
500 struct net_device_context *ndev_ctx = netdev_priv(net);
501 unsigned int len = skb->len;
502 int rc;
503
504 skb->dev = vf_netdev;
505 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
506
507 rc = dev_queue_xmit(skb);
508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
509 struct netvsc_vf_pcpu_stats *pcpu_stats
510 = this_cpu_ptr(ndev_ctx->vf_stats);
511
512 u64_stats_update_begin(&pcpu_stats->syncp);
513 pcpu_stats->tx_packets++;
514 pcpu_stats->tx_bytes += len;
515 u64_stats_update_end(&pcpu_stats->syncp);
516 } else {
517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
518 }
519
520 return rc;
521 }
522
523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
524 {
525 struct net_device_context *net_device_ctx = netdev_priv(net);
526 struct hv_netvsc_packet *packet = NULL;
527 int ret;
528 unsigned int num_data_pgs;
529 struct rndis_message *rndis_msg;
530 struct net_device *vf_netdev;
531 u32 rndis_msg_size;
532 u32 hash;
533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535 /* if VF is present and up then redirect packets
536 * already called with rcu_read_lock_bh
537 */
538 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
539 if (vf_netdev && netif_running(vf_netdev) &&
540 !netpoll_tx_running(net))
541 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543 /* We will atmost need two pages to describe the rndis
544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545 * of pages in a single packet. If skb is scattered around
546 * more pages we try linearizing it.
547 */
548
549 num_data_pgs = netvsc_get_slots(skb) + 2;
550
551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552 ++net_device_ctx->eth_stats.tx_scattered;
553
554 if (skb_linearize(skb))
555 goto no_memory;
556
557 num_data_pgs = netvsc_get_slots(skb) + 2;
558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559 ++net_device_ctx->eth_stats.tx_too_big;
560 goto drop;
561 }
562 }
563
564 /*
565 * Place the rndis header in the skb head room and
566 * the skb->cb will be used for hv_netvsc_packet
567 * structure.
568 */
569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570 if (ret)
571 goto no_memory;
572
573 /* Use the skb control buffer for building up the packet */
574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575 sizeof_field(struct sk_buff, cb));
576 packet = (struct hv_netvsc_packet *)skb->cb;
577
578 packet->q_idx = skb_get_queue_mapping(skb);
579
580 packet->total_data_buflen = skb->len;
581 packet->total_bytes = skb->len;
582 packet->total_packets = 1;
583
584 rndis_msg = (struct rndis_message *)skb->head;
585
586 /* Add the rndis header */
587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588 rndis_msg->msg_len = packet->total_data_buflen;
589
590 rndis_msg->msg.pkt = (struct rndis_packet) {
591 .data_offset = sizeof(struct rndis_packet),
592 .data_len = packet->total_data_buflen,
593 .per_pkt_info_offset = sizeof(struct rndis_packet),
594 };
595
596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598 hash = skb_get_hash_raw(skb);
599 if (hash != 0 && net->real_num_tx_queues > 1) {
600 u32 *hash_info;
601
602 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
604 NBL_HASH_VALUE);
605 *hash_info = hash;
606 }
607
608 if (skb_vlan_tag_present(skb)) {
609 struct ndis_pkt_8021q_info *vlan;
610
611 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
612 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
613 IEEE_8021Q_INFO);
614
615 vlan->value = 0;
616 vlan->vlanid = skb_vlan_tag_get_id(skb);
617 vlan->cfi = skb_vlan_tag_get_cfi(skb);
618 vlan->pri = skb_vlan_tag_get_prio(skb);
619 }
620
621 if (skb_is_gso(skb)) {
622 struct ndis_tcp_lso_info *lso_info;
623
624 rndis_msg_size += NDIS_LSO_PPI_SIZE;
625 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
626 TCP_LARGESEND_PKTINFO);
627
628 lso_info->value = 0;
629 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
630 if (skb->protocol == htons(ETH_P_IP)) {
631 lso_info->lso_v2_transmit.ip_version =
632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
633 ip_hdr(skb)->tot_len = 0;
634 ip_hdr(skb)->check = 0;
635 tcp_hdr(skb)->check =
636 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
637 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
638 } else {
639 lso_info->lso_v2_transmit.ip_version =
640 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
641 tcp_v6_gso_csum_prep(skb);
642 }
643 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
644 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
645 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
646 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
647 struct ndis_tcp_ip_checksum_info *csum_info;
648
649 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
650 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
651 TCPIP_CHKSUM_PKTINFO);
652
653 csum_info->value = 0;
654 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
655
656 if (skb->protocol == htons(ETH_P_IP)) {
657 csum_info->transmit.is_ipv4 = 1;
658
659 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
660 csum_info->transmit.tcp_checksum = 1;
661 else
662 csum_info->transmit.udp_checksum = 1;
663 } else {
664 csum_info->transmit.is_ipv6 = 1;
665
666 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
667 csum_info->transmit.tcp_checksum = 1;
668 else
669 csum_info->transmit.udp_checksum = 1;
670 }
671 } else {
672 /* Can't do offload of this type of checksum */
673 if (skb_checksum_help(skb))
674 goto drop;
675 }
676 }
677
678 /* Start filling in the page buffers with the rndis hdr */
679 rndis_msg->msg_len += rndis_msg_size;
680 packet->total_data_buflen = rndis_msg->msg_len;
681 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
682 skb, packet, pb);
683
684 /* timestamp packet in software */
685 skb_tx_timestamp(skb);
686
687 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
688 if (likely(ret == 0))
689 return NETDEV_TX_OK;
690
691 if (ret == -EAGAIN) {
692 ++net_device_ctx->eth_stats.tx_busy;
693 return NETDEV_TX_BUSY;
694 }
695
696 if (ret == -ENOSPC)
697 ++net_device_ctx->eth_stats.tx_no_space;
698
699 drop:
700 dev_kfree_skb_any(skb);
701 net->stats.tx_dropped++;
702
703 return NETDEV_TX_OK;
704
705 no_memory:
706 ++net_device_ctx->eth_stats.tx_no_memory;
707 goto drop;
708 }
709
710 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
711 struct net_device *ndev)
712 {
713 return netvsc_xmit(skb, ndev, false);
714 }
715
716 /*
717 * netvsc_linkstatus_callback - Link up/down notification
718 */
719 void netvsc_linkstatus_callback(struct net_device *net,
720 struct rndis_message *resp)
721 {
722 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
723 struct net_device_context *ndev_ctx = netdev_priv(net);
724 struct netvsc_reconfig *event;
725 unsigned long flags;
726
727 /* Update the physical link speed when changing to another vSwitch */
728 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
729 u32 speed;
730
731 speed = *(u32 *)((void *)indicate
732 + indicate->status_buf_offset) / 10000;
733 ndev_ctx->speed = speed;
734 return;
735 }
736
737 /* Handle these link change statuses below */
738 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
739 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
740 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
741 return;
742
743 if (net->reg_state != NETREG_REGISTERED)
744 return;
745
746 event = kzalloc(sizeof(*event), GFP_ATOMIC);
747 if (!event)
748 return;
749 event->event = indicate->status;
750
751 spin_lock_irqsave(&ndev_ctx->lock, flags);
752 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
753 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
754
755 schedule_delayed_work(&ndev_ctx->dwork, 0);
756 }
757
758 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
759 {
760 int rc;
761
762 skb->queue_mapping = skb_get_rx_queue(skb);
763 __skb_push(skb, ETH_HLEN);
764
765 rc = netvsc_xmit(skb, ndev, true);
766
767 if (dev_xmit_complete(rc))
768 return;
769
770 dev_kfree_skb_any(skb);
771 ndev->stats.tx_dropped++;
772 }
773
774 static void netvsc_comp_ipcsum(struct sk_buff *skb)
775 {
776 struct iphdr *iph = (struct iphdr *)skb->data;
777
778 iph->check = 0;
779 iph->check = ip_fast_csum(iph, iph->ihl);
780 }
781
782 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
783 struct netvsc_channel *nvchan,
784 struct xdp_buff *xdp)
785 {
786 struct napi_struct *napi = &nvchan->napi;
787 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
788 const struct ndis_tcp_ip_checksum_info *csum_info =
789 nvchan->rsc.csum_info;
790 const u32 *hash_info = nvchan->rsc.hash_info;
791 struct sk_buff *skb;
792 void *xbuf = xdp->data_hard_start;
793 int i;
794
795 if (xbuf) {
796 unsigned int hdroom = xdp->data - xdp->data_hard_start;
797 unsigned int xlen = xdp->data_end - xdp->data;
798 unsigned int frag_size = netvsc_xdp_fraglen(hdroom + xlen);
799
800 skb = build_skb(xbuf, frag_size);
801
802 if (!skb) {
803 __free_page(virt_to_page(xbuf));
804 return NULL;
805 }
806
807 skb_reserve(skb, hdroom);
808 skb_put(skb, xlen);
809 skb->dev = napi->dev;
810 } else {
811 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
812
813 if (!skb)
814 return NULL;
815
816 /* Copy to skb. This copy is needed here since the memory
817 * pointed by hv_netvsc_packet cannot be deallocated.
818 */
819 for (i = 0; i < nvchan->rsc.cnt; i++)
820 skb_put_data(skb, nvchan->rsc.data[i],
821 nvchan->rsc.len[i]);
822 }
823
824 skb->protocol = eth_type_trans(skb, net);
825
826 /* skb is already created with CHECKSUM_NONE */
827 skb_checksum_none_assert(skb);
828
829 /* Incoming packets may have IP header checksum verified by the host.
830 * They may not have IP header checksum computed after coalescing.
831 * We compute it here if the flags are set, because on Linux, the IP
832 * checksum is always checked.
833 */
834 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
835 csum_info->receive.ip_checksum_succeeded &&
836 skb->protocol == htons(ETH_P_IP))
837 netvsc_comp_ipcsum(skb);
838
839 /* Do L4 checksum offload if enabled and present. */
840 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
841 if (csum_info->receive.tcp_checksum_succeeded ||
842 csum_info->receive.udp_checksum_succeeded)
843 skb->ip_summed = CHECKSUM_UNNECESSARY;
844 }
845
846 if (hash_info && (net->features & NETIF_F_RXHASH))
847 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
848
849 if (vlan) {
850 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
851 (vlan->cfi ? VLAN_CFI_MASK : 0);
852
853 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
854 vlan_tci);
855 }
856
857 return skb;
858 }
859
860 /*
861 * netvsc_recv_callback - Callback when we receive a packet from the
862 * "wire" on the specified device.
863 */
864 int netvsc_recv_callback(struct net_device *net,
865 struct netvsc_device *net_device,
866 struct netvsc_channel *nvchan)
867 {
868 struct net_device_context *net_device_ctx = netdev_priv(net);
869 struct vmbus_channel *channel = nvchan->channel;
870 u16 q_idx = channel->offermsg.offer.sub_channel_index;
871 struct sk_buff *skb;
872 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
873 struct xdp_buff xdp;
874 u32 act;
875
876 if (net->reg_state != NETREG_REGISTERED)
877 return NVSP_STAT_FAIL;
878
879 act = netvsc_run_xdp(net, nvchan, &xdp);
880
881 if (act != XDP_PASS && act != XDP_TX) {
882 u64_stats_update_begin(&rx_stats->syncp);
883 rx_stats->xdp_drop++;
884 u64_stats_update_end(&rx_stats->syncp);
885
886 return NVSP_STAT_SUCCESS; /* consumed by XDP */
887 }
888
889 /* Allocate a skb - TODO direct I/O to pages? */
890 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
891
892 if (unlikely(!skb)) {
893 ++net_device_ctx->eth_stats.rx_no_memory;
894 return NVSP_STAT_FAIL;
895 }
896
897 skb_record_rx_queue(skb, q_idx);
898
899 /*
900 * Even if injecting the packet, record the statistics
901 * on the synthetic device because modifying the VF device
902 * statistics will not work correctly.
903 */
904 u64_stats_update_begin(&rx_stats->syncp);
905 rx_stats->packets++;
906 rx_stats->bytes += nvchan->rsc.pktlen;
907
908 if (skb->pkt_type == PACKET_BROADCAST)
909 ++rx_stats->broadcast;
910 else if (skb->pkt_type == PACKET_MULTICAST)
911 ++rx_stats->multicast;
912 u64_stats_update_end(&rx_stats->syncp);
913
914 if (act == XDP_TX) {
915 netvsc_xdp_xmit(skb, net);
916 return NVSP_STAT_SUCCESS;
917 }
918
919 napi_gro_receive(&nvchan->napi, skb);
920 return NVSP_STAT_SUCCESS;
921 }
922
923 static void netvsc_get_drvinfo(struct net_device *net,
924 struct ethtool_drvinfo *info)
925 {
926 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
927 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
928 }
929
930 static void netvsc_get_channels(struct net_device *net,
931 struct ethtool_channels *channel)
932 {
933 struct net_device_context *net_device_ctx = netdev_priv(net);
934 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
935
936 if (nvdev) {
937 channel->max_combined = nvdev->max_chn;
938 channel->combined_count = nvdev->num_chn;
939 }
940 }
941
942 /* Alloc struct netvsc_device_info, and initialize it from either existing
943 * struct netvsc_device, or from default values.
944 */
945 static
946 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
947 {
948 struct netvsc_device_info *dev_info;
949 struct bpf_prog *prog;
950
951 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
952
953 if (!dev_info)
954 return NULL;
955
956 if (nvdev) {
957 ASSERT_RTNL();
958
959 dev_info->num_chn = nvdev->num_chn;
960 dev_info->send_sections = nvdev->send_section_cnt;
961 dev_info->send_section_size = nvdev->send_section_size;
962 dev_info->recv_sections = nvdev->recv_section_cnt;
963 dev_info->recv_section_size = nvdev->recv_section_size;
964
965 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
966 NETVSC_HASH_KEYLEN);
967
968 prog = netvsc_xdp_get(nvdev);
969 if (prog) {
970 bpf_prog_inc(prog);
971 dev_info->bprog = prog;
972 }
973 } else {
974 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
975 dev_info->send_sections = NETVSC_DEFAULT_TX;
976 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
977 dev_info->recv_sections = NETVSC_DEFAULT_RX;
978 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
979 }
980
981 return dev_info;
982 }
983
984 /* Free struct netvsc_device_info */
985 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
986 {
987 if (dev_info->bprog) {
988 ASSERT_RTNL();
989 bpf_prog_put(dev_info->bprog);
990 }
991
992 kfree(dev_info);
993 }
994
995 static int netvsc_detach(struct net_device *ndev,
996 struct netvsc_device *nvdev)
997 {
998 struct net_device_context *ndev_ctx = netdev_priv(ndev);
999 struct hv_device *hdev = ndev_ctx->device_ctx;
1000 int ret;
1001
1002 /* Don't try continuing to try and setup sub channels */
1003 if (cancel_work_sync(&nvdev->subchan_work))
1004 nvdev->num_chn = 1;
1005
1006 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1007
1008 /* If device was up (receiving) then shutdown */
1009 if (netif_running(ndev)) {
1010 netvsc_tx_disable(nvdev, ndev);
1011
1012 ret = rndis_filter_close(nvdev);
1013 if (ret) {
1014 netdev_err(ndev,
1015 "unable to close device (ret %d).\n", ret);
1016 return ret;
1017 }
1018
1019 ret = netvsc_wait_until_empty(nvdev);
1020 if (ret) {
1021 netdev_err(ndev,
1022 "Ring buffer not empty after closing rndis\n");
1023 return ret;
1024 }
1025 }
1026
1027 netif_device_detach(ndev);
1028
1029 rndis_filter_device_remove(hdev, nvdev);
1030
1031 return 0;
1032 }
1033
1034 static int netvsc_attach(struct net_device *ndev,
1035 struct netvsc_device_info *dev_info)
1036 {
1037 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1038 struct hv_device *hdev = ndev_ctx->device_ctx;
1039 struct netvsc_device *nvdev;
1040 struct rndis_device *rdev;
1041 struct bpf_prog *prog;
1042 int ret = 0;
1043
1044 nvdev = rndis_filter_device_add(hdev, dev_info);
1045 if (IS_ERR(nvdev))
1046 return PTR_ERR(nvdev);
1047
1048 if (nvdev->num_chn > 1) {
1049 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1050
1051 /* if unavailable, just proceed with one queue */
1052 if (ret) {
1053 nvdev->max_chn = 1;
1054 nvdev->num_chn = 1;
1055 }
1056 }
1057
1058 prog = dev_info->bprog;
1059 if (prog) {
1060 bpf_prog_inc(prog);
1061 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1062 if (ret) {
1063 bpf_prog_put(prog);
1064 goto err1;
1065 }
1066 }
1067
1068 /* In any case device is now ready */
1069 nvdev->tx_disable = false;
1070 netif_device_attach(ndev);
1071
1072 /* Note: enable and attach happen when sub-channels setup */
1073 netif_carrier_off(ndev);
1074
1075 if (netif_running(ndev)) {
1076 ret = rndis_filter_open(nvdev);
1077 if (ret)
1078 goto err2;
1079
1080 rdev = nvdev->extension;
1081 if (!rdev->link_state)
1082 netif_carrier_on(ndev);
1083 }
1084
1085 return 0;
1086
1087 err2:
1088 netif_device_detach(ndev);
1089
1090 err1:
1091 rndis_filter_device_remove(hdev, nvdev);
1092
1093 return ret;
1094 }
1095
1096 static int netvsc_set_channels(struct net_device *net,
1097 struct ethtool_channels *channels)
1098 {
1099 struct net_device_context *net_device_ctx = netdev_priv(net);
1100 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1101 unsigned int orig, count = channels->combined_count;
1102 struct netvsc_device_info *device_info;
1103 int ret;
1104
1105 /* We do not support separate count for rx, tx, or other */
1106 if (count == 0 ||
1107 channels->rx_count || channels->tx_count || channels->other_count)
1108 return -EINVAL;
1109
1110 if (!nvdev || nvdev->destroy)
1111 return -ENODEV;
1112
1113 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1114 return -EINVAL;
1115
1116 if (count > nvdev->max_chn)
1117 return -EINVAL;
1118
1119 orig = nvdev->num_chn;
1120
1121 device_info = netvsc_devinfo_get(nvdev);
1122
1123 if (!device_info)
1124 return -ENOMEM;
1125
1126 device_info->num_chn = count;
1127
1128 ret = netvsc_detach(net, nvdev);
1129 if (ret)
1130 goto out;
1131
1132 ret = netvsc_attach(net, device_info);
1133 if (ret) {
1134 device_info->num_chn = orig;
1135 if (netvsc_attach(net, device_info))
1136 netdev_err(net, "restoring channel setting failed\n");
1137 }
1138
1139 out:
1140 netvsc_devinfo_put(device_info);
1141 return ret;
1142 }
1143
1144 static void netvsc_init_settings(struct net_device *dev)
1145 {
1146 struct net_device_context *ndc = netdev_priv(dev);
1147
1148 ndc->l4_hash = HV_DEFAULT_L4HASH;
1149
1150 ndc->speed = SPEED_UNKNOWN;
1151 ndc->duplex = DUPLEX_FULL;
1152
1153 dev->features = NETIF_F_LRO;
1154 }
1155
1156 static int netvsc_get_link_ksettings(struct net_device *dev,
1157 struct ethtool_link_ksettings *cmd)
1158 {
1159 struct net_device_context *ndc = netdev_priv(dev);
1160 struct net_device *vf_netdev;
1161
1162 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1163
1164 if (vf_netdev)
1165 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1166
1167 cmd->base.speed = ndc->speed;
1168 cmd->base.duplex = ndc->duplex;
1169 cmd->base.port = PORT_OTHER;
1170
1171 return 0;
1172 }
1173
1174 static int netvsc_set_link_ksettings(struct net_device *dev,
1175 const struct ethtool_link_ksettings *cmd)
1176 {
1177 struct net_device_context *ndc = netdev_priv(dev);
1178 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1179
1180 if (vf_netdev) {
1181 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1182 return -EOPNOTSUPP;
1183
1184 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1185 cmd);
1186 }
1187
1188 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1189 &ndc->speed, &ndc->duplex);
1190 }
1191
1192 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1193 {
1194 struct net_device_context *ndevctx = netdev_priv(ndev);
1195 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1196 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1197 int orig_mtu = ndev->mtu;
1198 struct netvsc_device_info *device_info;
1199 int ret = 0;
1200
1201 if (!nvdev || nvdev->destroy)
1202 return -ENODEV;
1203
1204 device_info = netvsc_devinfo_get(nvdev);
1205
1206 if (!device_info)
1207 return -ENOMEM;
1208
1209 /* Change MTU of underlying VF netdev first. */
1210 if (vf_netdev) {
1211 ret = dev_set_mtu(vf_netdev, mtu);
1212 if (ret)
1213 goto out;
1214 }
1215
1216 ret = netvsc_detach(ndev, nvdev);
1217 if (ret)
1218 goto rollback_vf;
1219
1220 ndev->mtu = mtu;
1221
1222 ret = netvsc_attach(ndev, device_info);
1223 if (!ret)
1224 goto out;
1225
1226 /* Attempt rollback to original MTU */
1227 ndev->mtu = orig_mtu;
1228
1229 if (netvsc_attach(ndev, device_info))
1230 netdev_err(ndev, "restoring mtu failed\n");
1231 rollback_vf:
1232 if (vf_netdev)
1233 dev_set_mtu(vf_netdev, orig_mtu);
1234
1235 out:
1236 netvsc_devinfo_put(device_info);
1237 return ret;
1238 }
1239
1240 static void netvsc_get_vf_stats(struct net_device *net,
1241 struct netvsc_vf_pcpu_stats *tot)
1242 {
1243 struct net_device_context *ndev_ctx = netdev_priv(net);
1244 int i;
1245
1246 memset(tot, 0, sizeof(*tot));
1247
1248 for_each_possible_cpu(i) {
1249 const struct netvsc_vf_pcpu_stats *stats
1250 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1251 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1252 unsigned int start;
1253
1254 do {
1255 start = u64_stats_fetch_begin_irq(&stats->syncp);
1256 rx_packets = stats->rx_packets;
1257 tx_packets = stats->tx_packets;
1258 rx_bytes = stats->rx_bytes;
1259 tx_bytes = stats->tx_bytes;
1260 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1261
1262 tot->rx_packets += rx_packets;
1263 tot->tx_packets += tx_packets;
1264 tot->rx_bytes += rx_bytes;
1265 tot->tx_bytes += tx_bytes;
1266 tot->tx_dropped += stats->tx_dropped;
1267 }
1268 }
1269
1270 static void netvsc_get_pcpu_stats(struct net_device *net,
1271 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1272 {
1273 struct net_device_context *ndev_ctx = netdev_priv(net);
1274 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1275 int i;
1276
1277 /* fetch percpu stats of vf */
1278 for_each_possible_cpu(i) {
1279 const struct netvsc_vf_pcpu_stats *stats =
1280 per_cpu_ptr(ndev_ctx->vf_stats, i);
1281 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1282 unsigned int start;
1283
1284 do {
1285 start = u64_stats_fetch_begin_irq(&stats->syncp);
1286 this_tot->vf_rx_packets = stats->rx_packets;
1287 this_tot->vf_tx_packets = stats->tx_packets;
1288 this_tot->vf_rx_bytes = stats->rx_bytes;
1289 this_tot->vf_tx_bytes = stats->tx_bytes;
1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291 this_tot->rx_packets = this_tot->vf_rx_packets;
1292 this_tot->tx_packets = this_tot->vf_tx_packets;
1293 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1294 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1295 }
1296
1297 /* fetch percpu stats of netvsc */
1298 for (i = 0; i < nvdev->num_chn; i++) {
1299 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1300 const struct netvsc_stats *stats;
1301 struct netvsc_ethtool_pcpu_stats *this_tot =
1302 &pcpu_tot[nvchan->channel->target_cpu];
1303 u64 packets, bytes;
1304 unsigned int start;
1305
1306 stats = &nvchan->tx_stats;
1307 do {
1308 start = u64_stats_fetch_begin_irq(&stats->syncp);
1309 packets = stats->packets;
1310 bytes = stats->bytes;
1311 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1312
1313 this_tot->tx_bytes += bytes;
1314 this_tot->tx_packets += packets;
1315
1316 stats = &nvchan->rx_stats;
1317 do {
1318 start = u64_stats_fetch_begin_irq(&stats->syncp);
1319 packets = stats->packets;
1320 bytes = stats->bytes;
1321 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1322
1323 this_tot->rx_bytes += bytes;
1324 this_tot->rx_packets += packets;
1325 }
1326 }
1327
1328 static void netvsc_get_stats64(struct net_device *net,
1329 struct rtnl_link_stats64 *t)
1330 {
1331 struct net_device_context *ndev_ctx = netdev_priv(net);
1332 struct netvsc_device *nvdev;
1333 struct netvsc_vf_pcpu_stats vf_tot;
1334 int i;
1335
1336 rcu_read_lock();
1337
1338 nvdev = rcu_dereference(ndev_ctx->nvdev);
1339 if (!nvdev)
1340 goto out;
1341
1342 netdev_stats_to_stats64(t, &net->stats);
1343
1344 netvsc_get_vf_stats(net, &vf_tot);
1345 t->rx_packets += vf_tot.rx_packets;
1346 t->tx_packets += vf_tot.tx_packets;
1347 t->rx_bytes += vf_tot.rx_bytes;
1348 t->tx_bytes += vf_tot.tx_bytes;
1349 t->tx_dropped += vf_tot.tx_dropped;
1350
1351 for (i = 0; i < nvdev->num_chn; i++) {
1352 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1353 const struct netvsc_stats *stats;
1354 u64 packets, bytes, multicast;
1355 unsigned int start;
1356
1357 stats = &nvchan->tx_stats;
1358 do {
1359 start = u64_stats_fetch_begin_irq(&stats->syncp);
1360 packets = stats->packets;
1361 bytes = stats->bytes;
1362 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1363
1364 t->tx_bytes += bytes;
1365 t->tx_packets += packets;
1366
1367 stats = &nvchan->rx_stats;
1368 do {
1369 start = u64_stats_fetch_begin_irq(&stats->syncp);
1370 packets = stats->packets;
1371 bytes = stats->bytes;
1372 multicast = stats->multicast + stats->broadcast;
1373 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1374
1375 t->rx_bytes += bytes;
1376 t->rx_packets += packets;
1377 t->multicast += multicast;
1378 }
1379 out:
1380 rcu_read_unlock();
1381 }
1382
1383 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1384 {
1385 struct net_device_context *ndc = netdev_priv(ndev);
1386 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1387 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1388 struct sockaddr *addr = p;
1389 int err;
1390
1391 err = eth_prepare_mac_addr_change(ndev, p);
1392 if (err)
1393 return err;
1394
1395 if (!nvdev)
1396 return -ENODEV;
1397
1398 if (vf_netdev) {
1399 err = dev_set_mac_address(vf_netdev, addr, NULL);
1400 if (err)
1401 return err;
1402 }
1403
1404 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1405 if (!err) {
1406 eth_commit_mac_addr_change(ndev, p);
1407 } else if (vf_netdev) {
1408 /* rollback change on VF */
1409 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1410 dev_set_mac_address(vf_netdev, addr, NULL);
1411 }
1412
1413 return err;
1414 }
1415
1416 static const struct {
1417 char name[ETH_GSTRING_LEN];
1418 u16 offset;
1419 } netvsc_stats[] = {
1420 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1421 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1422 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1423 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1424 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1425 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1426 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1427 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1428 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1429 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1430 }, pcpu_stats[] = {
1431 { "cpu%u_rx_packets",
1432 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1433 { "cpu%u_rx_bytes",
1434 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1435 { "cpu%u_tx_packets",
1436 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1437 { "cpu%u_tx_bytes",
1438 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1439 { "cpu%u_vf_rx_packets",
1440 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1441 { "cpu%u_vf_rx_bytes",
1442 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1443 { "cpu%u_vf_tx_packets",
1444 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1445 { "cpu%u_vf_tx_bytes",
1446 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1447 }, vf_stats[] = {
1448 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1449 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1450 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1451 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1452 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1453 };
1454
1455 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1456 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1457
1458 /* statistics per queue (rx/tx packets/bytes) */
1459 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1460
1461 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1462 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1463
1464 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1465 {
1466 struct net_device_context *ndc = netdev_priv(dev);
1467 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1468
1469 if (!nvdev)
1470 return -ENODEV;
1471
1472 switch (string_set) {
1473 case ETH_SS_STATS:
1474 return NETVSC_GLOBAL_STATS_LEN
1475 + NETVSC_VF_STATS_LEN
1476 + NETVSC_QUEUE_STATS_LEN(nvdev)
1477 + NETVSC_PCPU_STATS_LEN;
1478 default:
1479 return -EINVAL;
1480 }
1481 }
1482
1483 static void netvsc_get_ethtool_stats(struct net_device *dev,
1484 struct ethtool_stats *stats, u64 *data)
1485 {
1486 struct net_device_context *ndc = netdev_priv(dev);
1487 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1488 const void *nds = &ndc->eth_stats;
1489 const struct netvsc_stats *qstats;
1490 struct netvsc_vf_pcpu_stats sum;
1491 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1492 unsigned int start;
1493 u64 packets, bytes;
1494 u64 xdp_drop;
1495 int i, j, cpu;
1496
1497 if (!nvdev)
1498 return;
1499
1500 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1501 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1502
1503 netvsc_get_vf_stats(dev, &sum);
1504 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1505 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1506
1507 for (j = 0; j < nvdev->num_chn; j++) {
1508 qstats = &nvdev->chan_table[j].tx_stats;
1509
1510 do {
1511 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1512 packets = qstats->packets;
1513 bytes = qstats->bytes;
1514 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1515 data[i++] = packets;
1516 data[i++] = bytes;
1517
1518 qstats = &nvdev->chan_table[j].rx_stats;
1519 do {
1520 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1521 packets = qstats->packets;
1522 bytes = qstats->bytes;
1523 xdp_drop = qstats->xdp_drop;
1524 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1525 data[i++] = packets;
1526 data[i++] = bytes;
1527 data[i++] = xdp_drop;
1528 }
1529
1530 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1531 sizeof(struct netvsc_ethtool_pcpu_stats),
1532 GFP_KERNEL);
1533 netvsc_get_pcpu_stats(dev, pcpu_sum);
1534 for_each_present_cpu(cpu) {
1535 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1536
1537 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1538 data[i++] = *(u64 *)((void *)this_sum
1539 + pcpu_stats[j].offset);
1540 }
1541 kvfree(pcpu_sum);
1542 }
1543
1544 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1545 {
1546 struct net_device_context *ndc = netdev_priv(dev);
1547 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1548 u8 *p = data;
1549 int i, cpu;
1550
1551 if (!nvdev)
1552 return;
1553
1554 switch (stringset) {
1555 case ETH_SS_STATS:
1556 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1557 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1558 p += ETH_GSTRING_LEN;
1559 }
1560
1561 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1562 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1563 p += ETH_GSTRING_LEN;
1564 }
1565
1566 for (i = 0; i < nvdev->num_chn; i++) {
1567 sprintf(p, "tx_queue_%u_packets", i);
1568 p += ETH_GSTRING_LEN;
1569 sprintf(p, "tx_queue_%u_bytes", i);
1570 p += ETH_GSTRING_LEN;
1571 sprintf(p, "rx_queue_%u_packets", i);
1572 p += ETH_GSTRING_LEN;
1573 sprintf(p, "rx_queue_%u_bytes", i);
1574 p += ETH_GSTRING_LEN;
1575 sprintf(p, "rx_queue_%u_xdp_drop", i);
1576 p += ETH_GSTRING_LEN;
1577 }
1578
1579 for_each_present_cpu(cpu) {
1580 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1581 sprintf(p, pcpu_stats[i].name, cpu);
1582 p += ETH_GSTRING_LEN;
1583 }
1584 }
1585
1586 break;
1587 }
1588 }
1589
1590 static int
1591 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1592 struct ethtool_rxnfc *info)
1593 {
1594 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1595
1596 info->data = RXH_IP_SRC | RXH_IP_DST;
1597
1598 switch (info->flow_type) {
1599 case TCP_V4_FLOW:
1600 if (ndc->l4_hash & HV_TCP4_L4HASH)
1601 info->data |= l4_flag;
1602
1603 break;
1604
1605 case TCP_V6_FLOW:
1606 if (ndc->l4_hash & HV_TCP6_L4HASH)
1607 info->data |= l4_flag;
1608
1609 break;
1610
1611 case UDP_V4_FLOW:
1612 if (ndc->l4_hash & HV_UDP4_L4HASH)
1613 info->data |= l4_flag;
1614
1615 break;
1616
1617 case UDP_V6_FLOW:
1618 if (ndc->l4_hash & HV_UDP6_L4HASH)
1619 info->data |= l4_flag;
1620
1621 break;
1622
1623 case IPV4_FLOW:
1624 case IPV6_FLOW:
1625 break;
1626 default:
1627 info->data = 0;
1628 break;
1629 }
1630
1631 return 0;
1632 }
1633
1634 static int
1635 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1636 u32 *rules)
1637 {
1638 struct net_device_context *ndc = netdev_priv(dev);
1639 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1640
1641 if (!nvdev)
1642 return -ENODEV;
1643
1644 switch (info->cmd) {
1645 case ETHTOOL_GRXRINGS:
1646 info->data = nvdev->num_chn;
1647 return 0;
1648
1649 case ETHTOOL_GRXFH:
1650 return netvsc_get_rss_hash_opts(ndc, info);
1651 }
1652 return -EOPNOTSUPP;
1653 }
1654
1655 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1656 struct ethtool_rxnfc *info)
1657 {
1658 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1659 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1660 switch (info->flow_type) {
1661 case TCP_V4_FLOW:
1662 ndc->l4_hash |= HV_TCP4_L4HASH;
1663 break;
1664
1665 case TCP_V6_FLOW:
1666 ndc->l4_hash |= HV_TCP6_L4HASH;
1667 break;
1668
1669 case UDP_V4_FLOW:
1670 ndc->l4_hash |= HV_UDP4_L4HASH;
1671 break;
1672
1673 case UDP_V6_FLOW:
1674 ndc->l4_hash |= HV_UDP6_L4HASH;
1675 break;
1676
1677 default:
1678 return -EOPNOTSUPP;
1679 }
1680
1681 return 0;
1682 }
1683
1684 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1685 switch (info->flow_type) {
1686 case TCP_V4_FLOW:
1687 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1688 break;
1689
1690 case TCP_V6_FLOW:
1691 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1692 break;
1693
1694 case UDP_V4_FLOW:
1695 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1696 break;
1697
1698 case UDP_V6_FLOW:
1699 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1700 break;
1701
1702 default:
1703 return -EOPNOTSUPP;
1704 }
1705
1706 return 0;
1707 }
1708
1709 return -EOPNOTSUPP;
1710 }
1711
1712 static int
1713 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1714 {
1715 struct net_device_context *ndc = netdev_priv(ndev);
1716
1717 if (info->cmd == ETHTOOL_SRXFH)
1718 return netvsc_set_rss_hash_opts(ndc, info);
1719
1720 return -EOPNOTSUPP;
1721 }
1722
1723 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1724 {
1725 return NETVSC_HASH_KEYLEN;
1726 }
1727
1728 static u32 netvsc_rss_indir_size(struct net_device *dev)
1729 {
1730 return ITAB_NUM;
1731 }
1732
1733 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1734 u8 *hfunc)
1735 {
1736 struct net_device_context *ndc = netdev_priv(dev);
1737 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1738 struct rndis_device *rndis_dev;
1739 int i;
1740
1741 if (!ndev)
1742 return -ENODEV;
1743
1744 if (hfunc)
1745 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1746
1747 rndis_dev = ndev->extension;
1748 if (indir) {
1749 for (i = 0; i < ITAB_NUM; i++)
1750 indir[i] = ndc->rx_table[i];
1751 }
1752
1753 if (key)
1754 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1755
1756 return 0;
1757 }
1758
1759 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1760 const u8 *key, const u8 hfunc)
1761 {
1762 struct net_device_context *ndc = netdev_priv(dev);
1763 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1764 struct rndis_device *rndis_dev;
1765 int i;
1766
1767 if (!ndev)
1768 return -ENODEV;
1769
1770 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1771 return -EOPNOTSUPP;
1772
1773 rndis_dev = ndev->extension;
1774 if (indir) {
1775 for (i = 0; i < ITAB_NUM; i++)
1776 if (indir[i] >= ndev->num_chn)
1777 return -EINVAL;
1778
1779 for (i = 0; i < ITAB_NUM; i++)
1780 ndc->rx_table[i] = indir[i];
1781 }
1782
1783 if (!key) {
1784 if (!indir)
1785 return 0;
1786
1787 key = rndis_dev->rss_key;
1788 }
1789
1790 return rndis_filter_set_rss_param(rndis_dev, key);
1791 }
1792
1793 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1794 * It does have pre-allocated receive area which is divided into sections.
1795 */
1796 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1797 struct ethtool_ringparam *ring)
1798 {
1799 u32 max_buf_size;
1800
1801 ring->rx_pending = nvdev->recv_section_cnt;
1802 ring->tx_pending = nvdev->send_section_cnt;
1803
1804 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1805 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1806 else
1807 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1808
1809 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1810 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1811 / nvdev->send_section_size;
1812 }
1813
1814 static void netvsc_get_ringparam(struct net_device *ndev,
1815 struct ethtool_ringparam *ring)
1816 {
1817 struct net_device_context *ndevctx = netdev_priv(ndev);
1818 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1819
1820 if (!nvdev)
1821 return;
1822
1823 __netvsc_get_ringparam(nvdev, ring);
1824 }
1825
1826 static int netvsc_set_ringparam(struct net_device *ndev,
1827 struct ethtool_ringparam *ring)
1828 {
1829 struct net_device_context *ndevctx = netdev_priv(ndev);
1830 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1831 struct netvsc_device_info *device_info;
1832 struct ethtool_ringparam orig;
1833 u32 new_tx, new_rx;
1834 int ret = 0;
1835
1836 if (!nvdev || nvdev->destroy)
1837 return -ENODEV;
1838
1839 memset(&orig, 0, sizeof(orig));
1840 __netvsc_get_ringparam(nvdev, &orig);
1841
1842 new_tx = clamp_t(u32, ring->tx_pending,
1843 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1844 new_rx = clamp_t(u32, ring->rx_pending,
1845 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1846
1847 if (new_tx == orig.tx_pending &&
1848 new_rx == orig.rx_pending)
1849 return 0; /* no change */
1850
1851 device_info = netvsc_devinfo_get(nvdev);
1852
1853 if (!device_info)
1854 return -ENOMEM;
1855
1856 device_info->send_sections = new_tx;
1857 device_info->recv_sections = new_rx;
1858
1859 ret = netvsc_detach(ndev, nvdev);
1860 if (ret)
1861 goto out;
1862
1863 ret = netvsc_attach(ndev, device_info);
1864 if (ret) {
1865 device_info->send_sections = orig.tx_pending;
1866 device_info->recv_sections = orig.rx_pending;
1867
1868 if (netvsc_attach(ndev, device_info))
1869 netdev_err(ndev, "restoring ringparam failed");
1870 }
1871
1872 out:
1873 netvsc_devinfo_put(device_info);
1874 return ret;
1875 }
1876
1877 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1878 netdev_features_t features)
1879 {
1880 struct net_device_context *ndevctx = netdev_priv(ndev);
1881 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1882
1883 if (!nvdev || nvdev->destroy)
1884 return features;
1885
1886 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1887 features ^= NETIF_F_LRO;
1888 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1889 }
1890
1891 return features;
1892 }
1893
1894 static int netvsc_set_features(struct net_device *ndev,
1895 netdev_features_t features)
1896 {
1897 netdev_features_t change = features ^ ndev->features;
1898 struct net_device_context *ndevctx = netdev_priv(ndev);
1899 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1900 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1901 struct ndis_offload_params offloads;
1902 int ret = 0;
1903
1904 if (!nvdev || nvdev->destroy)
1905 return -ENODEV;
1906
1907 if (!(change & NETIF_F_LRO))
1908 goto syncvf;
1909
1910 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1911
1912 if (features & NETIF_F_LRO) {
1913 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1914 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1915 } else {
1916 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1917 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1918 }
1919
1920 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1921
1922 if (ret) {
1923 features ^= NETIF_F_LRO;
1924 ndev->features = features;
1925 }
1926
1927 syncvf:
1928 if (!vf_netdev)
1929 return ret;
1930
1931 vf_netdev->wanted_features = features;
1932 netdev_update_features(vf_netdev);
1933
1934 return ret;
1935 }
1936
1937 static u32 netvsc_get_msglevel(struct net_device *ndev)
1938 {
1939 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1940
1941 return ndev_ctx->msg_enable;
1942 }
1943
1944 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1945 {
1946 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1947
1948 ndev_ctx->msg_enable = val;
1949 }
1950
1951 static const struct ethtool_ops ethtool_ops = {
1952 .get_drvinfo = netvsc_get_drvinfo,
1953 .get_msglevel = netvsc_get_msglevel,
1954 .set_msglevel = netvsc_set_msglevel,
1955 .get_link = ethtool_op_get_link,
1956 .get_ethtool_stats = netvsc_get_ethtool_stats,
1957 .get_sset_count = netvsc_get_sset_count,
1958 .get_strings = netvsc_get_strings,
1959 .get_channels = netvsc_get_channels,
1960 .set_channels = netvsc_set_channels,
1961 .get_ts_info = ethtool_op_get_ts_info,
1962 .get_rxnfc = netvsc_get_rxnfc,
1963 .set_rxnfc = netvsc_set_rxnfc,
1964 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1965 .get_rxfh_indir_size = netvsc_rss_indir_size,
1966 .get_rxfh = netvsc_get_rxfh,
1967 .set_rxfh = netvsc_set_rxfh,
1968 .get_link_ksettings = netvsc_get_link_ksettings,
1969 .set_link_ksettings = netvsc_set_link_ksettings,
1970 .get_ringparam = netvsc_get_ringparam,
1971 .set_ringparam = netvsc_set_ringparam,
1972 };
1973
1974 static const struct net_device_ops device_ops = {
1975 .ndo_open = netvsc_open,
1976 .ndo_stop = netvsc_close,
1977 .ndo_start_xmit = netvsc_start_xmit,
1978 .ndo_change_rx_flags = netvsc_change_rx_flags,
1979 .ndo_set_rx_mode = netvsc_set_rx_mode,
1980 .ndo_fix_features = netvsc_fix_features,
1981 .ndo_set_features = netvsc_set_features,
1982 .ndo_change_mtu = netvsc_change_mtu,
1983 .ndo_validate_addr = eth_validate_addr,
1984 .ndo_set_mac_address = netvsc_set_mac_addr,
1985 .ndo_select_queue = netvsc_select_queue,
1986 .ndo_get_stats64 = netvsc_get_stats64,
1987 .ndo_bpf = netvsc_bpf,
1988 };
1989
1990 /*
1991 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1992 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1993 * present send GARP packet to network peers with netif_notify_peers().
1994 */
1995 static void netvsc_link_change(struct work_struct *w)
1996 {
1997 struct net_device_context *ndev_ctx =
1998 container_of(w, struct net_device_context, dwork.work);
1999 struct hv_device *device_obj = ndev_ctx->device_ctx;
2000 struct net_device *net = hv_get_drvdata(device_obj);
2001 struct netvsc_device *net_device;
2002 struct rndis_device *rdev;
2003 struct netvsc_reconfig *event = NULL;
2004 bool notify = false, reschedule = false;
2005 unsigned long flags, next_reconfig, delay;
2006
2007 /* if changes are happening, comeback later */
2008 if (!rtnl_trylock()) {
2009 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2010 return;
2011 }
2012
2013 net_device = rtnl_dereference(ndev_ctx->nvdev);
2014 if (!net_device)
2015 goto out_unlock;
2016
2017 rdev = net_device->extension;
2018
2019 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2020 if (time_is_after_jiffies(next_reconfig)) {
2021 /* link_watch only sends one notification with current state
2022 * per second, avoid doing reconfig more frequently. Handle
2023 * wrap around.
2024 */
2025 delay = next_reconfig - jiffies;
2026 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2027 schedule_delayed_work(&ndev_ctx->dwork, delay);
2028 goto out_unlock;
2029 }
2030 ndev_ctx->last_reconfig = jiffies;
2031
2032 spin_lock_irqsave(&ndev_ctx->lock, flags);
2033 if (!list_empty(&ndev_ctx->reconfig_events)) {
2034 event = list_first_entry(&ndev_ctx->reconfig_events,
2035 struct netvsc_reconfig, list);
2036 list_del(&event->list);
2037 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2038 }
2039 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2040
2041 if (!event)
2042 goto out_unlock;
2043
2044 switch (event->event) {
2045 /* Only the following events are possible due to the check in
2046 * netvsc_linkstatus_callback()
2047 */
2048 case RNDIS_STATUS_MEDIA_CONNECT:
2049 if (rdev->link_state) {
2050 rdev->link_state = false;
2051 netif_carrier_on(net);
2052 netvsc_tx_enable(net_device, net);
2053 } else {
2054 notify = true;
2055 }
2056 kfree(event);
2057 break;
2058 case RNDIS_STATUS_MEDIA_DISCONNECT:
2059 if (!rdev->link_state) {
2060 rdev->link_state = true;
2061 netif_carrier_off(net);
2062 netvsc_tx_disable(net_device, net);
2063 }
2064 kfree(event);
2065 break;
2066 case RNDIS_STATUS_NETWORK_CHANGE:
2067 /* Only makes sense if carrier is present */
2068 if (!rdev->link_state) {
2069 rdev->link_state = true;
2070 netif_carrier_off(net);
2071 netvsc_tx_disable(net_device, net);
2072 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2073 spin_lock_irqsave(&ndev_ctx->lock, flags);
2074 list_add(&event->list, &ndev_ctx->reconfig_events);
2075 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2076 reschedule = true;
2077 }
2078 break;
2079 }
2080
2081 rtnl_unlock();
2082
2083 if (notify)
2084 netdev_notify_peers(net);
2085
2086 /* link_watch only sends one notification with current state per
2087 * second, handle next reconfig event in 2 seconds.
2088 */
2089 if (reschedule)
2090 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2091
2092 return;
2093
2094 out_unlock:
2095 rtnl_unlock();
2096 }
2097
2098 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2099 {
2100 struct net_device_context *net_device_ctx;
2101 struct net_device *dev;
2102
2103 dev = netdev_master_upper_dev_get(vf_netdev);
2104 if (!dev || dev->netdev_ops != &device_ops)
2105 return NULL; /* not a netvsc device */
2106
2107 net_device_ctx = netdev_priv(dev);
2108 if (!rtnl_dereference(net_device_ctx->nvdev))
2109 return NULL; /* device is removed */
2110
2111 return dev;
2112 }
2113
2114 /* Called when VF is injecting data into network stack.
2115 * Change the associated network device from VF to netvsc.
2116 * note: already called with rcu_read_lock
2117 */
2118 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2119 {
2120 struct sk_buff *skb = *pskb;
2121 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2122 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2123 struct netvsc_vf_pcpu_stats *pcpu_stats
2124 = this_cpu_ptr(ndev_ctx->vf_stats);
2125
2126 skb = skb_share_check(skb, GFP_ATOMIC);
2127 if (unlikely(!skb))
2128 return RX_HANDLER_CONSUMED;
2129
2130 *pskb = skb;
2131
2132 skb->dev = ndev;
2133
2134 u64_stats_update_begin(&pcpu_stats->syncp);
2135 pcpu_stats->rx_packets++;
2136 pcpu_stats->rx_bytes += skb->len;
2137 u64_stats_update_end(&pcpu_stats->syncp);
2138
2139 return RX_HANDLER_ANOTHER;
2140 }
2141
2142 static int netvsc_vf_join(struct net_device *vf_netdev,
2143 struct net_device *ndev)
2144 {
2145 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2146 int ret;
2147
2148 ret = netdev_rx_handler_register(vf_netdev,
2149 netvsc_vf_handle_frame, ndev);
2150 if (ret != 0) {
2151 netdev_err(vf_netdev,
2152 "can not register netvsc VF receive handler (err = %d)\n",
2153 ret);
2154 goto rx_handler_failed;
2155 }
2156
2157 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2158 NULL, NULL, NULL);
2159 if (ret != 0) {
2160 netdev_err(vf_netdev,
2161 "can not set master device %s (err = %d)\n",
2162 ndev->name, ret);
2163 goto upper_link_failed;
2164 }
2165
2166 /* set slave flag before open to prevent IPv6 addrconf */
2167 vf_netdev->flags |= IFF_SLAVE;
2168
2169 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2170
2171 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2172
2173 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2174 return 0;
2175
2176 upper_link_failed:
2177 netdev_rx_handler_unregister(vf_netdev);
2178 rx_handler_failed:
2179 return ret;
2180 }
2181
2182 static void __netvsc_vf_setup(struct net_device *ndev,
2183 struct net_device *vf_netdev)
2184 {
2185 int ret;
2186
2187 /* Align MTU of VF with master */
2188 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2189 if (ret)
2190 netdev_warn(vf_netdev,
2191 "unable to change mtu to %u\n", ndev->mtu);
2192
2193 /* set multicast etc flags on VF */
2194 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2195
2196 /* sync address list from ndev to VF */
2197 netif_addr_lock_bh(ndev);
2198 dev_uc_sync(vf_netdev, ndev);
2199 dev_mc_sync(vf_netdev, ndev);
2200 netif_addr_unlock_bh(ndev);
2201
2202 if (netif_running(ndev)) {
2203 ret = dev_open(vf_netdev, NULL);
2204 if (ret)
2205 netdev_warn(vf_netdev,
2206 "unable to open: %d\n", ret);
2207 }
2208 }
2209
2210 /* Setup VF as slave of the synthetic device.
2211 * Runs in workqueue to avoid recursion in netlink callbacks.
2212 */
2213 static void netvsc_vf_setup(struct work_struct *w)
2214 {
2215 struct net_device_context *ndev_ctx
2216 = container_of(w, struct net_device_context, vf_takeover.work);
2217 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2218 struct net_device *vf_netdev;
2219
2220 if (!rtnl_trylock()) {
2221 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2222 return;
2223 }
2224
2225 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2226 if (vf_netdev)
2227 __netvsc_vf_setup(ndev, vf_netdev);
2228
2229 rtnl_unlock();
2230 }
2231
2232 /* Find netvsc by VF serial number.
2233 * The PCI hyperv controller records the serial number as the slot kobj name.
2234 */
2235 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2236 {
2237 struct device *parent = vf_netdev->dev.parent;
2238 struct net_device_context *ndev_ctx;
2239 struct pci_dev *pdev;
2240 u32 serial;
2241
2242 if (!parent || !dev_is_pci(parent))
2243 return NULL; /* not a PCI device */
2244
2245 pdev = to_pci_dev(parent);
2246 if (!pdev->slot) {
2247 netdev_notice(vf_netdev, "no PCI slot information\n");
2248 return NULL;
2249 }
2250
2251 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2252 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2253 pci_slot_name(pdev->slot));
2254 return NULL;
2255 }
2256
2257 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2258 if (!ndev_ctx->vf_alloc)
2259 continue;
2260
2261 if (ndev_ctx->vf_serial == serial)
2262 return hv_get_drvdata(ndev_ctx->device_ctx);
2263 }
2264
2265 netdev_notice(vf_netdev,
2266 "no netdev found for vf serial:%u\n", serial);
2267 return NULL;
2268 }
2269
2270 static int netvsc_register_vf(struct net_device *vf_netdev)
2271 {
2272 struct net_device_context *net_device_ctx;
2273 struct netvsc_device *netvsc_dev;
2274 struct bpf_prog *prog;
2275 struct net_device *ndev;
2276 int ret;
2277
2278 if (vf_netdev->addr_len != ETH_ALEN)
2279 return NOTIFY_DONE;
2280
2281 ndev = get_netvsc_byslot(vf_netdev);
2282 if (!ndev)
2283 return NOTIFY_DONE;
2284
2285 net_device_ctx = netdev_priv(ndev);
2286 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2287 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2288 return NOTIFY_DONE;
2289
2290 /* if synthetic interface is a different namespace,
2291 * then move the VF to that namespace; join will be
2292 * done again in that context.
2293 */
2294 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2295 ret = dev_change_net_namespace(vf_netdev,
2296 dev_net(ndev), "eth%d");
2297 if (ret)
2298 netdev_err(vf_netdev,
2299 "could not move to same namespace as %s: %d\n",
2300 ndev->name, ret);
2301 else
2302 netdev_info(vf_netdev,
2303 "VF moved to namespace with: %s\n",
2304 ndev->name);
2305 return NOTIFY_DONE;
2306 }
2307
2308 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2309
2310 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2311 return NOTIFY_DONE;
2312
2313 dev_hold(vf_netdev);
2314 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2315
2316 vf_netdev->wanted_features = ndev->features;
2317 netdev_update_features(vf_netdev);
2318
2319 prog = netvsc_xdp_get(netvsc_dev);
2320 netvsc_vf_setxdp(vf_netdev, prog);
2321
2322 return NOTIFY_OK;
2323 }
2324
2325 /* VF up/down change detected, schedule to change data path */
2326 static int netvsc_vf_changed(struct net_device *vf_netdev)
2327 {
2328 struct net_device_context *net_device_ctx;
2329 struct netvsc_device *netvsc_dev;
2330 struct net_device *ndev;
2331 bool vf_is_up = netif_running(vf_netdev);
2332
2333 ndev = get_netvsc_byref(vf_netdev);
2334 if (!ndev)
2335 return NOTIFY_DONE;
2336
2337 net_device_ctx = netdev_priv(ndev);
2338 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2339 if (!netvsc_dev)
2340 return NOTIFY_DONE;
2341
2342 netvsc_switch_datapath(ndev, vf_is_up);
2343 netdev_info(ndev, "Data path switched %s VF: %s\n",
2344 vf_is_up ? "to" : "from", vf_netdev->name);
2345
2346 return NOTIFY_OK;
2347 }
2348
2349 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2350 {
2351 struct net_device *ndev;
2352 struct net_device_context *net_device_ctx;
2353
2354 ndev = get_netvsc_byref(vf_netdev);
2355 if (!ndev)
2356 return NOTIFY_DONE;
2357
2358 net_device_ctx = netdev_priv(ndev);
2359 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2360
2361 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2362
2363 netvsc_vf_setxdp(vf_netdev, NULL);
2364
2365 netdev_rx_handler_unregister(vf_netdev);
2366 netdev_upper_dev_unlink(vf_netdev, ndev);
2367 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2368 dev_put(vf_netdev);
2369
2370 return NOTIFY_OK;
2371 }
2372
2373 static int netvsc_probe(struct hv_device *dev,
2374 const struct hv_vmbus_device_id *dev_id)
2375 {
2376 struct net_device *net = NULL;
2377 struct net_device_context *net_device_ctx;
2378 struct netvsc_device_info *device_info = NULL;
2379 struct netvsc_device *nvdev;
2380 int ret = -ENOMEM;
2381
2382 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2383 VRSS_CHANNEL_MAX);
2384 if (!net)
2385 goto no_net;
2386
2387 netif_carrier_off(net);
2388
2389 netvsc_init_settings(net);
2390
2391 net_device_ctx = netdev_priv(net);
2392 net_device_ctx->device_ctx = dev;
2393 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2394 if (netif_msg_probe(net_device_ctx))
2395 netdev_dbg(net, "netvsc msg_enable: %d\n",
2396 net_device_ctx->msg_enable);
2397
2398 hv_set_drvdata(dev, net);
2399
2400 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2401
2402 spin_lock_init(&net_device_ctx->lock);
2403 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2404 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2405
2406 net_device_ctx->vf_stats
2407 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2408 if (!net_device_ctx->vf_stats)
2409 goto no_stats;
2410
2411 net->netdev_ops = &device_ops;
2412 net->ethtool_ops = &ethtool_ops;
2413 SET_NETDEV_DEV(net, &dev->device);
2414
2415 /* We always need headroom for rndis header */
2416 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2417
2418 /* Initialize the number of queues to be 1, we may change it if more
2419 * channels are offered later.
2420 */
2421 netif_set_real_num_tx_queues(net, 1);
2422 netif_set_real_num_rx_queues(net, 1);
2423
2424 /* Notify the netvsc driver of the new device */
2425 device_info = netvsc_devinfo_get(NULL);
2426
2427 if (!device_info) {
2428 ret = -ENOMEM;
2429 goto devinfo_failed;
2430 }
2431
2432 nvdev = rndis_filter_device_add(dev, device_info);
2433 if (IS_ERR(nvdev)) {
2434 ret = PTR_ERR(nvdev);
2435 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2436 goto rndis_failed;
2437 }
2438
2439 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2440
2441 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2442 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2443 * all subchannels to show up, but that may not happen because
2444 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2445 * -> ... -> device_add() -> ... -> __device_attach() can't get
2446 * the device lock, so all the subchannels can't be processed --
2447 * finally netvsc_subchan_work() hangs forever.
2448 */
2449 rtnl_lock();
2450
2451 if (nvdev->num_chn > 1)
2452 schedule_work(&nvdev->subchan_work);
2453
2454 /* hw_features computed in rndis_netdev_set_hwcaps() */
2455 net->features = net->hw_features |
2456 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2457 NETIF_F_HW_VLAN_CTAG_RX;
2458 net->vlan_features = net->features;
2459
2460 /* MTU range: 68 - 1500 or 65521 */
2461 net->min_mtu = NETVSC_MTU_MIN;
2462 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2463 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2464 else
2465 net->max_mtu = ETH_DATA_LEN;
2466
2467 nvdev->tx_disable = false;
2468
2469 ret = register_netdevice(net);
2470 if (ret != 0) {
2471 pr_err("Unable to register netdev.\n");
2472 goto register_failed;
2473 }
2474
2475 list_add(&net_device_ctx->list, &netvsc_dev_list);
2476 rtnl_unlock();
2477
2478 netvsc_devinfo_put(device_info);
2479 return 0;
2480
2481 register_failed:
2482 rtnl_unlock();
2483 rndis_filter_device_remove(dev, nvdev);
2484 rndis_failed:
2485 netvsc_devinfo_put(device_info);
2486 devinfo_failed:
2487 free_percpu(net_device_ctx->vf_stats);
2488 no_stats:
2489 hv_set_drvdata(dev, NULL);
2490 free_netdev(net);
2491 no_net:
2492 return ret;
2493 }
2494
2495 static int netvsc_remove(struct hv_device *dev)
2496 {
2497 struct net_device_context *ndev_ctx;
2498 struct net_device *vf_netdev, *net;
2499 struct netvsc_device *nvdev;
2500
2501 net = hv_get_drvdata(dev);
2502 if (net == NULL) {
2503 dev_err(&dev->device, "No net device to remove\n");
2504 return 0;
2505 }
2506
2507 ndev_ctx = netdev_priv(net);
2508
2509 cancel_delayed_work_sync(&ndev_ctx->dwork);
2510
2511 rtnl_lock();
2512 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2513 if (nvdev) {
2514 cancel_work_sync(&nvdev->subchan_work);
2515 netvsc_xdp_set(net, NULL, NULL, nvdev);
2516 }
2517
2518 /*
2519 * Call to the vsc driver to let it know that the device is being
2520 * removed. Also blocks mtu and channel changes.
2521 */
2522 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2523 if (vf_netdev)
2524 netvsc_unregister_vf(vf_netdev);
2525
2526 if (nvdev)
2527 rndis_filter_device_remove(dev, nvdev);
2528
2529 unregister_netdevice(net);
2530 list_del(&ndev_ctx->list);
2531
2532 rtnl_unlock();
2533
2534 hv_set_drvdata(dev, NULL);
2535
2536 free_percpu(ndev_ctx->vf_stats);
2537 free_netdev(net);
2538 return 0;
2539 }
2540
2541 static int netvsc_suspend(struct hv_device *dev)
2542 {
2543 struct net_device_context *ndev_ctx;
2544 struct net_device *vf_netdev, *net;
2545 struct netvsc_device *nvdev;
2546 int ret;
2547
2548 net = hv_get_drvdata(dev);
2549
2550 ndev_ctx = netdev_priv(net);
2551 cancel_delayed_work_sync(&ndev_ctx->dwork);
2552
2553 rtnl_lock();
2554
2555 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2556 if (nvdev == NULL) {
2557 ret = -ENODEV;
2558 goto out;
2559 }
2560
2561 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2562 if (vf_netdev)
2563 netvsc_unregister_vf(vf_netdev);
2564
2565 /* Save the current config info */
2566 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2567
2568 ret = netvsc_detach(net, nvdev);
2569 out:
2570 rtnl_unlock();
2571
2572 return ret;
2573 }
2574
2575 static int netvsc_resume(struct hv_device *dev)
2576 {
2577 struct net_device *net = hv_get_drvdata(dev);
2578 struct net_device_context *net_device_ctx;
2579 struct netvsc_device_info *device_info;
2580 int ret;
2581
2582 rtnl_lock();
2583
2584 net_device_ctx = netdev_priv(net);
2585 device_info = net_device_ctx->saved_netvsc_dev_info;
2586
2587 ret = netvsc_attach(net, device_info);
2588
2589 netvsc_devinfo_put(device_info);
2590 net_device_ctx->saved_netvsc_dev_info = NULL;
2591
2592 rtnl_unlock();
2593
2594 return ret;
2595 }
2596 static const struct hv_vmbus_device_id id_table[] = {
2597 /* Network guid */
2598 { HV_NIC_GUID, },
2599 { },
2600 };
2601
2602 MODULE_DEVICE_TABLE(vmbus, id_table);
2603
2604 /* The one and only one */
2605 static struct hv_driver netvsc_drv = {
2606 .name = KBUILD_MODNAME,
2607 .id_table = id_table,
2608 .probe = netvsc_probe,
2609 .remove = netvsc_remove,
2610 .suspend = netvsc_suspend,
2611 .resume = netvsc_resume,
2612 .driver = {
2613 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2614 },
2615 };
2616
2617 /*
2618 * On Hyper-V, every VF interface is matched with a corresponding
2619 * synthetic interface. The synthetic interface is presented first
2620 * to the guest. When the corresponding VF instance is registered,
2621 * we will take care of switching the data path.
2622 */
2623 static int netvsc_netdev_event(struct notifier_block *this,
2624 unsigned long event, void *ptr)
2625 {
2626 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2627
2628 /* Skip our own events */
2629 if (event_dev->netdev_ops == &device_ops)
2630 return NOTIFY_DONE;
2631
2632 /* Avoid non-Ethernet type devices */
2633 if (event_dev->type != ARPHRD_ETHER)
2634 return NOTIFY_DONE;
2635
2636 /* Avoid Vlan dev with same MAC registering as VF */
2637 if (is_vlan_dev(event_dev))
2638 return NOTIFY_DONE;
2639
2640 /* Avoid Bonding master dev with same MAC registering as VF */
2641 if ((event_dev->priv_flags & IFF_BONDING) &&
2642 (event_dev->flags & IFF_MASTER))
2643 return NOTIFY_DONE;
2644
2645 switch (event) {
2646 case NETDEV_REGISTER:
2647 return netvsc_register_vf(event_dev);
2648 case NETDEV_UNREGISTER:
2649 return netvsc_unregister_vf(event_dev);
2650 case NETDEV_UP:
2651 case NETDEV_DOWN:
2652 return netvsc_vf_changed(event_dev);
2653 default:
2654 return NOTIFY_DONE;
2655 }
2656 }
2657
2658 static struct notifier_block netvsc_netdev_notifier = {
2659 .notifier_call = netvsc_netdev_event,
2660 };
2661
2662 static void __exit netvsc_drv_exit(void)
2663 {
2664 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2665 vmbus_driver_unregister(&netvsc_drv);
2666 }
2667
2668 static int __init netvsc_drv_init(void)
2669 {
2670 int ret;
2671
2672 if (ring_size < RING_SIZE_MIN) {
2673 ring_size = RING_SIZE_MIN;
2674 pr_info("Increased ring_size to %u (min allowed)\n",
2675 ring_size);
2676 }
2677 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2678
2679 ret = vmbus_driver_register(&netvsc_drv);
2680 if (ret)
2681 return ret;
2682
2683 register_netdevice_notifier(&netvsc_netdev_notifier);
2684 return 0;
2685 }
2686
2687 MODULE_LICENSE("GPL");
2688 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2689
2690 module_init(netvsc_drv_init);
2691 module_exit(netvsc_drv_exit);