]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/hyperv/netvsc_drv.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-artful-kernel.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42
43 #include "hyperv_net.h"
44
45 #define RING_SIZE_MIN 64
46 #define LINKCHANGE_INT (2 * HZ)
47
48 static int ring_size = 128;
49 module_param(ring_size, int, S_IRUGO);
50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51
52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 NETIF_MSG_TX_ERR;
56
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO);
59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61 static void netvsc_set_multicast_list(struct net_device *net)
62 {
63 struct net_device_context *net_device_ctx = netdev_priv(net);
64 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
65
66 rndis_filter_update(nvdev);
67 }
68
69 static int netvsc_open(struct net_device *net)
70 {
71 struct net_device_context *ndev_ctx = netdev_priv(net);
72 struct netvsc_device *nvdev = ndev_ctx->nvdev;
73 struct rndis_device *rdev;
74 int ret = 0;
75
76 netif_carrier_off(net);
77
78 /* Open up the device */
79 ret = rndis_filter_open(nvdev);
80 if (ret != 0) {
81 netdev_err(net, "unable to open device (ret %d).\n", ret);
82 return ret;
83 }
84
85 netif_tx_wake_all_queues(net);
86
87 rdev = nvdev->extension;
88 if (!rdev->link_state && !ndev_ctx->datapath)
89 netif_carrier_on(net);
90
91 return ret;
92 }
93
94 static int netvsc_close(struct net_device *net)
95 {
96 struct net_device_context *net_device_ctx = netdev_priv(net);
97 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
98 int ret;
99 u32 aread, i, msec = 10, retry = 0, retry_max = 20;
100 struct vmbus_channel *chn;
101
102 netif_tx_disable(net);
103
104 ret = rndis_filter_close(nvdev);
105 if (ret != 0) {
106 netdev_err(net, "unable to close device (ret %d).\n", ret);
107 return ret;
108 }
109
110 /* Ensure pending bytes in ring are read */
111 while (true) {
112 aread = 0;
113 for (i = 0; i < nvdev->num_chn; i++) {
114 chn = nvdev->chan_table[i].channel;
115 if (!chn)
116 continue;
117
118 aread = hv_get_bytes_to_read(&chn->inbound);
119 if (aread)
120 break;
121
122 aread = hv_get_bytes_to_read(&chn->outbound);
123 if (aread)
124 break;
125 }
126
127 retry++;
128 if (retry > retry_max || aread == 0)
129 break;
130
131 msleep(msec);
132
133 if (msec < 1000)
134 msec *= 2;
135 }
136
137 if (aread) {
138 netdev_err(net, "Ring buffer not empty after closing rndis\n");
139 ret = -ETIMEDOUT;
140 }
141
142 return ret;
143 }
144
145 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
146 int pkt_type)
147 {
148 struct rndis_packet *rndis_pkt;
149 struct rndis_per_packet_info *ppi;
150
151 rndis_pkt = &msg->msg.pkt;
152 rndis_pkt->data_offset += ppi_size;
153
154 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
155 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
156
157 ppi->size = ppi_size;
158 ppi->type = pkt_type;
159 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
160
161 rndis_pkt->per_pkt_info_len += ppi_size;
162
163 return ppi;
164 }
165
166 /* Azure hosts don't support non-TCP port numbers in hashing yet. We compute
167 * hash for non-TCP traffic with only IP numbers.
168 */
169 static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk)
170 {
171 struct flow_keys flow;
172 u32 hash;
173 static u32 hashrnd __read_mostly;
174
175 net_get_random_once(&hashrnd, sizeof(hashrnd));
176
177 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
178 return 0;
179
180 if (flow.basic.ip_proto == IPPROTO_TCP) {
181 return skb_get_hash(skb);
182 } else {
183 if (flow.basic.n_proto == htons(ETH_P_IP))
184 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
185 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
186 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
187 else
188 hash = 0;
189
190 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
191 }
192
193 return hash;
194 }
195
196 static inline int netvsc_get_tx_queue(struct net_device *ndev,
197 struct sk_buff *skb, int old_idx)
198 {
199 const struct net_device_context *ndc = netdev_priv(ndev);
200 struct sock *sk = skb->sk;
201 int q_idx;
202
203 q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) &
204 (VRSS_SEND_TAB_SIZE - 1)];
205
206 /* If queue index changed record the new value */
207 if (q_idx != old_idx &&
208 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
209 sk_tx_queue_set(sk, q_idx);
210
211 return q_idx;
212 }
213
214 /*
215 * Select queue for transmit.
216 *
217 * If a valid queue has already been assigned, then use that.
218 * Otherwise compute tx queue based on hash and the send table.
219 *
220 * This is basically similar to default (__netdev_pick_tx) with the added step
221 * of using the host send_table when no other queue has been assigned.
222 *
223 * TODO support XPS - but get_xps_queue not exported
224 */
225 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
226 void *accel_priv, select_queue_fallback_t fallback)
227 {
228 unsigned int num_tx_queues = ndev->real_num_tx_queues;
229 int q_idx = sk_tx_queue_get(skb->sk);
230
231 if (q_idx < 0 || skb->ooo_okay) {
232 /* If forwarding a packet, we use the recorded queue when
233 * available for better cache locality.
234 */
235 if (skb_rx_queue_recorded(skb))
236 q_idx = skb_get_rx_queue(skb);
237 else
238 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
239 }
240
241 while (unlikely(q_idx >= num_tx_queues))
242 q_idx -= num_tx_queues;
243
244 return q_idx;
245 }
246
247 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
248 struct hv_page_buffer *pb)
249 {
250 int j = 0;
251
252 /* Deal with compund pages by ignoring unused part
253 * of the page.
254 */
255 page += (offset >> PAGE_SHIFT);
256 offset &= ~PAGE_MASK;
257
258 while (len > 0) {
259 unsigned long bytes;
260
261 bytes = PAGE_SIZE - offset;
262 if (bytes > len)
263 bytes = len;
264 pb[j].pfn = page_to_pfn(page);
265 pb[j].offset = offset;
266 pb[j].len = bytes;
267
268 offset += bytes;
269 len -= bytes;
270
271 if (offset == PAGE_SIZE && len) {
272 page++;
273 offset = 0;
274 j++;
275 }
276 }
277
278 return j + 1;
279 }
280
281 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
282 struct hv_netvsc_packet *packet,
283 struct hv_page_buffer **page_buf)
284 {
285 struct hv_page_buffer *pb = *page_buf;
286 u32 slots_used = 0;
287 char *data = skb->data;
288 int frags = skb_shinfo(skb)->nr_frags;
289 int i;
290
291 /* The packet is laid out thus:
292 * 1. hdr: RNDIS header and PPI
293 * 2. skb linear data
294 * 3. skb fragment data
295 */
296 if (hdr != NULL)
297 slots_used += fill_pg_buf(virt_to_page(hdr),
298 offset_in_page(hdr),
299 len, &pb[slots_used]);
300
301 packet->rmsg_size = len;
302 packet->rmsg_pgcnt = slots_used;
303
304 slots_used += fill_pg_buf(virt_to_page(data),
305 offset_in_page(data),
306 skb_headlen(skb), &pb[slots_used]);
307
308 for (i = 0; i < frags; i++) {
309 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
310
311 slots_used += fill_pg_buf(skb_frag_page(frag),
312 frag->page_offset,
313 skb_frag_size(frag), &pb[slots_used]);
314 }
315 return slots_used;
316 }
317
318 static int count_skb_frag_slots(struct sk_buff *skb)
319 {
320 int i, frags = skb_shinfo(skb)->nr_frags;
321 int pages = 0;
322
323 for (i = 0; i < frags; i++) {
324 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
325 unsigned long size = skb_frag_size(frag);
326 unsigned long offset = frag->page_offset;
327
328 /* Skip unused frames from start of page */
329 offset &= ~PAGE_MASK;
330 pages += PFN_UP(offset + size);
331 }
332 return pages;
333 }
334
335 static int netvsc_get_slots(struct sk_buff *skb)
336 {
337 char *data = skb->data;
338 unsigned int offset = offset_in_page(data);
339 unsigned int len = skb_headlen(skb);
340 int slots;
341 int frag_slots;
342
343 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
344 frag_slots = count_skb_frag_slots(skb);
345 return slots + frag_slots;
346 }
347
348 static u32 net_checksum_info(struct sk_buff *skb)
349 {
350 if (skb->protocol == htons(ETH_P_IP)) {
351 struct iphdr *ip = ip_hdr(skb);
352
353 if (ip->protocol == IPPROTO_TCP)
354 return TRANSPORT_INFO_IPV4_TCP;
355 else if (ip->protocol == IPPROTO_UDP)
356 return TRANSPORT_INFO_IPV4_UDP;
357 } else {
358 struct ipv6hdr *ip6 = ipv6_hdr(skb);
359
360 if (ip6->nexthdr == IPPROTO_TCP)
361 return TRANSPORT_INFO_IPV6_TCP;
362 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
363 return TRANSPORT_INFO_IPV6_UDP;
364 }
365
366 return TRANSPORT_INFO_NOT_IP;
367 }
368
369 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
370 {
371 struct net_device_context *net_device_ctx = netdev_priv(net);
372 struct hv_netvsc_packet *packet = NULL;
373 int ret;
374 unsigned int num_data_pgs;
375 struct rndis_message *rndis_msg;
376 struct rndis_packet *rndis_pkt;
377 u32 rndis_msg_size;
378 struct rndis_per_packet_info *ppi;
379 u32 hash;
380 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
381 struct hv_page_buffer *pb = page_buf;
382
383 /* We will atmost need two pages to describe the rndis
384 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
385 * of pages in a single packet. If skb is scattered around
386 * more pages we try linearizing it.
387 */
388
389 num_data_pgs = netvsc_get_slots(skb) + 2;
390
391 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
392 ++net_device_ctx->eth_stats.tx_scattered;
393
394 if (skb_linearize(skb))
395 goto no_memory;
396
397 num_data_pgs = netvsc_get_slots(skb) + 2;
398 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
399 ++net_device_ctx->eth_stats.tx_too_big;
400 goto drop;
401 }
402 }
403
404 /*
405 * Place the rndis header in the skb head room and
406 * the skb->cb will be used for hv_netvsc_packet
407 * structure.
408 */
409 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
410 if (ret)
411 goto no_memory;
412
413 /* Use the skb control buffer for building up the packet */
414 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
415 FIELD_SIZEOF(struct sk_buff, cb));
416 packet = (struct hv_netvsc_packet *)skb->cb;
417
418 packet->q_idx = skb_get_queue_mapping(skb);
419
420 packet->total_data_buflen = skb->len;
421 packet->total_bytes = skb->len;
422 packet->total_packets = 1;
423
424 rndis_msg = (struct rndis_message *)skb->head;
425
426 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
427
428 /* Add the rndis header */
429 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
430 rndis_msg->msg_len = packet->total_data_buflen;
431 rndis_pkt = &rndis_msg->msg.pkt;
432 rndis_pkt->data_offset = sizeof(struct rndis_packet);
433 rndis_pkt->data_len = packet->total_data_buflen;
434 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
435
436 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
437
438 hash = skb_get_hash_raw(skb);
439 if (hash != 0 && net->real_num_tx_queues > 1) {
440 rndis_msg_size += NDIS_HASH_PPI_SIZE;
441 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
442 NBL_HASH_VALUE);
443 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
444 }
445
446 if (skb_vlan_tag_present(skb)) {
447 struct ndis_pkt_8021q_info *vlan;
448
449 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
450 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
451 IEEE_8021Q_INFO);
452 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
453 ppi->ppi_offset);
454 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
455 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
456 VLAN_PRIO_SHIFT;
457 }
458
459 if (skb_is_gso(skb)) {
460 struct ndis_tcp_lso_info *lso_info;
461
462 rndis_msg_size += NDIS_LSO_PPI_SIZE;
463 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
464 TCP_LARGESEND_PKTINFO);
465
466 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
467 ppi->ppi_offset);
468
469 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
470 if (skb->protocol == htons(ETH_P_IP)) {
471 lso_info->lso_v2_transmit.ip_version =
472 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
473 ip_hdr(skb)->tot_len = 0;
474 ip_hdr(skb)->check = 0;
475 tcp_hdr(skb)->check =
476 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
477 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
478 } else {
479 lso_info->lso_v2_transmit.ip_version =
480 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
481 ipv6_hdr(skb)->payload_len = 0;
482 tcp_hdr(skb)->check =
483 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
484 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
485 }
486 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
487 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
488 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
489 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
490 struct ndis_tcp_ip_checksum_info *csum_info;
491
492 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
493 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
494 TCPIP_CHKSUM_PKTINFO);
495
496 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
497 ppi->ppi_offset);
498
499 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
500
501 if (skb->protocol == htons(ETH_P_IP)) {
502 csum_info->transmit.is_ipv4 = 1;
503
504 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
505 csum_info->transmit.tcp_checksum = 1;
506 else
507 csum_info->transmit.udp_checksum = 1;
508 } else {
509 csum_info->transmit.is_ipv6 = 1;
510
511 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
512 csum_info->transmit.tcp_checksum = 1;
513 else
514 csum_info->transmit.udp_checksum = 1;
515 }
516 } else {
517 /* Can't do offload of this type of checksum */
518 if (skb_checksum_help(skb))
519 goto drop;
520 }
521 }
522
523 /* Start filling in the page buffers with the rndis hdr */
524 rndis_msg->msg_len += rndis_msg_size;
525 packet->total_data_buflen = rndis_msg->msg_len;
526 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
527 skb, packet, &pb);
528
529 /* timestamp packet in software */
530 skb_tx_timestamp(skb);
531 ret = netvsc_send(net_device_ctx->device_ctx, packet,
532 rndis_msg, &pb, skb);
533 if (likely(ret == 0))
534 return NETDEV_TX_OK;
535
536 if (ret == -EAGAIN) {
537 ++net_device_ctx->eth_stats.tx_busy;
538 return NETDEV_TX_BUSY;
539 }
540
541 if (ret == -ENOSPC)
542 ++net_device_ctx->eth_stats.tx_no_space;
543
544 drop:
545 dev_kfree_skb_any(skb);
546 net->stats.tx_dropped++;
547
548 return NETDEV_TX_OK;
549
550 no_memory:
551 ++net_device_ctx->eth_stats.tx_no_memory;
552 goto drop;
553 }
554 /*
555 * netvsc_linkstatus_callback - Link up/down notification
556 */
557 void netvsc_linkstatus_callback(struct hv_device *device_obj,
558 struct rndis_message *resp)
559 {
560 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
561 struct net_device *net;
562 struct net_device_context *ndev_ctx;
563 struct netvsc_reconfig *event;
564 unsigned long flags;
565
566 net = hv_get_drvdata(device_obj);
567
568 if (!net)
569 return;
570
571 ndev_ctx = netdev_priv(net);
572
573 /* Update the physical link speed when changing to another vSwitch */
574 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
575 u32 speed;
576
577 speed = *(u32 *)((void *)indicate + indicate->
578 status_buf_offset) / 10000;
579 ndev_ctx->speed = speed;
580 return;
581 }
582
583 /* Handle these link change statuses below */
584 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
585 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
586 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
587 return;
588
589 if (net->reg_state != NETREG_REGISTERED)
590 return;
591
592 event = kzalloc(sizeof(*event), GFP_ATOMIC);
593 if (!event)
594 return;
595 event->event = indicate->status;
596
597 spin_lock_irqsave(&ndev_ctx->lock, flags);
598 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
599 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
600
601 schedule_delayed_work(&ndev_ctx->dwork, 0);
602 }
603
604 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
605 struct napi_struct *napi,
606 const struct ndis_tcp_ip_checksum_info *csum_info,
607 const struct ndis_pkt_8021q_info *vlan,
608 void *data, u32 buflen)
609 {
610 struct sk_buff *skb;
611
612 skb = napi_alloc_skb(napi, buflen);
613 if (!skb)
614 return skb;
615
616 /*
617 * Copy to skb. This copy is needed here since the memory pointed by
618 * hv_netvsc_packet cannot be deallocated
619 */
620 skb_put_data(skb, data, buflen);
621
622 skb->protocol = eth_type_trans(skb, net);
623
624 /* skb is already created with CHECKSUM_NONE */
625 skb_checksum_none_assert(skb);
626
627 /*
628 * In Linux, the IP checksum is always checked.
629 * Do L4 checksum offload if enabled and present.
630 */
631 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
632 if (csum_info->receive.tcp_checksum_succeeded ||
633 csum_info->receive.udp_checksum_succeeded)
634 skb->ip_summed = CHECKSUM_UNNECESSARY;
635 }
636
637 if (vlan) {
638 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
639
640 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
641 vlan_tci);
642 }
643
644 return skb;
645 }
646
647 /*
648 * netvsc_recv_callback - Callback when we receive a packet from the
649 * "wire" on the specified device.
650 */
651 int netvsc_recv_callback(struct net_device *net,
652 struct vmbus_channel *channel,
653 void *data, u32 len,
654 const struct ndis_tcp_ip_checksum_info *csum_info,
655 const struct ndis_pkt_8021q_info *vlan)
656 {
657 struct net_device_context *net_device_ctx = netdev_priv(net);
658 struct netvsc_device *net_device;
659 u16 q_idx = channel->offermsg.offer.sub_channel_index;
660 struct netvsc_channel *nvchan;
661 struct net_device *vf_netdev;
662 struct sk_buff *skb;
663 struct netvsc_stats *rx_stats;
664
665 if (net->reg_state != NETREG_REGISTERED)
666 return NVSP_STAT_FAIL;
667
668 /*
669 * If necessary, inject this packet into the VF interface.
670 * On Hyper-V, multicast and brodcast packets are only delivered
671 * to the synthetic interface (after subjecting these to
672 * policy filters on the host). Deliver these via the VF
673 * interface in the guest.
674 */
675 rcu_read_lock();
676 net_device = rcu_dereference(net_device_ctx->nvdev);
677 if (unlikely(!net_device))
678 goto drop;
679
680 nvchan = &net_device->chan_table[q_idx];
681 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
682 if (vf_netdev && (vf_netdev->flags & IFF_UP))
683 net = vf_netdev;
684
685 /* Allocate a skb - TODO direct I/O to pages? */
686 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
687 csum_info, vlan, data, len);
688 if (unlikely(!skb)) {
689 drop:
690 ++net->stats.rx_dropped;
691 rcu_read_unlock();
692 return NVSP_STAT_FAIL;
693 }
694
695 if (net != vf_netdev)
696 skb_record_rx_queue(skb, q_idx);
697
698 /*
699 * Even if injecting the packet, record the statistics
700 * on the synthetic device because modifying the VF device
701 * statistics will not work correctly.
702 */
703 rx_stats = &nvchan->rx_stats;
704 u64_stats_update_begin(&rx_stats->syncp);
705 rx_stats->packets++;
706 rx_stats->bytes += len;
707
708 if (skb->pkt_type == PACKET_BROADCAST)
709 ++rx_stats->broadcast;
710 else if (skb->pkt_type == PACKET_MULTICAST)
711 ++rx_stats->multicast;
712 u64_stats_update_end(&rx_stats->syncp);
713
714 napi_gro_receive(&nvchan->napi, skb);
715 rcu_read_unlock();
716
717 return 0;
718 }
719
720 static void netvsc_get_drvinfo(struct net_device *net,
721 struct ethtool_drvinfo *info)
722 {
723 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
724 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
725 }
726
727 static void netvsc_get_channels(struct net_device *net,
728 struct ethtool_channels *channel)
729 {
730 struct net_device_context *net_device_ctx = netdev_priv(net);
731 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
732
733 if (nvdev) {
734 channel->max_combined = nvdev->max_chn;
735 channel->combined_count = nvdev->num_chn;
736 }
737 }
738
739 static int netvsc_set_queues(struct net_device *net, struct hv_device *dev,
740 u32 num_chn)
741 {
742 struct netvsc_device_info device_info;
743 int ret;
744
745 memset(&device_info, 0, sizeof(device_info));
746 device_info.num_chn = num_chn;
747 device_info.ring_size = ring_size;
748 device_info.max_num_vrss_chns = num_chn;
749
750 ret = rndis_filter_device_add(dev, &device_info);
751 if (ret)
752 return ret;
753
754 ret = netif_set_real_num_tx_queues(net, num_chn);
755 if (ret)
756 return ret;
757
758 ret = netif_set_real_num_rx_queues(net, num_chn);
759
760 return ret;
761 }
762
763 static int netvsc_set_channels(struct net_device *net,
764 struct ethtool_channels *channels)
765 {
766 struct net_device_context *net_device_ctx = netdev_priv(net);
767 struct hv_device *dev = net_device_ctx->device_ctx;
768 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
769 unsigned int count = channels->combined_count;
770 bool was_running;
771 int ret;
772
773 /* We do not support separate count for rx, tx, or other */
774 if (count == 0 ||
775 channels->rx_count || channels->tx_count || channels->other_count)
776 return -EINVAL;
777
778 if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX)
779 return -EINVAL;
780
781 if (!nvdev || nvdev->destroy)
782 return -ENODEV;
783
784 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
785 return -EINVAL;
786
787 if (count > nvdev->max_chn)
788 return -EINVAL;
789
790 was_running = netif_running(net);
791 if (was_running) {
792 ret = netvsc_close(net);
793 if (ret)
794 return ret;
795 }
796
797 rndis_filter_device_remove(dev, nvdev);
798
799 ret = netvsc_set_queues(net, dev, count);
800 if (ret == 0)
801 nvdev->num_chn = count;
802 else
803 netvsc_set_queues(net, dev, nvdev->num_chn);
804
805 if (was_running)
806 ret = netvsc_open(net);
807
808 /* We may have missed link change notifications */
809 schedule_delayed_work(&net_device_ctx->dwork, 0);
810
811 return ret;
812 }
813
814 static bool
815 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
816 {
817 struct ethtool_link_ksettings diff1 = *cmd;
818 struct ethtool_link_ksettings diff2 = {};
819
820 diff1.base.speed = 0;
821 diff1.base.duplex = 0;
822 /* advertising and cmd are usually set */
823 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
824 diff1.base.cmd = 0;
825 /* We set port to PORT_OTHER */
826 diff2.base.port = PORT_OTHER;
827
828 return !memcmp(&diff1, &diff2, sizeof(diff1));
829 }
830
831 static void netvsc_init_settings(struct net_device *dev)
832 {
833 struct net_device_context *ndc = netdev_priv(dev);
834
835 ndc->speed = SPEED_UNKNOWN;
836 ndc->duplex = DUPLEX_FULL;
837 }
838
839 static int netvsc_get_link_ksettings(struct net_device *dev,
840 struct ethtool_link_ksettings *cmd)
841 {
842 struct net_device_context *ndc = netdev_priv(dev);
843
844 cmd->base.speed = ndc->speed;
845 cmd->base.duplex = ndc->duplex;
846 cmd->base.port = PORT_OTHER;
847
848 return 0;
849 }
850
851 static int netvsc_set_link_ksettings(struct net_device *dev,
852 const struct ethtool_link_ksettings *cmd)
853 {
854 struct net_device_context *ndc = netdev_priv(dev);
855 u32 speed;
856
857 speed = cmd->base.speed;
858 if (!ethtool_validate_speed(speed) ||
859 !ethtool_validate_duplex(cmd->base.duplex) ||
860 !netvsc_validate_ethtool_ss_cmd(cmd))
861 return -EINVAL;
862
863 ndc->speed = speed;
864 ndc->duplex = cmd->base.duplex;
865
866 return 0;
867 }
868
869 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
870 {
871 struct net_device_context *ndevctx = netdev_priv(ndev);
872 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
873 struct hv_device *hdev = ndevctx->device_ctx;
874 struct netvsc_device_info device_info;
875 bool was_running;
876 int ret = 0;
877
878 if (!nvdev || nvdev->destroy)
879 return -ENODEV;
880
881 was_running = netif_running(ndev);
882 if (was_running) {
883 ret = netvsc_close(ndev);
884 if (ret)
885 return ret;
886 }
887
888 memset(&device_info, 0, sizeof(device_info));
889 device_info.ring_size = ring_size;
890 device_info.num_chn = nvdev->num_chn;
891 device_info.max_num_vrss_chns = nvdev->num_chn;
892
893 rndis_filter_device_remove(hdev, nvdev);
894
895 /* 'nvdev' has been freed in rndis_filter_device_remove() ->
896 * netvsc_device_remove () -> free_netvsc_device().
897 * We mustn't access it before it's re-created in
898 * rndis_filter_device_add() -> netvsc_device_add().
899 */
900
901 ndev->mtu = mtu;
902
903 rndis_filter_device_add(hdev, &device_info);
904
905 if (was_running)
906 ret = netvsc_open(ndev);
907
908 /* We may have missed link change notifications */
909 schedule_delayed_work(&ndevctx->dwork, 0);
910
911 return ret;
912 }
913
914 static void netvsc_get_stats64(struct net_device *net,
915 struct rtnl_link_stats64 *t)
916 {
917 struct net_device_context *ndev_ctx = netdev_priv(net);
918 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
919 int i;
920
921 if (!nvdev)
922 return;
923
924 for (i = 0; i < nvdev->num_chn; i++) {
925 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
926 const struct netvsc_stats *stats;
927 u64 packets, bytes, multicast;
928 unsigned int start;
929
930 stats = &nvchan->tx_stats;
931 do {
932 start = u64_stats_fetch_begin_irq(&stats->syncp);
933 packets = stats->packets;
934 bytes = stats->bytes;
935 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
936
937 t->tx_bytes += bytes;
938 t->tx_packets += packets;
939
940 stats = &nvchan->rx_stats;
941 do {
942 start = u64_stats_fetch_begin_irq(&stats->syncp);
943 packets = stats->packets;
944 bytes = stats->bytes;
945 multicast = stats->multicast + stats->broadcast;
946 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
947
948 t->rx_bytes += bytes;
949 t->rx_packets += packets;
950 t->multicast += multicast;
951 }
952
953 t->tx_dropped = net->stats.tx_dropped;
954 t->tx_errors = net->stats.tx_errors;
955
956 t->rx_dropped = net->stats.rx_dropped;
957 t->rx_errors = net->stats.rx_errors;
958 }
959
960 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
961 {
962 struct sockaddr *addr = p;
963 char save_adr[ETH_ALEN];
964 unsigned char save_aatype;
965 int err;
966
967 memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
968 save_aatype = ndev->addr_assign_type;
969
970 err = eth_mac_addr(ndev, p);
971 if (err != 0)
972 return err;
973
974 err = rndis_filter_set_device_mac(ndev, addr->sa_data);
975 if (err != 0) {
976 /* roll back to saved MAC */
977 memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
978 ndev->addr_assign_type = save_aatype;
979 }
980
981 return err;
982 }
983
984 static const struct {
985 char name[ETH_GSTRING_LEN];
986 u16 offset;
987 } netvsc_stats[] = {
988 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
989 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
990 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
991 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
992 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
993 };
994
995 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
996
997 /* 4 statistics per queue (rx/tx packets/bytes) */
998 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
999
1000 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1001 {
1002 struct net_device_context *ndc = netdev_priv(dev);
1003 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1004
1005 if (!nvdev)
1006 return -ENODEV;
1007
1008 switch (string_set) {
1009 case ETH_SS_STATS:
1010 return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev);
1011 default:
1012 return -EINVAL;
1013 }
1014 }
1015
1016 static void netvsc_get_ethtool_stats(struct net_device *dev,
1017 struct ethtool_stats *stats, u64 *data)
1018 {
1019 struct net_device_context *ndc = netdev_priv(dev);
1020 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1021 const void *nds = &ndc->eth_stats;
1022 const struct netvsc_stats *qstats;
1023 unsigned int start;
1024 u64 packets, bytes;
1025 int i, j;
1026
1027 if (!nvdev)
1028 return;
1029
1030 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1031 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1032
1033 for (j = 0; j < nvdev->num_chn; j++) {
1034 qstats = &nvdev->chan_table[j].tx_stats;
1035
1036 do {
1037 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1038 packets = qstats->packets;
1039 bytes = qstats->bytes;
1040 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1041 data[i++] = packets;
1042 data[i++] = bytes;
1043
1044 qstats = &nvdev->chan_table[j].rx_stats;
1045 do {
1046 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1047 packets = qstats->packets;
1048 bytes = qstats->bytes;
1049 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1050 data[i++] = packets;
1051 data[i++] = bytes;
1052 }
1053 }
1054
1055 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1056 {
1057 struct net_device_context *ndc = netdev_priv(dev);
1058 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1059 u8 *p = data;
1060 int i;
1061
1062 if (!nvdev)
1063 return;
1064
1065 switch (stringset) {
1066 case ETH_SS_STATS:
1067 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1068 memcpy(p + i * ETH_GSTRING_LEN,
1069 netvsc_stats[i].name, ETH_GSTRING_LEN);
1070
1071 p += i * ETH_GSTRING_LEN;
1072 for (i = 0; i < nvdev->num_chn; i++) {
1073 sprintf(p, "tx_queue_%u_packets", i);
1074 p += ETH_GSTRING_LEN;
1075 sprintf(p, "tx_queue_%u_bytes", i);
1076 p += ETH_GSTRING_LEN;
1077 sprintf(p, "rx_queue_%u_packets", i);
1078 p += ETH_GSTRING_LEN;
1079 sprintf(p, "rx_queue_%u_bytes", i);
1080 p += ETH_GSTRING_LEN;
1081 }
1082
1083 break;
1084 }
1085 }
1086
1087 static int
1088 netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
1089 struct ethtool_rxnfc *info)
1090 {
1091 info->data = RXH_IP_SRC | RXH_IP_DST;
1092
1093 switch (info->flow_type) {
1094 case TCP_V4_FLOW:
1095 case TCP_V6_FLOW:
1096 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1097 /* fallthrough */
1098 case UDP_V4_FLOW:
1099 case UDP_V6_FLOW:
1100 case IPV4_FLOW:
1101 case IPV6_FLOW:
1102 break;
1103 default:
1104 info->data = 0;
1105 break;
1106 }
1107
1108 return 0;
1109 }
1110
1111 static int
1112 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1113 u32 *rules)
1114 {
1115 struct net_device_context *ndc = netdev_priv(dev);
1116 struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1117
1118 if (!nvdev)
1119 return -ENODEV;
1120
1121 switch (info->cmd) {
1122 case ETHTOOL_GRXRINGS:
1123 info->data = nvdev->num_chn;
1124 return 0;
1125
1126 case ETHTOOL_GRXFH:
1127 return netvsc_get_rss_hash_opts(nvdev, info);
1128 }
1129 return -EOPNOTSUPP;
1130 }
1131
1132 #ifdef CONFIG_NET_POLL_CONTROLLER
1133 static void netvsc_poll_controller(struct net_device *dev)
1134 {
1135 struct net_device_context *ndc = netdev_priv(dev);
1136 struct netvsc_device *ndev;
1137 int i;
1138
1139 rcu_read_lock();
1140 ndev = rcu_dereference(ndc->nvdev);
1141 if (ndev) {
1142 for (i = 0; i < ndev->num_chn; i++) {
1143 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1144
1145 napi_schedule(&nvchan->napi);
1146 }
1147 }
1148 rcu_read_unlock();
1149 }
1150 #endif
1151
1152 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1153 {
1154 return NETVSC_HASH_KEYLEN;
1155 }
1156
1157 static u32 netvsc_rss_indir_size(struct net_device *dev)
1158 {
1159 return ITAB_NUM;
1160 }
1161
1162 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1163 u8 *hfunc)
1164 {
1165 struct net_device_context *ndc = netdev_priv(dev);
1166 struct netvsc_device *ndev = rcu_dereference(ndc->nvdev);
1167 struct rndis_device *rndis_dev;
1168 int i;
1169
1170 if (!ndev)
1171 return -ENODEV;
1172
1173 if (hfunc)
1174 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1175
1176 rndis_dev = ndev->extension;
1177 if (indir) {
1178 for (i = 0; i < ITAB_NUM; i++)
1179 indir[i] = rndis_dev->ind_table[i];
1180 }
1181
1182 if (key)
1183 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1184
1185 return 0;
1186 }
1187
1188 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1189 const u8 *key, const u8 hfunc)
1190 {
1191 struct net_device_context *ndc = netdev_priv(dev);
1192 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1193 struct rndis_device *rndis_dev;
1194 int i;
1195
1196 if (!ndev)
1197 return -ENODEV;
1198
1199 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1200 return -EOPNOTSUPP;
1201
1202 rndis_dev = ndev->extension;
1203 if (indir) {
1204 for (i = 0; i < ITAB_NUM; i++)
1205 if (indir[i] >= VRSS_CHANNEL_MAX)
1206 return -EINVAL;
1207
1208 for (i = 0; i < ITAB_NUM; i++)
1209 rndis_dev->ind_table[i] = indir[i];
1210 }
1211
1212 if (!key) {
1213 if (!indir)
1214 return 0;
1215
1216 key = rndis_dev->rss_key;
1217 }
1218
1219 return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
1220 }
1221
1222 static const struct ethtool_ops ethtool_ops = {
1223 .get_drvinfo = netvsc_get_drvinfo,
1224 .get_link = ethtool_op_get_link,
1225 .get_ethtool_stats = netvsc_get_ethtool_stats,
1226 .get_sset_count = netvsc_get_sset_count,
1227 .get_strings = netvsc_get_strings,
1228 .get_channels = netvsc_get_channels,
1229 .set_channels = netvsc_set_channels,
1230 .get_ts_info = ethtool_op_get_ts_info,
1231 .get_rxnfc = netvsc_get_rxnfc,
1232 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1233 .get_rxfh_indir_size = netvsc_rss_indir_size,
1234 .get_rxfh = netvsc_get_rxfh,
1235 .set_rxfh = netvsc_set_rxfh,
1236 .get_link_ksettings = netvsc_get_link_ksettings,
1237 .set_link_ksettings = netvsc_set_link_ksettings,
1238 };
1239
1240 static const struct net_device_ops device_ops = {
1241 .ndo_open = netvsc_open,
1242 .ndo_stop = netvsc_close,
1243 .ndo_start_xmit = netvsc_start_xmit,
1244 .ndo_set_rx_mode = netvsc_set_multicast_list,
1245 .ndo_change_mtu = netvsc_change_mtu,
1246 .ndo_validate_addr = eth_validate_addr,
1247 .ndo_set_mac_address = netvsc_set_mac_addr,
1248 .ndo_select_queue = netvsc_select_queue,
1249 .ndo_get_stats64 = netvsc_get_stats64,
1250 #ifdef CONFIG_NET_POLL_CONTROLLER
1251 .ndo_poll_controller = netvsc_poll_controller,
1252 #endif
1253 };
1254
1255 /*
1256 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1257 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1258 * present send GARP packet to network peers with netif_notify_peers().
1259 */
1260 static void netvsc_link_change(struct work_struct *w)
1261 {
1262 struct net_device_context *ndev_ctx =
1263 container_of(w, struct net_device_context, dwork.work);
1264 struct hv_device *device_obj = ndev_ctx->device_ctx;
1265 struct net_device *net = hv_get_drvdata(device_obj);
1266 struct netvsc_device *net_device;
1267 struct rndis_device *rdev;
1268 struct netvsc_reconfig *event = NULL;
1269 bool notify = false, reschedule = false;
1270 unsigned long flags, next_reconfig, delay;
1271
1272 rtnl_lock();
1273 net_device = rtnl_dereference(ndev_ctx->nvdev);
1274 if (!net_device)
1275 goto out_unlock;
1276
1277 rdev = net_device->extension;
1278
1279 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1280 if (time_is_after_jiffies(next_reconfig)) {
1281 /* link_watch only sends one notification with current state
1282 * per second, avoid doing reconfig more frequently. Handle
1283 * wrap around.
1284 */
1285 delay = next_reconfig - jiffies;
1286 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1287 schedule_delayed_work(&ndev_ctx->dwork, delay);
1288 goto out_unlock;
1289 }
1290 ndev_ctx->last_reconfig = jiffies;
1291
1292 spin_lock_irqsave(&ndev_ctx->lock, flags);
1293 if (!list_empty(&ndev_ctx->reconfig_events)) {
1294 event = list_first_entry(&ndev_ctx->reconfig_events,
1295 struct netvsc_reconfig, list);
1296 list_del(&event->list);
1297 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1298 }
1299 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1300
1301 if (!event)
1302 goto out_unlock;
1303
1304 switch (event->event) {
1305 /* Only the following events are possible due to the check in
1306 * netvsc_linkstatus_callback()
1307 */
1308 case RNDIS_STATUS_MEDIA_CONNECT:
1309 if (rdev->link_state) {
1310 rdev->link_state = false;
1311 if (!ndev_ctx->datapath)
1312 netif_carrier_on(net);
1313 netif_tx_wake_all_queues(net);
1314 } else {
1315 notify = true;
1316 }
1317 kfree(event);
1318 break;
1319 case RNDIS_STATUS_MEDIA_DISCONNECT:
1320 if (!rdev->link_state) {
1321 rdev->link_state = true;
1322 netif_carrier_off(net);
1323 netif_tx_stop_all_queues(net);
1324 }
1325 kfree(event);
1326 break;
1327 case RNDIS_STATUS_NETWORK_CHANGE:
1328 /* Only makes sense if carrier is present */
1329 if (!rdev->link_state) {
1330 rdev->link_state = true;
1331 netif_carrier_off(net);
1332 netif_tx_stop_all_queues(net);
1333 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1334 spin_lock_irqsave(&ndev_ctx->lock, flags);
1335 list_add(&event->list, &ndev_ctx->reconfig_events);
1336 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1337 reschedule = true;
1338 }
1339 break;
1340 }
1341
1342 rtnl_unlock();
1343
1344 if (notify)
1345 netdev_notify_peers(net);
1346
1347 /* link_watch only sends one notification with current state per
1348 * second, handle next reconfig event in 2 seconds.
1349 */
1350 if (reschedule)
1351 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1352
1353 return;
1354
1355 out_unlock:
1356 rtnl_unlock();
1357 }
1358
1359 static struct net_device *get_netvsc_bymac(const u8 *mac)
1360 {
1361 struct net_device *dev;
1362
1363 ASSERT_RTNL();
1364
1365 for_each_netdev(&init_net, dev) {
1366 if (dev->netdev_ops != &device_ops)
1367 continue; /* not a netvsc device */
1368
1369 if (ether_addr_equal(mac, dev->perm_addr))
1370 return dev;
1371 }
1372
1373 return NULL;
1374 }
1375
1376 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1377 {
1378 struct net_device *dev;
1379
1380 ASSERT_RTNL();
1381
1382 for_each_netdev(&init_net, dev) {
1383 struct net_device_context *net_device_ctx;
1384
1385 if (dev->netdev_ops != &device_ops)
1386 continue; /* not a netvsc device */
1387
1388 net_device_ctx = netdev_priv(dev);
1389 if (net_device_ctx->nvdev == NULL)
1390 continue; /* device is removed */
1391
1392 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1393 return dev; /* a match */
1394 }
1395
1396 return NULL;
1397 }
1398
1399 static int netvsc_register_vf(struct net_device *vf_netdev)
1400 {
1401 struct net_device *ndev;
1402 struct net_device_context *net_device_ctx;
1403 struct netvsc_device *netvsc_dev;
1404
1405 if (vf_netdev->addr_len != ETH_ALEN)
1406 return NOTIFY_DONE;
1407
1408 /*
1409 * We will use the MAC address to locate the synthetic interface to
1410 * associate with the VF interface. If we don't find a matching
1411 * synthetic interface, move on.
1412 */
1413 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1414 if (!ndev)
1415 return NOTIFY_DONE;
1416
1417 net_device_ctx = netdev_priv(ndev);
1418 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1419 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1420 return NOTIFY_DONE;
1421
1422 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1423 /*
1424 * Take a reference on the module.
1425 */
1426 try_module_get(THIS_MODULE);
1427
1428 dev_hold(vf_netdev);
1429 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1430 return NOTIFY_OK;
1431 }
1432
1433 static int netvsc_vf_up(struct net_device *vf_netdev)
1434 {
1435 struct net_device *ndev;
1436 struct netvsc_device *netvsc_dev;
1437 struct net_device_context *net_device_ctx;
1438
1439 ndev = get_netvsc_byref(vf_netdev);
1440 if (!ndev)
1441 return NOTIFY_DONE;
1442
1443 net_device_ctx = netdev_priv(ndev);
1444 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1445
1446 netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1447
1448 /*
1449 * Open the device before switching data path.
1450 */
1451 rndis_filter_open(netvsc_dev);
1452
1453 /*
1454 * notify the host to switch the data path.
1455 */
1456 netvsc_switch_datapath(ndev, true);
1457 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1458
1459 netif_carrier_off(ndev);
1460
1461 /* Now notify peers through VF device. */
1462 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1463
1464 return NOTIFY_OK;
1465 }
1466
1467 static int netvsc_vf_down(struct net_device *vf_netdev)
1468 {
1469 struct net_device *ndev;
1470 struct netvsc_device *netvsc_dev;
1471 struct net_device_context *net_device_ctx;
1472
1473 ndev = get_netvsc_byref(vf_netdev);
1474 if (!ndev)
1475 return NOTIFY_DONE;
1476
1477 net_device_ctx = netdev_priv(ndev);
1478 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1479
1480 netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1481 netvsc_switch_datapath(ndev, false);
1482 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1483 rndis_filter_close(netvsc_dev);
1484 netif_carrier_on(ndev);
1485
1486 /* Now notify peers through netvsc device. */
1487 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1488
1489 return NOTIFY_OK;
1490 }
1491
1492 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1493 {
1494 struct net_device *ndev;
1495 struct net_device_context *net_device_ctx;
1496
1497 ndev = get_netvsc_byref(vf_netdev);
1498 if (!ndev)
1499 return NOTIFY_DONE;
1500
1501 net_device_ctx = netdev_priv(ndev);
1502
1503 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1504
1505 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1506 dev_put(vf_netdev);
1507 module_put(THIS_MODULE);
1508 return NOTIFY_OK;
1509 }
1510
1511 static int netvsc_probe(struct hv_device *dev,
1512 const struct hv_vmbus_device_id *dev_id)
1513 {
1514 struct net_device *net = NULL;
1515 struct net_device_context *net_device_ctx;
1516 struct netvsc_device_info device_info;
1517 struct netvsc_device *nvdev;
1518 int ret;
1519
1520 net = alloc_etherdev_mq(sizeof(struct net_device_context),
1521 VRSS_CHANNEL_MAX);
1522 if (!net)
1523 return -ENOMEM;
1524
1525 netif_carrier_off(net);
1526
1527 netvsc_init_settings(net);
1528
1529 net_device_ctx = netdev_priv(net);
1530 net_device_ctx->device_ctx = dev;
1531 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1532 if (netif_msg_probe(net_device_ctx))
1533 netdev_dbg(net, "netvsc msg_enable: %d\n",
1534 net_device_ctx->msg_enable);
1535
1536 hv_set_drvdata(dev, net);
1537
1538 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1539
1540 spin_lock_init(&net_device_ctx->lock);
1541 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1542
1543 net->netdev_ops = &device_ops;
1544 net->ethtool_ops = &ethtool_ops;
1545 SET_NETDEV_DEV(net, &dev->device);
1546
1547 /* We always need headroom for rndis header */
1548 net->needed_headroom = RNDIS_AND_PPI_SIZE;
1549
1550 /* Notify the netvsc driver of the new device */
1551 memset(&device_info, 0, sizeof(device_info));
1552 device_info.ring_size = ring_size;
1553 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1554 ret = rndis_filter_device_add(dev, &device_info);
1555 if (ret != 0) {
1556 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1557 free_netdev(net);
1558 hv_set_drvdata(dev, NULL);
1559 return ret;
1560 }
1561 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1562
1563 /* hw_features computed in rndis_filter_device_add */
1564 net->features = net->hw_features |
1565 NETIF_F_HIGHDMA | NETIF_F_SG |
1566 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1567 net->vlan_features = net->features;
1568
1569 /* RCU not necessary here, device not registered */
1570 nvdev = net_device_ctx->nvdev;
1571 netif_set_real_num_tx_queues(net, nvdev->num_chn);
1572 netif_set_real_num_rx_queues(net, nvdev->num_chn);
1573
1574 /* MTU range: 68 - 1500 or 65521 */
1575 net->min_mtu = NETVSC_MTU_MIN;
1576 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1577 net->max_mtu = NETVSC_MTU - ETH_HLEN;
1578 else
1579 net->max_mtu = ETH_DATA_LEN;
1580
1581 ret = register_netdev(net);
1582 if (ret != 0) {
1583 pr_err("Unable to register netdev.\n");
1584 rndis_filter_device_remove(dev, nvdev);
1585 free_netdev(net);
1586 }
1587
1588 return ret;
1589 }
1590
1591 static int netvsc_remove(struct hv_device *dev)
1592 {
1593 struct net_device *net;
1594 struct net_device_context *ndev_ctx;
1595
1596 net = hv_get_drvdata(dev);
1597
1598 if (net == NULL) {
1599 dev_err(&dev->device, "No net device to remove\n");
1600 return 0;
1601 }
1602
1603 ndev_ctx = netdev_priv(net);
1604
1605 netif_device_detach(net);
1606
1607 cancel_delayed_work_sync(&ndev_ctx->dwork);
1608
1609 /*
1610 * Call to the vsc driver to let it know that the device is being
1611 * removed. Also blocks mtu and channel changes.
1612 */
1613 rtnl_lock();
1614 rndis_filter_device_remove(dev, ndev_ctx->nvdev);
1615 rtnl_unlock();
1616
1617 unregister_netdev(net);
1618
1619 hv_set_drvdata(dev, NULL);
1620
1621 free_netdev(net);
1622 return 0;
1623 }
1624
1625 static const struct hv_vmbus_device_id id_table[] = {
1626 /* Network guid */
1627 { HV_NIC_GUID, },
1628 { },
1629 };
1630
1631 MODULE_DEVICE_TABLE(vmbus, id_table);
1632
1633 /* The one and only one */
1634 static struct hv_driver netvsc_drv = {
1635 .name = KBUILD_MODNAME,
1636 .id_table = id_table,
1637 .probe = netvsc_probe,
1638 .remove = netvsc_remove,
1639 };
1640
1641 /*
1642 * On Hyper-V, every VF interface is matched with a corresponding
1643 * synthetic interface. The synthetic interface is presented first
1644 * to the guest. When the corresponding VF instance is registered,
1645 * we will take care of switching the data path.
1646 */
1647 static int netvsc_netdev_event(struct notifier_block *this,
1648 unsigned long event, void *ptr)
1649 {
1650 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1651
1652 /* Skip our own events */
1653 if (event_dev->netdev_ops == &device_ops)
1654 return NOTIFY_DONE;
1655
1656 /* Avoid non-Ethernet type devices */
1657 if (event_dev->type != ARPHRD_ETHER)
1658 return NOTIFY_DONE;
1659
1660 /* Avoid Vlan dev with same MAC registering as VF */
1661 if (is_vlan_dev(event_dev))
1662 return NOTIFY_DONE;
1663
1664 /* Avoid Bonding master dev with same MAC registering as VF */
1665 if ((event_dev->priv_flags & IFF_BONDING) &&
1666 (event_dev->flags & IFF_MASTER))
1667 return NOTIFY_DONE;
1668
1669 switch (event) {
1670 case NETDEV_REGISTER:
1671 return netvsc_register_vf(event_dev);
1672 case NETDEV_UNREGISTER:
1673 return netvsc_unregister_vf(event_dev);
1674 case NETDEV_UP:
1675 return netvsc_vf_up(event_dev);
1676 case NETDEV_DOWN:
1677 return netvsc_vf_down(event_dev);
1678 default:
1679 return NOTIFY_DONE;
1680 }
1681 }
1682
1683 static struct notifier_block netvsc_netdev_notifier = {
1684 .notifier_call = netvsc_netdev_event,
1685 };
1686
1687 static void __exit netvsc_drv_exit(void)
1688 {
1689 unregister_netdevice_notifier(&netvsc_netdev_notifier);
1690 vmbus_driver_unregister(&netvsc_drv);
1691 }
1692
1693 static int __init netvsc_drv_init(void)
1694 {
1695 int ret;
1696
1697 if (ring_size < RING_SIZE_MIN) {
1698 ring_size = RING_SIZE_MIN;
1699 pr_info("Increased ring_size to %d (min allowed)\n",
1700 ring_size);
1701 }
1702 ret = vmbus_driver_register(&netvsc_drv);
1703
1704 if (ret)
1705 return ret;
1706
1707 register_netdevice_notifier(&netvsc_netdev_notifier);
1708 return 0;
1709 }
1710
1711 MODULE_LICENSE("GPL");
1712 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1713
1714 module_init(netvsc_drv_init);
1715 module_exit(netvsc_drv_exit);