]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/igb/igb_main.c
Merge branch 'fix/misc' into topic/misc
[mirror_ubuntu-artful-kernel.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "2.1.0-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79 /* required last entry */
80 {0, }
81 };
82
83 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85 void igb_reset(struct igb_adapter *);
86 static int igb_setup_all_tx_resources(struct igb_adapter *);
87 static int igb_setup_all_rx_resources(struct igb_adapter *);
88 static void igb_free_all_tx_resources(struct igb_adapter *);
89 static void igb_free_all_rx_resources(struct igb_adapter *);
90 static void igb_setup_mrqc(struct igb_adapter *);
91 void igb_update_stats(struct igb_adapter *);
92 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93 static void __devexit igb_remove(struct pci_dev *pdev);
94 static int igb_sw_init(struct igb_adapter *);
95 static int igb_open(struct net_device *);
96 static int igb_close(struct net_device *);
97 static void igb_configure_tx(struct igb_adapter *);
98 static void igb_configure_rx(struct igb_adapter *);
99 static void igb_clean_all_tx_rings(struct igb_adapter *);
100 static void igb_clean_all_rx_rings(struct igb_adapter *);
101 static void igb_clean_tx_ring(struct igb_ring *);
102 static void igb_clean_rx_ring(struct igb_ring *);
103 static void igb_set_rx_mode(struct net_device *);
104 static void igb_update_phy_info(unsigned long);
105 static void igb_watchdog(unsigned long);
106 static void igb_watchdog_task(struct work_struct *);
107 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static void igb_vmm_control(struct igb_adapter *);
134 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136
137 #ifdef CONFIG_PM
138 static int igb_suspend(struct pci_dev *, pm_message_t);
139 static int igb_resume(struct pci_dev *);
140 #endif
141 static void igb_shutdown(struct pci_dev *);
142 #ifdef CONFIG_IGB_DCA
143 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
144 static struct notifier_block dca_notifier = {
145 .notifier_call = igb_notify_dca,
146 .next = NULL,
147 .priority = 0
148 };
149 #endif
150 #ifdef CONFIG_NET_POLL_CONTROLLER
151 /* for netdump / net console */
152 static void igb_netpoll(struct net_device *);
153 #endif
154 #ifdef CONFIG_PCI_IOV
155 static unsigned int max_vfs = 0;
156 module_param(max_vfs, uint, 0);
157 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
158 "per physical function");
159 #endif /* CONFIG_PCI_IOV */
160
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162 pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
165
166 static struct pci_error_handlers igb_err_handler = {
167 .error_detected = igb_io_error_detected,
168 .slot_reset = igb_io_slot_reset,
169 .resume = igb_io_resume,
170 };
171
172
173 static struct pci_driver igb_driver = {
174 .name = igb_driver_name,
175 .id_table = igb_pci_tbl,
176 .probe = igb_probe,
177 .remove = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179 /* Power Managment Hooks */
180 .suspend = igb_suspend,
181 .resume = igb_resume,
182 #endif
183 .shutdown = igb_shutdown,
184 .err_handler = &igb_err_handler
185 };
186
187 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
188 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
189 MODULE_LICENSE("GPL");
190 MODULE_VERSION(DRV_VERSION);
191
192 /**
193 * igb_read_clock - read raw cycle counter (to be used by time counter)
194 */
195 static cycle_t igb_read_clock(const struct cyclecounter *tc)
196 {
197 struct igb_adapter *adapter =
198 container_of(tc, struct igb_adapter, cycles);
199 struct e1000_hw *hw = &adapter->hw;
200 u64 stamp = 0;
201 int shift = 0;
202
203 /*
204 * The timestamp latches on lowest register read. For the 82580
205 * the lowest register is SYSTIMR instead of SYSTIML. However we never
206 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
207 */
208 if (hw->mac.type == e1000_82580) {
209 stamp = rd32(E1000_SYSTIMR) >> 8;
210 shift = IGB_82580_TSYNC_SHIFT;
211 }
212
213 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
214 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
215 return stamp;
216 }
217
218 #ifdef DEBUG
219 /**
220 * igb_get_hw_dev_name - return device name string
221 * used by hardware layer to print debugging information
222 **/
223 char *igb_get_hw_dev_name(struct e1000_hw *hw)
224 {
225 struct igb_adapter *adapter = hw->back;
226 return adapter->netdev->name;
227 }
228
229 /**
230 * igb_get_time_str - format current NIC and system time as string
231 */
232 static char *igb_get_time_str(struct igb_adapter *adapter,
233 char buffer[160])
234 {
235 cycle_t hw = adapter->cycles.read(&adapter->cycles);
236 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
237 struct timespec sys;
238 struct timespec delta;
239 getnstimeofday(&sys);
240
241 delta = timespec_sub(nic, sys);
242
243 sprintf(buffer,
244 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
245 hw,
246 (long)nic.tv_sec, nic.tv_nsec,
247 (long)sys.tv_sec, sys.tv_nsec,
248 (long)delta.tv_sec, delta.tv_nsec);
249
250 return buffer;
251 }
252 #endif
253
254 /**
255 * igb_init_module - Driver Registration Routine
256 *
257 * igb_init_module is the first routine called when the driver is
258 * loaded. All it does is register with the PCI subsystem.
259 **/
260 static int __init igb_init_module(void)
261 {
262 int ret;
263 printk(KERN_INFO "%s - version %s\n",
264 igb_driver_string, igb_driver_version);
265
266 printk(KERN_INFO "%s\n", igb_copyright);
267
268 #ifdef CONFIG_IGB_DCA
269 dca_register_notify(&dca_notifier);
270 #endif
271 ret = pci_register_driver(&igb_driver);
272 return ret;
273 }
274
275 module_init(igb_init_module);
276
277 /**
278 * igb_exit_module - Driver Exit Cleanup Routine
279 *
280 * igb_exit_module is called just before the driver is removed
281 * from memory.
282 **/
283 static void __exit igb_exit_module(void)
284 {
285 #ifdef CONFIG_IGB_DCA
286 dca_unregister_notify(&dca_notifier);
287 #endif
288 pci_unregister_driver(&igb_driver);
289 }
290
291 module_exit(igb_exit_module);
292
293 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
294 /**
295 * igb_cache_ring_register - Descriptor ring to register mapping
296 * @adapter: board private structure to initialize
297 *
298 * Once we know the feature-set enabled for the device, we'll cache
299 * the register offset the descriptor ring is assigned to.
300 **/
301 static void igb_cache_ring_register(struct igb_adapter *adapter)
302 {
303 int i = 0, j = 0;
304 u32 rbase_offset = adapter->vfs_allocated_count;
305
306 switch (adapter->hw.mac.type) {
307 case e1000_82576:
308 /* The queues are allocated for virtualization such that VF 0
309 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
310 * In order to avoid collision we start at the first free queue
311 * and continue consuming queues in the same sequence
312 */
313 if (adapter->vfs_allocated_count) {
314 for (; i < adapter->rss_queues; i++)
315 adapter->rx_ring[i].reg_idx = rbase_offset +
316 Q_IDX_82576(i);
317 for (; j < adapter->rss_queues; j++)
318 adapter->tx_ring[j].reg_idx = rbase_offset +
319 Q_IDX_82576(j);
320 }
321 case e1000_82575:
322 case e1000_82580:
323 default:
324 for (; i < adapter->num_rx_queues; i++)
325 adapter->rx_ring[i].reg_idx = rbase_offset + i;
326 for (; j < adapter->num_tx_queues; j++)
327 adapter->tx_ring[j].reg_idx = rbase_offset + j;
328 break;
329 }
330 }
331
332 static void igb_free_queues(struct igb_adapter *adapter)
333 {
334 kfree(adapter->tx_ring);
335 kfree(adapter->rx_ring);
336
337 adapter->tx_ring = NULL;
338 adapter->rx_ring = NULL;
339
340 adapter->num_rx_queues = 0;
341 adapter->num_tx_queues = 0;
342 }
343
344 /**
345 * igb_alloc_queues - Allocate memory for all rings
346 * @adapter: board private structure to initialize
347 *
348 * We allocate one ring per queue at run-time since we don't know the
349 * number of queues at compile-time.
350 **/
351 static int igb_alloc_queues(struct igb_adapter *adapter)
352 {
353 int i;
354
355 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
356 sizeof(struct igb_ring), GFP_KERNEL);
357 if (!adapter->tx_ring)
358 goto err;
359
360 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
361 sizeof(struct igb_ring), GFP_KERNEL);
362 if (!adapter->rx_ring)
363 goto err;
364
365 for (i = 0; i < adapter->num_tx_queues; i++) {
366 struct igb_ring *ring = &(adapter->tx_ring[i]);
367 ring->count = adapter->tx_ring_count;
368 ring->queue_index = i;
369 ring->pdev = adapter->pdev;
370 ring->netdev = adapter->netdev;
371 /* For 82575, context index must be unique per ring. */
372 if (adapter->hw.mac.type == e1000_82575)
373 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
374 }
375
376 for (i = 0; i < adapter->num_rx_queues; i++) {
377 struct igb_ring *ring = &(adapter->rx_ring[i]);
378 ring->count = adapter->rx_ring_count;
379 ring->queue_index = i;
380 ring->pdev = adapter->pdev;
381 ring->netdev = adapter->netdev;
382 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
383 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
384 /* set flag indicating ring supports SCTP checksum offload */
385 if (adapter->hw.mac.type >= e1000_82576)
386 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
387 }
388
389 igb_cache_ring_register(adapter);
390
391 return 0;
392
393 err:
394 igb_free_queues(adapter);
395
396 return -ENOMEM;
397 }
398
399 #define IGB_N0_QUEUE -1
400 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
401 {
402 u32 msixbm = 0;
403 struct igb_adapter *adapter = q_vector->adapter;
404 struct e1000_hw *hw = &adapter->hw;
405 u32 ivar, index;
406 int rx_queue = IGB_N0_QUEUE;
407 int tx_queue = IGB_N0_QUEUE;
408
409 if (q_vector->rx_ring)
410 rx_queue = q_vector->rx_ring->reg_idx;
411 if (q_vector->tx_ring)
412 tx_queue = q_vector->tx_ring->reg_idx;
413
414 switch (hw->mac.type) {
415 case e1000_82575:
416 /* The 82575 assigns vectors using a bitmask, which matches the
417 bitmask for the EICR/EIMS/EIMC registers. To assign one
418 or more queues to a vector, we write the appropriate bits
419 into the MSIXBM register for that vector. */
420 if (rx_queue > IGB_N0_QUEUE)
421 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
422 if (tx_queue > IGB_N0_QUEUE)
423 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
424 if (!adapter->msix_entries && msix_vector == 0)
425 msixbm |= E1000_EIMS_OTHER;
426 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
427 q_vector->eims_value = msixbm;
428 break;
429 case e1000_82576:
430 /* 82576 uses a table-based method for assigning vectors.
431 Each queue has a single entry in the table to which we write
432 a vector number along with a "valid" bit. Sadly, the layout
433 of the table is somewhat counterintuitive. */
434 if (rx_queue > IGB_N0_QUEUE) {
435 index = (rx_queue & 0x7);
436 ivar = array_rd32(E1000_IVAR0, index);
437 if (rx_queue < 8) {
438 /* vector goes into low byte of register */
439 ivar = ivar & 0xFFFFFF00;
440 ivar |= msix_vector | E1000_IVAR_VALID;
441 } else {
442 /* vector goes into third byte of register */
443 ivar = ivar & 0xFF00FFFF;
444 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
445 }
446 array_wr32(E1000_IVAR0, index, ivar);
447 }
448 if (tx_queue > IGB_N0_QUEUE) {
449 index = (tx_queue & 0x7);
450 ivar = array_rd32(E1000_IVAR0, index);
451 if (tx_queue < 8) {
452 /* vector goes into second byte of register */
453 ivar = ivar & 0xFFFF00FF;
454 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
455 } else {
456 /* vector goes into high byte of register */
457 ivar = ivar & 0x00FFFFFF;
458 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
459 }
460 array_wr32(E1000_IVAR0, index, ivar);
461 }
462 q_vector->eims_value = 1 << msix_vector;
463 break;
464 case e1000_82580:
465 /* 82580 uses the same table-based approach as 82576 but has fewer
466 entries as a result we carry over for queues greater than 4. */
467 if (rx_queue > IGB_N0_QUEUE) {
468 index = (rx_queue >> 1);
469 ivar = array_rd32(E1000_IVAR0, index);
470 if (rx_queue & 0x1) {
471 /* vector goes into third byte of register */
472 ivar = ivar & 0xFF00FFFF;
473 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
474 } else {
475 /* vector goes into low byte of register */
476 ivar = ivar & 0xFFFFFF00;
477 ivar |= msix_vector | E1000_IVAR_VALID;
478 }
479 array_wr32(E1000_IVAR0, index, ivar);
480 }
481 if (tx_queue > IGB_N0_QUEUE) {
482 index = (tx_queue >> 1);
483 ivar = array_rd32(E1000_IVAR0, index);
484 if (tx_queue & 0x1) {
485 /* vector goes into high byte of register */
486 ivar = ivar & 0x00FFFFFF;
487 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
488 } else {
489 /* vector goes into second byte of register */
490 ivar = ivar & 0xFFFF00FF;
491 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
492 }
493 array_wr32(E1000_IVAR0, index, ivar);
494 }
495 q_vector->eims_value = 1 << msix_vector;
496 break;
497 default:
498 BUG();
499 break;
500 }
501 }
502
503 /**
504 * igb_configure_msix - Configure MSI-X hardware
505 *
506 * igb_configure_msix sets up the hardware to properly
507 * generate MSI-X interrupts.
508 **/
509 static void igb_configure_msix(struct igb_adapter *adapter)
510 {
511 u32 tmp;
512 int i, vector = 0;
513 struct e1000_hw *hw = &adapter->hw;
514
515 adapter->eims_enable_mask = 0;
516
517 /* set vector for other causes, i.e. link changes */
518 switch (hw->mac.type) {
519 case e1000_82575:
520 tmp = rd32(E1000_CTRL_EXT);
521 /* enable MSI-X PBA support*/
522 tmp |= E1000_CTRL_EXT_PBA_CLR;
523
524 /* Auto-Mask interrupts upon ICR read. */
525 tmp |= E1000_CTRL_EXT_EIAME;
526 tmp |= E1000_CTRL_EXT_IRCA;
527
528 wr32(E1000_CTRL_EXT, tmp);
529
530 /* enable msix_other interrupt */
531 array_wr32(E1000_MSIXBM(0), vector++,
532 E1000_EIMS_OTHER);
533 adapter->eims_other = E1000_EIMS_OTHER;
534
535 break;
536
537 case e1000_82576:
538 case e1000_82580:
539 /* Turn on MSI-X capability first, or our settings
540 * won't stick. And it will take days to debug. */
541 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
542 E1000_GPIE_PBA | E1000_GPIE_EIAME |
543 E1000_GPIE_NSICR);
544
545 /* enable msix_other interrupt */
546 adapter->eims_other = 1 << vector;
547 tmp = (vector++ | E1000_IVAR_VALID) << 8;
548
549 wr32(E1000_IVAR_MISC, tmp);
550 break;
551 default:
552 /* do nothing, since nothing else supports MSI-X */
553 break;
554 } /* switch (hw->mac.type) */
555
556 adapter->eims_enable_mask |= adapter->eims_other;
557
558 for (i = 0; i < adapter->num_q_vectors; i++) {
559 struct igb_q_vector *q_vector = adapter->q_vector[i];
560 igb_assign_vector(q_vector, vector++);
561 adapter->eims_enable_mask |= q_vector->eims_value;
562 }
563
564 wrfl();
565 }
566
567 /**
568 * igb_request_msix - Initialize MSI-X interrupts
569 *
570 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
571 * kernel.
572 **/
573 static int igb_request_msix(struct igb_adapter *adapter)
574 {
575 struct net_device *netdev = adapter->netdev;
576 struct e1000_hw *hw = &adapter->hw;
577 int i, err = 0, vector = 0;
578
579 err = request_irq(adapter->msix_entries[vector].vector,
580 igb_msix_other, 0, netdev->name, adapter);
581 if (err)
582 goto out;
583 vector++;
584
585 for (i = 0; i < adapter->num_q_vectors; i++) {
586 struct igb_q_vector *q_vector = adapter->q_vector[i];
587
588 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
589
590 if (q_vector->rx_ring && q_vector->tx_ring)
591 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
592 q_vector->rx_ring->queue_index);
593 else if (q_vector->tx_ring)
594 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
595 q_vector->tx_ring->queue_index);
596 else if (q_vector->rx_ring)
597 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
598 q_vector->rx_ring->queue_index);
599 else
600 sprintf(q_vector->name, "%s-unused", netdev->name);
601
602 err = request_irq(adapter->msix_entries[vector].vector,
603 igb_msix_ring, 0, q_vector->name,
604 q_vector);
605 if (err)
606 goto out;
607 vector++;
608 }
609
610 igb_configure_msix(adapter);
611 return 0;
612 out:
613 return err;
614 }
615
616 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
617 {
618 if (adapter->msix_entries) {
619 pci_disable_msix(adapter->pdev);
620 kfree(adapter->msix_entries);
621 adapter->msix_entries = NULL;
622 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
623 pci_disable_msi(adapter->pdev);
624 }
625 }
626
627 /**
628 * igb_free_q_vectors - Free memory allocated for interrupt vectors
629 * @adapter: board private structure to initialize
630 *
631 * This function frees the memory allocated to the q_vectors. In addition if
632 * NAPI is enabled it will delete any references to the NAPI struct prior
633 * to freeing the q_vector.
634 **/
635 static void igb_free_q_vectors(struct igb_adapter *adapter)
636 {
637 int v_idx;
638
639 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
640 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
641 adapter->q_vector[v_idx] = NULL;
642 netif_napi_del(&q_vector->napi);
643 kfree(q_vector);
644 }
645 adapter->num_q_vectors = 0;
646 }
647
648 /**
649 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
650 *
651 * This function resets the device so that it has 0 rx queues, tx queues, and
652 * MSI-X interrupts allocated.
653 */
654 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
655 {
656 igb_free_queues(adapter);
657 igb_free_q_vectors(adapter);
658 igb_reset_interrupt_capability(adapter);
659 }
660
661 /**
662 * igb_set_interrupt_capability - set MSI or MSI-X if supported
663 *
664 * Attempt to configure interrupts using the best available
665 * capabilities of the hardware and kernel.
666 **/
667 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
668 {
669 int err;
670 int numvecs, i;
671
672 /* Number of supported queues. */
673 adapter->num_rx_queues = adapter->rss_queues;
674 adapter->num_tx_queues = adapter->rss_queues;
675
676 /* start with one vector for every rx queue */
677 numvecs = adapter->num_rx_queues;
678
679 /* if tx handler is seperate add 1 for every tx queue */
680 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
681 numvecs += adapter->num_tx_queues;
682
683 /* store the number of vectors reserved for queues */
684 adapter->num_q_vectors = numvecs;
685
686 /* add 1 vector for link status interrupts */
687 numvecs++;
688 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
689 GFP_KERNEL);
690 if (!adapter->msix_entries)
691 goto msi_only;
692
693 for (i = 0; i < numvecs; i++)
694 adapter->msix_entries[i].entry = i;
695
696 err = pci_enable_msix(adapter->pdev,
697 adapter->msix_entries,
698 numvecs);
699 if (err == 0)
700 goto out;
701
702 igb_reset_interrupt_capability(adapter);
703
704 /* If we can't do MSI-X, try MSI */
705 msi_only:
706 #ifdef CONFIG_PCI_IOV
707 /* disable SR-IOV for non MSI-X configurations */
708 if (adapter->vf_data) {
709 struct e1000_hw *hw = &adapter->hw;
710 /* disable iov and allow time for transactions to clear */
711 pci_disable_sriov(adapter->pdev);
712 msleep(500);
713
714 kfree(adapter->vf_data);
715 adapter->vf_data = NULL;
716 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
717 msleep(100);
718 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
719 }
720 #endif
721 adapter->vfs_allocated_count = 0;
722 adapter->rss_queues = 1;
723 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
724 adapter->num_rx_queues = 1;
725 adapter->num_tx_queues = 1;
726 adapter->num_q_vectors = 1;
727 if (!pci_enable_msi(adapter->pdev))
728 adapter->flags |= IGB_FLAG_HAS_MSI;
729 out:
730 /* Notify the stack of the (possibly) reduced Tx Queue count. */
731 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
732 return;
733 }
734
735 /**
736 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
737 * @adapter: board private structure to initialize
738 *
739 * We allocate one q_vector per queue interrupt. If allocation fails we
740 * return -ENOMEM.
741 **/
742 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
743 {
744 struct igb_q_vector *q_vector;
745 struct e1000_hw *hw = &adapter->hw;
746 int v_idx;
747
748 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
749 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
750 if (!q_vector)
751 goto err_out;
752 q_vector->adapter = adapter;
753 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
754 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
755 q_vector->itr_val = IGB_START_ITR;
756 q_vector->set_itr = 1;
757 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
758 adapter->q_vector[v_idx] = q_vector;
759 }
760 return 0;
761
762 err_out:
763 while (v_idx) {
764 v_idx--;
765 q_vector = adapter->q_vector[v_idx];
766 netif_napi_del(&q_vector->napi);
767 kfree(q_vector);
768 adapter->q_vector[v_idx] = NULL;
769 }
770 return -ENOMEM;
771 }
772
773 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
774 int ring_idx, int v_idx)
775 {
776 struct igb_q_vector *q_vector;
777
778 q_vector = adapter->q_vector[v_idx];
779 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
780 q_vector->rx_ring->q_vector = q_vector;
781 q_vector->itr_val = adapter->rx_itr_setting;
782 if (q_vector->itr_val && q_vector->itr_val <= 3)
783 q_vector->itr_val = IGB_START_ITR;
784 }
785
786 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
787 int ring_idx, int v_idx)
788 {
789 struct igb_q_vector *q_vector;
790
791 q_vector = adapter->q_vector[v_idx];
792 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
793 q_vector->tx_ring->q_vector = q_vector;
794 q_vector->itr_val = adapter->tx_itr_setting;
795 if (q_vector->itr_val && q_vector->itr_val <= 3)
796 q_vector->itr_val = IGB_START_ITR;
797 }
798
799 /**
800 * igb_map_ring_to_vector - maps allocated queues to vectors
801 *
802 * This function maps the recently allocated queues to vectors.
803 **/
804 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
805 {
806 int i;
807 int v_idx = 0;
808
809 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
810 (adapter->num_q_vectors < adapter->num_tx_queues))
811 return -ENOMEM;
812
813 if (adapter->num_q_vectors >=
814 (adapter->num_rx_queues + adapter->num_tx_queues)) {
815 for (i = 0; i < adapter->num_rx_queues; i++)
816 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
817 for (i = 0; i < adapter->num_tx_queues; i++)
818 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
819 } else {
820 for (i = 0; i < adapter->num_rx_queues; i++) {
821 if (i < adapter->num_tx_queues)
822 igb_map_tx_ring_to_vector(adapter, i, v_idx);
823 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
824 }
825 for (; i < adapter->num_tx_queues; i++)
826 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
827 }
828 return 0;
829 }
830
831 /**
832 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
833 *
834 * This function initializes the interrupts and allocates all of the queues.
835 **/
836 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
837 {
838 struct pci_dev *pdev = adapter->pdev;
839 int err;
840
841 igb_set_interrupt_capability(adapter);
842
843 err = igb_alloc_q_vectors(adapter);
844 if (err) {
845 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
846 goto err_alloc_q_vectors;
847 }
848
849 err = igb_alloc_queues(adapter);
850 if (err) {
851 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
852 goto err_alloc_queues;
853 }
854
855 err = igb_map_ring_to_vector(adapter);
856 if (err) {
857 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
858 goto err_map_queues;
859 }
860
861
862 return 0;
863 err_map_queues:
864 igb_free_queues(adapter);
865 err_alloc_queues:
866 igb_free_q_vectors(adapter);
867 err_alloc_q_vectors:
868 igb_reset_interrupt_capability(adapter);
869 return err;
870 }
871
872 /**
873 * igb_request_irq - initialize interrupts
874 *
875 * Attempts to configure interrupts using the best available
876 * capabilities of the hardware and kernel.
877 **/
878 static int igb_request_irq(struct igb_adapter *adapter)
879 {
880 struct net_device *netdev = adapter->netdev;
881 struct pci_dev *pdev = adapter->pdev;
882 int err = 0;
883
884 if (adapter->msix_entries) {
885 err = igb_request_msix(adapter);
886 if (!err)
887 goto request_done;
888 /* fall back to MSI */
889 igb_clear_interrupt_scheme(adapter);
890 if (!pci_enable_msi(adapter->pdev))
891 adapter->flags |= IGB_FLAG_HAS_MSI;
892 igb_free_all_tx_resources(adapter);
893 igb_free_all_rx_resources(adapter);
894 adapter->num_tx_queues = 1;
895 adapter->num_rx_queues = 1;
896 adapter->num_q_vectors = 1;
897 err = igb_alloc_q_vectors(adapter);
898 if (err) {
899 dev_err(&pdev->dev,
900 "Unable to allocate memory for vectors\n");
901 goto request_done;
902 }
903 err = igb_alloc_queues(adapter);
904 if (err) {
905 dev_err(&pdev->dev,
906 "Unable to allocate memory for queues\n");
907 igb_free_q_vectors(adapter);
908 goto request_done;
909 }
910 igb_setup_all_tx_resources(adapter);
911 igb_setup_all_rx_resources(adapter);
912 } else {
913 igb_assign_vector(adapter->q_vector[0], 0);
914 }
915
916 if (adapter->flags & IGB_FLAG_HAS_MSI) {
917 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
918 netdev->name, adapter);
919 if (!err)
920 goto request_done;
921
922 /* fall back to legacy interrupts */
923 igb_reset_interrupt_capability(adapter);
924 adapter->flags &= ~IGB_FLAG_HAS_MSI;
925 }
926
927 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
928 netdev->name, adapter);
929
930 if (err)
931 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
932 err);
933
934 request_done:
935 return err;
936 }
937
938 static void igb_free_irq(struct igb_adapter *adapter)
939 {
940 if (adapter->msix_entries) {
941 int vector = 0, i;
942
943 free_irq(adapter->msix_entries[vector++].vector, adapter);
944
945 for (i = 0; i < adapter->num_q_vectors; i++) {
946 struct igb_q_vector *q_vector = adapter->q_vector[i];
947 free_irq(adapter->msix_entries[vector++].vector,
948 q_vector);
949 }
950 } else {
951 free_irq(adapter->pdev->irq, adapter);
952 }
953 }
954
955 /**
956 * igb_irq_disable - Mask off interrupt generation on the NIC
957 * @adapter: board private structure
958 **/
959 static void igb_irq_disable(struct igb_adapter *adapter)
960 {
961 struct e1000_hw *hw = &adapter->hw;
962
963 /*
964 * we need to be careful when disabling interrupts. The VFs are also
965 * mapped into these registers and so clearing the bits can cause
966 * issues on the VF drivers so we only need to clear what we set
967 */
968 if (adapter->msix_entries) {
969 u32 regval = rd32(E1000_EIAM);
970 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
971 wr32(E1000_EIMC, adapter->eims_enable_mask);
972 regval = rd32(E1000_EIAC);
973 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
974 }
975
976 wr32(E1000_IAM, 0);
977 wr32(E1000_IMC, ~0);
978 wrfl();
979 synchronize_irq(adapter->pdev->irq);
980 }
981
982 /**
983 * igb_irq_enable - Enable default interrupt generation settings
984 * @adapter: board private structure
985 **/
986 static void igb_irq_enable(struct igb_adapter *adapter)
987 {
988 struct e1000_hw *hw = &adapter->hw;
989
990 if (adapter->msix_entries) {
991 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
992 u32 regval = rd32(E1000_EIAC);
993 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
994 regval = rd32(E1000_EIAM);
995 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
996 wr32(E1000_EIMS, adapter->eims_enable_mask);
997 if (adapter->vfs_allocated_count) {
998 wr32(E1000_MBVFIMR, 0xFF);
999 ims |= E1000_IMS_VMMB;
1000 }
1001 if (adapter->hw.mac.type == e1000_82580)
1002 ims |= E1000_IMS_DRSTA;
1003
1004 wr32(E1000_IMS, ims);
1005 } else {
1006 wr32(E1000_IMS, IMS_ENABLE_MASK |
1007 E1000_IMS_DRSTA);
1008 wr32(E1000_IAM, IMS_ENABLE_MASK |
1009 E1000_IMS_DRSTA);
1010 }
1011 }
1012
1013 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1014 {
1015 struct e1000_hw *hw = &adapter->hw;
1016 u16 vid = adapter->hw.mng_cookie.vlan_id;
1017 u16 old_vid = adapter->mng_vlan_id;
1018
1019 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1020 /* add VID to filter table */
1021 igb_vfta_set(hw, vid, true);
1022 adapter->mng_vlan_id = vid;
1023 } else {
1024 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1025 }
1026
1027 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1028 (vid != old_vid) &&
1029 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1030 /* remove VID from filter table */
1031 igb_vfta_set(hw, old_vid, false);
1032 }
1033 }
1034
1035 /**
1036 * igb_release_hw_control - release control of the h/w to f/w
1037 * @adapter: address of board private structure
1038 *
1039 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1040 * For ASF and Pass Through versions of f/w this means that the
1041 * driver is no longer loaded.
1042 *
1043 **/
1044 static void igb_release_hw_control(struct igb_adapter *adapter)
1045 {
1046 struct e1000_hw *hw = &adapter->hw;
1047 u32 ctrl_ext;
1048
1049 /* Let firmware take over control of h/w */
1050 ctrl_ext = rd32(E1000_CTRL_EXT);
1051 wr32(E1000_CTRL_EXT,
1052 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1053 }
1054
1055 /**
1056 * igb_get_hw_control - get control of the h/w from f/w
1057 * @adapter: address of board private structure
1058 *
1059 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1060 * For ASF and Pass Through versions of f/w this means that
1061 * the driver is loaded.
1062 *
1063 **/
1064 static void igb_get_hw_control(struct igb_adapter *adapter)
1065 {
1066 struct e1000_hw *hw = &adapter->hw;
1067 u32 ctrl_ext;
1068
1069 /* Let firmware know the driver has taken over */
1070 ctrl_ext = rd32(E1000_CTRL_EXT);
1071 wr32(E1000_CTRL_EXT,
1072 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1073 }
1074
1075 /**
1076 * igb_configure - configure the hardware for RX and TX
1077 * @adapter: private board structure
1078 **/
1079 static void igb_configure(struct igb_adapter *adapter)
1080 {
1081 struct net_device *netdev = adapter->netdev;
1082 int i;
1083
1084 igb_get_hw_control(adapter);
1085 igb_set_rx_mode(netdev);
1086
1087 igb_restore_vlan(adapter);
1088
1089 igb_setup_tctl(adapter);
1090 igb_setup_mrqc(adapter);
1091 igb_setup_rctl(adapter);
1092
1093 igb_configure_tx(adapter);
1094 igb_configure_rx(adapter);
1095
1096 igb_rx_fifo_flush_82575(&adapter->hw);
1097
1098 /* call igb_desc_unused which always leaves
1099 * at least 1 descriptor unused to make sure
1100 * next_to_use != next_to_clean */
1101 for (i = 0; i < adapter->num_rx_queues; i++) {
1102 struct igb_ring *ring = &adapter->rx_ring[i];
1103 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1104 }
1105
1106
1107 adapter->tx_queue_len = netdev->tx_queue_len;
1108 }
1109
1110
1111 /**
1112 * igb_up - Open the interface and prepare it to handle traffic
1113 * @adapter: board private structure
1114 **/
1115 int igb_up(struct igb_adapter *adapter)
1116 {
1117 struct e1000_hw *hw = &adapter->hw;
1118 int i;
1119
1120 /* hardware has been reset, we need to reload some things */
1121 igb_configure(adapter);
1122
1123 clear_bit(__IGB_DOWN, &adapter->state);
1124
1125 for (i = 0; i < adapter->num_q_vectors; i++) {
1126 struct igb_q_vector *q_vector = adapter->q_vector[i];
1127 napi_enable(&q_vector->napi);
1128 }
1129 if (adapter->msix_entries)
1130 igb_configure_msix(adapter);
1131 else
1132 igb_assign_vector(adapter->q_vector[0], 0);
1133
1134 /* Clear any pending interrupts. */
1135 rd32(E1000_ICR);
1136 igb_irq_enable(adapter);
1137
1138 /* notify VFs that reset has been completed */
1139 if (adapter->vfs_allocated_count) {
1140 u32 reg_data = rd32(E1000_CTRL_EXT);
1141 reg_data |= E1000_CTRL_EXT_PFRSTD;
1142 wr32(E1000_CTRL_EXT, reg_data);
1143 }
1144
1145 netif_tx_start_all_queues(adapter->netdev);
1146
1147 /* start the watchdog. */
1148 hw->mac.get_link_status = 1;
1149 schedule_work(&adapter->watchdog_task);
1150
1151 return 0;
1152 }
1153
1154 void igb_down(struct igb_adapter *adapter)
1155 {
1156 struct net_device *netdev = adapter->netdev;
1157 struct e1000_hw *hw = &adapter->hw;
1158 u32 tctl, rctl;
1159 int i;
1160
1161 /* signal that we're down so the interrupt handler does not
1162 * reschedule our watchdog timer */
1163 set_bit(__IGB_DOWN, &adapter->state);
1164
1165 /* disable receives in the hardware */
1166 rctl = rd32(E1000_RCTL);
1167 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1168 /* flush and sleep below */
1169
1170 netif_tx_stop_all_queues(netdev);
1171
1172 /* disable transmits in the hardware */
1173 tctl = rd32(E1000_TCTL);
1174 tctl &= ~E1000_TCTL_EN;
1175 wr32(E1000_TCTL, tctl);
1176 /* flush both disables and wait for them to finish */
1177 wrfl();
1178 msleep(10);
1179
1180 for (i = 0; i < adapter->num_q_vectors; i++) {
1181 struct igb_q_vector *q_vector = adapter->q_vector[i];
1182 napi_disable(&q_vector->napi);
1183 }
1184
1185 igb_irq_disable(adapter);
1186
1187 del_timer_sync(&adapter->watchdog_timer);
1188 del_timer_sync(&adapter->phy_info_timer);
1189
1190 netdev->tx_queue_len = adapter->tx_queue_len;
1191 netif_carrier_off(netdev);
1192
1193 /* record the stats before reset*/
1194 igb_update_stats(adapter);
1195
1196 adapter->link_speed = 0;
1197 adapter->link_duplex = 0;
1198
1199 if (!pci_channel_offline(adapter->pdev))
1200 igb_reset(adapter);
1201 igb_clean_all_tx_rings(adapter);
1202 igb_clean_all_rx_rings(adapter);
1203 #ifdef CONFIG_IGB_DCA
1204
1205 /* since we reset the hardware DCA settings were cleared */
1206 igb_setup_dca(adapter);
1207 #endif
1208 }
1209
1210 void igb_reinit_locked(struct igb_adapter *adapter)
1211 {
1212 WARN_ON(in_interrupt());
1213 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1214 msleep(1);
1215 igb_down(adapter);
1216 igb_up(adapter);
1217 clear_bit(__IGB_RESETTING, &adapter->state);
1218 }
1219
1220 void igb_reset(struct igb_adapter *adapter)
1221 {
1222 struct pci_dev *pdev = adapter->pdev;
1223 struct e1000_hw *hw = &adapter->hw;
1224 struct e1000_mac_info *mac = &hw->mac;
1225 struct e1000_fc_info *fc = &hw->fc;
1226 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1227 u16 hwm;
1228
1229 /* Repartition Pba for greater than 9k mtu
1230 * To take effect CTRL.RST is required.
1231 */
1232 switch (mac->type) {
1233 case e1000_82580:
1234 pba = rd32(E1000_RXPBS);
1235 pba = igb_rxpbs_adjust_82580(pba);
1236 break;
1237 case e1000_82576:
1238 pba = rd32(E1000_RXPBS);
1239 pba &= E1000_RXPBS_SIZE_MASK_82576;
1240 break;
1241 case e1000_82575:
1242 default:
1243 pba = E1000_PBA_34K;
1244 break;
1245 }
1246
1247 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1248 (mac->type < e1000_82576)) {
1249 /* adjust PBA for jumbo frames */
1250 wr32(E1000_PBA, pba);
1251
1252 /* To maintain wire speed transmits, the Tx FIFO should be
1253 * large enough to accommodate two full transmit packets,
1254 * rounded up to the next 1KB and expressed in KB. Likewise,
1255 * the Rx FIFO should be large enough to accommodate at least
1256 * one full receive packet and is similarly rounded up and
1257 * expressed in KB. */
1258 pba = rd32(E1000_PBA);
1259 /* upper 16 bits has Tx packet buffer allocation size in KB */
1260 tx_space = pba >> 16;
1261 /* lower 16 bits has Rx packet buffer allocation size in KB */
1262 pba &= 0xffff;
1263 /* the tx fifo also stores 16 bytes of information about the tx
1264 * but don't include ethernet FCS because hardware appends it */
1265 min_tx_space = (adapter->max_frame_size +
1266 sizeof(union e1000_adv_tx_desc) -
1267 ETH_FCS_LEN) * 2;
1268 min_tx_space = ALIGN(min_tx_space, 1024);
1269 min_tx_space >>= 10;
1270 /* software strips receive CRC, so leave room for it */
1271 min_rx_space = adapter->max_frame_size;
1272 min_rx_space = ALIGN(min_rx_space, 1024);
1273 min_rx_space >>= 10;
1274
1275 /* If current Tx allocation is less than the min Tx FIFO size,
1276 * and the min Tx FIFO size is less than the current Rx FIFO
1277 * allocation, take space away from current Rx allocation */
1278 if (tx_space < min_tx_space &&
1279 ((min_tx_space - tx_space) < pba)) {
1280 pba = pba - (min_tx_space - tx_space);
1281
1282 /* if short on rx space, rx wins and must trump tx
1283 * adjustment */
1284 if (pba < min_rx_space)
1285 pba = min_rx_space;
1286 }
1287 wr32(E1000_PBA, pba);
1288 }
1289
1290 /* flow control settings */
1291 /* The high water mark must be low enough to fit one full frame
1292 * (or the size used for early receive) above it in the Rx FIFO.
1293 * Set it to the lower of:
1294 * - 90% of the Rx FIFO size, or
1295 * - the full Rx FIFO size minus one full frame */
1296 hwm = min(((pba << 10) * 9 / 10),
1297 ((pba << 10) - 2 * adapter->max_frame_size));
1298
1299 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1300 fc->low_water = fc->high_water - 16;
1301 fc->pause_time = 0xFFFF;
1302 fc->send_xon = 1;
1303 fc->current_mode = fc->requested_mode;
1304
1305 /* disable receive for all VFs and wait one second */
1306 if (adapter->vfs_allocated_count) {
1307 int i;
1308 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1309 adapter->vf_data[i].flags = 0;
1310
1311 /* ping all the active vfs to let them know we are going down */
1312 igb_ping_all_vfs(adapter);
1313
1314 /* disable transmits and receives */
1315 wr32(E1000_VFRE, 0);
1316 wr32(E1000_VFTE, 0);
1317 }
1318
1319 /* Allow time for pending master requests to run */
1320 hw->mac.ops.reset_hw(hw);
1321 wr32(E1000_WUC, 0);
1322
1323 if (hw->mac.ops.init_hw(hw))
1324 dev_err(&pdev->dev, "Hardware Error\n");
1325
1326 if (hw->mac.type == e1000_82580) {
1327 u32 reg = rd32(E1000_PCIEMISC);
1328 wr32(E1000_PCIEMISC,
1329 reg & ~E1000_PCIEMISC_LX_DECISION);
1330 }
1331 igb_update_mng_vlan(adapter);
1332
1333 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1334 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1335
1336 igb_reset_adaptive(hw);
1337 igb_get_phy_info(hw);
1338 }
1339
1340 static const struct net_device_ops igb_netdev_ops = {
1341 .ndo_open = igb_open,
1342 .ndo_stop = igb_close,
1343 .ndo_start_xmit = igb_xmit_frame_adv,
1344 .ndo_get_stats = igb_get_stats,
1345 .ndo_set_rx_mode = igb_set_rx_mode,
1346 .ndo_set_multicast_list = igb_set_rx_mode,
1347 .ndo_set_mac_address = igb_set_mac,
1348 .ndo_change_mtu = igb_change_mtu,
1349 .ndo_do_ioctl = igb_ioctl,
1350 .ndo_tx_timeout = igb_tx_timeout,
1351 .ndo_validate_addr = eth_validate_addr,
1352 .ndo_vlan_rx_register = igb_vlan_rx_register,
1353 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1354 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 .ndo_poll_controller = igb_netpoll,
1357 #endif
1358 };
1359
1360 /**
1361 * igb_probe - Device Initialization Routine
1362 * @pdev: PCI device information struct
1363 * @ent: entry in igb_pci_tbl
1364 *
1365 * Returns 0 on success, negative on failure
1366 *
1367 * igb_probe initializes an adapter identified by a pci_dev structure.
1368 * The OS initialization, configuring of the adapter private structure,
1369 * and a hardware reset occur.
1370 **/
1371 static int __devinit igb_probe(struct pci_dev *pdev,
1372 const struct pci_device_id *ent)
1373 {
1374 struct net_device *netdev;
1375 struct igb_adapter *adapter;
1376 struct e1000_hw *hw;
1377 u16 eeprom_data = 0;
1378 static int global_quad_port_a; /* global quad port a indication */
1379 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1380 unsigned long mmio_start, mmio_len;
1381 int err, pci_using_dac;
1382 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1383 u32 part_num;
1384
1385 err = pci_enable_device_mem(pdev);
1386 if (err)
1387 return err;
1388
1389 pci_using_dac = 0;
1390 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1391 if (!err) {
1392 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1393 if (!err)
1394 pci_using_dac = 1;
1395 } else {
1396 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1397 if (err) {
1398 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1399 if (err) {
1400 dev_err(&pdev->dev, "No usable DMA "
1401 "configuration, aborting\n");
1402 goto err_dma;
1403 }
1404 }
1405 }
1406
1407 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1408 IORESOURCE_MEM),
1409 igb_driver_name);
1410 if (err)
1411 goto err_pci_reg;
1412
1413 pci_enable_pcie_error_reporting(pdev);
1414
1415 pci_set_master(pdev);
1416 pci_save_state(pdev);
1417
1418 err = -ENOMEM;
1419 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1420 IGB_ABS_MAX_TX_QUEUES);
1421 if (!netdev)
1422 goto err_alloc_etherdev;
1423
1424 SET_NETDEV_DEV(netdev, &pdev->dev);
1425
1426 pci_set_drvdata(pdev, netdev);
1427 adapter = netdev_priv(netdev);
1428 adapter->netdev = netdev;
1429 adapter->pdev = pdev;
1430 hw = &adapter->hw;
1431 hw->back = adapter;
1432 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1433
1434 mmio_start = pci_resource_start(pdev, 0);
1435 mmio_len = pci_resource_len(pdev, 0);
1436
1437 err = -EIO;
1438 hw->hw_addr = ioremap(mmio_start, mmio_len);
1439 if (!hw->hw_addr)
1440 goto err_ioremap;
1441
1442 netdev->netdev_ops = &igb_netdev_ops;
1443 igb_set_ethtool_ops(netdev);
1444 netdev->watchdog_timeo = 5 * HZ;
1445
1446 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1447
1448 netdev->mem_start = mmio_start;
1449 netdev->mem_end = mmio_start + mmio_len;
1450
1451 /* PCI config space info */
1452 hw->vendor_id = pdev->vendor;
1453 hw->device_id = pdev->device;
1454 hw->revision_id = pdev->revision;
1455 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1456 hw->subsystem_device_id = pdev->subsystem_device;
1457
1458 /* Copy the default MAC, PHY and NVM function pointers */
1459 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1460 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1461 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1462 /* Initialize skew-specific constants */
1463 err = ei->get_invariants(hw);
1464 if (err)
1465 goto err_sw_init;
1466
1467 /* setup the private structure */
1468 err = igb_sw_init(adapter);
1469 if (err)
1470 goto err_sw_init;
1471
1472 igb_get_bus_info_pcie(hw);
1473
1474 hw->phy.autoneg_wait_to_complete = false;
1475 hw->mac.adaptive_ifs = true;
1476
1477 /* Copper options */
1478 if (hw->phy.media_type == e1000_media_type_copper) {
1479 hw->phy.mdix = AUTO_ALL_MODES;
1480 hw->phy.disable_polarity_correction = false;
1481 hw->phy.ms_type = e1000_ms_hw_default;
1482 }
1483
1484 if (igb_check_reset_block(hw))
1485 dev_info(&pdev->dev,
1486 "PHY reset is blocked due to SOL/IDER session.\n");
1487
1488 netdev->features = NETIF_F_SG |
1489 NETIF_F_IP_CSUM |
1490 NETIF_F_HW_VLAN_TX |
1491 NETIF_F_HW_VLAN_RX |
1492 NETIF_F_HW_VLAN_FILTER;
1493
1494 netdev->features |= NETIF_F_IPV6_CSUM;
1495 netdev->features |= NETIF_F_TSO;
1496 netdev->features |= NETIF_F_TSO6;
1497 netdev->features |= NETIF_F_GRO;
1498
1499 netdev->vlan_features |= NETIF_F_TSO;
1500 netdev->vlan_features |= NETIF_F_TSO6;
1501 netdev->vlan_features |= NETIF_F_IP_CSUM;
1502 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1503 netdev->vlan_features |= NETIF_F_SG;
1504
1505 if (pci_using_dac)
1506 netdev->features |= NETIF_F_HIGHDMA;
1507
1508 if (hw->mac.type >= e1000_82576)
1509 netdev->features |= NETIF_F_SCTP_CSUM;
1510
1511 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1512
1513 /* before reading the NVM, reset the controller to put the device in a
1514 * known good starting state */
1515 hw->mac.ops.reset_hw(hw);
1516
1517 /* make sure the NVM is good */
1518 if (igb_validate_nvm_checksum(hw) < 0) {
1519 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1520 err = -EIO;
1521 goto err_eeprom;
1522 }
1523
1524 /* copy the MAC address out of the NVM */
1525 if (hw->mac.ops.read_mac_addr(hw))
1526 dev_err(&pdev->dev, "NVM Read Error\n");
1527
1528 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1529 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1530
1531 if (!is_valid_ether_addr(netdev->perm_addr)) {
1532 dev_err(&pdev->dev, "Invalid MAC Address\n");
1533 err = -EIO;
1534 goto err_eeprom;
1535 }
1536
1537 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1538 (unsigned long) adapter);
1539 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1540 (unsigned long) adapter);
1541
1542 INIT_WORK(&adapter->reset_task, igb_reset_task);
1543 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1544
1545 /* Initialize link properties that are user-changeable */
1546 adapter->fc_autoneg = true;
1547 hw->mac.autoneg = true;
1548 hw->phy.autoneg_advertised = 0x2f;
1549
1550 hw->fc.requested_mode = e1000_fc_default;
1551 hw->fc.current_mode = e1000_fc_default;
1552
1553 igb_validate_mdi_setting(hw);
1554
1555 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1556 * enable the ACPI Magic Packet filter
1557 */
1558
1559 if (hw->bus.func == 0)
1560 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1561 else if (hw->mac.type == e1000_82580)
1562 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1563 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1564 &eeprom_data);
1565 else if (hw->bus.func == 1)
1566 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1567
1568 if (eeprom_data & eeprom_apme_mask)
1569 adapter->eeprom_wol |= E1000_WUFC_MAG;
1570
1571 /* now that we have the eeprom settings, apply the special cases where
1572 * the eeprom may be wrong or the board simply won't support wake on
1573 * lan on a particular port */
1574 switch (pdev->device) {
1575 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1576 adapter->eeprom_wol = 0;
1577 break;
1578 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1579 case E1000_DEV_ID_82576_FIBER:
1580 case E1000_DEV_ID_82576_SERDES:
1581 /* Wake events only supported on port A for dual fiber
1582 * regardless of eeprom setting */
1583 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1584 adapter->eeprom_wol = 0;
1585 break;
1586 case E1000_DEV_ID_82576_QUAD_COPPER:
1587 /* if quad port adapter, disable WoL on all but port A */
1588 if (global_quad_port_a != 0)
1589 adapter->eeprom_wol = 0;
1590 else
1591 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1592 /* Reset for multiple quad port adapters */
1593 if (++global_quad_port_a == 4)
1594 global_quad_port_a = 0;
1595 break;
1596 }
1597
1598 /* initialize the wol settings based on the eeprom settings */
1599 adapter->wol = adapter->eeprom_wol;
1600 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1601
1602 /* reset the hardware with the new settings */
1603 igb_reset(adapter);
1604
1605 /* let the f/w know that the h/w is now under the control of the
1606 * driver. */
1607 igb_get_hw_control(adapter);
1608
1609 strcpy(netdev->name, "eth%d");
1610 err = register_netdev(netdev);
1611 if (err)
1612 goto err_register;
1613
1614 /* carrier off reporting is important to ethtool even BEFORE open */
1615 netif_carrier_off(netdev);
1616
1617 #ifdef CONFIG_IGB_DCA
1618 if (dca_add_requester(&pdev->dev) == 0) {
1619 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1620 dev_info(&pdev->dev, "DCA enabled\n");
1621 igb_setup_dca(adapter);
1622 }
1623
1624 #endif
1625 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1626 /* print bus type/speed/width info */
1627 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1628 netdev->name,
1629 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1630 "unknown"),
1631 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1632 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1633 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1634 "unknown"),
1635 netdev->dev_addr);
1636
1637 igb_read_part_num(hw, &part_num);
1638 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1639 (part_num >> 8), (part_num & 0xff));
1640
1641 dev_info(&pdev->dev,
1642 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1643 adapter->msix_entries ? "MSI-X" :
1644 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1645 adapter->num_rx_queues, adapter->num_tx_queues);
1646
1647 return 0;
1648
1649 err_register:
1650 igb_release_hw_control(adapter);
1651 err_eeprom:
1652 if (!igb_check_reset_block(hw))
1653 igb_reset_phy(hw);
1654
1655 if (hw->flash_address)
1656 iounmap(hw->flash_address);
1657 err_sw_init:
1658 igb_clear_interrupt_scheme(adapter);
1659 iounmap(hw->hw_addr);
1660 err_ioremap:
1661 free_netdev(netdev);
1662 err_alloc_etherdev:
1663 pci_release_selected_regions(pdev,
1664 pci_select_bars(pdev, IORESOURCE_MEM));
1665 err_pci_reg:
1666 err_dma:
1667 pci_disable_device(pdev);
1668 return err;
1669 }
1670
1671 /**
1672 * igb_remove - Device Removal Routine
1673 * @pdev: PCI device information struct
1674 *
1675 * igb_remove is called by the PCI subsystem to alert the driver
1676 * that it should release a PCI device. The could be caused by a
1677 * Hot-Plug event, or because the driver is going to be removed from
1678 * memory.
1679 **/
1680 static void __devexit igb_remove(struct pci_dev *pdev)
1681 {
1682 struct net_device *netdev = pci_get_drvdata(pdev);
1683 struct igb_adapter *adapter = netdev_priv(netdev);
1684 struct e1000_hw *hw = &adapter->hw;
1685
1686 /* flush_scheduled work may reschedule our watchdog task, so
1687 * explicitly disable watchdog tasks from being rescheduled */
1688 set_bit(__IGB_DOWN, &adapter->state);
1689 del_timer_sync(&adapter->watchdog_timer);
1690 del_timer_sync(&adapter->phy_info_timer);
1691
1692 flush_scheduled_work();
1693
1694 #ifdef CONFIG_IGB_DCA
1695 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1696 dev_info(&pdev->dev, "DCA disabled\n");
1697 dca_remove_requester(&pdev->dev);
1698 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1699 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1700 }
1701 #endif
1702
1703 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1704 * would have already happened in close and is redundant. */
1705 igb_release_hw_control(adapter);
1706
1707 unregister_netdev(netdev);
1708
1709 if (!igb_check_reset_block(hw))
1710 igb_reset_phy(hw);
1711
1712 igb_clear_interrupt_scheme(adapter);
1713
1714 #ifdef CONFIG_PCI_IOV
1715 /* reclaim resources allocated to VFs */
1716 if (adapter->vf_data) {
1717 /* disable iov and allow time for transactions to clear */
1718 pci_disable_sriov(pdev);
1719 msleep(500);
1720
1721 kfree(adapter->vf_data);
1722 adapter->vf_data = NULL;
1723 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1724 msleep(100);
1725 dev_info(&pdev->dev, "IOV Disabled\n");
1726 }
1727 #endif
1728
1729 iounmap(hw->hw_addr);
1730 if (hw->flash_address)
1731 iounmap(hw->flash_address);
1732 pci_release_selected_regions(pdev,
1733 pci_select_bars(pdev, IORESOURCE_MEM));
1734
1735 free_netdev(netdev);
1736
1737 pci_disable_pcie_error_reporting(pdev);
1738
1739 pci_disable_device(pdev);
1740 }
1741
1742 /**
1743 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1744 * @adapter: board private structure to initialize
1745 *
1746 * This function initializes the vf specific data storage and then attempts to
1747 * allocate the VFs. The reason for ordering it this way is because it is much
1748 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1749 * the memory for the VFs.
1750 **/
1751 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1752 {
1753 #ifdef CONFIG_PCI_IOV
1754 struct pci_dev *pdev = adapter->pdev;
1755
1756 if (adapter->vfs_allocated_count > 7)
1757 adapter->vfs_allocated_count = 7;
1758
1759 if (adapter->vfs_allocated_count) {
1760 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1761 sizeof(struct vf_data_storage),
1762 GFP_KERNEL);
1763 /* if allocation failed then we do not support SR-IOV */
1764 if (!adapter->vf_data) {
1765 adapter->vfs_allocated_count = 0;
1766 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1767 "Data Storage\n");
1768 }
1769 }
1770
1771 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1772 kfree(adapter->vf_data);
1773 adapter->vf_data = NULL;
1774 #endif /* CONFIG_PCI_IOV */
1775 adapter->vfs_allocated_count = 0;
1776 #ifdef CONFIG_PCI_IOV
1777 } else {
1778 unsigned char mac_addr[ETH_ALEN];
1779 int i;
1780 dev_info(&pdev->dev, "%d vfs allocated\n",
1781 adapter->vfs_allocated_count);
1782 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1783 random_ether_addr(mac_addr);
1784 igb_set_vf_mac(adapter, i, mac_addr);
1785 }
1786 }
1787 #endif /* CONFIG_PCI_IOV */
1788 }
1789
1790
1791 /**
1792 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1793 * @adapter: board private structure to initialize
1794 *
1795 * igb_init_hw_timer initializes the function pointer and values for the hw
1796 * timer found in hardware.
1797 **/
1798 static void igb_init_hw_timer(struct igb_adapter *adapter)
1799 {
1800 struct e1000_hw *hw = &adapter->hw;
1801
1802 switch (hw->mac.type) {
1803 case e1000_82580:
1804 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1805 adapter->cycles.read = igb_read_clock;
1806 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1807 adapter->cycles.mult = 1;
1808 /*
1809 * The 82580 timesync updates the system timer every 8ns by 8ns
1810 * and the value cannot be shifted. Instead we need to shift
1811 * the registers to generate a 64bit timer value. As a result
1812 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1813 * 24 in order to generate a larger value for synchronization.
1814 */
1815 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1816 /* disable system timer temporarily by setting bit 31 */
1817 wr32(E1000_TSAUXC, 0x80000000);
1818 wrfl();
1819
1820 /* Set registers so that rollover occurs soon to test this. */
1821 wr32(E1000_SYSTIMR, 0x00000000);
1822 wr32(E1000_SYSTIML, 0x80000000);
1823 wr32(E1000_SYSTIMH, 0x000000FF);
1824 wrfl();
1825
1826 /* enable system timer by clearing bit 31 */
1827 wr32(E1000_TSAUXC, 0x0);
1828 wrfl();
1829
1830 timecounter_init(&adapter->clock,
1831 &adapter->cycles,
1832 ktime_to_ns(ktime_get_real()));
1833 /*
1834 * Synchronize our NIC clock against system wall clock. NIC
1835 * time stamp reading requires ~3us per sample, each sample
1836 * was pretty stable even under load => only require 10
1837 * samples for each offset comparison.
1838 */
1839 memset(&adapter->compare, 0, sizeof(adapter->compare));
1840 adapter->compare.source = &adapter->clock;
1841 adapter->compare.target = ktime_get_real;
1842 adapter->compare.num_samples = 10;
1843 timecompare_update(&adapter->compare, 0);
1844 break;
1845 case e1000_82576:
1846 /*
1847 * Initialize hardware timer: we keep it running just in case
1848 * that some program needs it later on.
1849 */
1850 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1851 adapter->cycles.read = igb_read_clock;
1852 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1853 adapter->cycles.mult = 1;
1854 /**
1855 * Scale the NIC clock cycle by a large factor so that
1856 * relatively small clock corrections can be added or
1857 * substracted at each clock tick. The drawbacks of a large
1858 * factor are a) that the clock register overflows more quickly
1859 * (not such a big deal) and b) that the increment per tick has
1860 * to fit into 24 bits. As a result we need to use a shift of
1861 * 19 so we can fit a value of 16 into the TIMINCA register.
1862 */
1863 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1864 wr32(E1000_TIMINCA,
1865 (1 << E1000_TIMINCA_16NS_SHIFT) |
1866 (16 << IGB_82576_TSYNC_SHIFT));
1867
1868 /* Set registers so that rollover occurs soon to test this. */
1869 wr32(E1000_SYSTIML, 0x00000000);
1870 wr32(E1000_SYSTIMH, 0xFF800000);
1871 wrfl();
1872
1873 timecounter_init(&adapter->clock,
1874 &adapter->cycles,
1875 ktime_to_ns(ktime_get_real()));
1876 /*
1877 * Synchronize our NIC clock against system wall clock. NIC
1878 * time stamp reading requires ~3us per sample, each sample
1879 * was pretty stable even under load => only require 10
1880 * samples for each offset comparison.
1881 */
1882 memset(&adapter->compare, 0, sizeof(adapter->compare));
1883 adapter->compare.source = &adapter->clock;
1884 adapter->compare.target = ktime_get_real;
1885 adapter->compare.num_samples = 10;
1886 timecompare_update(&adapter->compare, 0);
1887 break;
1888 case e1000_82575:
1889 /* 82575 does not support timesync */
1890 default:
1891 break;
1892 }
1893
1894 }
1895
1896 /**
1897 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1898 * @adapter: board private structure to initialize
1899 *
1900 * igb_sw_init initializes the Adapter private data structure.
1901 * Fields are initialized based on PCI device information and
1902 * OS network device settings (MTU size).
1903 **/
1904 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1905 {
1906 struct e1000_hw *hw = &adapter->hw;
1907 struct net_device *netdev = adapter->netdev;
1908 struct pci_dev *pdev = adapter->pdev;
1909
1910 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1911
1912 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1913 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1914 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1915 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1916
1917 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1918 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1919
1920 #ifdef CONFIG_PCI_IOV
1921 if (hw->mac.type == e1000_82576)
1922 adapter->vfs_allocated_count = max_vfs;
1923
1924 #endif /* CONFIG_PCI_IOV */
1925 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1926
1927 /*
1928 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1929 * then we should combine the queues into a queue pair in order to
1930 * conserve interrupts due to limited supply
1931 */
1932 if ((adapter->rss_queues > 4) ||
1933 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1934 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1935
1936 /* This call may decrease the number of queues */
1937 if (igb_init_interrupt_scheme(adapter)) {
1938 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1939 return -ENOMEM;
1940 }
1941
1942 igb_init_hw_timer(adapter);
1943 igb_probe_vfs(adapter);
1944
1945 /* Explicitly disable IRQ since the NIC can be in any state. */
1946 igb_irq_disable(adapter);
1947
1948 set_bit(__IGB_DOWN, &adapter->state);
1949 return 0;
1950 }
1951
1952 /**
1953 * igb_open - Called when a network interface is made active
1954 * @netdev: network interface device structure
1955 *
1956 * Returns 0 on success, negative value on failure
1957 *
1958 * The open entry point is called when a network interface is made
1959 * active by the system (IFF_UP). At this point all resources needed
1960 * for transmit and receive operations are allocated, the interrupt
1961 * handler is registered with the OS, the watchdog timer is started,
1962 * and the stack is notified that the interface is ready.
1963 **/
1964 static int igb_open(struct net_device *netdev)
1965 {
1966 struct igb_adapter *adapter = netdev_priv(netdev);
1967 struct e1000_hw *hw = &adapter->hw;
1968 int err;
1969 int i;
1970
1971 /* disallow open during test */
1972 if (test_bit(__IGB_TESTING, &adapter->state))
1973 return -EBUSY;
1974
1975 netif_carrier_off(netdev);
1976
1977 /* allocate transmit descriptors */
1978 err = igb_setup_all_tx_resources(adapter);
1979 if (err)
1980 goto err_setup_tx;
1981
1982 /* allocate receive descriptors */
1983 err = igb_setup_all_rx_resources(adapter);
1984 if (err)
1985 goto err_setup_rx;
1986
1987 /* e1000_power_up_phy(adapter); */
1988
1989 /* before we allocate an interrupt, we must be ready to handle it.
1990 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1991 * as soon as we call pci_request_irq, so we have to setup our
1992 * clean_rx handler before we do so. */
1993 igb_configure(adapter);
1994
1995 err = igb_request_irq(adapter);
1996 if (err)
1997 goto err_req_irq;
1998
1999 /* From here on the code is the same as igb_up() */
2000 clear_bit(__IGB_DOWN, &adapter->state);
2001
2002 for (i = 0; i < adapter->num_q_vectors; i++) {
2003 struct igb_q_vector *q_vector = adapter->q_vector[i];
2004 napi_enable(&q_vector->napi);
2005 }
2006
2007 /* Clear any pending interrupts. */
2008 rd32(E1000_ICR);
2009
2010 igb_irq_enable(adapter);
2011
2012 /* notify VFs that reset has been completed */
2013 if (adapter->vfs_allocated_count) {
2014 u32 reg_data = rd32(E1000_CTRL_EXT);
2015 reg_data |= E1000_CTRL_EXT_PFRSTD;
2016 wr32(E1000_CTRL_EXT, reg_data);
2017 }
2018
2019 netif_tx_start_all_queues(netdev);
2020
2021 /* start the watchdog. */
2022 hw->mac.get_link_status = 1;
2023 schedule_work(&adapter->watchdog_task);
2024
2025 return 0;
2026
2027 err_req_irq:
2028 igb_release_hw_control(adapter);
2029 /* e1000_power_down_phy(adapter); */
2030 igb_free_all_rx_resources(adapter);
2031 err_setup_rx:
2032 igb_free_all_tx_resources(adapter);
2033 err_setup_tx:
2034 igb_reset(adapter);
2035
2036 return err;
2037 }
2038
2039 /**
2040 * igb_close - Disables a network interface
2041 * @netdev: network interface device structure
2042 *
2043 * Returns 0, this is not allowed to fail
2044 *
2045 * The close entry point is called when an interface is de-activated
2046 * by the OS. The hardware is still under the driver's control, but
2047 * needs to be disabled. A global MAC reset is issued to stop the
2048 * hardware, and all transmit and receive resources are freed.
2049 **/
2050 static int igb_close(struct net_device *netdev)
2051 {
2052 struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2055 igb_down(adapter);
2056
2057 igb_free_irq(adapter);
2058
2059 igb_free_all_tx_resources(adapter);
2060 igb_free_all_rx_resources(adapter);
2061
2062 return 0;
2063 }
2064
2065 /**
2066 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2067 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2068 *
2069 * Return 0 on success, negative on failure
2070 **/
2071 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2072 {
2073 struct pci_dev *pdev = tx_ring->pdev;
2074 int size;
2075
2076 size = sizeof(struct igb_buffer) * tx_ring->count;
2077 tx_ring->buffer_info = vmalloc(size);
2078 if (!tx_ring->buffer_info)
2079 goto err;
2080 memset(tx_ring->buffer_info, 0, size);
2081
2082 /* round up to nearest 4K */
2083 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2084 tx_ring->size = ALIGN(tx_ring->size, 4096);
2085
2086 tx_ring->desc = pci_alloc_consistent(pdev,
2087 tx_ring->size,
2088 &tx_ring->dma);
2089
2090 if (!tx_ring->desc)
2091 goto err;
2092
2093 tx_ring->next_to_use = 0;
2094 tx_ring->next_to_clean = 0;
2095 return 0;
2096
2097 err:
2098 vfree(tx_ring->buffer_info);
2099 dev_err(&pdev->dev,
2100 "Unable to allocate memory for the transmit descriptor ring\n");
2101 return -ENOMEM;
2102 }
2103
2104 /**
2105 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2106 * (Descriptors) for all queues
2107 * @adapter: board private structure
2108 *
2109 * Return 0 on success, negative on failure
2110 **/
2111 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2112 {
2113 struct pci_dev *pdev = adapter->pdev;
2114 int i, err = 0;
2115
2116 for (i = 0; i < adapter->num_tx_queues; i++) {
2117 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2118 if (err) {
2119 dev_err(&pdev->dev,
2120 "Allocation for Tx Queue %u failed\n", i);
2121 for (i--; i >= 0; i--)
2122 igb_free_tx_resources(&adapter->tx_ring[i]);
2123 break;
2124 }
2125 }
2126
2127 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2128 int r_idx = i % adapter->num_tx_queues;
2129 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2130 }
2131 return err;
2132 }
2133
2134 /**
2135 * igb_setup_tctl - configure the transmit control registers
2136 * @adapter: Board private structure
2137 **/
2138 void igb_setup_tctl(struct igb_adapter *adapter)
2139 {
2140 struct e1000_hw *hw = &adapter->hw;
2141 u32 tctl;
2142
2143 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2144 wr32(E1000_TXDCTL(0), 0);
2145
2146 /* Program the Transmit Control Register */
2147 tctl = rd32(E1000_TCTL);
2148 tctl &= ~E1000_TCTL_CT;
2149 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2150 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2151
2152 igb_config_collision_dist(hw);
2153
2154 /* Enable transmits */
2155 tctl |= E1000_TCTL_EN;
2156
2157 wr32(E1000_TCTL, tctl);
2158 }
2159
2160 /**
2161 * igb_configure_tx_ring - Configure transmit ring after Reset
2162 * @adapter: board private structure
2163 * @ring: tx ring to configure
2164 *
2165 * Configure a transmit ring after a reset.
2166 **/
2167 void igb_configure_tx_ring(struct igb_adapter *adapter,
2168 struct igb_ring *ring)
2169 {
2170 struct e1000_hw *hw = &adapter->hw;
2171 u32 txdctl;
2172 u64 tdba = ring->dma;
2173 int reg_idx = ring->reg_idx;
2174
2175 /* disable the queue */
2176 txdctl = rd32(E1000_TXDCTL(reg_idx));
2177 wr32(E1000_TXDCTL(reg_idx),
2178 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2179 wrfl();
2180 mdelay(10);
2181
2182 wr32(E1000_TDLEN(reg_idx),
2183 ring->count * sizeof(union e1000_adv_tx_desc));
2184 wr32(E1000_TDBAL(reg_idx),
2185 tdba & 0x00000000ffffffffULL);
2186 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2187
2188 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2189 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2190 writel(0, ring->head);
2191 writel(0, ring->tail);
2192
2193 txdctl |= IGB_TX_PTHRESH;
2194 txdctl |= IGB_TX_HTHRESH << 8;
2195 txdctl |= IGB_TX_WTHRESH << 16;
2196
2197 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2198 wr32(E1000_TXDCTL(reg_idx), txdctl);
2199 }
2200
2201 /**
2202 * igb_configure_tx - Configure transmit Unit after Reset
2203 * @adapter: board private structure
2204 *
2205 * Configure the Tx unit of the MAC after a reset.
2206 **/
2207 static void igb_configure_tx(struct igb_adapter *adapter)
2208 {
2209 int i;
2210
2211 for (i = 0; i < adapter->num_tx_queues; i++)
2212 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2213 }
2214
2215 /**
2216 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2217 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2218 *
2219 * Returns 0 on success, negative on failure
2220 **/
2221 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2222 {
2223 struct pci_dev *pdev = rx_ring->pdev;
2224 int size, desc_len;
2225
2226 size = sizeof(struct igb_buffer) * rx_ring->count;
2227 rx_ring->buffer_info = vmalloc(size);
2228 if (!rx_ring->buffer_info)
2229 goto err;
2230 memset(rx_ring->buffer_info, 0, size);
2231
2232 desc_len = sizeof(union e1000_adv_rx_desc);
2233
2234 /* Round up to nearest 4K */
2235 rx_ring->size = rx_ring->count * desc_len;
2236 rx_ring->size = ALIGN(rx_ring->size, 4096);
2237
2238 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2239 &rx_ring->dma);
2240
2241 if (!rx_ring->desc)
2242 goto err;
2243
2244 rx_ring->next_to_clean = 0;
2245 rx_ring->next_to_use = 0;
2246
2247 return 0;
2248
2249 err:
2250 vfree(rx_ring->buffer_info);
2251 rx_ring->buffer_info = NULL;
2252 dev_err(&pdev->dev, "Unable to allocate memory for "
2253 "the receive descriptor ring\n");
2254 return -ENOMEM;
2255 }
2256
2257 /**
2258 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2259 * (Descriptors) for all queues
2260 * @adapter: board private structure
2261 *
2262 * Return 0 on success, negative on failure
2263 **/
2264 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2265 {
2266 struct pci_dev *pdev = adapter->pdev;
2267 int i, err = 0;
2268
2269 for (i = 0; i < adapter->num_rx_queues; i++) {
2270 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2271 if (err) {
2272 dev_err(&pdev->dev,
2273 "Allocation for Rx Queue %u failed\n", i);
2274 for (i--; i >= 0; i--)
2275 igb_free_rx_resources(&adapter->rx_ring[i]);
2276 break;
2277 }
2278 }
2279
2280 return err;
2281 }
2282
2283 /**
2284 * igb_setup_mrqc - configure the multiple receive queue control registers
2285 * @adapter: Board private structure
2286 **/
2287 static void igb_setup_mrqc(struct igb_adapter *adapter)
2288 {
2289 struct e1000_hw *hw = &adapter->hw;
2290 u32 mrqc, rxcsum;
2291 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2292 union e1000_reta {
2293 u32 dword;
2294 u8 bytes[4];
2295 } reta;
2296 static const u8 rsshash[40] = {
2297 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2298 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2299 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2300 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2301
2302 /* Fill out hash function seeds */
2303 for (j = 0; j < 10; j++) {
2304 u32 rsskey = rsshash[(j * 4)];
2305 rsskey |= rsshash[(j * 4) + 1] << 8;
2306 rsskey |= rsshash[(j * 4) + 2] << 16;
2307 rsskey |= rsshash[(j * 4) + 3] << 24;
2308 array_wr32(E1000_RSSRK(0), j, rsskey);
2309 }
2310
2311 num_rx_queues = adapter->rss_queues;
2312
2313 if (adapter->vfs_allocated_count) {
2314 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2315 switch (hw->mac.type) {
2316 case e1000_82580:
2317 num_rx_queues = 1;
2318 shift = 0;
2319 break;
2320 case e1000_82576:
2321 shift = 3;
2322 num_rx_queues = 2;
2323 break;
2324 case e1000_82575:
2325 shift = 2;
2326 shift2 = 6;
2327 default:
2328 break;
2329 }
2330 } else {
2331 if (hw->mac.type == e1000_82575)
2332 shift = 6;
2333 }
2334
2335 for (j = 0; j < (32 * 4); j++) {
2336 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2337 if (shift2)
2338 reta.bytes[j & 3] |= num_rx_queues << shift2;
2339 if ((j & 3) == 3)
2340 wr32(E1000_RETA(j >> 2), reta.dword);
2341 }
2342
2343 /*
2344 * Disable raw packet checksumming so that RSS hash is placed in
2345 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2346 * offloads as they are enabled by default
2347 */
2348 rxcsum = rd32(E1000_RXCSUM);
2349 rxcsum |= E1000_RXCSUM_PCSD;
2350
2351 if (adapter->hw.mac.type >= e1000_82576)
2352 /* Enable Receive Checksum Offload for SCTP */
2353 rxcsum |= E1000_RXCSUM_CRCOFL;
2354
2355 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2356 wr32(E1000_RXCSUM, rxcsum);
2357
2358 /* If VMDq is enabled then we set the appropriate mode for that, else
2359 * we default to RSS so that an RSS hash is calculated per packet even
2360 * if we are only using one queue */
2361 if (adapter->vfs_allocated_count) {
2362 if (hw->mac.type > e1000_82575) {
2363 /* Set the default pool for the PF's first queue */
2364 u32 vtctl = rd32(E1000_VT_CTL);
2365 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2366 E1000_VT_CTL_DISABLE_DEF_POOL);
2367 vtctl |= adapter->vfs_allocated_count <<
2368 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2369 wr32(E1000_VT_CTL, vtctl);
2370 }
2371 if (adapter->rss_queues > 1)
2372 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2373 else
2374 mrqc = E1000_MRQC_ENABLE_VMDQ;
2375 } else {
2376 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2377 }
2378 igb_vmm_control(adapter);
2379
2380 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2381 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2382 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2383 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2384 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2385 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2386 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2387 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2388
2389 wr32(E1000_MRQC, mrqc);
2390 }
2391
2392 /**
2393 * igb_setup_rctl - configure the receive control registers
2394 * @adapter: Board private structure
2395 **/
2396 void igb_setup_rctl(struct igb_adapter *adapter)
2397 {
2398 struct e1000_hw *hw = &adapter->hw;
2399 u32 rctl;
2400
2401 rctl = rd32(E1000_RCTL);
2402
2403 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2404 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2405
2406 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2407 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2408
2409 /*
2410 * enable stripping of CRC. It's unlikely this will break BMC
2411 * redirection as it did with e1000. Newer features require
2412 * that the HW strips the CRC.
2413 */
2414 rctl |= E1000_RCTL_SECRC;
2415
2416 /* disable store bad packets and clear size bits. */
2417 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2418
2419 /* enable LPE to prevent packets larger than max_frame_size */
2420 rctl |= E1000_RCTL_LPE;
2421
2422 /* disable queue 0 to prevent tail write w/o re-config */
2423 wr32(E1000_RXDCTL(0), 0);
2424
2425 /* Attention!!! For SR-IOV PF driver operations you must enable
2426 * queue drop for all VF and PF queues to prevent head of line blocking
2427 * if an un-trusted VF does not provide descriptors to hardware.
2428 */
2429 if (adapter->vfs_allocated_count) {
2430 /* set all queue drop enable bits */
2431 wr32(E1000_QDE, ALL_QUEUES);
2432 }
2433
2434 wr32(E1000_RCTL, rctl);
2435 }
2436
2437 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2438 int vfn)
2439 {
2440 struct e1000_hw *hw = &adapter->hw;
2441 u32 vmolr;
2442
2443 /* if it isn't the PF check to see if VFs are enabled and
2444 * increase the size to support vlan tags */
2445 if (vfn < adapter->vfs_allocated_count &&
2446 adapter->vf_data[vfn].vlans_enabled)
2447 size += VLAN_TAG_SIZE;
2448
2449 vmolr = rd32(E1000_VMOLR(vfn));
2450 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2451 vmolr |= size | E1000_VMOLR_LPE;
2452 wr32(E1000_VMOLR(vfn), vmolr);
2453
2454 return 0;
2455 }
2456
2457 /**
2458 * igb_rlpml_set - set maximum receive packet size
2459 * @adapter: board private structure
2460 *
2461 * Configure maximum receivable packet size.
2462 **/
2463 static void igb_rlpml_set(struct igb_adapter *adapter)
2464 {
2465 u32 max_frame_size = adapter->max_frame_size;
2466 struct e1000_hw *hw = &adapter->hw;
2467 u16 pf_id = adapter->vfs_allocated_count;
2468
2469 if (adapter->vlgrp)
2470 max_frame_size += VLAN_TAG_SIZE;
2471
2472 /* if vfs are enabled we set RLPML to the largest possible request
2473 * size and set the VMOLR RLPML to the size we need */
2474 if (pf_id) {
2475 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2476 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2477 }
2478
2479 wr32(E1000_RLPML, max_frame_size);
2480 }
2481
2482 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2483 {
2484 struct e1000_hw *hw = &adapter->hw;
2485 u32 vmolr;
2486
2487 /*
2488 * This register exists only on 82576 and newer so if we are older then
2489 * we should exit and do nothing
2490 */
2491 if (hw->mac.type < e1000_82576)
2492 return;
2493
2494 vmolr = rd32(E1000_VMOLR(vfn));
2495 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2496 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2497
2498 /* clear all bits that might not be set */
2499 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2500
2501 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2502 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2503 /*
2504 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2505 * multicast packets
2506 */
2507 if (vfn <= adapter->vfs_allocated_count)
2508 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2509
2510 wr32(E1000_VMOLR(vfn), vmolr);
2511 }
2512
2513 /**
2514 * igb_configure_rx_ring - Configure a receive ring after Reset
2515 * @adapter: board private structure
2516 * @ring: receive ring to be configured
2517 *
2518 * Configure the Rx unit of the MAC after a reset.
2519 **/
2520 void igb_configure_rx_ring(struct igb_adapter *adapter,
2521 struct igb_ring *ring)
2522 {
2523 struct e1000_hw *hw = &adapter->hw;
2524 u64 rdba = ring->dma;
2525 int reg_idx = ring->reg_idx;
2526 u32 srrctl, rxdctl;
2527
2528 /* disable the queue */
2529 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2530 wr32(E1000_RXDCTL(reg_idx),
2531 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2532
2533 /* Set DMA base address registers */
2534 wr32(E1000_RDBAL(reg_idx),
2535 rdba & 0x00000000ffffffffULL);
2536 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2537 wr32(E1000_RDLEN(reg_idx),
2538 ring->count * sizeof(union e1000_adv_rx_desc));
2539
2540 /* initialize head and tail */
2541 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2542 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2543 writel(0, ring->head);
2544 writel(0, ring->tail);
2545
2546 /* set descriptor configuration */
2547 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2548 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2549 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2550 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2551 srrctl |= IGB_RXBUFFER_16384 >>
2552 E1000_SRRCTL_BSIZEPKT_SHIFT;
2553 #else
2554 srrctl |= (PAGE_SIZE / 2) >>
2555 E1000_SRRCTL_BSIZEPKT_SHIFT;
2556 #endif
2557 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2558 } else {
2559 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2560 E1000_SRRCTL_BSIZEPKT_SHIFT;
2561 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2562 }
2563
2564 wr32(E1000_SRRCTL(reg_idx), srrctl);
2565
2566 /* set filtering for VMDQ pools */
2567 igb_set_vmolr(adapter, reg_idx & 0x7);
2568
2569 /* enable receive descriptor fetching */
2570 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2571 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2572 rxdctl &= 0xFFF00000;
2573 rxdctl |= IGB_RX_PTHRESH;
2574 rxdctl |= IGB_RX_HTHRESH << 8;
2575 rxdctl |= IGB_RX_WTHRESH << 16;
2576 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2577 }
2578
2579 /**
2580 * igb_configure_rx - Configure receive Unit after Reset
2581 * @adapter: board private structure
2582 *
2583 * Configure the Rx unit of the MAC after a reset.
2584 **/
2585 static void igb_configure_rx(struct igb_adapter *adapter)
2586 {
2587 int i;
2588
2589 /* set UTA to appropriate mode */
2590 igb_set_uta(adapter);
2591
2592 /* set the correct pool for the PF default MAC address in entry 0 */
2593 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2594 adapter->vfs_allocated_count);
2595
2596 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2597 * the Base and Length of the Rx Descriptor Ring */
2598 for (i = 0; i < adapter->num_rx_queues; i++)
2599 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2600 }
2601
2602 /**
2603 * igb_free_tx_resources - Free Tx Resources per Queue
2604 * @tx_ring: Tx descriptor ring for a specific queue
2605 *
2606 * Free all transmit software resources
2607 **/
2608 void igb_free_tx_resources(struct igb_ring *tx_ring)
2609 {
2610 igb_clean_tx_ring(tx_ring);
2611
2612 vfree(tx_ring->buffer_info);
2613 tx_ring->buffer_info = NULL;
2614
2615 /* if not set, then don't free */
2616 if (!tx_ring->desc)
2617 return;
2618
2619 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2620 tx_ring->desc, tx_ring->dma);
2621
2622 tx_ring->desc = NULL;
2623 }
2624
2625 /**
2626 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2627 * @adapter: board private structure
2628 *
2629 * Free all transmit software resources
2630 **/
2631 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2632 {
2633 int i;
2634
2635 for (i = 0; i < adapter->num_tx_queues; i++)
2636 igb_free_tx_resources(&adapter->tx_ring[i]);
2637 }
2638
2639 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2640 struct igb_buffer *buffer_info)
2641 {
2642 if (buffer_info->dma) {
2643 if (buffer_info->mapped_as_page)
2644 pci_unmap_page(tx_ring->pdev,
2645 buffer_info->dma,
2646 buffer_info->length,
2647 PCI_DMA_TODEVICE);
2648 else
2649 pci_unmap_single(tx_ring->pdev,
2650 buffer_info->dma,
2651 buffer_info->length,
2652 PCI_DMA_TODEVICE);
2653 buffer_info->dma = 0;
2654 }
2655 if (buffer_info->skb) {
2656 dev_kfree_skb_any(buffer_info->skb);
2657 buffer_info->skb = NULL;
2658 }
2659 buffer_info->time_stamp = 0;
2660 buffer_info->length = 0;
2661 buffer_info->next_to_watch = 0;
2662 buffer_info->mapped_as_page = false;
2663 }
2664
2665 /**
2666 * igb_clean_tx_ring - Free Tx Buffers
2667 * @tx_ring: ring to be cleaned
2668 **/
2669 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2670 {
2671 struct igb_buffer *buffer_info;
2672 unsigned long size;
2673 unsigned int i;
2674
2675 if (!tx_ring->buffer_info)
2676 return;
2677 /* Free all the Tx ring sk_buffs */
2678
2679 for (i = 0; i < tx_ring->count; i++) {
2680 buffer_info = &tx_ring->buffer_info[i];
2681 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2682 }
2683
2684 size = sizeof(struct igb_buffer) * tx_ring->count;
2685 memset(tx_ring->buffer_info, 0, size);
2686
2687 /* Zero out the descriptor ring */
2688 memset(tx_ring->desc, 0, tx_ring->size);
2689
2690 tx_ring->next_to_use = 0;
2691 tx_ring->next_to_clean = 0;
2692 }
2693
2694 /**
2695 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2696 * @adapter: board private structure
2697 **/
2698 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2699 {
2700 int i;
2701
2702 for (i = 0; i < adapter->num_tx_queues; i++)
2703 igb_clean_tx_ring(&adapter->tx_ring[i]);
2704 }
2705
2706 /**
2707 * igb_free_rx_resources - Free Rx Resources
2708 * @rx_ring: ring to clean the resources from
2709 *
2710 * Free all receive software resources
2711 **/
2712 void igb_free_rx_resources(struct igb_ring *rx_ring)
2713 {
2714 igb_clean_rx_ring(rx_ring);
2715
2716 vfree(rx_ring->buffer_info);
2717 rx_ring->buffer_info = NULL;
2718
2719 /* if not set, then don't free */
2720 if (!rx_ring->desc)
2721 return;
2722
2723 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2724 rx_ring->desc, rx_ring->dma);
2725
2726 rx_ring->desc = NULL;
2727 }
2728
2729 /**
2730 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2731 * @adapter: board private structure
2732 *
2733 * Free all receive software resources
2734 **/
2735 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2736 {
2737 int i;
2738
2739 for (i = 0; i < adapter->num_rx_queues; i++)
2740 igb_free_rx_resources(&adapter->rx_ring[i]);
2741 }
2742
2743 /**
2744 * igb_clean_rx_ring - Free Rx Buffers per Queue
2745 * @rx_ring: ring to free buffers from
2746 **/
2747 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2748 {
2749 struct igb_buffer *buffer_info;
2750 unsigned long size;
2751 unsigned int i;
2752
2753 if (!rx_ring->buffer_info)
2754 return;
2755
2756 /* Free all the Rx ring sk_buffs */
2757 for (i = 0; i < rx_ring->count; i++) {
2758 buffer_info = &rx_ring->buffer_info[i];
2759 if (buffer_info->dma) {
2760 pci_unmap_single(rx_ring->pdev,
2761 buffer_info->dma,
2762 rx_ring->rx_buffer_len,
2763 PCI_DMA_FROMDEVICE);
2764 buffer_info->dma = 0;
2765 }
2766
2767 if (buffer_info->skb) {
2768 dev_kfree_skb(buffer_info->skb);
2769 buffer_info->skb = NULL;
2770 }
2771 if (buffer_info->page_dma) {
2772 pci_unmap_page(rx_ring->pdev,
2773 buffer_info->page_dma,
2774 PAGE_SIZE / 2,
2775 PCI_DMA_FROMDEVICE);
2776 buffer_info->page_dma = 0;
2777 }
2778 if (buffer_info->page) {
2779 put_page(buffer_info->page);
2780 buffer_info->page = NULL;
2781 buffer_info->page_offset = 0;
2782 }
2783 }
2784
2785 size = sizeof(struct igb_buffer) * rx_ring->count;
2786 memset(rx_ring->buffer_info, 0, size);
2787
2788 /* Zero out the descriptor ring */
2789 memset(rx_ring->desc, 0, rx_ring->size);
2790
2791 rx_ring->next_to_clean = 0;
2792 rx_ring->next_to_use = 0;
2793 }
2794
2795 /**
2796 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2797 * @adapter: board private structure
2798 **/
2799 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2800 {
2801 int i;
2802
2803 for (i = 0; i < adapter->num_rx_queues; i++)
2804 igb_clean_rx_ring(&adapter->rx_ring[i]);
2805 }
2806
2807 /**
2808 * igb_set_mac - Change the Ethernet Address of the NIC
2809 * @netdev: network interface device structure
2810 * @p: pointer to an address structure
2811 *
2812 * Returns 0 on success, negative on failure
2813 **/
2814 static int igb_set_mac(struct net_device *netdev, void *p)
2815 {
2816 struct igb_adapter *adapter = netdev_priv(netdev);
2817 struct e1000_hw *hw = &adapter->hw;
2818 struct sockaddr *addr = p;
2819
2820 if (!is_valid_ether_addr(addr->sa_data))
2821 return -EADDRNOTAVAIL;
2822
2823 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2824 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2825
2826 /* set the correct pool for the new PF MAC address in entry 0 */
2827 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2828 adapter->vfs_allocated_count);
2829
2830 return 0;
2831 }
2832
2833 /**
2834 * igb_write_mc_addr_list - write multicast addresses to MTA
2835 * @netdev: network interface device structure
2836 *
2837 * Writes multicast address list to the MTA hash table.
2838 * Returns: -ENOMEM on failure
2839 * 0 on no addresses written
2840 * X on writing X addresses to MTA
2841 **/
2842 static int igb_write_mc_addr_list(struct net_device *netdev)
2843 {
2844 struct igb_adapter *adapter = netdev_priv(netdev);
2845 struct e1000_hw *hw = &adapter->hw;
2846 struct dev_mc_list *mc_ptr = netdev->mc_list;
2847 u8 *mta_list;
2848 u32 vmolr = 0;
2849 int i;
2850
2851 if (!netdev->mc_count) {
2852 /* nothing to program, so clear mc list */
2853 igb_update_mc_addr_list(hw, NULL, 0);
2854 igb_restore_vf_multicasts(adapter);
2855 return 0;
2856 }
2857
2858 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2859 if (!mta_list)
2860 return -ENOMEM;
2861
2862 /* set vmolr receive overflow multicast bit */
2863 vmolr |= E1000_VMOLR_ROMPE;
2864
2865 /* The shared function expects a packed array of only addresses. */
2866 mc_ptr = netdev->mc_list;
2867
2868 for (i = 0; i < netdev->mc_count; i++) {
2869 if (!mc_ptr)
2870 break;
2871 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2872 mc_ptr = mc_ptr->next;
2873 }
2874 igb_update_mc_addr_list(hw, mta_list, i);
2875 kfree(mta_list);
2876
2877 return netdev->mc_count;
2878 }
2879
2880 /**
2881 * igb_write_uc_addr_list - write unicast addresses to RAR table
2882 * @netdev: network interface device structure
2883 *
2884 * Writes unicast address list to the RAR table.
2885 * Returns: -ENOMEM on failure/insufficient address space
2886 * 0 on no addresses written
2887 * X on writing X addresses to the RAR table
2888 **/
2889 static int igb_write_uc_addr_list(struct net_device *netdev)
2890 {
2891 struct igb_adapter *adapter = netdev_priv(netdev);
2892 struct e1000_hw *hw = &adapter->hw;
2893 unsigned int vfn = adapter->vfs_allocated_count;
2894 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2895 int count = 0;
2896
2897 /* return ENOMEM indicating insufficient memory for addresses */
2898 if (netdev->uc.count > rar_entries)
2899 return -ENOMEM;
2900
2901 if (netdev->uc.count && rar_entries) {
2902 struct netdev_hw_addr *ha;
2903 list_for_each_entry(ha, &netdev->uc.list, list) {
2904 if (!rar_entries)
2905 break;
2906 igb_rar_set_qsel(adapter, ha->addr,
2907 rar_entries--,
2908 vfn);
2909 count++;
2910 }
2911 }
2912 /* write the addresses in reverse order to avoid write combining */
2913 for (; rar_entries > 0 ; rar_entries--) {
2914 wr32(E1000_RAH(rar_entries), 0);
2915 wr32(E1000_RAL(rar_entries), 0);
2916 }
2917 wrfl();
2918
2919 return count;
2920 }
2921
2922 /**
2923 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2924 * @netdev: network interface device structure
2925 *
2926 * The set_rx_mode entry point is called whenever the unicast or multicast
2927 * address lists or the network interface flags are updated. This routine is
2928 * responsible for configuring the hardware for proper unicast, multicast,
2929 * promiscuous mode, and all-multi behavior.
2930 **/
2931 static void igb_set_rx_mode(struct net_device *netdev)
2932 {
2933 struct igb_adapter *adapter = netdev_priv(netdev);
2934 struct e1000_hw *hw = &adapter->hw;
2935 unsigned int vfn = adapter->vfs_allocated_count;
2936 u32 rctl, vmolr = 0;
2937 int count;
2938
2939 /* Check for Promiscuous and All Multicast modes */
2940 rctl = rd32(E1000_RCTL);
2941
2942 /* clear the effected bits */
2943 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2944
2945 if (netdev->flags & IFF_PROMISC) {
2946 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2947 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2948 } else {
2949 if (netdev->flags & IFF_ALLMULTI) {
2950 rctl |= E1000_RCTL_MPE;
2951 vmolr |= E1000_VMOLR_MPME;
2952 } else {
2953 /*
2954 * Write addresses to the MTA, if the attempt fails
2955 * then we should just turn on promiscous mode so
2956 * that we can at least receive multicast traffic
2957 */
2958 count = igb_write_mc_addr_list(netdev);
2959 if (count < 0) {
2960 rctl |= E1000_RCTL_MPE;
2961 vmolr |= E1000_VMOLR_MPME;
2962 } else if (count) {
2963 vmolr |= E1000_VMOLR_ROMPE;
2964 }
2965 }
2966 /*
2967 * Write addresses to available RAR registers, if there is not
2968 * sufficient space to store all the addresses then enable
2969 * unicast promiscous mode
2970 */
2971 count = igb_write_uc_addr_list(netdev);
2972 if (count < 0) {
2973 rctl |= E1000_RCTL_UPE;
2974 vmolr |= E1000_VMOLR_ROPE;
2975 }
2976 rctl |= E1000_RCTL_VFE;
2977 }
2978 wr32(E1000_RCTL, rctl);
2979
2980 /*
2981 * In order to support SR-IOV and eventually VMDq it is necessary to set
2982 * the VMOLR to enable the appropriate modes. Without this workaround
2983 * we will have issues with VLAN tag stripping not being done for frames
2984 * that are only arriving because we are the default pool
2985 */
2986 if (hw->mac.type < e1000_82576)
2987 return;
2988
2989 vmolr |= rd32(E1000_VMOLR(vfn)) &
2990 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2991 wr32(E1000_VMOLR(vfn), vmolr);
2992 igb_restore_vf_multicasts(adapter);
2993 }
2994
2995 /* Need to wait a few seconds after link up to get diagnostic information from
2996 * the phy */
2997 static void igb_update_phy_info(unsigned long data)
2998 {
2999 struct igb_adapter *adapter = (struct igb_adapter *) data;
3000 igb_get_phy_info(&adapter->hw);
3001 }
3002
3003 /**
3004 * igb_has_link - check shared code for link and determine up/down
3005 * @adapter: pointer to driver private info
3006 **/
3007 static bool igb_has_link(struct igb_adapter *adapter)
3008 {
3009 struct e1000_hw *hw = &adapter->hw;
3010 bool link_active = false;
3011 s32 ret_val = 0;
3012
3013 /* get_link_status is set on LSC (link status) interrupt or
3014 * rx sequence error interrupt. get_link_status will stay
3015 * false until the e1000_check_for_link establishes link
3016 * for copper adapters ONLY
3017 */
3018 switch (hw->phy.media_type) {
3019 case e1000_media_type_copper:
3020 if (hw->mac.get_link_status) {
3021 ret_val = hw->mac.ops.check_for_link(hw);
3022 link_active = !hw->mac.get_link_status;
3023 } else {
3024 link_active = true;
3025 }
3026 break;
3027 case e1000_media_type_internal_serdes:
3028 ret_val = hw->mac.ops.check_for_link(hw);
3029 link_active = hw->mac.serdes_has_link;
3030 break;
3031 default:
3032 case e1000_media_type_unknown:
3033 break;
3034 }
3035
3036 return link_active;
3037 }
3038
3039 /**
3040 * igb_watchdog - Timer Call-back
3041 * @data: pointer to adapter cast into an unsigned long
3042 **/
3043 static void igb_watchdog(unsigned long data)
3044 {
3045 struct igb_adapter *adapter = (struct igb_adapter *)data;
3046 /* Do the rest outside of interrupt context */
3047 schedule_work(&adapter->watchdog_task);
3048 }
3049
3050 static void igb_watchdog_task(struct work_struct *work)
3051 {
3052 struct igb_adapter *adapter = container_of(work,
3053 struct igb_adapter,
3054 watchdog_task);
3055 struct e1000_hw *hw = &adapter->hw;
3056 struct net_device *netdev = adapter->netdev;
3057 u32 link;
3058 int i;
3059
3060 link = igb_has_link(adapter);
3061 if (link) {
3062 if (!netif_carrier_ok(netdev)) {
3063 u32 ctrl;
3064 hw->mac.ops.get_speed_and_duplex(hw,
3065 &adapter->link_speed,
3066 &adapter->link_duplex);
3067
3068 ctrl = rd32(E1000_CTRL);
3069 /* Links status message must follow this format */
3070 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3071 "Flow Control: %s\n",
3072 netdev->name,
3073 adapter->link_speed,
3074 adapter->link_duplex == FULL_DUPLEX ?
3075 "Full Duplex" : "Half Duplex",
3076 ((ctrl & E1000_CTRL_TFCE) &&
3077 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3078 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3079 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3080
3081 /* tweak tx_queue_len according to speed/duplex and
3082 * adjust the timeout factor */
3083 netdev->tx_queue_len = adapter->tx_queue_len;
3084 adapter->tx_timeout_factor = 1;
3085 switch (adapter->link_speed) {
3086 case SPEED_10:
3087 netdev->tx_queue_len = 10;
3088 adapter->tx_timeout_factor = 14;
3089 break;
3090 case SPEED_100:
3091 netdev->tx_queue_len = 100;
3092 /* maybe add some timeout factor ? */
3093 break;
3094 }
3095
3096 netif_carrier_on(netdev);
3097
3098 igb_ping_all_vfs(adapter);
3099
3100 /* link state has changed, schedule phy info update */
3101 if (!test_bit(__IGB_DOWN, &adapter->state))
3102 mod_timer(&adapter->phy_info_timer,
3103 round_jiffies(jiffies + 2 * HZ));
3104 }
3105 } else {
3106 if (netif_carrier_ok(netdev)) {
3107 adapter->link_speed = 0;
3108 adapter->link_duplex = 0;
3109 /* Links status message must follow this format */
3110 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3111 netdev->name);
3112 netif_carrier_off(netdev);
3113
3114 igb_ping_all_vfs(adapter);
3115
3116 /* link state has changed, schedule phy info update */
3117 if (!test_bit(__IGB_DOWN, &adapter->state))
3118 mod_timer(&adapter->phy_info_timer,
3119 round_jiffies(jiffies + 2 * HZ));
3120 }
3121 }
3122
3123 igb_update_stats(adapter);
3124 igb_update_adaptive(hw);
3125
3126 for (i = 0; i < adapter->num_tx_queues; i++) {
3127 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3128 if (!netif_carrier_ok(netdev)) {
3129 /* We've lost link, so the controller stops DMA,
3130 * but we've got queued Tx work that's never going
3131 * to get done, so reset controller to flush Tx.
3132 * (Do the reset outside of interrupt context). */
3133 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3134 adapter->tx_timeout_count++;
3135 schedule_work(&adapter->reset_task);
3136 /* return immediately since reset is imminent */
3137 return;
3138 }
3139 }
3140
3141 /* Force detection of hung controller every watchdog period */
3142 tx_ring->detect_tx_hung = true;
3143 }
3144
3145 /* Cause software interrupt to ensure rx ring is cleaned */
3146 if (adapter->msix_entries) {
3147 u32 eics = 0;
3148 for (i = 0; i < adapter->num_q_vectors; i++) {
3149 struct igb_q_vector *q_vector = adapter->q_vector[i];
3150 eics |= q_vector->eims_value;
3151 }
3152 wr32(E1000_EICS, eics);
3153 } else {
3154 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3155 }
3156
3157 /* Reset the timer */
3158 if (!test_bit(__IGB_DOWN, &adapter->state))
3159 mod_timer(&adapter->watchdog_timer,
3160 round_jiffies(jiffies + 2 * HZ));
3161 }
3162
3163 enum latency_range {
3164 lowest_latency = 0,
3165 low_latency = 1,
3166 bulk_latency = 2,
3167 latency_invalid = 255
3168 };
3169
3170 /**
3171 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3172 *
3173 * Stores a new ITR value based on strictly on packet size. This
3174 * algorithm is less sophisticated than that used in igb_update_itr,
3175 * due to the difficulty of synchronizing statistics across multiple
3176 * receive rings. The divisors and thresholds used by this fuction
3177 * were determined based on theoretical maximum wire speed and testing
3178 * data, in order to minimize response time while increasing bulk
3179 * throughput.
3180 * This functionality is controlled by the InterruptThrottleRate module
3181 * parameter (see igb_param.c)
3182 * NOTE: This function is called only when operating in a multiqueue
3183 * receive environment.
3184 * @q_vector: pointer to q_vector
3185 **/
3186 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3187 {
3188 int new_val = q_vector->itr_val;
3189 int avg_wire_size = 0;
3190 struct igb_adapter *adapter = q_vector->adapter;
3191
3192 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3193 * ints/sec - ITR timer value of 120 ticks.
3194 */
3195 if (adapter->link_speed != SPEED_1000) {
3196 new_val = 976;
3197 goto set_itr_val;
3198 }
3199
3200 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3201 struct igb_ring *ring = q_vector->rx_ring;
3202 avg_wire_size = ring->total_bytes / ring->total_packets;
3203 }
3204
3205 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3206 struct igb_ring *ring = q_vector->tx_ring;
3207 avg_wire_size = max_t(u32, avg_wire_size,
3208 (ring->total_bytes /
3209 ring->total_packets));
3210 }
3211
3212 /* if avg_wire_size isn't set no work was done */
3213 if (!avg_wire_size)
3214 goto clear_counts;
3215
3216 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3217 avg_wire_size += 24;
3218
3219 /* Don't starve jumbo frames */
3220 avg_wire_size = min(avg_wire_size, 3000);
3221
3222 /* Give a little boost to mid-size frames */
3223 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3224 new_val = avg_wire_size / 3;
3225 else
3226 new_val = avg_wire_size / 2;
3227
3228 set_itr_val:
3229 if (new_val != q_vector->itr_val) {
3230 q_vector->itr_val = new_val;
3231 q_vector->set_itr = 1;
3232 }
3233 clear_counts:
3234 if (q_vector->rx_ring) {
3235 q_vector->rx_ring->total_bytes = 0;
3236 q_vector->rx_ring->total_packets = 0;
3237 }
3238 if (q_vector->tx_ring) {
3239 q_vector->tx_ring->total_bytes = 0;
3240 q_vector->tx_ring->total_packets = 0;
3241 }
3242 }
3243
3244 /**
3245 * igb_update_itr - update the dynamic ITR value based on statistics
3246 * Stores a new ITR value based on packets and byte
3247 * counts during the last interrupt. The advantage of per interrupt
3248 * computation is faster updates and more accurate ITR for the current
3249 * traffic pattern. Constants in this function were computed
3250 * based on theoretical maximum wire speed and thresholds were set based
3251 * on testing data as well as attempting to minimize response time
3252 * while increasing bulk throughput.
3253 * this functionality is controlled by the InterruptThrottleRate module
3254 * parameter (see igb_param.c)
3255 * NOTE: These calculations are only valid when operating in a single-
3256 * queue environment.
3257 * @adapter: pointer to adapter
3258 * @itr_setting: current q_vector->itr_val
3259 * @packets: the number of packets during this measurement interval
3260 * @bytes: the number of bytes during this measurement interval
3261 **/
3262 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3263 int packets, int bytes)
3264 {
3265 unsigned int retval = itr_setting;
3266
3267 if (packets == 0)
3268 goto update_itr_done;
3269
3270 switch (itr_setting) {
3271 case lowest_latency:
3272 /* handle TSO and jumbo frames */
3273 if (bytes/packets > 8000)
3274 retval = bulk_latency;
3275 else if ((packets < 5) && (bytes > 512))
3276 retval = low_latency;
3277 break;
3278 case low_latency: /* 50 usec aka 20000 ints/s */
3279 if (bytes > 10000) {
3280 /* this if handles the TSO accounting */
3281 if (bytes/packets > 8000) {
3282 retval = bulk_latency;
3283 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3284 retval = bulk_latency;
3285 } else if ((packets > 35)) {
3286 retval = lowest_latency;
3287 }
3288 } else if (bytes/packets > 2000) {
3289 retval = bulk_latency;
3290 } else if (packets <= 2 && bytes < 512) {
3291 retval = lowest_latency;
3292 }
3293 break;
3294 case bulk_latency: /* 250 usec aka 4000 ints/s */
3295 if (bytes > 25000) {
3296 if (packets > 35)
3297 retval = low_latency;
3298 } else if (bytes < 1500) {
3299 retval = low_latency;
3300 }
3301 break;
3302 }
3303
3304 update_itr_done:
3305 return retval;
3306 }
3307
3308 static void igb_set_itr(struct igb_adapter *adapter)
3309 {
3310 struct igb_q_vector *q_vector = adapter->q_vector[0];
3311 u16 current_itr;
3312 u32 new_itr = q_vector->itr_val;
3313
3314 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3315 if (adapter->link_speed != SPEED_1000) {
3316 current_itr = 0;
3317 new_itr = 4000;
3318 goto set_itr_now;
3319 }
3320
3321 adapter->rx_itr = igb_update_itr(adapter,
3322 adapter->rx_itr,
3323 adapter->rx_ring->total_packets,
3324 adapter->rx_ring->total_bytes);
3325
3326 adapter->tx_itr = igb_update_itr(adapter,
3327 adapter->tx_itr,
3328 adapter->tx_ring->total_packets,
3329 adapter->tx_ring->total_bytes);
3330 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3331
3332 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3333 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3334 current_itr = low_latency;
3335
3336 switch (current_itr) {
3337 /* counts and packets in update_itr are dependent on these numbers */
3338 case lowest_latency:
3339 new_itr = 56; /* aka 70,000 ints/sec */
3340 break;
3341 case low_latency:
3342 new_itr = 196; /* aka 20,000 ints/sec */
3343 break;
3344 case bulk_latency:
3345 new_itr = 980; /* aka 4,000 ints/sec */
3346 break;
3347 default:
3348 break;
3349 }
3350
3351 set_itr_now:
3352 adapter->rx_ring->total_bytes = 0;
3353 adapter->rx_ring->total_packets = 0;
3354 adapter->tx_ring->total_bytes = 0;
3355 adapter->tx_ring->total_packets = 0;
3356
3357 if (new_itr != q_vector->itr_val) {
3358 /* this attempts to bias the interrupt rate towards Bulk
3359 * by adding intermediate steps when interrupt rate is
3360 * increasing */
3361 new_itr = new_itr > q_vector->itr_val ?
3362 max((new_itr * q_vector->itr_val) /
3363 (new_itr + (q_vector->itr_val >> 2)),
3364 new_itr) :
3365 new_itr;
3366 /* Don't write the value here; it resets the adapter's
3367 * internal timer, and causes us to delay far longer than
3368 * we should between interrupts. Instead, we write the ITR
3369 * value at the beginning of the next interrupt so the timing
3370 * ends up being correct.
3371 */
3372 q_vector->itr_val = new_itr;
3373 q_vector->set_itr = 1;
3374 }
3375
3376 return;
3377 }
3378
3379 #define IGB_TX_FLAGS_CSUM 0x00000001
3380 #define IGB_TX_FLAGS_VLAN 0x00000002
3381 #define IGB_TX_FLAGS_TSO 0x00000004
3382 #define IGB_TX_FLAGS_IPV4 0x00000008
3383 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3384 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3385 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3386
3387 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3388 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3389 {
3390 struct e1000_adv_tx_context_desc *context_desc;
3391 unsigned int i;
3392 int err;
3393 struct igb_buffer *buffer_info;
3394 u32 info = 0, tu_cmd = 0;
3395 u32 mss_l4len_idx, l4len;
3396 *hdr_len = 0;
3397
3398 if (skb_header_cloned(skb)) {
3399 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3400 if (err)
3401 return err;
3402 }
3403
3404 l4len = tcp_hdrlen(skb);
3405 *hdr_len += l4len;
3406
3407 if (skb->protocol == htons(ETH_P_IP)) {
3408 struct iphdr *iph = ip_hdr(skb);
3409 iph->tot_len = 0;
3410 iph->check = 0;
3411 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3412 iph->daddr, 0,
3413 IPPROTO_TCP,
3414 0);
3415 } else if (skb_is_gso_v6(skb)) {
3416 ipv6_hdr(skb)->payload_len = 0;
3417 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3418 &ipv6_hdr(skb)->daddr,
3419 0, IPPROTO_TCP, 0);
3420 }
3421
3422 i = tx_ring->next_to_use;
3423
3424 buffer_info = &tx_ring->buffer_info[i];
3425 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3426 /* VLAN MACLEN IPLEN */
3427 if (tx_flags & IGB_TX_FLAGS_VLAN)
3428 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3429 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3430 *hdr_len += skb_network_offset(skb);
3431 info |= skb_network_header_len(skb);
3432 *hdr_len += skb_network_header_len(skb);
3433 context_desc->vlan_macip_lens = cpu_to_le32(info);
3434
3435 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3436 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3437
3438 if (skb->protocol == htons(ETH_P_IP))
3439 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3440 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3441
3442 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3443
3444 /* MSS L4LEN IDX */
3445 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3446 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3447
3448 /* For 82575, context index must be unique per ring. */
3449 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3450 mss_l4len_idx |= tx_ring->reg_idx << 4;
3451
3452 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3453 context_desc->seqnum_seed = 0;
3454
3455 buffer_info->time_stamp = jiffies;
3456 buffer_info->next_to_watch = i;
3457 buffer_info->dma = 0;
3458 i++;
3459 if (i == tx_ring->count)
3460 i = 0;
3461
3462 tx_ring->next_to_use = i;
3463
3464 return true;
3465 }
3466
3467 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3468 struct sk_buff *skb, u32 tx_flags)
3469 {
3470 struct e1000_adv_tx_context_desc *context_desc;
3471 struct pci_dev *pdev = tx_ring->pdev;
3472 struct igb_buffer *buffer_info;
3473 u32 info = 0, tu_cmd = 0;
3474 unsigned int i;
3475
3476 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3477 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3478 i = tx_ring->next_to_use;
3479 buffer_info = &tx_ring->buffer_info[i];
3480 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3481
3482 if (tx_flags & IGB_TX_FLAGS_VLAN)
3483 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3484
3485 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3486 if (skb->ip_summed == CHECKSUM_PARTIAL)
3487 info |= skb_network_header_len(skb);
3488
3489 context_desc->vlan_macip_lens = cpu_to_le32(info);
3490
3491 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3492
3493 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3494 __be16 protocol;
3495
3496 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3497 const struct vlan_ethhdr *vhdr =
3498 (const struct vlan_ethhdr*)skb->data;
3499
3500 protocol = vhdr->h_vlan_encapsulated_proto;
3501 } else {
3502 protocol = skb->protocol;
3503 }
3504
3505 switch (protocol) {
3506 case cpu_to_be16(ETH_P_IP):
3507 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3508 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3509 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3510 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3511 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3512 break;
3513 case cpu_to_be16(ETH_P_IPV6):
3514 /* XXX what about other V6 headers?? */
3515 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3516 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3517 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3518 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3519 break;
3520 default:
3521 if (unlikely(net_ratelimit()))
3522 dev_warn(&pdev->dev,
3523 "partial checksum but proto=%x!\n",
3524 skb->protocol);
3525 break;
3526 }
3527 }
3528
3529 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3530 context_desc->seqnum_seed = 0;
3531 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3532 context_desc->mss_l4len_idx =
3533 cpu_to_le32(tx_ring->reg_idx << 4);
3534
3535 buffer_info->time_stamp = jiffies;
3536 buffer_info->next_to_watch = i;
3537 buffer_info->dma = 0;
3538
3539 i++;
3540 if (i == tx_ring->count)
3541 i = 0;
3542 tx_ring->next_to_use = i;
3543
3544 return true;
3545 }
3546 return false;
3547 }
3548
3549 #define IGB_MAX_TXD_PWR 16
3550 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3551
3552 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3553 unsigned int first)
3554 {
3555 struct igb_buffer *buffer_info;
3556 struct pci_dev *pdev = tx_ring->pdev;
3557 unsigned int len = skb_headlen(skb);
3558 unsigned int count = 0, i;
3559 unsigned int f;
3560
3561 i = tx_ring->next_to_use;
3562
3563 buffer_info = &tx_ring->buffer_info[i];
3564 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3565 buffer_info->length = len;
3566 /* set time_stamp *before* dma to help avoid a possible race */
3567 buffer_info->time_stamp = jiffies;
3568 buffer_info->next_to_watch = i;
3569 buffer_info->dma = pci_map_single(pdev, skb->data, len,
3570 PCI_DMA_TODEVICE);
3571 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3572 goto dma_error;
3573
3574 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3575 struct skb_frag_struct *frag;
3576
3577 count++;
3578 i++;
3579 if (i == tx_ring->count)
3580 i = 0;
3581
3582 frag = &skb_shinfo(skb)->frags[f];
3583 len = frag->size;
3584
3585 buffer_info = &tx_ring->buffer_info[i];
3586 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3587 buffer_info->length = len;
3588 buffer_info->time_stamp = jiffies;
3589 buffer_info->next_to_watch = i;
3590 buffer_info->mapped_as_page = true;
3591 buffer_info->dma = pci_map_page(pdev,
3592 frag->page,
3593 frag->page_offset,
3594 len,
3595 PCI_DMA_TODEVICE);
3596 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3597 goto dma_error;
3598
3599 }
3600
3601 tx_ring->buffer_info[i].skb = skb;
3602 tx_ring->buffer_info[first].next_to_watch = i;
3603
3604 return ++count;
3605
3606 dma_error:
3607 dev_err(&pdev->dev, "TX DMA map failed\n");
3608
3609 /* clear timestamp and dma mappings for failed buffer_info mapping */
3610 buffer_info->dma = 0;
3611 buffer_info->time_stamp = 0;
3612 buffer_info->length = 0;
3613 buffer_info->next_to_watch = 0;
3614 buffer_info->mapped_as_page = false;
3615 count--;
3616
3617 /* clear timestamp and dma mappings for remaining portion of packet */
3618 while (count >= 0) {
3619 count--;
3620 i--;
3621 if (i < 0)
3622 i += tx_ring->count;
3623 buffer_info = &tx_ring->buffer_info[i];
3624 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3625 }
3626
3627 return 0;
3628 }
3629
3630 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3631 int tx_flags, int count, u32 paylen,
3632 u8 hdr_len)
3633 {
3634 union e1000_adv_tx_desc *tx_desc;
3635 struct igb_buffer *buffer_info;
3636 u32 olinfo_status = 0, cmd_type_len;
3637 unsigned int i = tx_ring->next_to_use;
3638
3639 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3640 E1000_ADVTXD_DCMD_DEXT);
3641
3642 if (tx_flags & IGB_TX_FLAGS_VLAN)
3643 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3644
3645 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3646 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3647
3648 if (tx_flags & IGB_TX_FLAGS_TSO) {
3649 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3650
3651 /* insert tcp checksum */
3652 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3653
3654 /* insert ip checksum */
3655 if (tx_flags & IGB_TX_FLAGS_IPV4)
3656 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3657
3658 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3659 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3660 }
3661
3662 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3663 (tx_flags & (IGB_TX_FLAGS_CSUM |
3664 IGB_TX_FLAGS_TSO |
3665 IGB_TX_FLAGS_VLAN)))
3666 olinfo_status |= tx_ring->reg_idx << 4;
3667
3668 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3669
3670 do {
3671 buffer_info = &tx_ring->buffer_info[i];
3672 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3673 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3674 tx_desc->read.cmd_type_len =
3675 cpu_to_le32(cmd_type_len | buffer_info->length);
3676 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3677 count--;
3678 i++;
3679 if (i == tx_ring->count)
3680 i = 0;
3681 } while (count > 0);
3682
3683 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3684 /* Force memory writes to complete before letting h/w
3685 * know there are new descriptors to fetch. (Only
3686 * applicable for weak-ordered memory model archs,
3687 * such as IA-64). */
3688 wmb();
3689
3690 tx_ring->next_to_use = i;
3691 writel(i, tx_ring->tail);
3692 /* we need this if more than one processor can write to our tail
3693 * at a time, it syncronizes IO on IA64/Altix systems */
3694 mmiowb();
3695 }
3696
3697 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3698 {
3699 struct net_device *netdev = tx_ring->netdev;
3700
3701 netif_stop_subqueue(netdev, tx_ring->queue_index);
3702
3703 /* Herbert's original patch had:
3704 * smp_mb__after_netif_stop_queue();
3705 * but since that doesn't exist yet, just open code it. */
3706 smp_mb();
3707
3708 /* We need to check again in a case another CPU has just
3709 * made room available. */
3710 if (igb_desc_unused(tx_ring) < size)
3711 return -EBUSY;
3712
3713 /* A reprieve! */
3714 netif_wake_subqueue(netdev, tx_ring->queue_index);
3715 tx_ring->tx_stats.restart_queue++;
3716 return 0;
3717 }
3718
3719 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3720 {
3721 if (igb_desc_unused(tx_ring) >= size)
3722 return 0;
3723 return __igb_maybe_stop_tx(tx_ring, size);
3724 }
3725
3726 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3727 struct igb_ring *tx_ring)
3728 {
3729 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3730 unsigned int first;
3731 unsigned int tx_flags = 0;
3732 u8 hdr_len = 0;
3733 int tso = 0, count;
3734 union skb_shared_tx *shtx = skb_tx(skb);
3735
3736 /* need: 1 descriptor per page,
3737 * + 2 desc gap to keep tail from touching head,
3738 * + 1 desc for skb->data,
3739 * + 1 desc for context descriptor,
3740 * otherwise try next time */
3741 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3742 /* this is a hard error */
3743 return NETDEV_TX_BUSY;
3744 }
3745
3746 if (unlikely(shtx->hardware)) {
3747 shtx->in_progress = 1;
3748 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3749 }
3750
3751 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3752 tx_flags |= IGB_TX_FLAGS_VLAN;
3753 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3754 }
3755
3756 if (skb->protocol == htons(ETH_P_IP))
3757 tx_flags |= IGB_TX_FLAGS_IPV4;
3758
3759 first = tx_ring->next_to_use;
3760 if (skb_is_gso(skb)) {
3761 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3762
3763 if (tso < 0) {
3764 dev_kfree_skb_any(skb);
3765 return NETDEV_TX_OK;
3766 }
3767 }
3768
3769 if (tso)
3770 tx_flags |= IGB_TX_FLAGS_TSO;
3771 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3772 (skb->ip_summed == CHECKSUM_PARTIAL))
3773 tx_flags |= IGB_TX_FLAGS_CSUM;
3774
3775 /*
3776 * count reflects descriptors mapped, if 0 or less then mapping error
3777 * has occured and we need to rewind the descriptor queue
3778 */
3779 count = igb_tx_map_adv(tx_ring, skb, first);
3780 if (!count) {
3781 dev_kfree_skb_any(skb);
3782 tx_ring->buffer_info[first].time_stamp = 0;
3783 tx_ring->next_to_use = first;
3784 return NETDEV_TX_OK;
3785 }
3786
3787 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3788
3789 /* Make sure there is space in the ring for the next send. */
3790 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3791
3792 return NETDEV_TX_OK;
3793 }
3794
3795 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3796 struct net_device *netdev)
3797 {
3798 struct igb_adapter *adapter = netdev_priv(netdev);
3799 struct igb_ring *tx_ring;
3800 int r_idx = 0;
3801
3802 if (test_bit(__IGB_DOWN, &adapter->state)) {
3803 dev_kfree_skb_any(skb);
3804 return NETDEV_TX_OK;
3805 }
3806
3807 if (skb->len <= 0) {
3808 dev_kfree_skb_any(skb);
3809 return NETDEV_TX_OK;
3810 }
3811
3812 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3813 tx_ring = adapter->multi_tx_table[r_idx];
3814
3815 /* This goes back to the question of how to logically map a tx queue
3816 * to a flow. Right now, performance is impacted slightly negatively
3817 * if using multiple tx queues. If the stack breaks away from a
3818 * single qdisc implementation, we can look at this again. */
3819 return igb_xmit_frame_ring_adv(skb, tx_ring);
3820 }
3821
3822 /**
3823 * igb_tx_timeout - Respond to a Tx Hang
3824 * @netdev: network interface device structure
3825 **/
3826 static void igb_tx_timeout(struct net_device *netdev)
3827 {
3828 struct igb_adapter *adapter = netdev_priv(netdev);
3829 struct e1000_hw *hw = &adapter->hw;
3830
3831 /* Do the reset outside of interrupt context */
3832 adapter->tx_timeout_count++;
3833
3834 if (hw->mac.type == e1000_82580)
3835 hw->dev_spec._82575.global_device_reset = true;
3836
3837 schedule_work(&adapter->reset_task);
3838 wr32(E1000_EICS,
3839 (adapter->eims_enable_mask & ~adapter->eims_other));
3840 }
3841
3842 static void igb_reset_task(struct work_struct *work)
3843 {
3844 struct igb_adapter *adapter;
3845 adapter = container_of(work, struct igb_adapter, reset_task);
3846
3847 igb_reinit_locked(adapter);
3848 }
3849
3850 /**
3851 * igb_get_stats - Get System Network Statistics
3852 * @netdev: network interface device structure
3853 *
3854 * Returns the address of the device statistics structure.
3855 * The statistics are actually updated from the timer callback.
3856 **/
3857 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3858 {
3859 /* only return the current stats */
3860 return &netdev->stats;
3861 }
3862
3863 /**
3864 * igb_change_mtu - Change the Maximum Transfer Unit
3865 * @netdev: network interface device structure
3866 * @new_mtu: new value for maximum frame size
3867 *
3868 * Returns 0 on success, negative on failure
3869 **/
3870 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3871 {
3872 struct igb_adapter *adapter = netdev_priv(netdev);
3873 struct pci_dev *pdev = adapter->pdev;
3874 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3875 u32 rx_buffer_len, i;
3876
3877 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3878 dev_err(&pdev->dev, "Invalid MTU setting\n");
3879 return -EINVAL;
3880 }
3881
3882 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3883 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3884 return -EINVAL;
3885 }
3886
3887 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3888 msleep(1);
3889
3890 /* igb_down has a dependency on max_frame_size */
3891 adapter->max_frame_size = max_frame;
3892
3893 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3894 * means we reserve 2 more, this pushes us to allocate from the next
3895 * larger slab size.
3896 * i.e. RXBUFFER_2048 --> size-4096 slab
3897 */
3898
3899 if (max_frame <= IGB_RXBUFFER_1024)
3900 rx_buffer_len = IGB_RXBUFFER_1024;
3901 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3902 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3903 else
3904 rx_buffer_len = IGB_RXBUFFER_128;
3905
3906 if (netif_running(netdev))
3907 igb_down(adapter);
3908
3909 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3910 netdev->mtu, new_mtu);
3911 netdev->mtu = new_mtu;
3912
3913 for (i = 0; i < adapter->num_rx_queues; i++)
3914 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3915
3916 if (netif_running(netdev))
3917 igb_up(adapter);
3918 else
3919 igb_reset(adapter);
3920
3921 clear_bit(__IGB_RESETTING, &adapter->state);
3922
3923 return 0;
3924 }
3925
3926 /**
3927 * igb_update_stats - Update the board statistics counters
3928 * @adapter: board private structure
3929 **/
3930
3931 void igb_update_stats(struct igb_adapter *adapter)
3932 {
3933 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3934 struct e1000_hw *hw = &adapter->hw;
3935 struct pci_dev *pdev = adapter->pdev;
3936 u32 rnbc;
3937 u16 phy_tmp;
3938 int i;
3939 u64 bytes, packets;
3940
3941 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3942
3943 /*
3944 * Prevent stats update while adapter is being reset, or if the pci
3945 * connection is down.
3946 */
3947 if (adapter->link_speed == 0)
3948 return;
3949 if (pci_channel_offline(pdev))
3950 return;
3951
3952 bytes = 0;
3953 packets = 0;
3954 for (i = 0; i < adapter->num_rx_queues; i++) {
3955 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3956 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3957 net_stats->rx_fifo_errors += rqdpc_tmp;
3958 bytes += adapter->rx_ring[i].rx_stats.bytes;
3959 packets += adapter->rx_ring[i].rx_stats.packets;
3960 }
3961
3962 net_stats->rx_bytes = bytes;
3963 net_stats->rx_packets = packets;
3964
3965 bytes = 0;
3966 packets = 0;
3967 for (i = 0; i < adapter->num_tx_queues; i++) {
3968 bytes += adapter->tx_ring[i].tx_stats.bytes;
3969 packets += adapter->tx_ring[i].tx_stats.packets;
3970 }
3971 net_stats->tx_bytes = bytes;
3972 net_stats->tx_packets = packets;
3973
3974 /* read stats registers */
3975 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3976 adapter->stats.gprc += rd32(E1000_GPRC);
3977 adapter->stats.gorc += rd32(E1000_GORCL);
3978 rd32(E1000_GORCH); /* clear GORCL */
3979 adapter->stats.bprc += rd32(E1000_BPRC);
3980 adapter->stats.mprc += rd32(E1000_MPRC);
3981 adapter->stats.roc += rd32(E1000_ROC);
3982
3983 adapter->stats.prc64 += rd32(E1000_PRC64);
3984 adapter->stats.prc127 += rd32(E1000_PRC127);
3985 adapter->stats.prc255 += rd32(E1000_PRC255);
3986 adapter->stats.prc511 += rd32(E1000_PRC511);
3987 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3988 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3989 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3990 adapter->stats.sec += rd32(E1000_SEC);
3991
3992 adapter->stats.mpc += rd32(E1000_MPC);
3993 adapter->stats.scc += rd32(E1000_SCC);
3994 adapter->stats.ecol += rd32(E1000_ECOL);
3995 adapter->stats.mcc += rd32(E1000_MCC);
3996 adapter->stats.latecol += rd32(E1000_LATECOL);
3997 adapter->stats.dc += rd32(E1000_DC);
3998 adapter->stats.rlec += rd32(E1000_RLEC);
3999 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4000 adapter->stats.xontxc += rd32(E1000_XONTXC);
4001 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4002 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4003 adapter->stats.fcruc += rd32(E1000_FCRUC);
4004 adapter->stats.gptc += rd32(E1000_GPTC);
4005 adapter->stats.gotc += rd32(E1000_GOTCL);
4006 rd32(E1000_GOTCH); /* clear GOTCL */
4007 rnbc = rd32(E1000_RNBC);
4008 adapter->stats.rnbc += rnbc;
4009 net_stats->rx_fifo_errors += rnbc;
4010 adapter->stats.ruc += rd32(E1000_RUC);
4011 adapter->stats.rfc += rd32(E1000_RFC);
4012 adapter->stats.rjc += rd32(E1000_RJC);
4013 adapter->stats.tor += rd32(E1000_TORH);
4014 adapter->stats.tot += rd32(E1000_TOTH);
4015 adapter->stats.tpr += rd32(E1000_TPR);
4016
4017 adapter->stats.ptc64 += rd32(E1000_PTC64);
4018 adapter->stats.ptc127 += rd32(E1000_PTC127);
4019 adapter->stats.ptc255 += rd32(E1000_PTC255);
4020 adapter->stats.ptc511 += rd32(E1000_PTC511);
4021 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4022 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4023
4024 adapter->stats.mptc += rd32(E1000_MPTC);
4025 adapter->stats.bptc += rd32(E1000_BPTC);
4026
4027 /* used for adaptive IFS */
4028 hw->mac.tx_packet_delta = rd32(E1000_TPT);
4029 adapter->stats.tpt += hw->mac.tx_packet_delta;
4030 hw->mac.collision_delta = rd32(E1000_COLC);
4031 adapter->stats.colc += hw->mac.collision_delta;
4032
4033 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4034 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4035 adapter->stats.tncrs += rd32(E1000_TNCRS);
4036 adapter->stats.tsctc += rd32(E1000_TSCTC);
4037 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4038
4039 adapter->stats.iac += rd32(E1000_IAC);
4040 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4041 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4042 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4043 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4044 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4045 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4046 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4047 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4048
4049 /* Fill out the OS statistics structure */
4050 net_stats->multicast = adapter->stats.mprc;
4051 net_stats->collisions = adapter->stats.colc;
4052
4053 /* Rx Errors */
4054
4055 /* RLEC on some newer hardware can be incorrect so build
4056 * our own version based on RUC and ROC */
4057 net_stats->rx_errors = adapter->stats.rxerrc +
4058 adapter->stats.crcerrs + adapter->stats.algnerrc +
4059 adapter->stats.ruc + adapter->stats.roc +
4060 adapter->stats.cexterr;
4061 net_stats->rx_length_errors = adapter->stats.ruc +
4062 adapter->stats.roc;
4063 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4064 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4065 net_stats->rx_missed_errors = adapter->stats.mpc;
4066
4067 /* Tx Errors */
4068 net_stats->tx_errors = adapter->stats.ecol +
4069 adapter->stats.latecol;
4070 net_stats->tx_aborted_errors = adapter->stats.ecol;
4071 net_stats->tx_window_errors = adapter->stats.latecol;
4072 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4073
4074 /* Tx Dropped needs to be maintained elsewhere */
4075
4076 /* Phy Stats */
4077 if (hw->phy.media_type == e1000_media_type_copper) {
4078 if ((adapter->link_speed == SPEED_1000) &&
4079 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4080 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4081 adapter->phy_stats.idle_errors += phy_tmp;
4082 }
4083 }
4084
4085 /* Management Stats */
4086 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4087 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4088 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4089 }
4090
4091 static irqreturn_t igb_msix_other(int irq, void *data)
4092 {
4093 struct igb_adapter *adapter = data;
4094 struct e1000_hw *hw = &adapter->hw;
4095 u32 icr = rd32(E1000_ICR);
4096 /* reading ICR causes bit 31 of EICR to be cleared */
4097
4098 if (icr & E1000_ICR_DOUTSYNC) {
4099 /* HW is reporting DMA is out of sync */
4100 adapter->stats.doosync++;
4101 }
4102
4103 /* Check for a mailbox event */
4104 if (icr & E1000_ICR_VMMB)
4105 igb_msg_task(adapter);
4106
4107 if (icr & E1000_ICR_LSC) {
4108 hw->mac.get_link_status = 1;
4109 /* guard against interrupt when we're going down */
4110 if (!test_bit(__IGB_DOWN, &adapter->state))
4111 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4112 }
4113
4114 if (adapter->vfs_allocated_count)
4115 wr32(E1000_IMS, E1000_IMS_LSC |
4116 E1000_IMS_VMMB |
4117 E1000_IMS_DOUTSYNC);
4118 else
4119 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4120 wr32(E1000_EIMS, adapter->eims_other);
4121
4122 return IRQ_HANDLED;
4123 }
4124
4125 static void igb_write_itr(struct igb_q_vector *q_vector)
4126 {
4127 u32 itr_val = q_vector->itr_val & 0x7FFC;
4128
4129 if (!q_vector->set_itr)
4130 return;
4131
4132 if (!itr_val)
4133 itr_val = 0x4;
4134
4135 if (q_vector->itr_shift)
4136 itr_val |= itr_val << q_vector->itr_shift;
4137 else
4138 itr_val |= 0x8000000;
4139
4140 writel(itr_val, q_vector->itr_register);
4141 q_vector->set_itr = 0;
4142 }
4143
4144 static irqreturn_t igb_msix_ring(int irq, void *data)
4145 {
4146 struct igb_q_vector *q_vector = data;
4147
4148 /* Write the ITR value calculated from the previous interrupt. */
4149 igb_write_itr(q_vector);
4150
4151 napi_schedule(&q_vector->napi);
4152
4153 return IRQ_HANDLED;
4154 }
4155
4156 #ifdef CONFIG_IGB_DCA
4157 static void igb_update_dca(struct igb_q_vector *q_vector)
4158 {
4159 struct igb_adapter *adapter = q_vector->adapter;
4160 struct e1000_hw *hw = &adapter->hw;
4161 int cpu = get_cpu();
4162
4163 if (q_vector->cpu == cpu)
4164 goto out_no_update;
4165
4166 if (q_vector->tx_ring) {
4167 int q = q_vector->tx_ring->reg_idx;
4168 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4169 if (hw->mac.type == e1000_82575) {
4170 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4171 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4172 } else {
4173 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4174 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4175 E1000_DCA_TXCTRL_CPUID_SHIFT;
4176 }
4177 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4178 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4179 }
4180 if (q_vector->rx_ring) {
4181 int q = q_vector->rx_ring->reg_idx;
4182 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4183 if (hw->mac.type == e1000_82575) {
4184 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4185 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4186 } else {
4187 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4188 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4189 E1000_DCA_RXCTRL_CPUID_SHIFT;
4190 }
4191 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4192 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4193 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4194 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4195 }
4196 q_vector->cpu = cpu;
4197 out_no_update:
4198 put_cpu();
4199 }
4200
4201 static void igb_setup_dca(struct igb_adapter *adapter)
4202 {
4203 struct e1000_hw *hw = &adapter->hw;
4204 int i;
4205
4206 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4207 return;
4208
4209 /* Always use CB2 mode, difference is masked in the CB driver. */
4210 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4211
4212 for (i = 0; i < adapter->num_q_vectors; i++) {
4213 struct igb_q_vector *q_vector = adapter->q_vector[i];
4214 q_vector->cpu = -1;
4215 igb_update_dca(q_vector);
4216 }
4217 }
4218
4219 static int __igb_notify_dca(struct device *dev, void *data)
4220 {
4221 struct net_device *netdev = dev_get_drvdata(dev);
4222 struct igb_adapter *adapter = netdev_priv(netdev);
4223 struct pci_dev *pdev = adapter->pdev;
4224 struct e1000_hw *hw = &adapter->hw;
4225 unsigned long event = *(unsigned long *)data;
4226
4227 switch (event) {
4228 case DCA_PROVIDER_ADD:
4229 /* if already enabled, don't do it again */
4230 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4231 break;
4232 if (dca_add_requester(dev) == 0) {
4233 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4234 dev_info(&pdev->dev, "DCA enabled\n");
4235 igb_setup_dca(adapter);
4236 break;
4237 }
4238 /* Fall Through since DCA is disabled. */
4239 case DCA_PROVIDER_REMOVE:
4240 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4241 /* without this a class_device is left
4242 * hanging around in the sysfs model */
4243 dca_remove_requester(dev);
4244 dev_info(&pdev->dev, "DCA disabled\n");
4245 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4246 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4247 }
4248 break;
4249 }
4250
4251 return 0;
4252 }
4253
4254 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4255 void *p)
4256 {
4257 int ret_val;
4258
4259 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4260 __igb_notify_dca);
4261
4262 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4263 }
4264 #endif /* CONFIG_IGB_DCA */
4265
4266 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4267 {
4268 struct e1000_hw *hw = &adapter->hw;
4269 u32 ping;
4270 int i;
4271
4272 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4273 ping = E1000_PF_CONTROL_MSG;
4274 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4275 ping |= E1000_VT_MSGTYPE_CTS;
4276 igb_write_mbx(hw, &ping, 1, i);
4277 }
4278 }
4279
4280 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4281 {
4282 struct e1000_hw *hw = &adapter->hw;
4283 u32 vmolr = rd32(E1000_VMOLR(vf));
4284 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4285
4286 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4287 IGB_VF_FLAG_MULTI_PROMISC);
4288 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4289
4290 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4291 vmolr |= E1000_VMOLR_MPME;
4292 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4293 } else {
4294 /*
4295 * if we have hashes and we are clearing a multicast promisc
4296 * flag we need to write the hashes to the MTA as this step
4297 * was previously skipped
4298 */
4299 if (vf_data->num_vf_mc_hashes > 30) {
4300 vmolr |= E1000_VMOLR_MPME;
4301 } else if (vf_data->num_vf_mc_hashes) {
4302 int j;
4303 vmolr |= E1000_VMOLR_ROMPE;
4304 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4305 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4306 }
4307 }
4308
4309 wr32(E1000_VMOLR(vf), vmolr);
4310
4311 /* there are flags left unprocessed, likely not supported */
4312 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4313 return -EINVAL;
4314
4315 return 0;
4316
4317 }
4318
4319 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4320 u32 *msgbuf, u32 vf)
4321 {
4322 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4323 u16 *hash_list = (u16 *)&msgbuf[1];
4324 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4325 int i;
4326
4327 /* salt away the number of multicast addresses assigned
4328 * to this VF for later use to restore when the PF multi cast
4329 * list changes
4330 */
4331 vf_data->num_vf_mc_hashes = n;
4332
4333 /* only up to 30 hash values supported */
4334 if (n > 30)
4335 n = 30;
4336
4337 /* store the hashes for later use */
4338 for (i = 0; i < n; i++)
4339 vf_data->vf_mc_hashes[i] = hash_list[i];
4340
4341 /* Flush and reset the mta with the new values */
4342 igb_set_rx_mode(adapter->netdev);
4343
4344 return 0;
4345 }
4346
4347 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4348 {
4349 struct e1000_hw *hw = &adapter->hw;
4350 struct vf_data_storage *vf_data;
4351 int i, j;
4352
4353 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4354 u32 vmolr = rd32(E1000_VMOLR(i));
4355 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4356
4357 vf_data = &adapter->vf_data[i];
4358
4359 if ((vf_data->num_vf_mc_hashes > 30) ||
4360 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4361 vmolr |= E1000_VMOLR_MPME;
4362 } else if (vf_data->num_vf_mc_hashes) {
4363 vmolr |= E1000_VMOLR_ROMPE;
4364 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4365 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4366 }
4367 wr32(E1000_VMOLR(i), vmolr);
4368 }
4369 }
4370
4371 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4372 {
4373 struct e1000_hw *hw = &adapter->hw;
4374 u32 pool_mask, reg, vid;
4375 int i;
4376
4377 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4378
4379 /* Find the vlan filter for this id */
4380 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4381 reg = rd32(E1000_VLVF(i));
4382
4383 /* remove the vf from the pool */
4384 reg &= ~pool_mask;
4385
4386 /* if pool is empty then remove entry from vfta */
4387 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4388 (reg & E1000_VLVF_VLANID_ENABLE)) {
4389 reg = 0;
4390 vid = reg & E1000_VLVF_VLANID_MASK;
4391 igb_vfta_set(hw, vid, false);
4392 }
4393
4394 wr32(E1000_VLVF(i), reg);
4395 }
4396
4397 adapter->vf_data[vf].vlans_enabled = 0;
4398 }
4399
4400 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4401 {
4402 struct e1000_hw *hw = &adapter->hw;
4403 u32 reg, i;
4404
4405 /* The vlvf table only exists on 82576 hardware and newer */
4406 if (hw->mac.type < e1000_82576)
4407 return -1;
4408
4409 /* we only need to do this if VMDq is enabled */
4410 if (!adapter->vfs_allocated_count)
4411 return -1;
4412
4413 /* Find the vlan filter for this id */
4414 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4415 reg = rd32(E1000_VLVF(i));
4416 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4417 vid == (reg & E1000_VLVF_VLANID_MASK))
4418 break;
4419 }
4420
4421 if (add) {
4422 if (i == E1000_VLVF_ARRAY_SIZE) {
4423 /* Did not find a matching VLAN ID entry that was
4424 * enabled. Search for a free filter entry, i.e.
4425 * one without the enable bit set
4426 */
4427 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4428 reg = rd32(E1000_VLVF(i));
4429 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4430 break;
4431 }
4432 }
4433 if (i < E1000_VLVF_ARRAY_SIZE) {
4434 /* Found an enabled/available entry */
4435 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4436
4437 /* if !enabled we need to set this up in vfta */
4438 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4439 /* add VID to filter table */
4440 igb_vfta_set(hw, vid, true);
4441 reg |= E1000_VLVF_VLANID_ENABLE;
4442 }
4443 reg &= ~E1000_VLVF_VLANID_MASK;
4444 reg |= vid;
4445 wr32(E1000_VLVF(i), reg);
4446
4447 /* do not modify RLPML for PF devices */
4448 if (vf >= adapter->vfs_allocated_count)
4449 return 0;
4450
4451 if (!adapter->vf_data[vf].vlans_enabled) {
4452 u32 size;
4453 reg = rd32(E1000_VMOLR(vf));
4454 size = reg & E1000_VMOLR_RLPML_MASK;
4455 size += 4;
4456 reg &= ~E1000_VMOLR_RLPML_MASK;
4457 reg |= size;
4458 wr32(E1000_VMOLR(vf), reg);
4459 }
4460
4461 adapter->vf_data[vf].vlans_enabled++;
4462 return 0;
4463 }
4464 } else {
4465 if (i < E1000_VLVF_ARRAY_SIZE) {
4466 /* remove vf from the pool */
4467 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4468 /* if pool is empty then remove entry from vfta */
4469 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4470 reg = 0;
4471 igb_vfta_set(hw, vid, false);
4472 }
4473 wr32(E1000_VLVF(i), reg);
4474
4475 /* do not modify RLPML for PF devices */
4476 if (vf >= adapter->vfs_allocated_count)
4477 return 0;
4478
4479 adapter->vf_data[vf].vlans_enabled--;
4480 if (!adapter->vf_data[vf].vlans_enabled) {
4481 u32 size;
4482 reg = rd32(E1000_VMOLR(vf));
4483 size = reg & E1000_VMOLR_RLPML_MASK;
4484 size -= 4;
4485 reg &= ~E1000_VMOLR_RLPML_MASK;
4486 reg |= size;
4487 wr32(E1000_VMOLR(vf), reg);
4488 }
4489 return 0;
4490 }
4491 }
4492 return -1;
4493 }
4494
4495 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4496 {
4497 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4498 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4499
4500 return igb_vlvf_set(adapter, vid, add, vf);
4501 }
4502
4503 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4504 {
4505 /* clear all flags */
4506 adapter->vf_data[vf].flags = 0;
4507 adapter->vf_data[vf].last_nack = jiffies;
4508
4509 /* reset offloads to defaults */
4510 igb_set_vmolr(adapter, vf);
4511
4512 /* reset vlans for device */
4513 igb_clear_vf_vfta(adapter, vf);
4514
4515 /* reset multicast table array for vf */
4516 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4517
4518 /* Flush and reset the mta with the new values */
4519 igb_set_rx_mode(adapter->netdev);
4520 }
4521
4522 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4523 {
4524 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4525
4526 /* generate a new mac address as we were hotplug removed/added */
4527 random_ether_addr(vf_mac);
4528
4529 /* process remaining reset events */
4530 igb_vf_reset(adapter, vf);
4531 }
4532
4533 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4534 {
4535 struct e1000_hw *hw = &adapter->hw;
4536 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4537 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4538 u32 reg, msgbuf[3];
4539 u8 *addr = (u8 *)(&msgbuf[1]);
4540
4541 /* process all the same items cleared in a function level reset */
4542 igb_vf_reset(adapter, vf);
4543
4544 /* set vf mac address */
4545 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4546
4547 /* enable transmit and receive for vf */
4548 reg = rd32(E1000_VFTE);
4549 wr32(E1000_VFTE, reg | (1 << vf));
4550 reg = rd32(E1000_VFRE);
4551 wr32(E1000_VFRE, reg | (1 << vf));
4552
4553 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4554
4555 /* reply to reset with ack and vf mac address */
4556 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4557 memcpy(addr, vf_mac, 6);
4558 igb_write_mbx(hw, msgbuf, 3, vf);
4559 }
4560
4561 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4562 {
4563 unsigned char *addr = (char *)&msg[1];
4564 int err = -1;
4565
4566 if (is_valid_ether_addr(addr))
4567 err = igb_set_vf_mac(adapter, vf, addr);
4568
4569 return err;
4570 }
4571
4572 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4573 {
4574 struct e1000_hw *hw = &adapter->hw;
4575 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4576 u32 msg = E1000_VT_MSGTYPE_NACK;
4577
4578 /* if device isn't clear to send it shouldn't be reading either */
4579 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4580 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4581 igb_write_mbx(hw, &msg, 1, vf);
4582 vf_data->last_nack = jiffies;
4583 }
4584 }
4585
4586 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4587 {
4588 struct pci_dev *pdev = adapter->pdev;
4589 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4590 struct e1000_hw *hw = &adapter->hw;
4591 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4592 s32 retval;
4593
4594 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4595
4596 if (retval) {
4597 /* if receive failed revoke VF CTS stats and restart init */
4598 dev_err(&pdev->dev, "Error receiving message from VF\n");
4599 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4600 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4601 return;
4602 goto out;
4603 }
4604
4605 /* this is a message we already processed, do nothing */
4606 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4607 return;
4608
4609 /*
4610 * until the vf completes a reset it should not be
4611 * allowed to start any configuration.
4612 */
4613
4614 if (msgbuf[0] == E1000_VF_RESET) {
4615 igb_vf_reset_msg(adapter, vf);
4616 return;
4617 }
4618
4619 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4620 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4621 return;
4622 retval = -1;
4623 goto out;
4624 }
4625
4626 switch ((msgbuf[0] & 0xFFFF)) {
4627 case E1000_VF_SET_MAC_ADDR:
4628 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4629 break;
4630 case E1000_VF_SET_PROMISC:
4631 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4632 break;
4633 case E1000_VF_SET_MULTICAST:
4634 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4635 break;
4636 case E1000_VF_SET_LPE:
4637 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4638 break;
4639 case E1000_VF_SET_VLAN:
4640 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4641 break;
4642 default:
4643 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4644 retval = -1;
4645 break;
4646 }
4647
4648 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4649 out:
4650 /* notify the VF of the results of what it sent us */
4651 if (retval)
4652 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4653 else
4654 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4655
4656 igb_write_mbx(hw, msgbuf, 1, vf);
4657 }
4658
4659 static void igb_msg_task(struct igb_adapter *adapter)
4660 {
4661 struct e1000_hw *hw = &adapter->hw;
4662 u32 vf;
4663
4664 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4665 /* process any reset requests */
4666 if (!igb_check_for_rst(hw, vf))
4667 igb_vf_reset_event(adapter, vf);
4668
4669 /* process any messages pending */
4670 if (!igb_check_for_msg(hw, vf))
4671 igb_rcv_msg_from_vf(adapter, vf);
4672
4673 /* process any acks */
4674 if (!igb_check_for_ack(hw, vf))
4675 igb_rcv_ack_from_vf(adapter, vf);
4676 }
4677 }
4678
4679 /**
4680 * igb_set_uta - Set unicast filter table address
4681 * @adapter: board private structure
4682 *
4683 * The unicast table address is a register array of 32-bit registers.
4684 * The table is meant to be used in a way similar to how the MTA is used
4685 * however due to certain limitations in the hardware it is necessary to
4686 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4687 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4688 **/
4689 static void igb_set_uta(struct igb_adapter *adapter)
4690 {
4691 struct e1000_hw *hw = &adapter->hw;
4692 int i;
4693
4694 /* The UTA table only exists on 82576 hardware and newer */
4695 if (hw->mac.type < e1000_82576)
4696 return;
4697
4698 /* we only need to do this if VMDq is enabled */
4699 if (!adapter->vfs_allocated_count)
4700 return;
4701
4702 for (i = 0; i < hw->mac.uta_reg_count; i++)
4703 array_wr32(E1000_UTA, i, ~0);
4704 }
4705
4706 /**
4707 * igb_intr_msi - Interrupt Handler
4708 * @irq: interrupt number
4709 * @data: pointer to a network interface device structure
4710 **/
4711 static irqreturn_t igb_intr_msi(int irq, void *data)
4712 {
4713 struct igb_adapter *adapter = data;
4714 struct igb_q_vector *q_vector = adapter->q_vector[0];
4715 struct e1000_hw *hw = &adapter->hw;
4716 /* read ICR disables interrupts using IAM */
4717 u32 icr = rd32(E1000_ICR);
4718
4719 igb_write_itr(q_vector);
4720
4721 if (icr & E1000_ICR_DOUTSYNC) {
4722 /* HW is reporting DMA is out of sync */
4723 adapter->stats.doosync++;
4724 }
4725
4726 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4727 hw->mac.get_link_status = 1;
4728 if (!test_bit(__IGB_DOWN, &adapter->state))
4729 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4730 }
4731
4732 napi_schedule(&q_vector->napi);
4733
4734 return IRQ_HANDLED;
4735 }
4736
4737 /**
4738 * igb_intr - Legacy Interrupt Handler
4739 * @irq: interrupt number
4740 * @data: pointer to a network interface device structure
4741 **/
4742 static irqreturn_t igb_intr(int irq, void *data)
4743 {
4744 struct igb_adapter *adapter = data;
4745 struct igb_q_vector *q_vector = adapter->q_vector[0];
4746 struct e1000_hw *hw = &adapter->hw;
4747 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4748 * need for the IMC write */
4749 u32 icr = rd32(E1000_ICR);
4750 if (!icr)
4751 return IRQ_NONE; /* Not our interrupt */
4752
4753 igb_write_itr(q_vector);
4754
4755 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4756 * not set, then the adapter didn't send an interrupt */
4757 if (!(icr & E1000_ICR_INT_ASSERTED))
4758 return IRQ_NONE;
4759
4760 if (icr & E1000_ICR_DOUTSYNC) {
4761 /* HW is reporting DMA is out of sync */
4762 adapter->stats.doosync++;
4763 }
4764
4765 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4766 hw->mac.get_link_status = 1;
4767 /* guard against interrupt when we're going down */
4768 if (!test_bit(__IGB_DOWN, &adapter->state))
4769 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4770 }
4771
4772 napi_schedule(&q_vector->napi);
4773
4774 return IRQ_HANDLED;
4775 }
4776
4777 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4778 {
4779 struct igb_adapter *adapter = q_vector->adapter;
4780 struct e1000_hw *hw = &adapter->hw;
4781
4782 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4783 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4784 if (!adapter->msix_entries)
4785 igb_set_itr(adapter);
4786 else
4787 igb_update_ring_itr(q_vector);
4788 }
4789
4790 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4791 if (adapter->msix_entries)
4792 wr32(E1000_EIMS, q_vector->eims_value);
4793 else
4794 igb_irq_enable(adapter);
4795 }
4796 }
4797
4798 /**
4799 * igb_poll - NAPI Rx polling callback
4800 * @napi: napi polling structure
4801 * @budget: count of how many packets we should handle
4802 **/
4803 static int igb_poll(struct napi_struct *napi, int budget)
4804 {
4805 struct igb_q_vector *q_vector = container_of(napi,
4806 struct igb_q_vector,
4807 napi);
4808 int tx_clean_complete = 1, work_done = 0;
4809
4810 #ifdef CONFIG_IGB_DCA
4811 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4812 igb_update_dca(q_vector);
4813 #endif
4814 if (q_vector->tx_ring)
4815 tx_clean_complete = igb_clean_tx_irq(q_vector);
4816
4817 if (q_vector->rx_ring)
4818 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4819
4820 if (!tx_clean_complete)
4821 work_done = budget;
4822
4823 /* If not enough Rx work done, exit the polling mode */
4824 if (work_done < budget) {
4825 napi_complete(napi);
4826 igb_ring_irq_enable(q_vector);
4827 }
4828
4829 return work_done;
4830 }
4831
4832 /**
4833 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4834 * @adapter: board private structure
4835 * @shhwtstamps: timestamp structure to update
4836 * @regval: unsigned 64bit system time value.
4837 *
4838 * We need to convert the system time value stored in the RX/TXSTMP registers
4839 * into a hwtstamp which can be used by the upper level timestamping functions
4840 */
4841 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4842 struct skb_shared_hwtstamps *shhwtstamps,
4843 u64 regval)
4844 {
4845 u64 ns;
4846
4847 /*
4848 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4849 * 24 to match clock shift we setup earlier.
4850 */
4851 if (adapter->hw.mac.type == e1000_82580)
4852 regval <<= IGB_82580_TSYNC_SHIFT;
4853
4854 ns = timecounter_cyc2time(&adapter->clock, regval);
4855 timecompare_update(&adapter->compare, ns);
4856 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4857 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4858 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4859 }
4860
4861 /**
4862 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4863 * @q_vector: pointer to q_vector containing needed info
4864 * @skb: packet that was just sent
4865 *
4866 * If we were asked to do hardware stamping and such a time stamp is
4867 * available, then it must have been for this skb here because we only
4868 * allow only one such packet into the queue.
4869 */
4870 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4871 {
4872 struct igb_adapter *adapter = q_vector->adapter;
4873 union skb_shared_tx *shtx = skb_tx(skb);
4874 struct e1000_hw *hw = &adapter->hw;
4875 struct skb_shared_hwtstamps shhwtstamps;
4876 u64 regval;
4877
4878 /* if skb does not support hw timestamp or TX stamp not valid exit */
4879 if (likely(!shtx->hardware) ||
4880 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4881 return;
4882
4883 regval = rd32(E1000_TXSTMPL);
4884 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4885
4886 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4887 skb_tstamp_tx(skb, &shhwtstamps);
4888 }
4889
4890 /**
4891 * igb_clean_tx_irq - Reclaim resources after transmit completes
4892 * @q_vector: pointer to q_vector containing needed info
4893 * returns true if ring is completely cleaned
4894 **/
4895 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4896 {
4897 struct igb_adapter *adapter = q_vector->adapter;
4898 struct igb_ring *tx_ring = q_vector->tx_ring;
4899 struct net_device *netdev = tx_ring->netdev;
4900 struct e1000_hw *hw = &adapter->hw;
4901 struct igb_buffer *buffer_info;
4902 struct sk_buff *skb;
4903 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4904 unsigned int total_bytes = 0, total_packets = 0;
4905 unsigned int i, eop, count = 0;
4906 bool cleaned = false;
4907
4908 i = tx_ring->next_to_clean;
4909 eop = tx_ring->buffer_info[i].next_to_watch;
4910 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4911
4912 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4913 (count < tx_ring->count)) {
4914 for (cleaned = false; !cleaned; count++) {
4915 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4916 buffer_info = &tx_ring->buffer_info[i];
4917 cleaned = (i == eop);
4918 skb = buffer_info->skb;
4919
4920 if (skb) {
4921 unsigned int segs, bytecount;
4922 /* gso_segs is currently only valid for tcp */
4923 segs = skb_shinfo(skb)->gso_segs ?: 1;
4924 /* multiply data chunks by size of headers */
4925 bytecount = ((segs - 1) * skb_headlen(skb)) +
4926 skb->len;
4927 total_packets += segs;
4928 total_bytes += bytecount;
4929
4930 igb_tx_hwtstamp(q_vector, skb);
4931 }
4932
4933 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4934 tx_desc->wb.status = 0;
4935
4936 i++;
4937 if (i == tx_ring->count)
4938 i = 0;
4939 }
4940 eop = tx_ring->buffer_info[i].next_to_watch;
4941 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4942 }
4943
4944 tx_ring->next_to_clean = i;
4945
4946 if (unlikely(count &&
4947 netif_carrier_ok(netdev) &&
4948 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4949 /* Make sure that anybody stopping the queue after this
4950 * sees the new next_to_clean.
4951 */
4952 smp_mb();
4953 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4954 !(test_bit(__IGB_DOWN, &adapter->state))) {
4955 netif_wake_subqueue(netdev, tx_ring->queue_index);
4956 tx_ring->tx_stats.restart_queue++;
4957 }
4958 }
4959
4960 if (tx_ring->detect_tx_hung) {
4961 /* Detect a transmit hang in hardware, this serializes the
4962 * check with the clearing of time_stamp and movement of i */
4963 tx_ring->detect_tx_hung = false;
4964 if (tx_ring->buffer_info[i].time_stamp &&
4965 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4966 (adapter->tx_timeout_factor * HZ)) &&
4967 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
4968
4969 /* detected Tx unit hang */
4970 dev_err(&tx_ring->pdev->dev,
4971 "Detected Tx Unit Hang\n"
4972 " Tx Queue <%d>\n"
4973 " TDH <%x>\n"
4974 " TDT <%x>\n"
4975 " next_to_use <%x>\n"
4976 " next_to_clean <%x>\n"
4977 "buffer_info[next_to_clean]\n"
4978 " time_stamp <%lx>\n"
4979 " next_to_watch <%x>\n"
4980 " jiffies <%lx>\n"
4981 " desc.status <%x>\n",
4982 tx_ring->queue_index,
4983 readl(tx_ring->head),
4984 readl(tx_ring->tail),
4985 tx_ring->next_to_use,
4986 tx_ring->next_to_clean,
4987 tx_ring->buffer_info[eop].time_stamp,
4988 eop,
4989 jiffies,
4990 eop_desc->wb.status);
4991 netif_stop_subqueue(netdev, tx_ring->queue_index);
4992 }
4993 }
4994 tx_ring->total_bytes += total_bytes;
4995 tx_ring->total_packets += total_packets;
4996 tx_ring->tx_stats.bytes += total_bytes;
4997 tx_ring->tx_stats.packets += total_packets;
4998 return (count < tx_ring->count);
4999 }
5000
5001 /**
5002 * igb_receive_skb - helper function to handle rx indications
5003 * @q_vector: structure containing interrupt and ring information
5004 * @skb: packet to send up
5005 * @vlan_tag: vlan tag for packet
5006 **/
5007 static void igb_receive_skb(struct igb_q_vector *q_vector,
5008 struct sk_buff *skb,
5009 u16 vlan_tag)
5010 {
5011 struct igb_adapter *adapter = q_vector->adapter;
5012
5013 if (vlan_tag)
5014 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5015 vlan_tag, skb);
5016 else
5017 napi_gro_receive(&q_vector->napi, skb);
5018 }
5019
5020 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5021 u32 status_err, struct sk_buff *skb)
5022 {
5023 skb->ip_summed = CHECKSUM_NONE;
5024
5025 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5026 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5027 (status_err & E1000_RXD_STAT_IXSM))
5028 return;
5029
5030 /* TCP/UDP checksum error bit is set */
5031 if (status_err &
5032 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5033 /*
5034 * work around errata with sctp packets where the TCPE aka
5035 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5036 * packets, (aka let the stack check the crc32c)
5037 */
5038 if ((skb->len == 60) &&
5039 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5040 ring->rx_stats.csum_err++;
5041
5042 /* let the stack verify checksum errors */
5043 return;
5044 }
5045 /* It must be a TCP or UDP packet with a valid checksum */
5046 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5047 skb->ip_summed = CHECKSUM_UNNECESSARY;
5048
5049 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5050 }
5051
5052 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5053 struct sk_buff *skb)
5054 {
5055 struct igb_adapter *adapter = q_vector->adapter;
5056 struct e1000_hw *hw = &adapter->hw;
5057 u64 regval;
5058
5059 /*
5060 * If this bit is set, then the RX registers contain the time stamp. No
5061 * other packet will be time stamped until we read these registers, so
5062 * read the registers to make them available again. Because only one
5063 * packet can be time stamped at a time, we know that the register
5064 * values must belong to this one here and therefore we don't need to
5065 * compare any of the additional attributes stored for it.
5066 *
5067 * If nothing went wrong, then it should have a skb_shared_tx that we
5068 * can turn into a skb_shared_hwtstamps.
5069 */
5070 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5071 return;
5072 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5073 return;
5074
5075 regval = rd32(E1000_RXSTMPL);
5076 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5077
5078 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5079 }
5080 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5081 union e1000_adv_rx_desc *rx_desc)
5082 {
5083 /* HW will not DMA in data larger than the given buffer, even if it
5084 * parses the (NFS, of course) header to be larger. In that case, it
5085 * fills the header buffer and spills the rest into the page.
5086 */
5087 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5088 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5089 if (hlen > rx_ring->rx_buffer_len)
5090 hlen = rx_ring->rx_buffer_len;
5091 return hlen;
5092 }
5093
5094 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5095 int *work_done, int budget)
5096 {
5097 struct igb_ring *rx_ring = q_vector->rx_ring;
5098 struct net_device *netdev = rx_ring->netdev;
5099 struct pci_dev *pdev = rx_ring->pdev;
5100 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5101 struct igb_buffer *buffer_info , *next_buffer;
5102 struct sk_buff *skb;
5103 bool cleaned = false;
5104 int cleaned_count = 0;
5105 int current_node = numa_node_id();
5106 unsigned int total_bytes = 0, total_packets = 0;
5107 unsigned int i;
5108 u32 staterr;
5109 u16 length;
5110 u16 vlan_tag;
5111
5112 i = rx_ring->next_to_clean;
5113 buffer_info = &rx_ring->buffer_info[i];
5114 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5115 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5116
5117 while (staterr & E1000_RXD_STAT_DD) {
5118 if (*work_done >= budget)
5119 break;
5120 (*work_done)++;
5121
5122 skb = buffer_info->skb;
5123 prefetch(skb->data - NET_IP_ALIGN);
5124 buffer_info->skb = NULL;
5125
5126 i++;
5127 if (i == rx_ring->count)
5128 i = 0;
5129
5130 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5131 prefetch(next_rxd);
5132 next_buffer = &rx_ring->buffer_info[i];
5133
5134 length = le16_to_cpu(rx_desc->wb.upper.length);
5135 cleaned = true;
5136 cleaned_count++;
5137
5138 if (buffer_info->dma) {
5139 pci_unmap_single(pdev, buffer_info->dma,
5140 rx_ring->rx_buffer_len,
5141 PCI_DMA_FROMDEVICE);
5142 buffer_info->dma = 0;
5143 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5144 skb_put(skb, length);
5145 goto send_up;
5146 }
5147 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5148 }
5149
5150 if (length) {
5151 pci_unmap_page(pdev, buffer_info->page_dma,
5152 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5153 buffer_info->page_dma = 0;
5154
5155 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5156 buffer_info->page,
5157 buffer_info->page_offset,
5158 length);
5159
5160 if ((page_count(buffer_info->page) != 1) ||
5161 (page_to_nid(buffer_info->page) != current_node))
5162 buffer_info->page = NULL;
5163 else
5164 get_page(buffer_info->page);
5165
5166 skb->len += length;
5167 skb->data_len += length;
5168 skb->truesize += length;
5169 }
5170
5171 if (!(staterr & E1000_RXD_STAT_EOP)) {
5172 buffer_info->skb = next_buffer->skb;
5173 buffer_info->dma = next_buffer->dma;
5174 next_buffer->skb = skb;
5175 next_buffer->dma = 0;
5176 goto next_desc;
5177 }
5178 send_up:
5179 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5180 dev_kfree_skb_irq(skb);
5181 goto next_desc;
5182 }
5183
5184 igb_rx_hwtstamp(q_vector, staterr, skb);
5185 total_bytes += skb->len;
5186 total_packets++;
5187
5188 igb_rx_checksum_adv(rx_ring, staterr, skb);
5189
5190 skb->protocol = eth_type_trans(skb, netdev);
5191 skb_record_rx_queue(skb, rx_ring->queue_index);
5192
5193 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5194 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5195
5196 igb_receive_skb(q_vector, skb, vlan_tag);
5197
5198 next_desc:
5199 rx_desc->wb.upper.status_error = 0;
5200
5201 /* return some buffers to hardware, one at a time is too slow */
5202 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5203 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5204 cleaned_count = 0;
5205 }
5206
5207 /* use prefetched values */
5208 rx_desc = next_rxd;
5209 buffer_info = next_buffer;
5210 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5211 }
5212
5213 rx_ring->next_to_clean = i;
5214 cleaned_count = igb_desc_unused(rx_ring);
5215
5216 if (cleaned_count)
5217 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5218
5219 rx_ring->total_packets += total_packets;
5220 rx_ring->total_bytes += total_bytes;
5221 rx_ring->rx_stats.packets += total_packets;
5222 rx_ring->rx_stats.bytes += total_bytes;
5223 return cleaned;
5224 }
5225
5226 /**
5227 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5228 * @adapter: address of board private structure
5229 **/
5230 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5231 {
5232 struct net_device *netdev = rx_ring->netdev;
5233 union e1000_adv_rx_desc *rx_desc;
5234 struct igb_buffer *buffer_info;
5235 struct sk_buff *skb;
5236 unsigned int i;
5237 int bufsz;
5238
5239 i = rx_ring->next_to_use;
5240 buffer_info = &rx_ring->buffer_info[i];
5241
5242 bufsz = rx_ring->rx_buffer_len;
5243
5244 while (cleaned_count--) {
5245 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5246
5247 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5248 if (!buffer_info->page) {
5249 buffer_info->page = netdev_alloc_page(netdev);
5250 if (!buffer_info->page) {
5251 rx_ring->rx_stats.alloc_failed++;
5252 goto no_buffers;
5253 }
5254 buffer_info->page_offset = 0;
5255 } else {
5256 buffer_info->page_offset ^= PAGE_SIZE / 2;
5257 }
5258 buffer_info->page_dma =
5259 pci_map_page(rx_ring->pdev, buffer_info->page,
5260 buffer_info->page_offset,
5261 PAGE_SIZE / 2,
5262 PCI_DMA_FROMDEVICE);
5263 if (pci_dma_mapping_error(rx_ring->pdev,
5264 buffer_info->page_dma)) {
5265 buffer_info->page_dma = 0;
5266 rx_ring->rx_stats.alloc_failed++;
5267 goto no_buffers;
5268 }
5269 }
5270
5271 skb = buffer_info->skb;
5272 if (!skb) {
5273 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5274 if (!skb) {
5275 rx_ring->rx_stats.alloc_failed++;
5276 goto no_buffers;
5277 }
5278
5279 buffer_info->skb = skb;
5280 }
5281 if (!buffer_info->dma) {
5282 buffer_info->dma = pci_map_single(rx_ring->pdev,
5283 skb->data,
5284 bufsz,
5285 PCI_DMA_FROMDEVICE);
5286 if (pci_dma_mapping_error(rx_ring->pdev,
5287 buffer_info->dma)) {
5288 buffer_info->dma = 0;
5289 rx_ring->rx_stats.alloc_failed++;
5290 goto no_buffers;
5291 }
5292 }
5293 /* Refresh the desc even if buffer_addrs didn't change because
5294 * each write-back erases this info. */
5295 if (bufsz < IGB_RXBUFFER_1024) {
5296 rx_desc->read.pkt_addr =
5297 cpu_to_le64(buffer_info->page_dma);
5298 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5299 } else {
5300 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5301 rx_desc->read.hdr_addr = 0;
5302 }
5303
5304 i++;
5305 if (i == rx_ring->count)
5306 i = 0;
5307 buffer_info = &rx_ring->buffer_info[i];
5308 }
5309
5310 no_buffers:
5311 if (rx_ring->next_to_use != i) {
5312 rx_ring->next_to_use = i;
5313 if (i == 0)
5314 i = (rx_ring->count - 1);
5315 else
5316 i--;
5317
5318 /* Force memory writes to complete before letting h/w
5319 * know there are new descriptors to fetch. (Only
5320 * applicable for weak-ordered memory model archs,
5321 * such as IA-64). */
5322 wmb();
5323 writel(i, rx_ring->tail);
5324 }
5325 }
5326
5327 /**
5328 * igb_mii_ioctl -
5329 * @netdev:
5330 * @ifreq:
5331 * @cmd:
5332 **/
5333 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5334 {
5335 struct igb_adapter *adapter = netdev_priv(netdev);
5336 struct mii_ioctl_data *data = if_mii(ifr);
5337
5338 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5339 return -EOPNOTSUPP;
5340
5341 switch (cmd) {
5342 case SIOCGMIIPHY:
5343 data->phy_id = adapter->hw.phy.addr;
5344 break;
5345 case SIOCGMIIREG:
5346 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5347 &data->val_out))
5348 return -EIO;
5349 break;
5350 case SIOCSMIIREG:
5351 default:
5352 return -EOPNOTSUPP;
5353 }
5354 return 0;
5355 }
5356
5357 /**
5358 * igb_hwtstamp_ioctl - control hardware time stamping
5359 * @netdev:
5360 * @ifreq:
5361 * @cmd:
5362 *
5363 * Outgoing time stamping can be enabled and disabled. Play nice and
5364 * disable it when requested, although it shouldn't case any overhead
5365 * when no packet needs it. At most one packet in the queue may be
5366 * marked for time stamping, otherwise it would be impossible to tell
5367 * for sure to which packet the hardware time stamp belongs.
5368 *
5369 * Incoming time stamping has to be configured via the hardware
5370 * filters. Not all combinations are supported, in particular event
5371 * type has to be specified. Matching the kind of event packet is
5372 * not supported, with the exception of "all V2 events regardless of
5373 * level 2 or 4".
5374 *
5375 **/
5376 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5377 struct ifreq *ifr, int cmd)
5378 {
5379 struct igb_adapter *adapter = netdev_priv(netdev);
5380 struct e1000_hw *hw = &adapter->hw;
5381 struct hwtstamp_config config;
5382 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5383 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5384 u32 tsync_rx_cfg = 0;
5385 bool is_l4 = false;
5386 bool is_l2 = false;
5387 u32 regval;
5388
5389 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5390 return -EFAULT;
5391
5392 /* reserved for future extensions */
5393 if (config.flags)
5394 return -EINVAL;
5395
5396 switch (config.tx_type) {
5397 case HWTSTAMP_TX_OFF:
5398 tsync_tx_ctl = 0;
5399 case HWTSTAMP_TX_ON:
5400 break;
5401 default:
5402 return -ERANGE;
5403 }
5404
5405 switch (config.rx_filter) {
5406 case HWTSTAMP_FILTER_NONE:
5407 tsync_rx_ctl = 0;
5408 break;
5409 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5410 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5411 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5412 case HWTSTAMP_FILTER_ALL:
5413 /*
5414 * register TSYNCRXCFG must be set, therefore it is not
5415 * possible to time stamp both Sync and Delay_Req messages
5416 * => fall back to time stamping all packets
5417 */
5418 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5419 config.rx_filter = HWTSTAMP_FILTER_ALL;
5420 break;
5421 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5422 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5423 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5424 is_l4 = true;
5425 break;
5426 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5427 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5428 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5429 is_l4 = true;
5430 break;
5431 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5432 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5433 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5434 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5435 is_l2 = true;
5436 is_l4 = true;
5437 config.rx_filter = HWTSTAMP_FILTER_SOME;
5438 break;
5439 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5440 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5441 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5442 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5443 is_l2 = true;
5444 is_l4 = true;
5445 config.rx_filter = HWTSTAMP_FILTER_SOME;
5446 break;
5447 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5448 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5449 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5450 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5451 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5452 is_l2 = true;
5453 break;
5454 default:
5455 return -ERANGE;
5456 }
5457
5458 if (hw->mac.type == e1000_82575) {
5459 if (tsync_rx_ctl | tsync_tx_ctl)
5460 return -EINVAL;
5461 return 0;
5462 }
5463
5464 /* enable/disable TX */
5465 regval = rd32(E1000_TSYNCTXCTL);
5466 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5467 regval |= tsync_tx_ctl;
5468 wr32(E1000_TSYNCTXCTL, regval);
5469
5470 /* enable/disable RX */
5471 regval = rd32(E1000_TSYNCRXCTL);
5472 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5473 regval |= tsync_rx_ctl;
5474 wr32(E1000_TSYNCRXCTL, regval);
5475
5476 /* define which PTP packets are time stamped */
5477 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5478
5479 /* define ethertype filter for timestamped packets */
5480 if (is_l2)
5481 wr32(E1000_ETQF(3),
5482 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5483 E1000_ETQF_1588 | /* enable timestamping */
5484 ETH_P_1588)); /* 1588 eth protocol type */
5485 else
5486 wr32(E1000_ETQF(3), 0);
5487
5488 #define PTP_PORT 319
5489 /* L4 Queue Filter[3]: filter by destination port and protocol */
5490 if (is_l4) {
5491 u32 ftqf = (IPPROTO_UDP /* UDP */
5492 | E1000_FTQF_VF_BP /* VF not compared */
5493 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5494 | E1000_FTQF_MASK); /* mask all inputs */
5495 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5496
5497 wr32(E1000_IMIR(3), htons(PTP_PORT));
5498 wr32(E1000_IMIREXT(3),
5499 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5500 if (hw->mac.type == e1000_82576) {
5501 /* enable source port check */
5502 wr32(E1000_SPQF(3), htons(PTP_PORT));
5503 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5504 }
5505 wr32(E1000_FTQF(3), ftqf);
5506 } else {
5507 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5508 }
5509 wrfl();
5510
5511 adapter->hwtstamp_config = config;
5512
5513 /* clear TX/RX time stamp registers, just to be sure */
5514 regval = rd32(E1000_TXSTMPH);
5515 regval = rd32(E1000_RXSTMPH);
5516
5517 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5518 -EFAULT : 0;
5519 }
5520
5521 /**
5522 * igb_ioctl -
5523 * @netdev:
5524 * @ifreq:
5525 * @cmd:
5526 **/
5527 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5528 {
5529 switch (cmd) {
5530 case SIOCGMIIPHY:
5531 case SIOCGMIIREG:
5532 case SIOCSMIIREG:
5533 return igb_mii_ioctl(netdev, ifr, cmd);
5534 case SIOCSHWTSTAMP:
5535 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5536 default:
5537 return -EOPNOTSUPP;
5538 }
5539 }
5540
5541 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5542 {
5543 struct igb_adapter *adapter = hw->back;
5544 u16 cap_offset;
5545
5546 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5547 if (!cap_offset)
5548 return -E1000_ERR_CONFIG;
5549
5550 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5551
5552 return 0;
5553 }
5554
5555 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5556 {
5557 struct igb_adapter *adapter = hw->back;
5558 u16 cap_offset;
5559
5560 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5561 if (!cap_offset)
5562 return -E1000_ERR_CONFIG;
5563
5564 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5565
5566 return 0;
5567 }
5568
5569 static void igb_vlan_rx_register(struct net_device *netdev,
5570 struct vlan_group *grp)
5571 {
5572 struct igb_adapter *adapter = netdev_priv(netdev);
5573 struct e1000_hw *hw = &adapter->hw;
5574 u32 ctrl, rctl;
5575
5576 igb_irq_disable(adapter);
5577 adapter->vlgrp = grp;
5578
5579 if (grp) {
5580 /* enable VLAN tag insert/strip */
5581 ctrl = rd32(E1000_CTRL);
5582 ctrl |= E1000_CTRL_VME;
5583 wr32(E1000_CTRL, ctrl);
5584
5585 /* Disable CFI check */
5586 rctl = rd32(E1000_RCTL);
5587 rctl &= ~E1000_RCTL_CFIEN;
5588 wr32(E1000_RCTL, rctl);
5589 } else {
5590 /* disable VLAN tag insert/strip */
5591 ctrl = rd32(E1000_CTRL);
5592 ctrl &= ~E1000_CTRL_VME;
5593 wr32(E1000_CTRL, ctrl);
5594 }
5595
5596 igb_rlpml_set(adapter);
5597
5598 if (!test_bit(__IGB_DOWN, &adapter->state))
5599 igb_irq_enable(adapter);
5600 }
5601
5602 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5603 {
5604 struct igb_adapter *adapter = netdev_priv(netdev);
5605 struct e1000_hw *hw = &adapter->hw;
5606 int pf_id = adapter->vfs_allocated_count;
5607
5608 /* attempt to add filter to vlvf array */
5609 igb_vlvf_set(adapter, vid, true, pf_id);
5610
5611 /* add the filter since PF can receive vlans w/o entry in vlvf */
5612 igb_vfta_set(hw, vid, true);
5613 }
5614
5615 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5616 {
5617 struct igb_adapter *adapter = netdev_priv(netdev);
5618 struct e1000_hw *hw = &adapter->hw;
5619 int pf_id = adapter->vfs_allocated_count;
5620 s32 err;
5621
5622 igb_irq_disable(adapter);
5623 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5624
5625 if (!test_bit(__IGB_DOWN, &adapter->state))
5626 igb_irq_enable(adapter);
5627
5628 /* remove vlan from VLVF table array */
5629 err = igb_vlvf_set(adapter, vid, false, pf_id);
5630
5631 /* if vid was not present in VLVF just remove it from table */
5632 if (err)
5633 igb_vfta_set(hw, vid, false);
5634 }
5635
5636 static void igb_restore_vlan(struct igb_adapter *adapter)
5637 {
5638 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5639
5640 if (adapter->vlgrp) {
5641 u16 vid;
5642 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5643 if (!vlan_group_get_device(adapter->vlgrp, vid))
5644 continue;
5645 igb_vlan_rx_add_vid(adapter->netdev, vid);
5646 }
5647 }
5648 }
5649
5650 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5651 {
5652 struct pci_dev *pdev = adapter->pdev;
5653 struct e1000_mac_info *mac = &adapter->hw.mac;
5654
5655 mac->autoneg = 0;
5656
5657 switch (spddplx) {
5658 case SPEED_10 + DUPLEX_HALF:
5659 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5660 break;
5661 case SPEED_10 + DUPLEX_FULL:
5662 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5663 break;
5664 case SPEED_100 + DUPLEX_HALF:
5665 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5666 break;
5667 case SPEED_100 + DUPLEX_FULL:
5668 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5669 break;
5670 case SPEED_1000 + DUPLEX_FULL:
5671 mac->autoneg = 1;
5672 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5673 break;
5674 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5675 default:
5676 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5677 return -EINVAL;
5678 }
5679 return 0;
5680 }
5681
5682 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5683 {
5684 struct net_device *netdev = pci_get_drvdata(pdev);
5685 struct igb_adapter *adapter = netdev_priv(netdev);
5686 struct e1000_hw *hw = &adapter->hw;
5687 u32 ctrl, rctl, status;
5688 u32 wufc = adapter->wol;
5689 #ifdef CONFIG_PM
5690 int retval = 0;
5691 #endif
5692
5693 netif_device_detach(netdev);
5694
5695 if (netif_running(netdev))
5696 igb_close(netdev);
5697
5698 igb_clear_interrupt_scheme(adapter);
5699
5700 #ifdef CONFIG_PM
5701 retval = pci_save_state(pdev);
5702 if (retval)
5703 return retval;
5704 #endif
5705
5706 status = rd32(E1000_STATUS);
5707 if (status & E1000_STATUS_LU)
5708 wufc &= ~E1000_WUFC_LNKC;
5709
5710 if (wufc) {
5711 igb_setup_rctl(adapter);
5712 igb_set_rx_mode(netdev);
5713
5714 /* turn on all-multi mode if wake on multicast is enabled */
5715 if (wufc & E1000_WUFC_MC) {
5716 rctl = rd32(E1000_RCTL);
5717 rctl |= E1000_RCTL_MPE;
5718 wr32(E1000_RCTL, rctl);
5719 }
5720
5721 ctrl = rd32(E1000_CTRL);
5722 /* advertise wake from D3Cold */
5723 #define E1000_CTRL_ADVD3WUC 0x00100000
5724 /* phy power management enable */
5725 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5726 ctrl |= E1000_CTRL_ADVD3WUC;
5727 wr32(E1000_CTRL, ctrl);
5728
5729 /* Allow time for pending master requests to run */
5730 igb_disable_pcie_master(hw);
5731
5732 wr32(E1000_WUC, E1000_WUC_PME_EN);
5733 wr32(E1000_WUFC, wufc);
5734 } else {
5735 wr32(E1000_WUC, 0);
5736 wr32(E1000_WUFC, 0);
5737 }
5738
5739 *enable_wake = wufc || adapter->en_mng_pt;
5740 if (!*enable_wake)
5741 igb_shutdown_serdes_link_82575(hw);
5742
5743 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5744 * would have already happened in close and is redundant. */
5745 igb_release_hw_control(adapter);
5746
5747 pci_disable_device(pdev);
5748
5749 return 0;
5750 }
5751
5752 #ifdef CONFIG_PM
5753 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5754 {
5755 int retval;
5756 bool wake;
5757
5758 retval = __igb_shutdown(pdev, &wake);
5759 if (retval)
5760 return retval;
5761
5762 if (wake) {
5763 pci_prepare_to_sleep(pdev);
5764 } else {
5765 pci_wake_from_d3(pdev, false);
5766 pci_set_power_state(pdev, PCI_D3hot);
5767 }
5768
5769 return 0;
5770 }
5771
5772 static int igb_resume(struct pci_dev *pdev)
5773 {
5774 struct net_device *netdev = pci_get_drvdata(pdev);
5775 struct igb_adapter *adapter = netdev_priv(netdev);
5776 struct e1000_hw *hw = &adapter->hw;
5777 u32 err;
5778
5779 pci_set_power_state(pdev, PCI_D0);
5780 pci_restore_state(pdev);
5781
5782 err = pci_enable_device_mem(pdev);
5783 if (err) {
5784 dev_err(&pdev->dev,
5785 "igb: Cannot enable PCI device from suspend\n");
5786 return err;
5787 }
5788 pci_set_master(pdev);
5789
5790 pci_enable_wake(pdev, PCI_D3hot, 0);
5791 pci_enable_wake(pdev, PCI_D3cold, 0);
5792
5793 if (igb_init_interrupt_scheme(adapter)) {
5794 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5795 return -ENOMEM;
5796 }
5797
5798 /* e1000_power_up_phy(adapter); */
5799
5800 igb_reset(adapter);
5801
5802 /* let the f/w know that the h/w is now under the control of the
5803 * driver. */
5804 igb_get_hw_control(adapter);
5805
5806 wr32(E1000_WUS, ~0);
5807
5808 if (netif_running(netdev)) {
5809 err = igb_open(netdev);
5810 if (err)
5811 return err;
5812 }
5813
5814 netif_device_attach(netdev);
5815
5816 return 0;
5817 }
5818 #endif
5819
5820 static void igb_shutdown(struct pci_dev *pdev)
5821 {
5822 bool wake;
5823
5824 __igb_shutdown(pdev, &wake);
5825
5826 if (system_state == SYSTEM_POWER_OFF) {
5827 pci_wake_from_d3(pdev, wake);
5828 pci_set_power_state(pdev, PCI_D3hot);
5829 }
5830 }
5831
5832 #ifdef CONFIG_NET_POLL_CONTROLLER
5833 /*
5834 * Polling 'interrupt' - used by things like netconsole to send skbs
5835 * without having to re-enable interrupts. It's not called while
5836 * the interrupt routine is executing.
5837 */
5838 static void igb_netpoll(struct net_device *netdev)
5839 {
5840 struct igb_adapter *adapter = netdev_priv(netdev);
5841 struct e1000_hw *hw = &adapter->hw;
5842 int i;
5843
5844 if (!adapter->msix_entries) {
5845 struct igb_q_vector *q_vector = adapter->q_vector[0];
5846 igb_irq_disable(adapter);
5847 napi_schedule(&q_vector->napi);
5848 return;
5849 }
5850
5851 for (i = 0; i < adapter->num_q_vectors; i++) {
5852 struct igb_q_vector *q_vector = adapter->q_vector[i];
5853 wr32(E1000_EIMC, q_vector->eims_value);
5854 napi_schedule(&q_vector->napi);
5855 }
5856 }
5857 #endif /* CONFIG_NET_POLL_CONTROLLER */
5858
5859 /**
5860 * igb_io_error_detected - called when PCI error is detected
5861 * @pdev: Pointer to PCI device
5862 * @state: The current pci connection state
5863 *
5864 * This function is called after a PCI bus error affecting
5865 * this device has been detected.
5866 */
5867 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5868 pci_channel_state_t state)
5869 {
5870 struct net_device *netdev = pci_get_drvdata(pdev);
5871 struct igb_adapter *adapter = netdev_priv(netdev);
5872
5873 netif_device_detach(netdev);
5874
5875 if (state == pci_channel_io_perm_failure)
5876 return PCI_ERS_RESULT_DISCONNECT;
5877
5878 if (netif_running(netdev))
5879 igb_down(adapter);
5880 pci_disable_device(pdev);
5881
5882 /* Request a slot slot reset. */
5883 return PCI_ERS_RESULT_NEED_RESET;
5884 }
5885
5886 /**
5887 * igb_io_slot_reset - called after the pci bus has been reset.
5888 * @pdev: Pointer to PCI device
5889 *
5890 * Restart the card from scratch, as if from a cold-boot. Implementation
5891 * resembles the first-half of the igb_resume routine.
5892 */
5893 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5894 {
5895 struct net_device *netdev = pci_get_drvdata(pdev);
5896 struct igb_adapter *adapter = netdev_priv(netdev);
5897 struct e1000_hw *hw = &adapter->hw;
5898 pci_ers_result_t result;
5899 int err;
5900
5901 if (pci_enable_device_mem(pdev)) {
5902 dev_err(&pdev->dev,
5903 "Cannot re-enable PCI device after reset.\n");
5904 result = PCI_ERS_RESULT_DISCONNECT;
5905 } else {
5906 pci_set_master(pdev);
5907 pci_restore_state(pdev);
5908
5909 pci_enable_wake(pdev, PCI_D3hot, 0);
5910 pci_enable_wake(pdev, PCI_D3cold, 0);
5911
5912 igb_reset(adapter);
5913 wr32(E1000_WUS, ~0);
5914 result = PCI_ERS_RESULT_RECOVERED;
5915 }
5916
5917 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5918 if (err) {
5919 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5920 "failed 0x%0x\n", err);
5921 /* non-fatal, continue */
5922 }
5923
5924 return result;
5925 }
5926
5927 /**
5928 * igb_io_resume - called when traffic can start flowing again.
5929 * @pdev: Pointer to PCI device
5930 *
5931 * This callback is called when the error recovery driver tells us that
5932 * its OK to resume normal operation. Implementation resembles the
5933 * second-half of the igb_resume routine.
5934 */
5935 static void igb_io_resume(struct pci_dev *pdev)
5936 {
5937 struct net_device *netdev = pci_get_drvdata(pdev);
5938 struct igb_adapter *adapter = netdev_priv(netdev);
5939
5940 if (netif_running(netdev)) {
5941 if (igb_up(adapter)) {
5942 dev_err(&pdev->dev, "igb_up failed after reset\n");
5943 return;
5944 }
5945 }
5946
5947 netif_device_attach(netdev);
5948
5949 /* let the f/w know that the h/w is now under the control of the
5950 * driver. */
5951 igb_get_hw_control(adapter);
5952 }
5953
5954 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5955 u8 qsel)
5956 {
5957 u32 rar_low, rar_high;
5958 struct e1000_hw *hw = &adapter->hw;
5959
5960 /* HW expects these in little endian so we reverse the byte order
5961 * from network order (big endian) to little endian
5962 */
5963 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5964 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5965 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5966
5967 /* Indicate to hardware the Address is Valid. */
5968 rar_high |= E1000_RAH_AV;
5969
5970 if (hw->mac.type == e1000_82575)
5971 rar_high |= E1000_RAH_POOL_1 * qsel;
5972 else
5973 rar_high |= E1000_RAH_POOL_1 << qsel;
5974
5975 wr32(E1000_RAL(index), rar_low);
5976 wrfl();
5977 wr32(E1000_RAH(index), rar_high);
5978 wrfl();
5979 }
5980
5981 static int igb_set_vf_mac(struct igb_adapter *adapter,
5982 int vf, unsigned char *mac_addr)
5983 {
5984 struct e1000_hw *hw = &adapter->hw;
5985 /* VF MAC addresses start at end of receive addresses and moves
5986 * torwards the first, as a result a collision should not be possible */
5987 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5988
5989 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5990
5991 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5992
5993 return 0;
5994 }
5995
5996 static void igb_vmm_control(struct igb_adapter *adapter)
5997 {
5998 struct e1000_hw *hw = &adapter->hw;
5999 u32 reg;
6000
6001 /* replication is not supported for 82575 */
6002 if (hw->mac.type == e1000_82575)
6003 return;
6004
6005 /* enable replication vlan tag stripping */
6006 reg = rd32(E1000_RPLOLR);
6007 reg |= E1000_RPLOLR_STRVLAN;
6008 wr32(E1000_RPLOLR, reg);
6009
6010 /* notify HW that the MAC is adding vlan tags */
6011 reg = rd32(E1000_DTXCTL);
6012 reg |= E1000_DTXCTL_VLAN_ADDED;
6013 wr32(E1000_DTXCTL, reg);
6014
6015 if (adapter->vfs_allocated_count) {
6016 igb_vmdq_set_loopback_pf(hw, true);
6017 igb_vmdq_set_replication_pf(hw, true);
6018 } else {
6019 igb_vmdq_set_loopback_pf(hw, false);
6020 igb_vmdq_set_replication_pf(hw, false);
6021 }
6022 }
6023
6024 /* igb_main.c */