]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/igb/igb_ethtool.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47 offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 };
97
98 #define IGB_QUEUE_STATS_LEN \
99 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
100 ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
101 (sizeof(struct igb_queue_stats) / sizeof(u64)))
102 #define IGB_GLOBAL_STATS_LEN \
103 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
104 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
105 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
106 "Register test (offline)", "Eeprom test (offline)",
107 "Interrupt test (offline)", "Loopback test (offline)",
108 "Link test (on/offline)"
109 };
110 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
111
112 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
113 {
114 struct igb_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118
119 ecmd->supported = (SUPPORTED_10baseT_Half |
120 SUPPORTED_10baseT_Full |
121 SUPPORTED_100baseT_Half |
122 SUPPORTED_100baseT_Full |
123 SUPPORTED_1000baseT_Full|
124 SUPPORTED_Autoneg |
125 SUPPORTED_TP);
126 ecmd->advertising = ADVERTISED_TP;
127
128 if (hw->mac.autoneg == 1) {
129 ecmd->advertising |= ADVERTISED_Autoneg;
130 /* the e1000 autoneg seems to match ethtool nicely */
131 ecmd->advertising |= hw->phy.autoneg_advertised;
132 }
133
134 ecmd->port = PORT_TP;
135 ecmd->phy_address = hw->phy.addr;
136 } else {
137 ecmd->supported = (SUPPORTED_1000baseT_Full |
138 SUPPORTED_FIBRE |
139 SUPPORTED_Autoneg);
140
141 ecmd->advertising = (ADVERTISED_1000baseT_Full |
142 ADVERTISED_FIBRE |
143 ADVERTISED_Autoneg);
144
145 ecmd->port = PORT_FIBRE;
146 }
147
148 ecmd->transceiver = XCVR_INTERNAL;
149
150 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
151
152 adapter->hw.mac.ops.get_speed_and_duplex(hw,
153 &adapter->link_speed,
154 &adapter->link_duplex);
155 ecmd->speed = adapter->link_speed;
156
157 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
158 * and HALF_DUPLEX != DUPLEX_HALF */
159
160 if (adapter->link_duplex == FULL_DUPLEX)
161 ecmd->duplex = DUPLEX_FULL;
162 else
163 ecmd->duplex = DUPLEX_HALF;
164 } else {
165 ecmd->speed = -1;
166 ecmd->duplex = -1;
167 }
168
169 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171 return 0;
172 }
173
174 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
175 {
176 struct igb_adapter *adapter = netdev_priv(netdev);
177 struct e1000_hw *hw = &adapter->hw;
178
179 /* When SoL/IDER sessions are active, autoneg/speed/duplex
180 * cannot be changed */
181 if (igb_check_reset_block(hw)) {
182 dev_err(&adapter->pdev->dev, "Cannot change link "
183 "characteristics when SoL/IDER is active.\n");
184 return -EINVAL;
185 }
186
187 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
188 msleep(1);
189
190 if (ecmd->autoneg == AUTONEG_ENABLE) {
191 hw->mac.autoneg = 1;
192 if (hw->phy.media_type == e1000_media_type_fiber)
193 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
194 ADVERTISED_FIBRE |
195 ADVERTISED_Autoneg;
196 else
197 hw->phy.autoneg_advertised = ecmd->advertising |
198 ADVERTISED_TP |
199 ADVERTISED_Autoneg;
200 ecmd->advertising = hw->phy.autoneg_advertised;
201 } else
202 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
203 clear_bit(__IGB_RESETTING, &adapter->state);
204 return -EINVAL;
205 }
206
207 /* reset the link */
208
209 if (netif_running(adapter->netdev)) {
210 igb_down(adapter);
211 igb_up(adapter);
212 } else
213 igb_reset(adapter);
214
215 clear_bit(__IGB_RESETTING, &adapter->state);
216 return 0;
217 }
218
219 static void igb_get_pauseparam(struct net_device *netdev,
220 struct ethtool_pauseparam *pause)
221 {
222 struct igb_adapter *adapter = netdev_priv(netdev);
223 struct e1000_hw *hw = &adapter->hw;
224
225 pause->autoneg =
226 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
227
228 if (hw->fc.type == e1000_fc_rx_pause)
229 pause->rx_pause = 1;
230 else if (hw->fc.type == e1000_fc_tx_pause)
231 pause->tx_pause = 1;
232 else if (hw->fc.type == e1000_fc_full) {
233 pause->rx_pause = 1;
234 pause->tx_pause = 1;
235 }
236 }
237
238 static int igb_set_pauseparam(struct net_device *netdev,
239 struct ethtool_pauseparam *pause)
240 {
241 struct igb_adapter *adapter = netdev_priv(netdev);
242 struct e1000_hw *hw = &adapter->hw;
243 int retval = 0;
244
245 adapter->fc_autoneg = pause->autoneg;
246
247 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
248 msleep(1);
249
250 if (pause->rx_pause && pause->tx_pause)
251 hw->fc.type = e1000_fc_full;
252 else if (pause->rx_pause && !pause->tx_pause)
253 hw->fc.type = e1000_fc_rx_pause;
254 else if (!pause->rx_pause && pause->tx_pause)
255 hw->fc.type = e1000_fc_tx_pause;
256 else if (!pause->rx_pause && !pause->tx_pause)
257 hw->fc.type = e1000_fc_none;
258
259 hw->fc.original_type = hw->fc.type;
260
261 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
262 if (netif_running(adapter->netdev)) {
263 igb_down(adapter);
264 igb_up(adapter);
265 } else
266 igb_reset(adapter);
267 } else
268 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
269 igb_setup_link(hw) : igb_force_mac_fc(hw));
270
271 clear_bit(__IGB_RESETTING, &adapter->state);
272 return retval;
273 }
274
275 static u32 igb_get_rx_csum(struct net_device *netdev)
276 {
277 struct igb_adapter *adapter = netdev_priv(netdev);
278 return adapter->rx_csum;
279 }
280
281 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
282 {
283 struct igb_adapter *adapter = netdev_priv(netdev);
284 adapter->rx_csum = data;
285
286 return 0;
287 }
288
289 static u32 igb_get_tx_csum(struct net_device *netdev)
290 {
291 return (netdev->features & NETIF_F_IP_CSUM) != 0;
292 }
293
294 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
295 {
296 if (data)
297 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
298 else
299 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
300
301 return 0;
302 }
303
304 static int igb_set_tso(struct net_device *netdev, u32 data)
305 {
306 struct igb_adapter *adapter = netdev_priv(netdev);
307
308 if (data) {
309 netdev->features |= NETIF_F_TSO;
310 netdev->features |= NETIF_F_TSO6;
311 } else {
312 netdev->features &= ~NETIF_F_TSO;
313 netdev->features &= ~NETIF_F_TSO6;
314 }
315
316 dev_info(&adapter->pdev->dev, "TSO is %s\n",
317 data ? "Enabled" : "Disabled");
318 return 0;
319 }
320
321 static u32 igb_get_msglevel(struct net_device *netdev)
322 {
323 struct igb_adapter *adapter = netdev_priv(netdev);
324 return adapter->msg_enable;
325 }
326
327 static void igb_set_msglevel(struct net_device *netdev, u32 data)
328 {
329 struct igb_adapter *adapter = netdev_priv(netdev);
330 adapter->msg_enable = data;
331 }
332
333 static int igb_get_regs_len(struct net_device *netdev)
334 {
335 #define IGB_REGS_LEN 551
336 return IGB_REGS_LEN * sizeof(u32);
337 }
338
339 static void igb_get_regs(struct net_device *netdev,
340 struct ethtool_regs *regs, void *p)
341 {
342 struct igb_adapter *adapter = netdev_priv(netdev);
343 struct e1000_hw *hw = &adapter->hw;
344 u32 *regs_buff = p;
345 u8 i;
346
347 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
348
349 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
350
351 /* General Registers */
352 regs_buff[0] = rd32(E1000_CTRL);
353 regs_buff[1] = rd32(E1000_STATUS);
354 regs_buff[2] = rd32(E1000_CTRL_EXT);
355 regs_buff[3] = rd32(E1000_MDIC);
356 regs_buff[4] = rd32(E1000_SCTL);
357 regs_buff[5] = rd32(E1000_CONNSW);
358 regs_buff[6] = rd32(E1000_VET);
359 regs_buff[7] = rd32(E1000_LEDCTL);
360 regs_buff[8] = rd32(E1000_PBA);
361 regs_buff[9] = rd32(E1000_PBS);
362 regs_buff[10] = rd32(E1000_FRTIMER);
363 regs_buff[11] = rd32(E1000_TCPTIMER);
364
365 /* NVM Register */
366 regs_buff[12] = rd32(E1000_EECD);
367
368 /* Interrupt */
369 /* Reading EICS for EICR because they read the
370 * same but EICS does not clear on read */
371 regs_buff[13] = rd32(E1000_EICS);
372 regs_buff[14] = rd32(E1000_EICS);
373 regs_buff[15] = rd32(E1000_EIMS);
374 regs_buff[16] = rd32(E1000_EIMC);
375 regs_buff[17] = rd32(E1000_EIAC);
376 regs_buff[18] = rd32(E1000_EIAM);
377 /* Reading ICS for ICR because they read the
378 * same but ICS does not clear on read */
379 regs_buff[19] = rd32(E1000_ICS);
380 regs_buff[20] = rd32(E1000_ICS);
381 regs_buff[21] = rd32(E1000_IMS);
382 regs_buff[22] = rd32(E1000_IMC);
383 regs_buff[23] = rd32(E1000_IAC);
384 regs_buff[24] = rd32(E1000_IAM);
385 regs_buff[25] = rd32(E1000_IMIRVP);
386
387 /* Flow Control */
388 regs_buff[26] = rd32(E1000_FCAL);
389 regs_buff[27] = rd32(E1000_FCAH);
390 regs_buff[28] = rd32(E1000_FCTTV);
391 regs_buff[29] = rd32(E1000_FCRTL);
392 regs_buff[30] = rd32(E1000_FCRTH);
393 regs_buff[31] = rd32(E1000_FCRTV);
394
395 /* Receive */
396 regs_buff[32] = rd32(E1000_RCTL);
397 regs_buff[33] = rd32(E1000_RXCSUM);
398 regs_buff[34] = rd32(E1000_RLPML);
399 regs_buff[35] = rd32(E1000_RFCTL);
400 regs_buff[36] = rd32(E1000_MRQC);
401 regs_buff[37] = rd32(E1000_VT_CTL);
402
403 /* Transmit */
404 regs_buff[38] = rd32(E1000_TCTL);
405 regs_buff[39] = rd32(E1000_TCTL_EXT);
406 regs_buff[40] = rd32(E1000_TIPG);
407 regs_buff[41] = rd32(E1000_DTXCTL);
408
409 /* Wake Up */
410 regs_buff[42] = rd32(E1000_WUC);
411 regs_buff[43] = rd32(E1000_WUFC);
412 regs_buff[44] = rd32(E1000_WUS);
413 regs_buff[45] = rd32(E1000_IPAV);
414 regs_buff[46] = rd32(E1000_WUPL);
415
416 /* MAC */
417 regs_buff[47] = rd32(E1000_PCS_CFG0);
418 regs_buff[48] = rd32(E1000_PCS_LCTL);
419 regs_buff[49] = rd32(E1000_PCS_LSTAT);
420 regs_buff[50] = rd32(E1000_PCS_ANADV);
421 regs_buff[51] = rd32(E1000_PCS_LPAB);
422 regs_buff[52] = rd32(E1000_PCS_NPTX);
423 regs_buff[53] = rd32(E1000_PCS_LPABNP);
424
425 /* Statistics */
426 regs_buff[54] = adapter->stats.crcerrs;
427 regs_buff[55] = adapter->stats.algnerrc;
428 regs_buff[56] = adapter->stats.symerrs;
429 regs_buff[57] = adapter->stats.rxerrc;
430 regs_buff[58] = adapter->stats.mpc;
431 regs_buff[59] = adapter->stats.scc;
432 regs_buff[60] = adapter->stats.ecol;
433 regs_buff[61] = adapter->stats.mcc;
434 regs_buff[62] = adapter->stats.latecol;
435 regs_buff[63] = adapter->stats.colc;
436 regs_buff[64] = adapter->stats.dc;
437 regs_buff[65] = adapter->stats.tncrs;
438 regs_buff[66] = adapter->stats.sec;
439 regs_buff[67] = adapter->stats.htdpmc;
440 regs_buff[68] = adapter->stats.rlec;
441 regs_buff[69] = adapter->stats.xonrxc;
442 regs_buff[70] = adapter->stats.xontxc;
443 regs_buff[71] = adapter->stats.xoffrxc;
444 regs_buff[72] = adapter->stats.xofftxc;
445 regs_buff[73] = adapter->stats.fcruc;
446 regs_buff[74] = adapter->stats.prc64;
447 regs_buff[75] = adapter->stats.prc127;
448 regs_buff[76] = adapter->stats.prc255;
449 regs_buff[77] = adapter->stats.prc511;
450 regs_buff[78] = adapter->stats.prc1023;
451 regs_buff[79] = adapter->stats.prc1522;
452 regs_buff[80] = adapter->stats.gprc;
453 regs_buff[81] = adapter->stats.bprc;
454 regs_buff[82] = adapter->stats.mprc;
455 regs_buff[83] = adapter->stats.gptc;
456 regs_buff[84] = adapter->stats.gorc;
457 regs_buff[86] = adapter->stats.gotc;
458 regs_buff[88] = adapter->stats.rnbc;
459 regs_buff[89] = adapter->stats.ruc;
460 regs_buff[90] = adapter->stats.rfc;
461 regs_buff[91] = adapter->stats.roc;
462 regs_buff[92] = adapter->stats.rjc;
463 regs_buff[93] = adapter->stats.mgprc;
464 regs_buff[94] = adapter->stats.mgpdc;
465 regs_buff[95] = adapter->stats.mgptc;
466 regs_buff[96] = adapter->stats.tor;
467 regs_buff[98] = adapter->stats.tot;
468 regs_buff[100] = adapter->stats.tpr;
469 regs_buff[101] = adapter->stats.tpt;
470 regs_buff[102] = adapter->stats.ptc64;
471 regs_buff[103] = adapter->stats.ptc127;
472 regs_buff[104] = adapter->stats.ptc255;
473 regs_buff[105] = adapter->stats.ptc511;
474 regs_buff[106] = adapter->stats.ptc1023;
475 regs_buff[107] = adapter->stats.ptc1522;
476 regs_buff[108] = adapter->stats.mptc;
477 regs_buff[109] = adapter->stats.bptc;
478 regs_buff[110] = adapter->stats.tsctc;
479 regs_buff[111] = adapter->stats.iac;
480 regs_buff[112] = adapter->stats.rpthc;
481 regs_buff[113] = adapter->stats.hgptc;
482 regs_buff[114] = adapter->stats.hgorc;
483 regs_buff[116] = adapter->stats.hgotc;
484 regs_buff[118] = adapter->stats.lenerrs;
485 regs_buff[119] = adapter->stats.scvpc;
486 regs_buff[120] = adapter->stats.hrmpc;
487
488 /* These should probably be added to e1000_regs.h instead */
489 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
490 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
491 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
492 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
493 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
494 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
495 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
496
497 for (i = 0; i < 4; i++)
498 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
499 for (i = 0; i < 4; i++)
500 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
501 for (i = 0; i < 4; i++)
502 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
503 for (i = 0; i < 4; i++)
504 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
507 for (i = 0; i < 4; i++)
508 regs_buff[141 + i] = rd32(E1000_RDH(i));
509 for (i = 0; i < 4; i++)
510 regs_buff[145 + i] = rd32(E1000_RDT(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
513
514 for (i = 0; i < 10; i++)
515 regs_buff[153 + i] = rd32(E1000_EITR(i));
516 for (i = 0; i < 8; i++)
517 regs_buff[163 + i] = rd32(E1000_IMIR(i));
518 for (i = 0; i < 8; i++)
519 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
520 for (i = 0; i < 16; i++)
521 regs_buff[179 + i] = rd32(E1000_RAL(i));
522 for (i = 0; i < 16; i++)
523 regs_buff[195 + i] = rd32(E1000_RAH(i));
524
525 for (i = 0; i < 4; i++)
526 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
527 for (i = 0; i < 4; i++)
528 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
531 for (i = 0; i < 4; i++)
532 regs_buff[223 + i] = rd32(E1000_TDH(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[227 + i] = rd32(E1000_TDT(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
543
544 for (i = 0; i < 4; i++)
545 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
548 for (i = 0; i < 32; i++)
549 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
550 for (i = 0; i < 128; i++)
551 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
552 for (i = 0; i < 128; i++)
553 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
554 for (i = 0; i < 4; i++)
555 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
556
557 regs_buff[547] = rd32(E1000_TDFH);
558 regs_buff[548] = rd32(E1000_TDFT);
559 regs_buff[549] = rd32(E1000_TDFHS);
560 regs_buff[550] = rd32(E1000_TDFPC);
561
562 }
563
564 static int igb_get_eeprom_len(struct net_device *netdev)
565 {
566 struct igb_adapter *adapter = netdev_priv(netdev);
567 return adapter->hw.nvm.word_size * 2;
568 }
569
570 static int igb_get_eeprom(struct net_device *netdev,
571 struct ethtool_eeprom *eeprom, u8 *bytes)
572 {
573 struct igb_adapter *adapter = netdev_priv(netdev);
574 struct e1000_hw *hw = &adapter->hw;
575 u16 *eeprom_buff;
576 int first_word, last_word;
577 int ret_val = 0;
578 u16 i;
579
580 if (eeprom->len == 0)
581 return -EINVAL;
582
583 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
584
585 first_word = eeprom->offset >> 1;
586 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587
588 eeprom_buff = kmalloc(sizeof(u16) *
589 (last_word - first_word + 1), GFP_KERNEL);
590 if (!eeprom_buff)
591 return -ENOMEM;
592
593 if (hw->nvm.type == e1000_nvm_eeprom_spi)
594 ret_val = hw->nvm.ops.read(hw, first_word,
595 last_word - first_word + 1,
596 eeprom_buff);
597 else {
598 for (i = 0; i < last_word - first_word + 1; i++) {
599 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
600 &eeprom_buff[i]);
601 if (ret_val)
602 break;
603 }
604 }
605
606 /* Device's eeprom is always little-endian, word addressable */
607 for (i = 0; i < last_word - first_word + 1; i++)
608 le16_to_cpus(&eeprom_buff[i]);
609
610 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
611 eeprom->len);
612 kfree(eeprom_buff);
613
614 return ret_val;
615 }
616
617 static int igb_set_eeprom(struct net_device *netdev,
618 struct ethtool_eeprom *eeprom, u8 *bytes)
619 {
620 struct igb_adapter *adapter = netdev_priv(netdev);
621 struct e1000_hw *hw = &adapter->hw;
622 u16 *eeprom_buff;
623 void *ptr;
624 int max_len, first_word, last_word, ret_val = 0;
625 u16 i;
626
627 if (eeprom->len == 0)
628 return -EOPNOTSUPP;
629
630 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
631 return -EFAULT;
632
633 max_len = hw->nvm.word_size * 2;
634
635 first_word = eeprom->offset >> 1;
636 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
637 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
638 if (!eeprom_buff)
639 return -ENOMEM;
640
641 ptr = (void *)eeprom_buff;
642
643 if (eeprom->offset & 1) {
644 /* need read/modify/write of first changed EEPROM word */
645 /* only the second byte of the word is being modified */
646 ret_val = hw->nvm.ops.read(hw, first_word, 1,
647 &eeprom_buff[0]);
648 ptr++;
649 }
650 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
651 /* need read/modify/write of last changed EEPROM word */
652 /* only the first byte of the word is being modified */
653 ret_val = hw->nvm.ops.read(hw, last_word, 1,
654 &eeprom_buff[last_word - first_word]);
655 }
656
657 /* Device's eeprom is always little-endian, word addressable */
658 for (i = 0; i < last_word - first_word + 1; i++)
659 le16_to_cpus(&eeprom_buff[i]);
660
661 memcpy(ptr, bytes, eeprom->len);
662
663 for (i = 0; i < last_word - first_word + 1; i++)
664 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
665
666 ret_val = hw->nvm.ops.write(hw, first_word,
667 last_word - first_word + 1, eeprom_buff);
668
669 /* Update the checksum over the first part of the EEPROM if needed
670 * and flush shadow RAM for 82573 controllers */
671 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
672 igb_update_nvm_checksum(hw);
673
674 kfree(eeprom_buff);
675 return ret_val;
676 }
677
678 static void igb_get_drvinfo(struct net_device *netdev,
679 struct ethtool_drvinfo *drvinfo)
680 {
681 struct igb_adapter *adapter = netdev_priv(netdev);
682 char firmware_version[32];
683 u16 eeprom_data;
684
685 strncpy(drvinfo->driver, igb_driver_name, 32);
686 strncpy(drvinfo->version, igb_driver_version, 32);
687
688 /* EEPROM image version # is reported as firmware version # for
689 * 82575 controllers */
690 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
691 sprintf(firmware_version, "%d.%d-%d",
692 (eeprom_data & 0xF000) >> 12,
693 (eeprom_data & 0x0FF0) >> 4,
694 eeprom_data & 0x000F);
695
696 strncpy(drvinfo->fw_version, firmware_version, 32);
697 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
698 drvinfo->n_stats = IGB_STATS_LEN;
699 drvinfo->testinfo_len = IGB_TEST_LEN;
700 drvinfo->regdump_len = igb_get_regs_len(netdev);
701 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
702 }
703
704 static void igb_get_ringparam(struct net_device *netdev,
705 struct ethtool_ringparam *ring)
706 {
707 struct igb_adapter *adapter = netdev_priv(netdev);
708
709 ring->rx_max_pending = IGB_MAX_RXD;
710 ring->tx_max_pending = IGB_MAX_TXD;
711 ring->rx_mini_max_pending = 0;
712 ring->rx_jumbo_max_pending = 0;
713 ring->rx_pending = adapter->rx_ring_count;
714 ring->tx_pending = adapter->tx_ring_count;
715 ring->rx_mini_pending = 0;
716 ring->rx_jumbo_pending = 0;
717 }
718
719 static int igb_set_ringparam(struct net_device *netdev,
720 struct ethtool_ringparam *ring)
721 {
722 struct igb_adapter *adapter = netdev_priv(netdev);
723 struct igb_ring *temp_ring;
724 int i, err;
725 u32 new_rx_count, new_tx_count;
726
727 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
728 return -EINVAL;
729
730 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
731 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
732 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
733
734 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
735 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
736 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
737
738 if ((new_tx_count == adapter->tx_ring_count) &&
739 (new_rx_count == adapter->rx_ring_count)) {
740 /* nothing to do */
741 return 0;
742 }
743
744 if (adapter->num_tx_queues > adapter->num_rx_queues)
745 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
746 else
747 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
748 if (!temp_ring)
749 return -ENOMEM;
750
751 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
752 msleep(1);
753
754 if (netif_running(adapter->netdev))
755 igb_down(adapter);
756
757 /*
758 * We can't just free everything and then setup again,
759 * because the ISRs in MSI-X mode get passed pointers
760 * to the tx and rx ring structs.
761 */
762 if (new_tx_count != adapter->tx_ring_count) {
763 memcpy(temp_ring, adapter->tx_ring,
764 adapter->num_tx_queues * sizeof(struct igb_ring));
765
766 for (i = 0; i < adapter->num_tx_queues; i++) {
767 temp_ring[i].count = new_tx_count;
768 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
769 if (err) {
770 while (i) {
771 i--;
772 igb_free_tx_resources(&temp_ring[i]);
773 }
774 goto err_setup;
775 }
776 }
777
778 for (i = 0; i < adapter->num_tx_queues; i++)
779 igb_free_tx_resources(&adapter->tx_ring[i]);
780
781 memcpy(adapter->tx_ring, temp_ring,
782 adapter->num_tx_queues * sizeof(struct igb_ring));
783
784 adapter->tx_ring_count = new_tx_count;
785 }
786
787 if (new_rx_count != adapter->rx_ring->count) {
788 memcpy(temp_ring, adapter->rx_ring,
789 adapter->num_rx_queues * sizeof(struct igb_ring));
790
791 for (i = 0; i < adapter->num_rx_queues; i++) {
792 temp_ring[i].count = new_rx_count;
793 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
794 if (err) {
795 while (i) {
796 i--;
797 igb_free_rx_resources(&temp_ring[i]);
798 }
799 goto err_setup;
800 }
801
802 }
803
804 for (i = 0; i < adapter->num_rx_queues; i++)
805 igb_free_rx_resources(&adapter->rx_ring[i]);
806
807 memcpy(adapter->rx_ring, temp_ring,
808 adapter->num_rx_queues * sizeof(struct igb_ring));
809
810 adapter->rx_ring_count = new_rx_count;
811 }
812
813 err = 0;
814 err_setup:
815 if (netif_running(adapter->netdev))
816 igb_up(adapter);
817
818 clear_bit(__IGB_RESETTING, &adapter->state);
819 vfree(temp_ring);
820 return err;
821 }
822
823 /* ethtool register test data */
824 struct igb_reg_test {
825 u16 reg;
826 u16 reg_offset;
827 u16 array_len;
828 u16 test_type;
829 u32 mask;
830 u32 write;
831 };
832
833 /* In the hardware, registers are laid out either singly, in arrays
834 * spaced 0x100 bytes apart, or in contiguous tables. We assume
835 * most tests take place on arrays or single registers (handled
836 * as a single-element array) and special-case the tables.
837 * Table tests are always pattern tests.
838 *
839 * We also make provision for some required setup steps by specifying
840 * registers to be written without any read-back testing.
841 */
842
843 #define PATTERN_TEST 1
844 #define SET_READ_TEST 2
845 #define WRITE_NO_TEST 3
846 #define TABLE32_TEST 4
847 #define TABLE64_TEST_LO 5
848 #define TABLE64_TEST_HI 6
849
850 /* 82576 reg test */
851 static struct igb_reg_test reg_test_82576[] = {
852 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
853 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
854 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
855 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
856 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
857 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
858 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
859 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
860 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
862 /* Enable all RX queues before testing. */
863 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
864 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
865 /* RDH is read-only for 82576, only test RDT. */
866 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
867 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
868 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
869 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
870 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
871 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
872 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
873 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
874 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
875 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
876 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
877 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
878 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
879 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
880 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
881 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
882 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
883 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
884 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
885 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
886 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
887 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
888 { 0, 0, 0, 0 }
889 };
890
891 /* 82575 register test */
892 static struct igb_reg_test reg_test_82575[] = {
893 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
894 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
895 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
896 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
897 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
898 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
899 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
900 /* Enable all four RX queues before testing. */
901 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
902 /* RDH is read-only for 82575, only test RDT. */
903 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
904 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
905 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
906 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
907 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
908 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
909 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
910 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
911 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
912 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
913 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
914 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
915 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
916 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
917 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
918 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
919 { 0, 0, 0, 0 }
920 };
921
922 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
923 int reg, u32 mask, u32 write)
924 {
925 struct e1000_hw *hw = &adapter->hw;
926 u32 pat, val;
927 u32 _test[] =
928 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
929 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
930 wr32(reg, (_test[pat] & write));
931 val = rd32(reg);
932 if (val != (_test[pat] & write & mask)) {
933 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
934 "failed: got 0x%08X expected 0x%08X\n",
935 reg, val, (_test[pat] & write & mask));
936 *data = reg;
937 return 1;
938 }
939 }
940 return 0;
941 }
942
943 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
944 int reg, u32 mask, u32 write)
945 {
946 struct e1000_hw *hw = &adapter->hw;
947 u32 val;
948 wr32(reg, write & mask);
949 val = rd32(reg);
950 if ((write & mask) != (val & mask)) {
951 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
952 " got 0x%08X expected 0x%08X\n", reg,
953 (val & mask), (write & mask));
954 *data = reg;
955 return 1;
956 }
957 return 0;
958 }
959
960 #define REG_PATTERN_TEST(reg, mask, write) \
961 do { \
962 if (reg_pattern_test(adapter, data, reg, mask, write)) \
963 return 1; \
964 } while (0)
965
966 #define REG_SET_AND_CHECK(reg, mask, write) \
967 do { \
968 if (reg_set_and_check(adapter, data, reg, mask, write)) \
969 return 1; \
970 } while (0)
971
972 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
973 {
974 struct e1000_hw *hw = &adapter->hw;
975 struct igb_reg_test *test;
976 u32 value, before, after;
977 u32 i, toggle;
978
979 toggle = 0x7FFFF3FF;
980
981 switch (adapter->hw.mac.type) {
982 case e1000_82576:
983 test = reg_test_82576;
984 break;
985 default:
986 test = reg_test_82575;
987 break;
988 }
989
990 /* Because the status register is such a special case,
991 * we handle it separately from the rest of the register
992 * tests. Some bits are read-only, some toggle, and some
993 * are writable on newer MACs.
994 */
995 before = rd32(E1000_STATUS);
996 value = (rd32(E1000_STATUS) & toggle);
997 wr32(E1000_STATUS, toggle);
998 after = rd32(E1000_STATUS) & toggle;
999 if (value != after) {
1000 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1001 "got: 0x%08X expected: 0x%08X\n", after, value);
1002 *data = 1;
1003 return 1;
1004 }
1005 /* restore previous status */
1006 wr32(E1000_STATUS, before);
1007
1008 /* Perform the remainder of the register test, looping through
1009 * the test table until we either fail or reach the null entry.
1010 */
1011 while (test->reg) {
1012 for (i = 0; i < test->array_len; i++) {
1013 switch (test->test_type) {
1014 case PATTERN_TEST:
1015 REG_PATTERN_TEST(test->reg +
1016 (i * test->reg_offset),
1017 test->mask,
1018 test->write);
1019 break;
1020 case SET_READ_TEST:
1021 REG_SET_AND_CHECK(test->reg +
1022 (i * test->reg_offset),
1023 test->mask,
1024 test->write);
1025 break;
1026 case WRITE_NO_TEST:
1027 writel(test->write,
1028 (adapter->hw.hw_addr + test->reg)
1029 + (i * test->reg_offset));
1030 break;
1031 case TABLE32_TEST:
1032 REG_PATTERN_TEST(test->reg + (i * 4),
1033 test->mask,
1034 test->write);
1035 break;
1036 case TABLE64_TEST_LO:
1037 REG_PATTERN_TEST(test->reg + (i * 8),
1038 test->mask,
1039 test->write);
1040 break;
1041 case TABLE64_TEST_HI:
1042 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1043 test->mask,
1044 test->write);
1045 break;
1046 }
1047 }
1048 test++;
1049 }
1050
1051 *data = 0;
1052 return 0;
1053 }
1054
1055 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1056 {
1057 u16 temp;
1058 u16 checksum = 0;
1059 u16 i;
1060
1061 *data = 0;
1062 /* Read and add up the contents of the EEPROM */
1063 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1064 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1065 < 0) {
1066 *data = 1;
1067 break;
1068 }
1069 checksum += temp;
1070 }
1071
1072 /* If Checksum is not Correct return error else test passed */
1073 if ((checksum != (u16) NVM_SUM) && !(*data))
1074 *data = 2;
1075
1076 return *data;
1077 }
1078
1079 static irqreturn_t igb_test_intr(int irq, void *data)
1080 {
1081 struct net_device *netdev = (struct net_device *) data;
1082 struct igb_adapter *adapter = netdev_priv(netdev);
1083 struct e1000_hw *hw = &adapter->hw;
1084
1085 adapter->test_icr |= rd32(E1000_ICR);
1086
1087 return IRQ_HANDLED;
1088 }
1089
1090 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1091 {
1092 struct e1000_hw *hw = &adapter->hw;
1093 struct net_device *netdev = adapter->netdev;
1094 u32 mask, ics_mask, i = 0, shared_int = true;
1095 u32 irq = adapter->pdev->irq;
1096
1097 *data = 0;
1098
1099 /* Hook up test interrupt handler just for this test */
1100 if (adapter->msix_entries)
1101 /* NOTE: we don't test MSI-X interrupts here, yet */
1102 return 0;
1103
1104 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1105 shared_int = false;
1106 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1107 *data = 1;
1108 return -1;
1109 }
1110 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1111 netdev->name, netdev)) {
1112 shared_int = false;
1113 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1114 netdev->name, netdev)) {
1115 *data = 1;
1116 return -1;
1117 }
1118 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1119 (shared_int ? "shared" : "unshared"));
1120 /* Disable all the interrupts */
1121 wr32(E1000_IMC, 0xFFFFFFFF);
1122 msleep(10);
1123
1124 /* Define all writable bits for ICS */
1125 switch(hw->mac.type) {
1126 case e1000_82575:
1127 ics_mask = 0x37F47EDD;
1128 break;
1129 case e1000_82576:
1130 ics_mask = 0x77D4FBFD;
1131 break;
1132 default:
1133 ics_mask = 0x7FFFFFFF;
1134 break;
1135 }
1136
1137 /* Test each interrupt */
1138 for (; i < 31; i++) {
1139 /* Interrupt to test */
1140 mask = 1 << i;
1141
1142 if (!(mask & ics_mask))
1143 continue;
1144
1145 if (!shared_int) {
1146 /* Disable the interrupt to be reported in
1147 * the cause register and then force the same
1148 * interrupt and see if one gets posted. If
1149 * an interrupt was posted to the bus, the
1150 * test failed.
1151 */
1152 adapter->test_icr = 0;
1153
1154 /* Flush any pending interrupts */
1155 wr32(E1000_ICR, ~0);
1156
1157 wr32(E1000_IMC, mask);
1158 wr32(E1000_ICS, mask);
1159 msleep(10);
1160
1161 if (adapter->test_icr & mask) {
1162 *data = 3;
1163 break;
1164 }
1165 }
1166
1167 /* Enable the interrupt to be reported in
1168 * the cause register and then force the same
1169 * interrupt and see if one gets posted. If
1170 * an interrupt was not posted to the bus, the
1171 * test failed.
1172 */
1173 adapter->test_icr = 0;
1174
1175 /* Flush any pending interrupts */
1176 wr32(E1000_ICR, ~0);
1177
1178 wr32(E1000_IMS, mask);
1179 wr32(E1000_ICS, mask);
1180 msleep(10);
1181
1182 if (!(adapter->test_icr & mask)) {
1183 *data = 4;
1184 break;
1185 }
1186
1187 if (!shared_int) {
1188 /* Disable the other interrupts to be reported in
1189 * the cause register and then force the other
1190 * interrupts and see if any get posted. If
1191 * an interrupt was posted to the bus, the
1192 * test failed.
1193 */
1194 adapter->test_icr = 0;
1195
1196 /* Flush any pending interrupts */
1197 wr32(E1000_ICR, ~0);
1198
1199 wr32(E1000_IMC, ~mask);
1200 wr32(E1000_ICS, ~mask);
1201 msleep(10);
1202
1203 if (adapter->test_icr & mask) {
1204 *data = 5;
1205 break;
1206 }
1207 }
1208 }
1209
1210 /* Disable all the interrupts */
1211 wr32(E1000_IMC, ~0);
1212 msleep(10);
1213
1214 /* Unhook test interrupt handler */
1215 free_irq(irq, netdev);
1216
1217 return *data;
1218 }
1219
1220 static void igb_free_desc_rings(struct igb_adapter *adapter)
1221 {
1222 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1223 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1224 struct pci_dev *pdev = adapter->pdev;
1225 int i;
1226
1227 if (tx_ring->desc && tx_ring->buffer_info) {
1228 for (i = 0; i < tx_ring->count; i++) {
1229 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1230 if (buf->dma)
1231 pci_unmap_single(pdev, buf->dma, buf->length,
1232 PCI_DMA_TODEVICE);
1233 if (buf->skb)
1234 dev_kfree_skb(buf->skb);
1235 }
1236 }
1237
1238 if (rx_ring->desc && rx_ring->buffer_info) {
1239 for (i = 0; i < rx_ring->count; i++) {
1240 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1241 if (buf->dma)
1242 pci_unmap_single(pdev, buf->dma,
1243 IGB_RXBUFFER_2048,
1244 PCI_DMA_FROMDEVICE);
1245 if (buf->skb)
1246 dev_kfree_skb(buf->skb);
1247 }
1248 }
1249
1250 if (tx_ring->desc) {
1251 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1252 tx_ring->dma);
1253 tx_ring->desc = NULL;
1254 }
1255 if (rx_ring->desc) {
1256 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1257 rx_ring->dma);
1258 rx_ring->desc = NULL;
1259 }
1260
1261 kfree(tx_ring->buffer_info);
1262 tx_ring->buffer_info = NULL;
1263 kfree(rx_ring->buffer_info);
1264 rx_ring->buffer_info = NULL;
1265
1266 return;
1267 }
1268
1269 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1270 {
1271 struct e1000_hw *hw = &adapter->hw;
1272 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1273 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1274 struct pci_dev *pdev = adapter->pdev;
1275 struct igb_buffer *buffer_info;
1276 u32 rctl;
1277 int i, ret_val;
1278
1279 /* Setup Tx descriptor ring and Tx buffers */
1280
1281 if (!tx_ring->count)
1282 tx_ring->count = IGB_DEFAULT_TXD;
1283
1284 tx_ring->buffer_info = kcalloc(tx_ring->count,
1285 sizeof(struct igb_buffer),
1286 GFP_KERNEL);
1287 if (!tx_ring->buffer_info) {
1288 ret_val = 1;
1289 goto err_nomem;
1290 }
1291
1292 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1293 tx_ring->size = ALIGN(tx_ring->size, 4096);
1294 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1295 &tx_ring->dma);
1296 if (!tx_ring->desc) {
1297 ret_val = 2;
1298 goto err_nomem;
1299 }
1300 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1301
1302 wr32(E1000_TDBAL(0),
1303 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1304 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1305 wr32(E1000_TDLEN(0),
1306 tx_ring->count * sizeof(union e1000_adv_tx_desc));
1307 wr32(E1000_TDH(0), 0);
1308 wr32(E1000_TDT(0), 0);
1309 wr32(E1000_TCTL,
1310 E1000_TCTL_PSP | E1000_TCTL_EN |
1311 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1312 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1313
1314 for (i = 0; i < tx_ring->count; i++) {
1315 union e1000_adv_tx_desc *tx_desc;
1316 struct sk_buff *skb;
1317 unsigned int size = 1024;
1318
1319 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
1320 skb = alloc_skb(size, GFP_KERNEL);
1321 if (!skb) {
1322 ret_val = 3;
1323 goto err_nomem;
1324 }
1325 skb_put(skb, size);
1326 buffer_info = &tx_ring->buffer_info[i];
1327 buffer_info->skb = skb;
1328 buffer_info->length = skb->len;
1329 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1330 PCI_DMA_TODEVICE);
1331 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1332 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1333 E1000_ADVTXD_PAYLEN_SHIFT;
1334 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1335 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1336 E1000_TXD_CMD_IFCS |
1337 E1000_TXD_CMD_RS |
1338 E1000_ADVTXD_DTYP_DATA |
1339 E1000_ADVTXD_DCMD_DEXT);
1340 }
1341
1342 /* Setup Rx descriptor ring and Rx buffers */
1343
1344 if (!rx_ring->count)
1345 rx_ring->count = IGB_DEFAULT_RXD;
1346
1347 rx_ring->buffer_info = kcalloc(rx_ring->count,
1348 sizeof(struct igb_buffer),
1349 GFP_KERNEL);
1350 if (!rx_ring->buffer_info) {
1351 ret_val = 4;
1352 goto err_nomem;
1353 }
1354
1355 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1356 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1357 &rx_ring->dma);
1358 if (!rx_ring->desc) {
1359 ret_val = 5;
1360 goto err_nomem;
1361 }
1362 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1363
1364 rctl = rd32(E1000_RCTL);
1365 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1366 wr32(E1000_RDBAL(0),
1367 ((u64) rx_ring->dma & 0xFFFFFFFF));
1368 wr32(E1000_RDBAH(0),
1369 ((u64) rx_ring->dma >> 32));
1370 wr32(E1000_RDLEN(0), rx_ring->size);
1371 wr32(E1000_RDH(0), 0);
1372 wr32(E1000_RDT(0), 0);
1373 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1374 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1375 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1376 wr32(E1000_RCTL, rctl);
1377 wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
1378
1379 for (i = 0; i < rx_ring->count; i++) {
1380 union e1000_adv_rx_desc *rx_desc;
1381 struct sk_buff *skb;
1382
1383 buffer_info = &rx_ring->buffer_info[i];
1384 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
1385 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1386 GFP_KERNEL);
1387 if (!skb) {
1388 ret_val = 6;
1389 goto err_nomem;
1390 }
1391 skb_reserve(skb, NET_IP_ALIGN);
1392 buffer_info->skb = skb;
1393 buffer_info->dma = pci_map_single(pdev, skb->data,
1394 IGB_RXBUFFER_2048,
1395 PCI_DMA_FROMDEVICE);
1396 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
1397 memset(skb->data, 0x00, skb->len);
1398 }
1399
1400 return 0;
1401
1402 err_nomem:
1403 igb_free_desc_rings(adapter);
1404 return ret_val;
1405 }
1406
1407 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1408 {
1409 struct e1000_hw *hw = &adapter->hw;
1410
1411 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1412 igb_write_phy_reg(hw, 29, 0x001F);
1413 igb_write_phy_reg(hw, 30, 0x8FFC);
1414 igb_write_phy_reg(hw, 29, 0x001A);
1415 igb_write_phy_reg(hw, 30, 0x8FF0);
1416 }
1417
1418 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1419 {
1420 struct e1000_hw *hw = &adapter->hw;
1421 u32 ctrl_reg = 0;
1422
1423 hw->mac.autoneg = false;
1424
1425 if (hw->phy.type == e1000_phy_m88) {
1426 /* Auto-MDI/MDIX Off */
1427 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1428 /* reset to update Auto-MDI/MDIX */
1429 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1430 /* autoneg off */
1431 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1432 }
1433
1434 ctrl_reg = rd32(E1000_CTRL);
1435
1436 /* force 1000, set loopback */
1437 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1438
1439 /* Now set up the MAC to the same speed/duplex as the PHY. */
1440 ctrl_reg = rd32(E1000_CTRL);
1441 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1442 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1443 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1444 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1445 E1000_CTRL_FD | /* Force Duplex to FULL */
1446 E1000_CTRL_SLU); /* Set link up enable bit */
1447
1448 if (hw->phy.type == e1000_phy_m88)
1449 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1450
1451 wr32(E1000_CTRL, ctrl_reg);
1452
1453 /* Disable the receiver on the PHY so when a cable is plugged in, the
1454 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1455 */
1456 if (hw->phy.type == e1000_phy_m88)
1457 igb_phy_disable_receiver(adapter);
1458
1459 udelay(500);
1460
1461 return 0;
1462 }
1463
1464 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1465 {
1466 return igb_integrated_phy_loopback(adapter);
1467 }
1468
1469 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1470 {
1471 struct e1000_hw *hw = &adapter->hw;
1472 u32 reg;
1473
1474 if (hw->phy.media_type == e1000_media_type_fiber ||
1475 hw->phy.media_type == e1000_media_type_internal_serdes) {
1476 reg = rd32(E1000_RCTL);
1477 reg |= E1000_RCTL_LBM_TCVR;
1478 wr32(E1000_RCTL, reg);
1479
1480 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1481
1482 reg = rd32(E1000_CTRL);
1483 reg &= ~(E1000_CTRL_RFCE |
1484 E1000_CTRL_TFCE |
1485 E1000_CTRL_LRST);
1486 reg |= E1000_CTRL_SLU |
1487 E1000_CTRL_FD;
1488 wr32(E1000_CTRL, reg);
1489
1490 /* Unset switch control to serdes energy detect */
1491 reg = rd32(E1000_CONNSW);
1492 reg &= ~E1000_CONNSW_ENRGSRC;
1493 wr32(E1000_CONNSW, reg);
1494
1495 /* Set PCS register for forced speed */
1496 reg = rd32(E1000_PCS_LCTL);
1497 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1498 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1499 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1500 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1501 E1000_PCS_LCTL_FSD | /* Force Speed */
1502 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1503 wr32(E1000_PCS_LCTL, reg);
1504
1505 return 0;
1506 } else if (hw->phy.media_type == e1000_media_type_copper) {
1507 return igb_set_phy_loopback(adapter);
1508 }
1509
1510 return 7;
1511 }
1512
1513 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1514 {
1515 struct e1000_hw *hw = &adapter->hw;
1516 u32 rctl;
1517 u16 phy_reg;
1518
1519 rctl = rd32(E1000_RCTL);
1520 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1521 wr32(E1000_RCTL, rctl);
1522
1523 hw->mac.autoneg = true;
1524 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1525 if (phy_reg & MII_CR_LOOPBACK) {
1526 phy_reg &= ~MII_CR_LOOPBACK;
1527 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1528 igb_phy_sw_reset(hw);
1529 }
1530 }
1531
1532 static void igb_create_lbtest_frame(struct sk_buff *skb,
1533 unsigned int frame_size)
1534 {
1535 memset(skb->data, 0xFF, frame_size);
1536 frame_size &= ~1;
1537 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1538 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1539 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1540 }
1541
1542 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1543 {
1544 frame_size &= ~1;
1545 if (*(skb->data + 3) == 0xFF)
1546 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1547 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1548 return 0;
1549 return 13;
1550 }
1551
1552 static int igb_run_loopback_test(struct igb_adapter *adapter)
1553 {
1554 struct e1000_hw *hw = &adapter->hw;
1555 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1556 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1557 struct pci_dev *pdev = adapter->pdev;
1558 int i, j, k, l, lc, good_cnt;
1559 int ret_val = 0;
1560 unsigned long time;
1561
1562 wr32(E1000_RDT(0), rx_ring->count - 1);
1563
1564 /* Calculate the loop count based on the largest descriptor ring
1565 * The idea is to wrap the largest ring a number of times using 64
1566 * send/receive pairs during each loop
1567 */
1568
1569 if (rx_ring->count <= tx_ring->count)
1570 lc = ((tx_ring->count / 64) * 2) + 1;
1571 else
1572 lc = ((rx_ring->count / 64) * 2) + 1;
1573
1574 k = l = 0;
1575 for (j = 0; j <= lc; j++) { /* loop count loop */
1576 for (i = 0; i < 64; i++) { /* send the packets */
1577 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1578 1024);
1579 pci_dma_sync_single_for_device(pdev,
1580 tx_ring->buffer_info[k].dma,
1581 tx_ring->buffer_info[k].length,
1582 PCI_DMA_TODEVICE);
1583 k++;
1584 if (k == tx_ring->count)
1585 k = 0;
1586 }
1587 wr32(E1000_TDT(0), k);
1588 msleep(200);
1589 time = jiffies; /* set the start time for the receive */
1590 good_cnt = 0;
1591 do { /* receive the sent packets */
1592 pci_dma_sync_single_for_cpu(pdev,
1593 rx_ring->buffer_info[l].dma,
1594 IGB_RXBUFFER_2048,
1595 PCI_DMA_FROMDEVICE);
1596
1597 ret_val = igb_check_lbtest_frame(
1598 rx_ring->buffer_info[l].skb, 1024);
1599 if (!ret_val)
1600 good_cnt++;
1601 l++;
1602 if (l == rx_ring->count)
1603 l = 0;
1604 /* time + 20 msecs (200 msecs on 2.4) is more than
1605 * enough time to complete the receives, if it's
1606 * exceeded, break and error off
1607 */
1608 } while (good_cnt < 64 && jiffies < (time + 20));
1609 if (good_cnt != 64) {
1610 ret_val = 13; /* ret_val is the same as mis-compare */
1611 break;
1612 }
1613 if (jiffies >= (time + 20)) {
1614 ret_val = 14; /* error code for time out error */
1615 break;
1616 }
1617 } /* end loop count loop */
1618 return ret_val;
1619 }
1620
1621 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1622 {
1623 /* PHY loopback cannot be performed if SoL/IDER
1624 * sessions are active */
1625 if (igb_check_reset_block(&adapter->hw)) {
1626 dev_err(&adapter->pdev->dev,
1627 "Cannot do PHY loopback test "
1628 "when SoL/IDER is active.\n");
1629 *data = 0;
1630 goto out;
1631 }
1632 *data = igb_setup_desc_rings(adapter);
1633 if (*data)
1634 goto out;
1635 *data = igb_setup_loopback_test(adapter);
1636 if (*data)
1637 goto err_loopback;
1638 *data = igb_run_loopback_test(adapter);
1639 igb_loopback_cleanup(adapter);
1640
1641 err_loopback:
1642 igb_free_desc_rings(adapter);
1643 out:
1644 return *data;
1645 }
1646
1647 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1648 {
1649 struct e1000_hw *hw = &adapter->hw;
1650 *data = 0;
1651 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1652 int i = 0;
1653 hw->mac.serdes_has_link = false;
1654
1655 /* On some blade server designs, link establishment
1656 * could take as long as 2-3 minutes */
1657 do {
1658 hw->mac.ops.check_for_link(&adapter->hw);
1659 if (hw->mac.serdes_has_link)
1660 return *data;
1661 msleep(20);
1662 } while (i++ < 3750);
1663
1664 *data = 1;
1665 } else {
1666 hw->mac.ops.check_for_link(&adapter->hw);
1667 if (hw->mac.autoneg)
1668 msleep(4000);
1669
1670 if (!(rd32(E1000_STATUS) &
1671 E1000_STATUS_LU))
1672 *data = 1;
1673 }
1674 return *data;
1675 }
1676
1677 static void igb_diag_test(struct net_device *netdev,
1678 struct ethtool_test *eth_test, u64 *data)
1679 {
1680 struct igb_adapter *adapter = netdev_priv(netdev);
1681 u16 autoneg_advertised;
1682 u8 forced_speed_duplex, autoneg;
1683 bool if_running = netif_running(netdev);
1684
1685 set_bit(__IGB_TESTING, &adapter->state);
1686 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1687 /* Offline tests */
1688
1689 /* save speed, duplex, autoneg settings */
1690 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1691 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1692 autoneg = adapter->hw.mac.autoneg;
1693
1694 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1695
1696 /* Link test performed before hardware reset so autoneg doesn't
1697 * interfere with test result */
1698 if (igb_link_test(adapter, &data[4]))
1699 eth_test->flags |= ETH_TEST_FL_FAILED;
1700
1701 if (if_running)
1702 /* indicate we're in test mode */
1703 dev_close(netdev);
1704 else
1705 igb_reset(adapter);
1706
1707 if (igb_reg_test(adapter, &data[0]))
1708 eth_test->flags |= ETH_TEST_FL_FAILED;
1709
1710 igb_reset(adapter);
1711 if (igb_eeprom_test(adapter, &data[1]))
1712 eth_test->flags |= ETH_TEST_FL_FAILED;
1713
1714 igb_reset(adapter);
1715 if (igb_intr_test(adapter, &data[2]))
1716 eth_test->flags |= ETH_TEST_FL_FAILED;
1717
1718 igb_reset(adapter);
1719 if (igb_loopback_test(adapter, &data[3]))
1720 eth_test->flags |= ETH_TEST_FL_FAILED;
1721
1722 /* restore speed, duplex, autoneg settings */
1723 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1724 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1725 adapter->hw.mac.autoneg = autoneg;
1726
1727 /* force this routine to wait until autoneg complete/timeout */
1728 adapter->hw.phy.autoneg_wait_to_complete = true;
1729 igb_reset(adapter);
1730 adapter->hw.phy.autoneg_wait_to_complete = false;
1731
1732 clear_bit(__IGB_TESTING, &adapter->state);
1733 if (if_running)
1734 dev_open(netdev);
1735 } else {
1736 dev_info(&adapter->pdev->dev, "online testing starting\n");
1737 /* Online tests */
1738 if (igb_link_test(adapter, &data[4]))
1739 eth_test->flags |= ETH_TEST_FL_FAILED;
1740
1741 /* Online tests aren't run; pass by default */
1742 data[0] = 0;
1743 data[1] = 0;
1744 data[2] = 0;
1745 data[3] = 0;
1746
1747 clear_bit(__IGB_TESTING, &adapter->state);
1748 }
1749 msleep_interruptible(4 * 1000);
1750 }
1751
1752 static int igb_wol_exclusion(struct igb_adapter *adapter,
1753 struct ethtool_wolinfo *wol)
1754 {
1755 struct e1000_hw *hw = &adapter->hw;
1756 int retval = 1; /* fail by default */
1757
1758 switch (hw->device_id) {
1759 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1760 /* WoL not supported */
1761 wol->supported = 0;
1762 break;
1763 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1764 case E1000_DEV_ID_82576_FIBER:
1765 case E1000_DEV_ID_82576_SERDES:
1766 /* Wake events not supported on port B */
1767 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1768 wol->supported = 0;
1769 break;
1770 }
1771 /* return success for non excluded adapter ports */
1772 retval = 0;
1773 break;
1774 case E1000_DEV_ID_82576_QUAD_COPPER:
1775 /* quad port adapters only support WoL on port A */
1776 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1777 wol->supported = 0;
1778 break;
1779 }
1780 /* return success for non excluded adapter ports */
1781 retval = 0;
1782 break;
1783 default:
1784 /* dual port cards only support WoL on port A from now on
1785 * unless it was enabled in the eeprom for port B
1786 * so exclude FUNC_1 ports from having WoL enabled */
1787 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1788 !adapter->eeprom_wol) {
1789 wol->supported = 0;
1790 break;
1791 }
1792
1793 retval = 0;
1794 }
1795
1796 return retval;
1797 }
1798
1799 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1800 {
1801 struct igb_adapter *adapter = netdev_priv(netdev);
1802
1803 wol->supported = WAKE_UCAST | WAKE_MCAST |
1804 WAKE_BCAST | WAKE_MAGIC;
1805 wol->wolopts = 0;
1806
1807 /* this function will set ->supported = 0 and return 1 if wol is not
1808 * supported by this hardware */
1809 if (igb_wol_exclusion(adapter, wol) ||
1810 !device_can_wakeup(&adapter->pdev->dev))
1811 return;
1812
1813 /* apply any specific unsupported masks here */
1814 switch (adapter->hw.device_id) {
1815 default:
1816 break;
1817 }
1818
1819 if (adapter->wol & E1000_WUFC_EX)
1820 wol->wolopts |= WAKE_UCAST;
1821 if (adapter->wol & E1000_WUFC_MC)
1822 wol->wolopts |= WAKE_MCAST;
1823 if (adapter->wol & E1000_WUFC_BC)
1824 wol->wolopts |= WAKE_BCAST;
1825 if (adapter->wol & E1000_WUFC_MAG)
1826 wol->wolopts |= WAKE_MAGIC;
1827
1828 return;
1829 }
1830
1831 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1832 {
1833 struct igb_adapter *adapter = netdev_priv(netdev);
1834 struct e1000_hw *hw = &adapter->hw;
1835
1836 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1837 return -EOPNOTSUPP;
1838
1839 if (igb_wol_exclusion(adapter, wol) ||
1840 !device_can_wakeup(&adapter->pdev->dev))
1841 return wol->wolopts ? -EOPNOTSUPP : 0;
1842
1843 switch (hw->device_id) {
1844 default:
1845 break;
1846 }
1847
1848 /* these settings will always override what we currently have */
1849 adapter->wol = 0;
1850
1851 if (wol->wolopts & WAKE_UCAST)
1852 adapter->wol |= E1000_WUFC_EX;
1853 if (wol->wolopts & WAKE_MCAST)
1854 adapter->wol |= E1000_WUFC_MC;
1855 if (wol->wolopts & WAKE_BCAST)
1856 adapter->wol |= E1000_WUFC_BC;
1857 if (wol->wolopts & WAKE_MAGIC)
1858 adapter->wol |= E1000_WUFC_MAG;
1859
1860 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1861
1862 return 0;
1863 }
1864
1865 /* bit defines for adapter->led_status */
1866 #define IGB_LED_ON 0
1867
1868 static int igb_phys_id(struct net_device *netdev, u32 data)
1869 {
1870 struct igb_adapter *adapter = netdev_priv(netdev);
1871 struct e1000_hw *hw = &adapter->hw;
1872
1873 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1874 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1875
1876 igb_blink_led(hw);
1877 msleep_interruptible(data * 1000);
1878
1879 igb_led_off(hw);
1880 clear_bit(IGB_LED_ON, &adapter->led_status);
1881 igb_cleanup_led(hw);
1882
1883 return 0;
1884 }
1885
1886 static int igb_set_coalesce(struct net_device *netdev,
1887 struct ethtool_coalesce *ec)
1888 {
1889 struct igb_adapter *adapter = netdev_priv(netdev);
1890 struct e1000_hw *hw = &adapter->hw;
1891 int i;
1892
1893 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1894 ((ec->rx_coalesce_usecs > 3) &&
1895 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1896 (ec->rx_coalesce_usecs == 2))
1897 return -EINVAL;
1898
1899 /* convert to rate of irq's per second */
1900 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1901 adapter->itr_setting = ec->rx_coalesce_usecs;
1902 adapter->itr = IGB_START_ITR;
1903 } else {
1904 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1905 adapter->itr = adapter->itr_setting;
1906 }
1907
1908 for (i = 0; i < adapter->num_rx_queues; i++)
1909 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1910
1911 return 0;
1912 }
1913
1914 static int igb_get_coalesce(struct net_device *netdev,
1915 struct ethtool_coalesce *ec)
1916 {
1917 struct igb_adapter *adapter = netdev_priv(netdev);
1918
1919 if (adapter->itr_setting <= 3)
1920 ec->rx_coalesce_usecs = adapter->itr_setting;
1921 else
1922 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1923
1924 return 0;
1925 }
1926
1927
1928 static int igb_nway_reset(struct net_device *netdev)
1929 {
1930 struct igb_adapter *adapter = netdev_priv(netdev);
1931 if (netif_running(netdev))
1932 igb_reinit_locked(adapter);
1933 return 0;
1934 }
1935
1936 static int igb_get_sset_count(struct net_device *netdev, int sset)
1937 {
1938 switch (sset) {
1939 case ETH_SS_STATS:
1940 return IGB_STATS_LEN;
1941 case ETH_SS_TEST:
1942 return IGB_TEST_LEN;
1943 default:
1944 return -ENOTSUPP;
1945 }
1946 }
1947
1948 static void igb_get_ethtool_stats(struct net_device *netdev,
1949 struct ethtool_stats *stats, u64 *data)
1950 {
1951 struct igb_adapter *adapter = netdev_priv(netdev);
1952 u64 *queue_stat;
1953 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1954 int j;
1955 int i;
1956
1957 igb_update_stats(adapter);
1958 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1959 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1960 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1961 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1962 }
1963 for (j = 0; j < adapter->num_tx_queues; j++) {
1964 int k;
1965 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1966 for (k = 0; k < stat_count; k++)
1967 data[i + k] = queue_stat[k];
1968 i += k;
1969 }
1970 for (j = 0; j < adapter->num_rx_queues; j++) {
1971 int k;
1972 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1973 for (k = 0; k < stat_count; k++)
1974 data[i + k] = queue_stat[k];
1975 i += k;
1976 }
1977 }
1978
1979 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1980 {
1981 struct igb_adapter *adapter = netdev_priv(netdev);
1982 u8 *p = data;
1983 int i;
1984
1985 switch (stringset) {
1986 case ETH_SS_TEST:
1987 memcpy(data, *igb_gstrings_test,
1988 IGB_TEST_LEN*ETH_GSTRING_LEN);
1989 break;
1990 case ETH_SS_STATS:
1991 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1992 memcpy(p, igb_gstrings_stats[i].stat_string,
1993 ETH_GSTRING_LEN);
1994 p += ETH_GSTRING_LEN;
1995 }
1996 for (i = 0; i < adapter->num_tx_queues; i++) {
1997 sprintf(p, "tx_queue_%u_packets", i);
1998 p += ETH_GSTRING_LEN;
1999 sprintf(p, "tx_queue_%u_bytes", i);
2000 p += ETH_GSTRING_LEN;
2001 }
2002 for (i = 0; i < adapter->num_rx_queues; i++) {
2003 sprintf(p, "rx_queue_%u_packets", i);
2004 p += ETH_GSTRING_LEN;
2005 sprintf(p, "rx_queue_%u_bytes", i);
2006 p += ETH_GSTRING_LEN;
2007 }
2008 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2009 break;
2010 }
2011 }
2012
2013 static struct ethtool_ops igb_ethtool_ops = {
2014 .get_settings = igb_get_settings,
2015 .set_settings = igb_set_settings,
2016 .get_drvinfo = igb_get_drvinfo,
2017 .get_regs_len = igb_get_regs_len,
2018 .get_regs = igb_get_regs,
2019 .get_wol = igb_get_wol,
2020 .set_wol = igb_set_wol,
2021 .get_msglevel = igb_get_msglevel,
2022 .set_msglevel = igb_set_msglevel,
2023 .nway_reset = igb_nway_reset,
2024 .get_link = ethtool_op_get_link,
2025 .get_eeprom_len = igb_get_eeprom_len,
2026 .get_eeprom = igb_get_eeprom,
2027 .set_eeprom = igb_set_eeprom,
2028 .get_ringparam = igb_get_ringparam,
2029 .set_ringparam = igb_set_ringparam,
2030 .get_pauseparam = igb_get_pauseparam,
2031 .set_pauseparam = igb_set_pauseparam,
2032 .get_rx_csum = igb_get_rx_csum,
2033 .set_rx_csum = igb_set_rx_csum,
2034 .get_tx_csum = igb_get_tx_csum,
2035 .set_tx_csum = igb_set_tx_csum,
2036 .get_sg = ethtool_op_get_sg,
2037 .set_sg = ethtool_op_set_sg,
2038 .get_tso = ethtool_op_get_tso,
2039 .set_tso = igb_set_tso,
2040 .self_test = igb_diag_test,
2041 .get_strings = igb_get_strings,
2042 .phys_id = igb_phys_id,
2043 .get_sset_count = igb_get_sset_count,
2044 .get_ethtool_stats = igb_get_ethtool_stats,
2045 .get_coalesce = igb_get_coalesce,
2046 .set_coalesce = igb_set_coalesce,
2047 };
2048
2049 void igb_set_ethtool_ops(struct net_device *netdev)
2050 {
2051 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2052 }