]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ioc3-eth.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ioc3-eth.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30 #define IOC3_NAME "ioc3-eth"
31 #define IOC3_VERSION "2.6.3-4"
32
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/errno.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/crc32.h>
41 #include <linux/mii.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/gfp.h>
48
49 #ifdef CONFIG_SERIAL_8250
50 #include <linux/serial_core.h>
51 #include <linux/serial_8250.h>
52 #include <linux/serial_reg.h>
53 #endif
54
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/ethtool.h>
58 #include <linux/skbuff.h>
59 #include <net/ip.h>
60
61 #include <asm/byteorder.h>
62 #include <asm/io.h>
63 #include <asm/pgtable.h>
64 #include <asm/uaccess.h>
65 #include <asm/sn/types.h>
66 #include <asm/sn/ioc3.h>
67 #include <asm/pci/bridge.h>
68
69 /*
70 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
71 * value must be a power of two.
72 */
73 #define RX_BUFFS 64
74
75 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
76 #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
77
78 /* Private per NIC data of the driver. */
79 struct ioc3_private {
80 struct ioc3 *regs;
81 unsigned long *rxr; /* pointer to receiver ring */
82 struct ioc3_etxd *txr;
83 struct sk_buff *rx_skbs[512];
84 struct sk_buff *tx_skbs[128];
85 struct net_device_stats stats;
86 int rx_ci; /* RX consumer index */
87 int rx_pi; /* RX producer index */
88 int tx_ci; /* TX consumer index */
89 int tx_pi; /* TX producer index */
90 int txqlen;
91 u32 emcr, ehar_h, ehar_l;
92 spinlock_t ioc3_lock;
93 struct mii_if_info mii;
94 unsigned long flags;
95 #define IOC3_FLAG_RX_CHECKSUMS 1
96
97 struct pci_dev *pdev;
98
99 /* Members used by autonegotiation */
100 struct timer_list ioc3_timer;
101 };
102
103 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
104 {
105 return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
106 }
107
108 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
109 static void ioc3_set_multicast_list(struct net_device *dev);
110 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void ioc3_timeout(struct net_device *dev);
112 static inline unsigned int ioc3_hash(const unsigned char *addr);
113 static inline void ioc3_stop(struct ioc3_private *ip);
114 static void ioc3_init(struct net_device *dev);
115
116 static const char ioc3_str[] = "IOC3 Ethernet";
117 static const struct ethtool_ops ioc3_ethtool_ops;
118
119 /* We use this to acquire receive skb's that we can DMA directly into. */
120
121 #define IOC3_CACHELINE 128UL
122
123 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
124 {
125 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
126 }
127
128 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
129 unsigned int gfp_mask)
130 {
131 struct sk_buff *skb;
132
133 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
134 if (likely(skb)) {
135 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
136 if (offset)
137 skb_reserve(skb, offset);
138 }
139
140 return skb;
141 }
142
143 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
144 {
145 #ifdef CONFIG_SGI_IP27
146 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
147
148 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
149 ((unsigned long)ptr & TO_PHYS_MASK);
150 #else
151 return virt_to_bus(ptr);
152 #endif
153 }
154
155 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
156 1644 while it's actually 1664. This one was nasty to track down ... */
157 #define RX_OFFSET 10
158 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
159
160 /* DMA barrier to separate cached and uncached accesses. */
161 #define BARRIER() \
162 __asm__("sync" ::: "memory")
163
164
165 #define IOC3_SIZE 0x100000
166
167 /*
168 * IOC3 is a big endian device
169 *
170 * Unorthodox but makes the users of these macros more readable - the pointer
171 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
172 * in the environment.
173 */
174 #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
175 #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
176 #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
177 #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
178 #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
179 #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
180 #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
181 #define ioc3_r_eier() be32_to_cpu(ioc3->eier)
182 #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
183 #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
184 #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
185 #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
186 #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
187 #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
188 #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
189 #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
190 #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
191 #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
192 #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
193 #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
194 #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
195 #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
196 #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
197 #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
198 #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
199 #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
200 #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
201 #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
202 #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
203 #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
204 #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
205 #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
206 #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
207 #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
208 #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
209 #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
210 #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
211 #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
212 #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
213 #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
214 #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
215 #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
216 #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
217 #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
218 #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
219 #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
220 #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
221 #define ioc3_r_micr() be32_to_cpu(ioc3->micr)
222 #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
223 #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
224 #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
225 #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
226 #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
227
228 static inline u32 mcr_pack(u32 pulse, u32 sample)
229 {
230 return (pulse << 10) | (sample << 2);
231 }
232
233 static int nic_wait(struct ioc3 *ioc3)
234 {
235 u32 mcr;
236
237 do {
238 mcr = ioc3_r_mcr();
239 } while (!(mcr & 2));
240
241 return mcr & 1;
242 }
243
244 static int nic_reset(struct ioc3 *ioc3)
245 {
246 int presence;
247
248 ioc3_w_mcr(mcr_pack(500, 65));
249 presence = nic_wait(ioc3);
250
251 ioc3_w_mcr(mcr_pack(0, 500));
252 nic_wait(ioc3);
253
254 return presence;
255 }
256
257 static inline int nic_read_bit(struct ioc3 *ioc3)
258 {
259 int result;
260
261 ioc3_w_mcr(mcr_pack(6, 13));
262 result = nic_wait(ioc3);
263 ioc3_w_mcr(mcr_pack(0, 100));
264 nic_wait(ioc3);
265
266 return result;
267 }
268
269 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
270 {
271 if (bit)
272 ioc3_w_mcr(mcr_pack(6, 110));
273 else
274 ioc3_w_mcr(mcr_pack(80, 30));
275
276 nic_wait(ioc3);
277 }
278
279 /*
280 * Read a byte from an iButton device
281 */
282 static u32 nic_read_byte(struct ioc3 *ioc3)
283 {
284 u32 result = 0;
285 int i;
286
287 for (i = 0; i < 8; i++)
288 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
289
290 return result;
291 }
292
293 /*
294 * Write a byte to an iButton device
295 */
296 static void nic_write_byte(struct ioc3 *ioc3, int byte)
297 {
298 int i, bit;
299
300 for (i = 8; i; i--) {
301 bit = byte & 1;
302 byte >>= 1;
303
304 nic_write_bit(ioc3, bit);
305 }
306 }
307
308 static u64 nic_find(struct ioc3 *ioc3, int *last)
309 {
310 int a, b, index, disc;
311 u64 address = 0;
312
313 nic_reset(ioc3);
314 /* Search ROM. */
315 nic_write_byte(ioc3, 0xf0);
316
317 /* Algorithm from ``Book of iButton Standards''. */
318 for (index = 0, disc = 0; index < 64; index++) {
319 a = nic_read_bit(ioc3);
320 b = nic_read_bit(ioc3);
321
322 if (a && b) {
323 printk("NIC search failed (not fatal).\n");
324 *last = 0;
325 return 0;
326 }
327
328 if (!a && !b) {
329 if (index == *last) {
330 address |= 1UL << index;
331 } else if (index > *last) {
332 address &= ~(1UL << index);
333 disc = index;
334 } else if ((address & (1UL << index)) == 0)
335 disc = index;
336 nic_write_bit(ioc3, address & (1UL << index));
337 continue;
338 } else {
339 if (a)
340 address |= 1UL << index;
341 else
342 address &= ~(1UL << index);
343 nic_write_bit(ioc3, a);
344 continue;
345 }
346 }
347
348 *last = disc;
349
350 return address;
351 }
352
353 static int nic_init(struct ioc3 *ioc3)
354 {
355 const char *unknown = "unknown";
356 const char *type = unknown;
357 u8 crc;
358 u8 serial[6];
359 int save = 0, i;
360
361 while (1) {
362 u64 reg;
363 reg = nic_find(ioc3, &save);
364
365 switch (reg & 0xff) {
366 case 0x91:
367 type = "DS1981U";
368 break;
369 default:
370 if (save == 0) {
371 /* Let the caller try again. */
372 return -1;
373 }
374 continue;
375 }
376
377 nic_reset(ioc3);
378
379 /* Match ROM. */
380 nic_write_byte(ioc3, 0x55);
381 for (i = 0; i < 8; i++)
382 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
383
384 reg >>= 8; /* Shift out type. */
385 for (i = 0; i < 6; i++) {
386 serial[i] = reg & 0xff;
387 reg >>= 8;
388 }
389 crc = reg & 0xff;
390 break;
391 }
392
393 printk("Found %s NIC", type);
394 if (type != unknown)
395 printk (" registration number %pM, CRC %02x", serial, crc);
396 printk(".\n");
397
398 return 0;
399 }
400
401 /*
402 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
403 * SN0 / SN00 nodeboards and PCI cards.
404 */
405 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
406 {
407 struct ioc3 *ioc3 = ip->regs;
408 u8 nic[14];
409 int tries = 2; /* There may be some problem with the battery? */
410 int i;
411
412 ioc3_w_gpcr_s(1 << 21);
413
414 while (tries--) {
415 if (!nic_init(ioc3))
416 break;
417 udelay(500);
418 }
419
420 if (tries < 0) {
421 printk("Failed to read MAC address\n");
422 return;
423 }
424
425 /* Read Memory. */
426 nic_write_byte(ioc3, 0xf0);
427 nic_write_byte(ioc3, 0x00);
428 nic_write_byte(ioc3, 0x00);
429
430 for (i = 13; i >= 0; i--)
431 nic[i] = nic_read_byte(ioc3);
432
433 for (i = 2; i < 8; i++)
434 priv_netdev(ip)->dev_addr[i - 2] = nic[i];
435 }
436
437 /*
438 * Ok, this is hosed by design. It's necessary to know what machine the
439 * NIC is in in order to know how to read the NIC address. We also have
440 * to know if it's a PCI card or a NIC in on the node board ...
441 */
442 static void ioc3_get_eaddr(struct ioc3_private *ip)
443 {
444 ioc3_get_eaddr_nic(ip);
445
446 printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
447 }
448
449 static void __ioc3_set_mac_address(struct net_device *dev)
450 {
451 struct ioc3_private *ip = netdev_priv(dev);
452 struct ioc3 *ioc3 = ip->regs;
453
454 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
455 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
456 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
457 }
458
459 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
460 {
461 struct ioc3_private *ip = netdev_priv(dev);
462 struct sockaddr *sa = addr;
463
464 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
465
466 spin_lock_irq(&ip->ioc3_lock);
467 __ioc3_set_mac_address(dev);
468 spin_unlock_irq(&ip->ioc3_lock);
469
470 return 0;
471 }
472
473 /*
474 * Caller must hold the ioc3_lock ever for MII readers. This is also
475 * used to protect the transmitter side but it's low contention.
476 */
477 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
478 {
479 struct ioc3_private *ip = netdev_priv(dev);
480 struct ioc3 *ioc3 = ip->regs;
481
482 while (ioc3_r_micr() & MICR_BUSY);
483 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
484 while (ioc3_r_micr() & MICR_BUSY);
485
486 return ioc3_r_midr_r() & MIDR_DATA_MASK;
487 }
488
489 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
490 {
491 struct ioc3_private *ip = netdev_priv(dev);
492 struct ioc3 *ioc3 = ip->regs;
493
494 while (ioc3_r_micr() & MICR_BUSY);
495 ioc3_w_midr_w(data);
496 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
497 while (ioc3_r_micr() & MICR_BUSY);
498 }
499
500 static int ioc3_mii_init(struct ioc3_private *ip);
501
502 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
503 {
504 struct ioc3_private *ip = netdev_priv(dev);
505 struct ioc3 *ioc3 = ip->regs;
506
507 ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
508 return &ip->stats;
509 }
510
511 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
512 {
513 struct ethhdr *eh = eth_hdr(skb);
514 uint32_t csum, ehsum;
515 unsigned int proto;
516 struct iphdr *ih;
517 uint16_t *ew;
518 unsigned char *cp;
519
520 /*
521 * Did hardware handle the checksum at all? The cases we can handle
522 * are:
523 *
524 * - TCP and UDP checksums of IPv4 only.
525 * - IPv6 would be doable but we keep that for later ...
526 * - Only unfragmented packets. Did somebody already tell you
527 * fragmentation is evil?
528 * - don't care about packet size. Worst case when processing a
529 * malformed packet we'll try to access the packet at ip header +
530 * 64 bytes which is still inside the skb. Even in the unlikely
531 * case where the checksum is right the higher layers will still
532 * drop the packet as appropriate.
533 */
534 if (eh->h_proto != htons(ETH_P_IP))
535 return;
536
537 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
538 if (ih->frag_off & htons(IP_MF | IP_OFFSET))
539 return;
540
541 proto = ih->protocol;
542 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
543 return;
544
545 /* Same as tx - compute csum of pseudo header */
546 csum = hwsum +
547 (ih->tot_len - (ih->ihl << 2)) +
548 htons((uint16_t)ih->protocol) +
549 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
550 (ih->daddr >> 16) + (ih->daddr & 0xffff);
551
552 /* Sum up ethernet dest addr, src addr and protocol */
553 ew = (uint16_t *) eh;
554 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
555
556 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
557 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
558
559 csum += 0xffff ^ ehsum;
560
561 /* In the next step we also subtract the 1's complement
562 checksum of the trailing ethernet CRC. */
563 cp = (char *)eh + len; /* points at trailing CRC */
564 if (len & 1) {
565 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
566 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
567 } else {
568 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
569 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
570 }
571
572 csum = (csum & 0xffff) + (csum >> 16);
573 csum = (csum & 0xffff) + (csum >> 16);
574
575 if (csum == 0xffff)
576 skb->ip_summed = CHECKSUM_UNNECESSARY;
577 }
578
579 static inline void ioc3_rx(struct ioc3_private *ip)
580 {
581 struct sk_buff *skb, *new_skb;
582 struct ioc3 *ioc3 = ip->regs;
583 int rx_entry, n_entry, len;
584 struct ioc3_erxbuf *rxb;
585 unsigned long *rxr;
586 u32 w0, err;
587
588 rxr = (unsigned long *) ip->rxr; /* Ring base */
589 rx_entry = ip->rx_ci; /* RX consume index */
590 n_entry = ip->rx_pi;
591
592 skb = ip->rx_skbs[rx_entry];
593 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
594 w0 = be32_to_cpu(rxb->w0);
595
596 while (w0 & ERXBUF_V) {
597 err = be32_to_cpu(rxb->err); /* It's valid ... */
598 if (err & ERXBUF_GOODPKT) {
599 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
600 skb_trim(skb, len);
601 skb->protocol = eth_type_trans(skb, priv_netdev(ip));
602
603 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
604 if (!new_skb) {
605 /* Ouch, drop packet and just recycle packet
606 to keep the ring filled. */
607 ip->stats.rx_dropped++;
608 new_skb = skb;
609 goto next;
610 }
611
612 if (likely(ip->flags & IOC3_FLAG_RX_CHECKSUMS))
613 ioc3_tcpudp_checksum(skb,
614 w0 & ERXBUF_IPCKSUM_MASK, len);
615
616 netif_rx(skb);
617
618 ip->rx_skbs[rx_entry] = NULL; /* Poison */
619
620 /* Because we reserve afterwards. */
621 skb_put(new_skb, (1664 + RX_OFFSET));
622 rxb = (struct ioc3_erxbuf *) new_skb->data;
623 skb_reserve(new_skb, RX_OFFSET);
624
625 ip->stats.rx_packets++; /* Statistics */
626 ip->stats.rx_bytes += len;
627 } else {
628 /* The frame is invalid and the skb never
629 reached the network layer so we can just
630 recycle it. */
631 new_skb = skb;
632 ip->stats.rx_errors++;
633 }
634 if (err & ERXBUF_CRCERR) /* Statistics */
635 ip->stats.rx_crc_errors++;
636 if (err & ERXBUF_FRAMERR)
637 ip->stats.rx_frame_errors++;
638 next:
639 ip->rx_skbs[n_entry] = new_skb;
640 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
641 rxb->w0 = 0; /* Clear valid flag */
642 n_entry = (n_entry + 1) & 511; /* Update erpir */
643
644 /* Now go on to the next ring entry. */
645 rx_entry = (rx_entry + 1) & 511;
646 skb = ip->rx_skbs[rx_entry];
647 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
648 w0 = be32_to_cpu(rxb->w0);
649 }
650 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
651 ip->rx_pi = n_entry;
652 ip->rx_ci = rx_entry;
653 }
654
655 static inline void ioc3_tx(struct ioc3_private *ip)
656 {
657 unsigned long packets, bytes;
658 struct ioc3 *ioc3 = ip->regs;
659 int tx_entry, o_entry;
660 struct sk_buff *skb;
661 u32 etcir;
662
663 spin_lock(&ip->ioc3_lock);
664 etcir = ioc3_r_etcir();
665
666 tx_entry = (etcir >> 7) & 127;
667 o_entry = ip->tx_ci;
668 packets = 0;
669 bytes = 0;
670
671 while (o_entry != tx_entry) {
672 packets++;
673 skb = ip->tx_skbs[o_entry];
674 bytes += skb->len;
675 dev_kfree_skb_irq(skb);
676 ip->tx_skbs[o_entry] = NULL;
677
678 o_entry = (o_entry + 1) & 127; /* Next */
679
680 etcir = ioc3_r_etcir(); /* More pkts sent? */
681 tx_entry = (etcir >> 7) & 127;
682 }
683
684 ip->stats.tx_packets += packets;
685 ip->stats.tx_bytes += bytes;
686 ip->txqlen -= packets;
687
688 if (ip->txqlen < 128)
689 netif_wake_queue(priv_netdev(ip));
690
691 ip->tx_ci = o_entry;
692 spin_unlock(&ip->ioc3_lock);
693 }
694
695 /*
696 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
697 * software problems, so we should try to recover
698 * more gracefully if this ever happens. In theory we might be flooded
699 * with such error interrupts if something really goes wrong, so we might
700 * also consider to take the interface down.
701 */
702 static void ioc3_error(struct ioc3_private *ip, u32 eisr)
703 {
704 struct net_device *dev = priv_netdev(ip);
705 unsigned char *iface = dev->name;
706
707 spin_lock(&ip->ioc3_lock);
708
709 if (eisr & EISR_RXOFLO)
710 printk(KERN_ERR "%s: RX overflow.\n", iface);
711 if (eisr & EISR_RXBUFOFLO)
712 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
713 if (eisr & EISR_RXMEMERR)
714 printk(KERN_ERR "%s: RX PCI error.\n", iface);
715 if (eisr & EISR_RXPARERR)
716 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
717 if (eisr & EISR_TXBUFUFLO)
718 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
719 if (eisr & EISR_TXMEMERR)
720 printk(KERN_ERR "%s: TX PCI error.\n", iface);
721
722 ioc3_stop(ip);
723 ioc3_init(dev);
724 ioc3_mii_init(ip);
725
726 netif_wake_queue(dev);
727
728 spin_unlock(&ip->ioc3_lock);
729 }
730
731 /* The interrupt handler does all of the Rx thread work and cleans up
732 after the Tx thread. */
733 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
734 {
735 struct net_device *dev = (struct net_device *)_dev;
736 struct ioc3_private *ip = netdev_priv(dev);
737 struct ioc3 *ioc3 = ip->regs;
738 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
739 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
740 EISR_TXEXPLICIT | EISR_TXMEMERR;
741 u32 eisr;
742
743 eisr = ioc3_r_eisr() & enabled;
744
745 ioc3_w_eisr(eisr);
746 (void) ioc3_r_eisr(); /* Flush */
747
748 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
749 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
750 ioc3_error(ip, eisr);
751 if (eisr & EISR_RXTIMERINT)
752 ioc3_rx(ip);
753 if (eisr & EISR_TXEXPLICIT)
754 ioc3_tx(ip);
755
756 return IRQ_HANDLED;
757 }
758
759 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
760 {
761 struct ioc3 *ioc3 = ip->regs;
762
763 if (ip->mii.full_duplex) {
764 ioc3_w_etcsr(ETCSR_FD);
765 ip->emcr |= EMCR_DUPLEX;
766 } else {
767 ioc3_w_etcsr(ETCSR_HD);
768 ip->emcr &= ~EMCR_DUPLEX;
769 }
770 ioc3_w_emcr(ip->emcr);
771 }
772
773 static void ioc3_timer(unsigned long data)
774 {
775 struct ioc3_private *ip = (struct ioc3_private *) data;
776
777 /* Print the link status if it has changed */
778 mii_check_media(&ip->mii, 1, 0);
779 ioc3_setup_duplex(ip);
780
781 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
782 add_timer(&ip->ioc3_timer);
783 }
784
785 /*
786 * Try to find a PHY. There is no apparent relation between the MII addresses
787 * in the SGI documentation and what we find in reality, so we simply probe
788 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
789 * onboard IOC3s has the special oddity that probing doesn't seem to find it
790 * yet the interface seems to work fine, so if probing fails we for now will
791 * simply default to PHY 31 instead of bailing out.
792 */
793 static int ioc3_mii_init(struct ioc3_private *ip)
794 {
795 struct net_device *dev = priv_netdev(ip);
796 int i, found = 0, res = 0;
797 int ioc3_phy_workaround = 1;
798 u16 word;
799
800 for (i = 0; i < 32; i++) {
801 word = ioc3_mdio_read(dev, i, MII_PHYSID1);
802
803 if (word != 0xffff && word != 0x0000) {
804 found = 1;
805 break; /* Found a PHY */
806 }
807 }
808
809 if (!found) {
810 if (ioc3_phy_workaround)
811 i = 31;
812 else {
813 ip->mii.phy_id = -1;
814 res = -ENODEV;
815 goto out;
816 }
817 }
818
819 ip->mii.phy_id = i;
820
821 out:
822 return res;
823 }
824
825 static void ioc3_mii_start(struct ioc3_private *ip)
826 {
827 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
828 ip->ioc3_timer.data = (unsigned long) ip;
829 ip->ioc3_timer.function = &ioc3_timer;
830 add_timer(&ip->ioc3_timer);
831 }
832
833 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
834 {
835 struct sk_buff *skb;
836 int i;
837
838 for (i = ip->rx_ci; i & 15; i++) {
839 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
840 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
841 }
842 ip->rx_pi &= 511;
843 ip->rx_ci &= 511;
844
845 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
846 struct ioc3_erxbuf *rxb;
847 skb = ip->rx_skbs[i];
848 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
849 rxb->w0 = 0;
850 }
851 }
852
853 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
854 {
855 struct sk_buff *skb;
856 int i;
857
858 for (i=0; i < 128; i++) {
859 skb = ip->tx_skbs[i];
860 if (skb) {
861 ip->tx_skbs[i] = NULL;
862 dev_kfree_skb_any(skb);
863 }
864 ip->txr[i].cmd = 0;
865 }
866 ip->tx_pi = 0;
867 ip->tx_ci = 0;
868 }
869
870 static void ioc3_free_rings(struct ioc3_private *ip)
871 {
872 struct sk_buff *skb;
873 int rx_entry, n_entry;
874
875 if (ip->txr) {
876 ioc3_clean_tx_ring(ip);
877 free_pages((unsigned long)ip->txr, 2);
878 ip->txr = NULL;
879 }
880
881 if (ip->rxr) {
882 n_entry = ip->rx_ci;
883 rx_entry = ip->rx_pi;
884
885 while (n_entry != rx_entry) {
886 skb = ip->rx_skbs[n_entry];
887 if (skb)
888 dev_kfree_skb_any(skb);
889
890 n_entry = (n_entry + 1) & 511;
891 }
892 free_page((unsigned long)ip->rxr);
893 ip->rxr = NULL;
894 }
895 }
896
897 static void ioc3_alloc_rings(struct net_device *dev)
898 {
899 struct ioc3_private *ip = netdev_priv(dev);
900 struct ioc3_erxbuf *rxb;
901 unsigned long *rxr;
902 int i;
903
904 if (ip->rxr == NULL) {
905 /* Allocate and initialize rx ring. 4kb = 512 entries */
906 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
907 rxr = (unsigned long *) ip->rxr;
908 if (!rxr)
909 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
910
911 /* Now the rx buffers. The RX ring may be larger but
912 we only allocate 16 buffers for now. Need to tune
913 this for performance and memory later. */
914 for (i = 0; i < RX_BUFFS; i++) {
915 struct sk_buff *skb;
916
917 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
918 if (!skb) {
919 show_free_areas();
920 continue;
921 }
922
923 ip->rx_skbs[i] = skb;
924
925 /* Because we reserve afterwards. */
926 skb_put(skb, (1664 + RX_OFFSET));
927 rxb = (struct ioc3_erxbuf *) skb->data;
928 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
929 skb_reserve(skb, RX_OFFSET);
930 }
931 ip->rx_ci = 0;
932 ip->rx_pi = RX_BUFFS;
933 }
934
935 if (ip->txr == NULL) {
936 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
937 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
938 if (!ip->txr)
939 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
940 ip->tx_pi = 0;
941 ip->tx_ci = 0;
942 }
943 }
944
945 static void ioc3_init_rings(struct net_device *dev)
946 {
947 struct ioc3_private *ip = netdev_priv(dev);
948 struct ioc3 *ioc3 = ip->regs;
949 unsigned long ring;
950
951 ioc3_free_rings(ip);
952 ioc3_alloc_rings(dev);
953
954 ioc3_clean_rx_ring(ip);
955 ioc3_clean_tx_ring(ip);
956
957 /* Now the rx ring base, consume & produce registers. */
958 ring = ioc3_map(ip->rxr, 0);
959 ioc3_w_erbr_h(ring >> 32);
960 ioc3_w_erbr_l(ring & 0xffffffff);
961 ioc3_w_ercir(ip->rx_ci << 3);
962 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
963
964 ring = ioc3_map(ip->txr, 0);
965
966 ip->txqlen = 0; /* nothing queued */
967
968 /* Now the tx ring base, consume & produce registers. */
969 ioc3_w_etbr_h(ring >> 32);
970 ioc3_w_etbr_l(ring & 0xffffffff);
971 ioc3_w_etpir(ip->tx_pi << 7);
972 ioc3_w_etcir(ip->tx_ci << 7);
973 (void) ioc3_r_etcir(); /* Flush */
974 }
975
976 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
977 {
978 struct ioc3 *ioc3 = ip->regs;
979 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
980 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
981 unsigned int pattern = 0x5555;
982
983 /* Assume the larger size SSRAM and enable parity checking */
984 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
985
986 *ssram0 = pattern;
987 *ssram1 = ~pattern & IOC3_SSRAM_DM;
988
989 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
990 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
991 /* set ssram size to 64 KB */
992 ip->emcr = EMCR_RAMPAR;
993 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
994 } else
995 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
996 }
997
998 static void ioc3_init(struct net_device *dev)
999 {
1000 struct ioc3_private *ip = netdev_priv(dev);
1001 struct ioc3 *ioc3 = ip->regs;
1002
1003 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
1004
1005 ioc3_w_emcr(EMCR_RST); /* Reset */
1006 (void) ioc3_r_emcr(); /* Flush WB */
1007 udelay(4); /* Give it time ... */
1008 ioc3_w_emcr(0);
1009 (void) ioc3_r_emcr();
1010
1011 /* Misc registers */
1012 #ifdef CONFIG_SGI_IP27
1013 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1014 #else
1015 ioc3_w_erbar(0); /* Let PCI API get it right */
1016 #endif
1017 (void) ioc3_r_etcdc(); /* Clear on read */
1018 ioc3_w_ercsr(15); /* RX low watermark */
1019 ioc3_w_ertr(0); /* Interrupt immediately */
1020 __ioc3_set_mac_address(dev);
1021 ioc3_w_ehar_h(ip->ehar_h);
1022 ioc3_w_ehar_l(ip->ehar_l);
1023 ioc3_w_ersr(42); /* XXX should be random */
1024
1025 ioc3_init_rings(dev);
1026
1027 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1028 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1029 ioc3_w_emcr(ip->emcr);
1030 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1031 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1032 EISR_TXEXPLICIT | EISR_TXMEMERR);
1033 (void) ioc3_r_eier();
1034 }
1035
1036 static inline void ioc3_stop(struct ioc3_private *ip)
1037 {
1038 struct ioc3 *ioc3 = ip->regs;
1039
1040 ioc3_w_emcr(0); /* Shutup */
1041 ioc3_w_eier(0); /* Disable interrupts */
1042 (void) ioc3_r_eier(); /* Flush */
1043 }
1044
1045 static int ioc3_open(struct net_device *dev)
1046 {
1047 struct ioc3_private *ip = netdev_priv(dev);
1048
1049 if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1050 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1051
1052 return -EAGAIN;
1053 }
1054
1055 ip->ehar_h = 0;
1056 ip->ehar_l = 0;
1057 ioc3_init(dev);
1058 ioc3_mii_start(ip);
1059
1060 netif_start_queue(dev);
1061 return 0;
1062 }
1063
1064 static int ioc3_close(struct net_device *dev)
1065 {
1066 struct ioc3_private *ip = netdev_priv(dev);
1067
1068 del_timer_sync(&ip->ioc3_timer);
1069
1070 netif_stop_queue(dev);
1071
1072 ioc3_stop(ip);
1073 free_irq(dev->irq, dev);
1074
1075 ioc3_free_rings(ip);
1076 return 0;
1077 }
1078
1079 /*
1080 * MENET cards have four IOC3 chips, which are attached to two sets of
1081 * PCI slot resources each: the primary connections are on slots
1082 * 0..3 and the secondaries are on 4..7
1083 *
1084 * All four ethernets are brought out to connectors; six serial ports
1085 * (a pair from each of the first three IOC3s) are brought out to
1086 * MiniDINs; all other subdevices are left swinging in the wind, leave
1087 * them disabled.
1088 */
1089
1090 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1091 {
1092 struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1093 int ret = 0;
1094
1095 if (dev) {
1096 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1097 dev->device == PCI_DEVICE_ID_SGI_IOC3)
1098 ret = 1;
1099 pci_dev_put(dev);
1100 }
1101
1102 return ret;
1103 }
1104
1105 static int ioc3_is_menet(struct pci_dev *pdev)
1106 {
1107 return pdev->bus->parent == NULL &&
1108 ioc3_adjacent_is_ioc3(pdev, 0) &&
1109 ioc3_adjacent_is_ioc3(pdev, 1) &&
1110 ioc3_adjacent_is_ioc3(pdev, 2);
1111 }
1112
1113 #ifdef CONFIG_SERIAL_8250
1114 /*
1115 * Note about serial ports and consoles:
1116 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1117 * connected to the master node (look in ip27_setup_console() and
1118 * ip27prom_console_write()).
1119 *
1120 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1121 * addresses on a partitioned machine. Since we currently use the ioc3
1122 * serial ports, we use dynamic serial port discovery that the serial.c
1123 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1124 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1125 * than UARTB's, although UARTA on o200s has traditionally been known as
1126 * port 0. So, we just use one serial port from each ioc3 (since the
1127 * serial driver adds addresses to get to higher ports).
1128 *
1129 * The first one to do a register_console becomes the preferred console
1130 * (if there is no kernel command line console= directive). /dev/console
1131 * (ie 5, 1) is then "aliased" into the device number returned by the
1132 * "device" routine referred to in this console structure
1133 * (ip27prom_console_dev).
1134 *
1135 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1136 * around ioc3 oddities in this respect.
1137 *
1138 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1139 * can be programmed in the SCR register if the DLAB bit is set.
1140 *
1141 * Register to interrupt zero because we share the interrupt with
1142 * the serial driver which we don't properly support yet.
1143 *
1144 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1145 * registered.
1146 */
1147 static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1148 {
1149 #define COSMISC_CONSTANT 6
1150
1151 struct uart_port port = {
1152 .irq = 0,
1153 .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1154 .iotype = UPIO_MEM,
1155 .regshift = 0,
1156 .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1157
1158 .membase = (unsigned char __iomem *) uart,
1159 .mapbase = (unsigned long) uart,
1160 };
1161 unsigned char lcr;
1162
1163 lcr = uart->iu_lcr;
1164 uart->iu_lcr = lcr | UART_LCR_DLAB;
1165 uart->iu_scr = COSMISC_CONSTANT,
1166 uart->iu_lcr = lcr;
1167 uart->iu_lcr;
1168 serial8250_register_port(&port);
1169 }
1170
1171 static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1172 {
1173 /*
1174 * We need to recognice and treat the fourth MENET serial as it
1175 * does not have an SuperIO chip attached to it, therefore attempting
1176 * to access it will result in bus errors. We call something an
1177 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1178 * in it. This is paranoid but we want to avoid blowing up on a
1179 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1180 * not paranoid enough ...
1181 */
1182 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1183 return;
1184
1185 /*
1186 * Switch IOC3 to PIO mode. It probably already was but let's be
1187 * paranoid
1188 */
1189 ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1190 ioc3->gpcr_s;
1191 ioc3->gppr_6 = 0;
1192 ioc3->gppr_6;
1193 ioc3->gppr_7 = 0;
1194 ioc3->gppr_7;
1195 ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1196 ioc3->sscr_a;
1197 ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1198 ioc3->sscr_b;
1199 /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1200 ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1201 SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1202 SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1203 SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1204 ioc3->sio_iec |= SIO_IR_SA_INT;
1205 ioc3->sscr_a = 0;
1206 ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1207 SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1208 SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1209 SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1210 ioc3->sio_iec |= SIO_IR_SB_INT;
1211 ioc3->sscr_b = 0;
1212
1213 ioc3_8250_register(&ioc3->sregs.uarta);
1214 ioc3_8250_register(&ioc3->sregs.uartb);
1215 }
1216 #endif
1217
1218 static const struct net_device_ops ioc3_netdev_ops = {
1219 .ndo_open = ioc3_open,
1220 .ndo_stop = ioc3_close,
1221 .ndo_start_xmit = ioc3_start_xmit,
1222 .ndo_tx_timeout = ioc3_timeout,
1223 .ndo_get_stats = ioc3_get_stats,
1224 .ndo_set_multicast_list = ioc3_set_multicast_list,
1225 .ndo_do_ioctl = ioc3_ioctl,
1226 .ndo_validate_addr = eth_validate_addr,
1227 .ndo_set_mac_address = ioc3_set_mac_address,
1228 .ndo_change_mtu = eth_change_mtu,
1229 };
1230
1231 static int __devinit ioc3_probe(struct pci_dev *pdev,
1232 const struct pci_device_id *ent)
1233 {
1234 unsigned int sw_physid1, sw_physid2;
1235 struct net_device *dev = NULL;
1236 struct ioc3_private *ip;
1237 struct ioc3 *ioc3;
1238 unsigned long ioc3_base, ioc3_size;
1239 u32 vendor, model, rev;
1240 int err, pci_using_dac;
1241
1242 /* Configure DMA attributes. */
1243 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1244 if (!err) {
1245 pci_using_dac = 1;
1246 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1247 if (err < 0) {
1248 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1249 "for consistent allocations\n", pci_name(pdev));
1250 goto out;
1251 }
1252 } else {
1253 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1254 if (err) {
1255 printk(KERN_ERR "%s: No usable DMA configuration, "
1256 "aborting.\n", pci_name(pdev));
1257 goto out;
1258 }
1259 pci_using_dac = 0;
1260 }
1261
1262 if (pci_enable_device(pdev))
1263 return -ENODEV;
1264
1265 dev = alloc_etherdev(sizeof(struct ioc3_private));
1266 if (!dev) {
1267 err = -ENOMEM;
1268 goto out_disable;
1269 }
1270
1271 if (pci_using_dac)
1272 dev->features |= NETIF_F_HIGHDMA;
1273
1274 err = pci_request_regions(pdev, "ioc3");
1275 if (err)
1276 goto out_free;
1277
1278 SET_NETDEV_DEV(dev, &pdev->dev);
1279
1280 ip = netdev_priv(dev);
1281
1282 dev->irq = pdev->irq;
1283
1284 ioc3_base = pci_resource_start(pdev, 0);
1285 ioc3_size = pci_resource_len(pdev, 0);
1286 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1287 if (!ioc3) {
1288 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1289 pci_name(pdev));
1290 err = -ENOMEM;
1291 goto out_res;
1292 }
1293 ip->regs = ioc3;
1294
1295 #ifdef CONFIG_SERIAL_8250
1296 ioc3_serial_probe(pdev, ioc3);
1297 #endif
1298
1299 spin_lock_init(&ip->ioc3_lock);
1300 init_timer(&ip->ioc3_timer);
1301
1302 ioc3_stop(ip);
1303 ioc3_init(dev);
1304
1305 ip->pdev = pdev;
1306
1307 ip->mii.phy_id_mask = 0x1f;
1308 ip->mii.reg_num_mask = 0x1f;
1309 ip->mii.dev = dev;
1310 ip->mii.mdio_read = ioc3_mdio_read;
1311 ip->mii.mdio_write = ioc3_mdio_write;
1312
1313 ioc3_mii_init(ip);
1314
1315 if (ip->mii.phy_id == -1) {
1316 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1317 pci_name(pdev));
1318 err = -ENODEV;
1319 goto out_stop;
1320 }
1321
1322 ioc3_mii_start(ip);
1323 ioc3_ssram_disc(ip);
1324 ioc3_get_eaddr(ip);
1325
1326 /* The IOC3-specific entries in the device structure. */
1327 dev->watchdog_timeo = 5 * HZ;
1328 dev->netdev_ops = &ioc3_netdev_ops;
1329 dev->ethtool_ops = &ioc3_ethtool_ops;
1330 dev->features = NETIF_F_IP_CSUM;
1331
1332 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1333 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1334
1335 err = register_netdev(dev);
1336 if (err)
1337 goto out_stop;
1338
1339 mii_check_media(&ip->mii, 1, 1);
1340 ioc3_setup_duplex(ip);
1341
1342 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1343 model = (sw_physid2 >> 4) & 0x3f;
1344 rev = sw_physid2 & 0xf;
1345 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1346 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1347 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1348 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1349
1350 return 0;
1351
1352 out_stop:
1353 ioc3_stop(ip);
1354 del_timer_sync(&ip->ioc3_timer);
1355 ioc3_free_rings(ip);
1356 out_res:
1357 pci_release_regions(pdev);
1358 out_free:
1359 free_netdev(dev);
1360 out_disable:
1361 /*
1362 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1363 * such a weird device ...
1364 */
1365 out:
1366 return err;
1367 }
1368
1369 static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1370 {
1371 struct net_device *dev = pci_get_drvdata(pdev);
1372 struct ioc3_private *ip = netdev_priv(dev);
1373 struct ioc3 *ioc3 = ip->regs;
1374
1375 unregister_netdev(dev);
1376 del_timer_sync(&ip->ioc3_timer);
1377
1378 iounmap(ioc3);
1379 pci_release_regions(pdev);
1380 free_netdev(dev);
1381 /*
1382 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1383 * such a weird device ...
1384 */
1385 }
1386
1387 static DEFINE_PCI_DEVICE_TABLE(ioc3_pci_tbl) = {
1388 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1389 { 0 }
1390 };
1391 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1392
1393 static struct pci_driver ioc3_driver = {
1394 .name = "ioc3-eth",
1395 .id_table = ioc3_pci_tbl,
1396 .probe = ioc3_probe,
1397 .remove = __devexit_p(ioc3_remove_one),
1398 };
1399
1400 static int __init ioc3_init_module(void)
1401 {
1402 return pci_register_driver(&ioc3_driver);
1403 }
1404
1405 static void __exit ioc3_cleanup_module(void)
1406 {
1407 pci_unregister_driver(&ioc3_driver);
1408 }
1409
1410 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1411 {
1412 unsigned long data;
1413 struct ioc3_private *ip = netdev_priv(dev);
1414 struct ioc3 *ioc3 = ip->regs;
1415 unsigned int len;
1416 struct ioc3_etxd *desc;
1417 uint32_t w0 = 0;
1418 int produce;
1419
1420 /*
1421 * IOC3 has a fairly simple minded checksumming hardware which simply
1422 * adds up the 1's complement checksum for the entire packet and
1423 * inserts it at an offset which can be specified in the descriptor
1424 * into the transmit packet. This means we have to compensate for the
1425 * MAC header which should not be summed and the TCP/UDP pseudo headers
1426 * manually.
1427 */
1428 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1429 const struct iphdr *ih = ip_hdr(skb);
1430 const int proto = ntohs(ih->protocol);
1431 unsigned int csoff;
1432 uint32_t csum, ehsum;
1433 uint16_t *eh;
1434
1435 /* The MAC header. skb->mac seem the logic approach
1436 to find the MAC header - except it's a NULL pointer ... */
1437 eh = (uint16_t *) skb->data;
1438
1439 /* Sum up dest addr, src addr and protocol */
1440 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1441
1442 /* Fold ehsum. can't use csum_fold which negates also ... */
1443 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1444 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1445
1446 /* Skip IP header; it's sum is always zero and was
1447 already filled in by ip_output.c */
1448 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1449 ih->tot_len - (ih->ihl << 2),
1450 proto, 0xffff ^ ehsum);
1451
1452 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1453 csum = (csum & 0xffff) + (csum >> 16);
1454
1455 csoff = ETH_HLEN + (ih->ihl << 2);
1456 if (proto == IPPROTO_UDP) {
1457 csoff += offsetof(struct udphdr, check);
1458 udp_hdr(skb)->check = csum;
1459 }
1460 if (proto == IPPROTO_TCP) {
1461 csoff += offsetof(struct tcphdr, check);
1462 tcp_hdr(skb)->check = csum;
1463 }
1464
1465 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1466 }
1467
1468 spin_lock_irq(&ip->ioc3_lock);
1469
1470 data = (unsigned long) skb->data;
1471 len = skb->len;
1472
1473 produce = ip->tx_pi;
1474 desc = &ip->txr[produce];
1475
1476 if (len <= 104) {
1477 /* Short packet, let's copy it directly into the ring. */
1478 skb_copy_from_linear_data(skb, desc->data, skb->len);
1479 if (len < ETH_ZLEN) {
1480 /* Very short packet, pad with zeros at the end. */
1481 memset(desc->data + len, 0, ETH_ZLEN - len);
1482 len = ETH_ZLEN;
1483 }
1484 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1485 desc->bufcnt = cpu_to_be32(len);
1486 } else if ((data ^ (data + len - 1)) & 0x4000) {
1487 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1488 unsigned long s1 = b2 - data;
1489 unsigned long s2 = data + len - b2;
1490
1491 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1492 ETXD_B1V | ETXD_B2V | w0);
1493 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1494 (s2 << ETXD_B2CNT_SHIFT));
1495 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1496 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1497 } else {
1498 /* Normal sized packet that doesn't cross a page boundary. */
1499 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1500 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1501 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1502 }
1503
1504 BARRIER();
1505
1506 dev->trans_start = jiffies;
1507 ip->tx_skbs[produce] = skb; /* Remember skb */
1508 produce = (produce + 1) & 127;
1509 ip->tx_pi = produce;
1510 ioc3_w_etpir(produce << 7); /* Fire ... */
1511
1512 ip->txqlen++;
1513
1514 if (ip->txqlen >= 127)
1515 netif_stop_queue(dev);
1516
1517 spin_unlock_irq(&ip->ioc3_lock);
1518
1519 return NETDEV_TX_OK;
1520 }
1521
1522 static void ioc3_timeout(struct net_device *dev)
1523 {
1524 struct ioc3_private *ip = netdev_priv(dev);
1525
1526 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1527
1528 spin_lock_irq(&ip->ioc3_lock);
1529
1530 ioc3_stop(ip);
1531 ioc3_init(dev);
1532 ioc3_mii_init(ip);
1533 ioc3_mii_start(ip);
1534
1535 spin_unlock_irq(&ip->ioc3_lock);
1536
1537 netif_wake_queue(dev);
1538 }
1539
1540 /*
1541 * Given a multicast ethernet address, this routine calculates the
1542 * address's bit index in the logical address filter mask
1543 */
1544
1545 static inline unsigned int ioc3_hash(const unsigned char *addr)
1546 {
1547 unsigned int temp = 0;
1548 u32 crc;
1549 int bits;
1550
1551 crc = ether_crc_le(ETH_ALEN, addr);
1552
1553 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1554 for (bits = 6; --bits >= 0; ) {
1555 temp <<= 1;
1556 temp |= (crc & 0x1);
1557 crc >>= 1;
1558 }
1559
1560 return temp;
1561 }
1562
1563 static void ioc3_get_drvinfo (struct net_device *dev,
1564 struct ethtool_drvinfo *info)
1565 {
1566 struct ioc3_private *ip = netdev_priv(dev);
1567
1568 strcpy (info->driver, IOC3_NAME);
1569 strcpy (info->version, IOC3_VERSION);
1570 strcpy (info->bus_info, pci_name(ip->pdev));
1571 }
1572
1573 static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1574 {
1575 struct ioc3_private *ip = netdev_priv(dev);
1576 int rc;
1577
1578 spin_lock_irq(&ip->ioc3_lock);
1579 rc = mii_ethtool_gset(&ip->mii, cmd);
1580 spin_unlock_irq(&ip->ioc3_lock);
1581
1582 return rc;
1583 }
1584
1585 static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1586 {
1587 struct ioc3_private *ip = netdev_priv(dev);
1588 int rc;
1589
1590 spin_lock_irq(&ip->ioc3_lock);
1591 rc = mii_ethtool_sset(&ip->mii, cmd);
1592 spin_unlock_irq(&ip->ioc3_lock);
1593
1594 return rc;
1595 }
1596
1597 static int ioc3_nway_reset(struct net_device *dev)
1598 {
1599 struct ioc3_private *ip = netdev_priv(dev);
1600 int rc;
1601
1602 spin_lock_irq(&ip->ioc3_lock);
1603 rc = mii_nway_restart(&ip->mii);
1604 spin_unlock_irq(&ip->ioc3_lock);
1605
1606 return rc;
1607 }
1608
1609 static u32 ioc3_get_link(struct net_device *dev)
1610 {
1611 struct ioc3_private *ip = netdev_priv(dev);
1612 int rc;
1613
1614 spin_lock_irq(&ip->ioc3_lock);
1615 rc = mii_link_ok(&ip->mii);
1616 spin_unlock_irq(&ip->ioc3_lock);
1617
1618 return rc;
1619 }
1620
1621 static u32 ioc3_get_rx_csum(struct net_device *dev)
1622 {
1623 struct ioc3_private *ip = netdev_priv(dev);
1624
1625 return ip->flags & IOC3_FLAG_RX_CHECKSUMS;
1626 }
1627
1628 static int ioc3_set_rx_csum(struct net_device *dev, u32 data)
1629 {
1630 struct ioc3_private *ip = netdev_priv(dev);
1631
1632 spin_lock_bh(&ip->ioc3_lock);
1633 if (data)
1634 ip->flags |= IOC3_FLAG_RX_CHECKSUMS;
1635 else
1636 ip->flags &= ~IOC3_FLAG_RX_CHECKSUMS;
1637 spin_unlock_bh(&ip->ioc3_lock);
1638
1639 return 0;
1640 }
1641
1642 static const struct ethtool_ops ioc3_ethtool_ops = {
1643 .get_drvinfo = ioc3_get_drvinfo,
1644 .get_settings = ioc3_get_settings,
1645 .set_settings = ioc3_set_settings,
1646 .nway_reset = ioc3_nway_reset,
1647 .get_link = ioc3_get_link,
1648 .get_rx_csum = ioc3_get_rx_csum,
1649 .set_rx_csum = ioc3_set_rx_csum,
1650 .get_tx_csum = ethtool_op_get_tx_csum,
1651 .set_tx_csum = ethtool_op_set_tx_csum
1652 };
1653
1654 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1655 {
1656 struct ioc3_private *ip = netdev_priv(dev);
1657 int rc;
1658
1659 spin_lock_irq(&ip->ioc3_lock);
1660 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1661 spin_unlock_irq(&ip->ioc3_lock);
1662
1663 return rc;
1664 }
1665
1666 static void ioc3_set_multicast_list(struct net_device *dev)
1667 {
1668 struct dev_mc_list *dmi;
1669 struct ioc3_private *ip = netdev_priv(dev);
1670 struct ioc3 *ioc3 = ip->regs;
1671 u64 ehar = 0;
1672
1673 netif_stop_queue(dev); /* Lock out others. */
1674
1675 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1676 ip->emcr |= EMCR_PROMISC;
1677 ioc3_w_emcr(ip->emcr);
1678 (void) ioc3_r_emcr();
1679 } else {
1680 ip->emcr &= ~EMCR_PROMISC;
1681 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1682 (void) ioc3_r_emcr();
1683
1684 if ((dev->flags & IFF_ALLMULTI) ||
1685 (netdev_mc_count(dev) > 64)) {
1686 /* Too many for hashing to make sense or we want all
1687 multicast packets anyway, so skip computing all the
1688 hashes and just accept all packets. */
1689 ip->ehar_h = 0xffffffff;
1690 ip->ehar_l = 0xffffffff;
1691 } else {
1692 netdev_for_each_mc_addr(dmi, dev) {
1693 char *addr = dmi->dmi_addr;
1694
1695 if (!(*addr & 1))
1696 continue;
1697
1698 ehar |= (1UL << ioc3_hash(addr));
1699 }
1700 ip->ehar_h = ehar >> 32;
1701 ip->ehar_l = ehar & 0xffffffff;
1702 }
1703 ioc3_w_ehar_h(ip->ehar_h);
1704 ioc3_w_ehar_l(ip->ehar_l);
1705 }
1706
1707 netif_wake_queue(dev); /* Let us get going again. */
1708 }
1709
1710 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1711 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1712 MODULE_LICENSE("GPL");
1713
1714 module_init(ioc3_init_module);
1715 module_exit(ioc3_cleanup_module);