]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/irda/sa1100_ir.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / drivers / net / irda / sa1100_ir.c
1 /*
2 * linux/drivers/net/irda/sa1100_ir.c
3 *
4 * Copyright (C) 2000-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Infra-red driver for the StrongARM SA1100 embedded microprocessor
11 *
12 * Note that we don't have to worry about the SA1111's DMA bugs in here,
13 * so we use the straight forward dma_map_* functions with a null pointer.
14 *
15 * This driver takes one kernel command line parameter, sa1100ir=, with
16 * the following options:
17 * max_rate:baudrate - set the maximum baud rate
18 * power_leve:level - set the transmitter power level
19 * tx_lpm:0|1 - set transmit low power mode
20 */
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/netdevice.h>
28 #include <linux/slab.h>
29 #include <linux/rtnetlink.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34
35 #include <net/irda/irda.h>
36 #include <net/irda/wrapper.h>
37 #include <net/irda/irda_device.h>
38
39 #include <asm/irq.h>
40 #include <asm/dma.h>
41 #include <asm/hardware.h>
42 #include <asm/mach/irda.h>
43
44 static int power_level = 3;
45 static int tx_lpm;
46 static int max_rate = 4000000;
47
48 struct sa1100_irda {
49 unsigned char hscr0;
50 unsigned char utcr4;
51 unsigned char power;
52 unsigned char open;
53
54 int speed;
55 int newspeed;
56
57 struct sk_buff *txskb;
58 struct sk_buff *rxskb;
59 dma_addr_t txbuf_dma;
60 dma_addr_t rxbuf_dma;
61 dma_regs_t *txdma;
62 dma_regs_t *rxdma;
63
64 struct net_device_stats stats;
65 struct device *dev;
66 struct irda_platform_data *pdata;
67 struct irlap_cb *irlap;
68 struct qos_info qos;
69
70 iobuff_t tx_buff;
71 iobuff_t rx_buff;
72 };
73
74 #define IS_FIR(si) ((si)->speed >= 4000000)
75
76 #define HPSIR_MAX_RXLEN 2047
77
78 /*
79 * Allocate and map the receive buffer, unless it is already allocated.
80 */
81 static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
82 {
83 if (si->rxskb)
84 return 0;
85
86 si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
87
88 if (!si->rxskb) {
89 printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
90 return -ENOMEM;
91 }
92
93 /*
94 * Align any IP headers that may be contained
95 * within the frame.
96 */
97 skb_reserve(si->rxskb, 1);
98
99 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
100 HPSIR_MAX_RXLEN,
101 DMA_FROM_DEVICE);
102 return 0;
103 }
104
105 /*
106 * We want to get here as soon as possible, and get the receiver setup.
107 * We use the existing buffer.
108 */
109 static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
110 {
111 if (!si->rxskb) {
112 printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
113 return;
114 }
115
116 /*
117 * First empty receive FIFO
118 */
119 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
120
121 /*
122 * Enable the DMA, receiver and receive interrupt.
123 */
124 sa1100_clear_dma(si->rxdma);
125 sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
126 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
127 }
128
129 /*
130 * Set the IrDA communications speed.
131 */
132 static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
133 {
134 unsigned long flags;
135 int brd, ret = -EINVAL;
136
137 switch (speed) {
138 case 9600: case 19200: case 38400:
139 case 57600: case 115200:
140 brd = 3686400 / (16 * speed) - 1;
141
142 /*
143 * Stop the receive DMA.
144 */
145 if (IS_FIR(si))
146 sa1100_stop_dma(si->rxdma);
147
148 local_irq_save(flags);
149
150 Ser2UTCR3 = 0;
151 Ser2HSCR0 = HSCR0_UART;
152
153 Ser2UTCR1 = brd >> 8;
154 Ser2UTCR2 = brd;
155
156 /*
157 * Clear status register
158 */
159 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
160 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
161
162 if (si->pdata->set_speed)
163 si->pdata->set_speed(si->dev, speed);
164
165 si->speed = speed;
166
167 local_irq_restore(flags);
168 ret = 0;
169 break;
170
171 case 4000000:
172 local_irq_save(flags);
173
174 si->hscr0 = 0;
175
176 Ser2HSSR0 = 0xff;
177 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
178 Ser2UTCR3 = 0;
179
180 si->speed = speed;
181
182 if (si->pdata->set_speed)
183 si->pdata->set_speed(si->dev, speed);
184
185 sa1100_irda_rx_alloc(si);
186 sa1100_irda_rx_dma_start(si);
187
188 local_irq_restore(flags);
189
190 break;
191
192 default:
193 break;
194 }
195
196 return ret;
197 }
198
199 /*
200 * Control the power state of the IrDA transmitter.
201 * State:
202 * 0 - off
203 * 1 - short range, lowest power
204 * 2 - medium range, medium power
205 * 3 - maximum range, high power
206 *
207 * Currently, only assabet is known to support this.
208 */
209 static int
210 __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
211 {
212 int ret = 0;
213 if (si->pdata->set_power)
214 ret = si->pdata->set_power(si->dev, state);
215 return ret;
216 }
217
218 static inline int
219 sa1100_set_power(struct sa1100_irda *si, unsigned int state)
220 {
221 int ret;
222
223 ret = __sa1100_irda_set_power(si, state);
224 if (ret == 0)
225 si->power = state;
226
227 return ret;
228 }
229
230 static int sa1100_irda_startup(struct sa1100_irda *si)
231 {
232 int ret;
233
234 /*
235 * Ensure that the ports for this device are setup correctly.
236 */
237 if (si->pdata->startup)
238 si->pdata->startup(si->dev);
239
240 /*
241 * Configure PPC for IRDA - we want to drive TXD2 low.
242 * We also want to drive this pin low during sleep.
243 */
244 PPSR &= ~PPC_TXD2;
245 PSDR &= ~PPC_TXD2;
246 PPDR |= PPC_TXD2;
247
248 /*
249 * Enable HP-SIR modulation, and ensure that the port is disabled.
250 */
251 Ser2UTCR3 = 0;
252 Ser2HSCR0 = HSCR0_UART;
253 Ser2UTCR4 = si->utcr4;
254 Ser2UTCR0 = UTCR0_8BitData;
255 Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
256
257 /*
258 * Clear status register
259 */
260 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
261
262 ret = sa1100_irda_set_speed(si, si->speed = 9600);
263 if (ret) {
264 Ser2UTCR3 = 0;
265 Ser2HSCR0 = 0;
266
267 if (si->pdata->shutdown)
268 si->pdata->shutdown(si->dev);
269 }
270
271 return ret;
272 }
273
274 static void sa1100_irda_shutdown(struct sa1100_irda *si)
275 {
276 /*
277 * Stop all DMA activity.
278 */
279 sa1100_stop_dma(si->rxdma);
280 sa1100_stop_dma(si->txdma);
281
282 /* Disable the port. */
283 Ser2UTCR3 = 0;
284 Ser2HSCR0 = 0;
285
286 if (si->pdata->shutdown)
287 si->pdata->shutdown(si->dev);
288 }
289
290 #ifdef CONFIG_PM
291 /*
292 * Suspend the IrDA interface.
293 */
294 static int sa1100_irda_suspend(struct device *_dev, u32 state, u32 level)
295 {
296 struct net_device *dev = dev_get_drvdata(_dev);
297 struct sa1100_irda *si;
298
299 if (!dev || level != SUSPEND_DISABLE)
300 return 0;
301
302 si = dev->priv;
303 if (si->open) {
304 /*
305 * Stop the transmit queue
306 */
307 netif_device_detach(dev);
308 disable_irq(dev->irq);
309 sa1100_irda_shutdown(si);
310 __sa1100_irda_set_power(si, 0);
311 }
312
313 return 0;
314 }
315
316 /*
317 * Resume the IrDA interface.
318 */
319 static int sa1100_irda_resume(struct device *_dev, u32 level)
320 {
321 struct net_device *dev = dev_get_drvdata(_dev);
322 struct sa1100_irda *si;
323
324 if (!dev || level != RESUME_ENABLE)
325 return 0;
326
327 si = dev->priv;
328 if (si->open) {
329 /*
330 * If we missed a speed change, initialise at the new speed
331 * directly. It is debatable whether this is actually
332 * required, but in the interests of continuing from where
333 * we left off it is desireable. The converse argument is
334 * that we should re-negotiate at 9600 baud again.
335 */
336 if (si->newspeed) {
337 si->speed = si->newspeed;
338 si->newspeed = 0;
339 }
340
341 sa1100_irda_startup(si);
342 __sa1100_irda_set_power(si, si->power);
343 enable_irq(dev->irq);
344
345 /*
346 * This automatically wakes up the queue
347 */
348 netif_device_attach(dev);
349 }
350
351 return 0;
352 }
353 #else
354 #define sa1100_irda_suspend NULL
355 #define sa1100_irda_resume NULL
356 #endif
357
358 /*
359 * HP-SIR format interrupt service routines.
360 */
361 static void sa1100_irda_hpsir_irq(struct net_device *dev)
362 {
363 struct sa1100_irda *si = dev->priv;
364 int status;
365
366 status = Ser2UTSR0;
367
368 /*
369 * Deal with any receive errors first. The bytes in error may be
370 * the only bytes in the receive FIFO, so we do this first.
371 */
372 while (status & UTSR0_EIF) {
373 int stat, data;
374
375 stat = Ser2UTSR1;
376 data = Ser2UTDR;
377
378 if (stat & (UTSR1_FRE | UTSR1_ROR)) {
379 si->stats.rx_errors++;
380 if (stat & UTSR1_FRE)
381 si->stats.rx_frame_errors++;
382 if (stat & UTSR1_ROR)
383 si->stats.rx_fifo_errors++;
384 } else
385 async_unwrap_char(dev, &si->stats, &si->rx_buff, data);
386
387 status = Ser2UTSR0;
388 }
389
390 /*
391 * We must clear certain bits.
392 */
393 Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
394
395 if (status & UTSR0_RFS) {
396 /*
397 * There are at least 4 bytes in the FIFO. Read 3 bytes
398 * and leave the rest to the block below.
399 */
400 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
401 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
402 async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
403 }
404
405 if (status & (UTSR0_RFS | UTSR0_RID)) {
406 /*
407 * Fifo contains more than 1 character.
408 */
409 do {
410 async_unwrap_char(dev, &si->stats, &si->rx_buff,
411 Ser2UTDR);
412 } while (Ser2UTSR1 & UTSR1_RNE);
413
414 dev->last_rx = jiffies;
415 }
416
417 if (status & UTSR0_TFS && si->tx_buff.len) {
418 /*
419 * Transmitter FIFO is not full
420 */
421 do {
422 Ser2UTDR = *si->tx_buff.data++;
423 si->tx_buff.len -= 1;
424 } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
425
426 if (si->tx_buff.len == 0) {
427 si->stats.tx_packets++;
428 si->stats.tx_bytes += si->tx_buff.data -
429 si->tx_buff.head;
430
431 /*
432 * We need to ensure that the transmitter has
433 * finished.
434 */
435 do
436 rmb();
437 while (Ser2UTSR1 & UTSR1_TBY);
438
439 /*
440 * Ok, we've finished transmitting. Now enable
441 * the receiver. Sometimes we get a receive IRQ
442 * immediately after a transmit...
443 */
444 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
445 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
446
447 if (si->newspeed) {
448 sa1100_irda_set_speed(si, si->newspeed);
449 si->newspeed = 0;
450 }
451
452 /* I'm hungry! */
453 netif_wake_queue(dev);
454 }
455 }
456 }
457
458 static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
459 {
460 struct sk_buff *skb = si->rxskb;
461 dma_addr_t dma_addr;
462 unsigned int len, stat, data;
463
464 if (!skb) {
465 printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
466 return;
467 }
468
469 /*
470 * Get the current data position.
471 */
472 dma_addr = sa1100_get_dma_pos(si->rxdma);
473 len = dma_addr - si->rxbuf_dma;
474 if (len > HPSIR_MAX_RXLEN)
475 len = HPSIR_MAX_RXLEN;
476 dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
477
478 do {
479 /*
480 * Read Status, and then Data.
481 */
482 stat = Ser2HSSR1;
483 rmb();
484 data = Ser2HSDR;
485
486 if (stat & (HSSR1_CRE | HSSR1_ROR)) {
487 si->stats.rx_errors++;
488 if (stat & HSSR1_CRE)
489 si->stats.rx_crc_errors++;
490 if (stat & HSSR1_ROR)
491 si->stats.rx_frame_errors++;
492 } else
493 skb->data[len++] = data;
494
495 /*
496 * If we hit the end of frame, there's
497 * no point in continuing.
498 */
499 if (stat & HSSR1_EOF)
500 break;
501 } while (Ser2HSSR0 & HSSR0_EIF);
502
503 if (stat & HSSR1_EOF) {
504 si->rxskb = NULL;
505
506 skb_put(skb, len);
507 skb->dev = dev;
508 skb->mac.raw = skb->data;
509 skb->protocol = htons(ETH_P_IRDA);
510 si->stats.rx_packets++;
511 si->stats.rx_bytes += len;
512
513 /*
514 * Before we pass the buffer up, allocate a new one.
515 */
516 sa1100_irda_rx_alloc(si);
517
518 netif_rx(skb);
519 dev->last_rx = jiffies;
520 } else {
521 /*
522 * Remap the buffer.
523 */
524 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
525 HPSIR_MAX_RXLEN,
526 DMA_FROM_DEVICE);
527 }
528 }
529
530 /*
531 * FIR format interrupt service routine. We only have to
532 * handle RX events; transmit events go via the TX DMA handler.
533 *
534 * No matter what, we disable RX, process, and the restart RX.
535 */
536 static void sa1100_irda_fir_irq(struct net_device *dev)
537 {
538 struct sa1100_irda *si = dev->priv;
539
540 /*
541 * Stop RX DMA
542 */
543 sa1100_stop_dma(si->rxdma);
544
545 /*
546 * Framing error - we throw away the packet completely.
547 * Clearing RXE flushes the error conditions and data
548 * from the fifo.
549 */
550 if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
551 si->stats.rx_errors++;
552
553 if (Ser2HSSR0 & HSSR0_FRE)
554 si->stats.rx_frame_errors++;
555
556 /*
557 * Clear out the DMA...
558 */
559 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
560
561 /*
562 * Clear selected status bits now, so we
563 * don't miss them next time around.
564 */
565 Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
566 }
567
568 /*
569 * Deal with any receive errors. The any of the lowest
570 * 8 bytes in the FIFO may contain an error. We must read
571 * them one by one. The "error" could even be the end of
572 * packet!
573 */
574 if (Ser2HSSR0 & HSSR0_EIF)
575 sa1100_irda_fir_error(si, dev);
576
577 /*
578 * No matter what happens, we must restart reception.
579 */
580 sa1100_irda_rx_dma_start(si);
581 }
582
583 static irqreturn_t sa1100_irda_irq(int irq, void *dev_id, struct pt_regs *regs)
584 {
585 struct net_device *dev = dev_id;
586 if (IS_FIR(((struct sa1100_irda *)dev->priv)))
587 sa1100_irda_fir_irq(dev);
588 else
589 sa1100_irda_hpsir_irq(dev);
590 return IRQ_HANDLED;
591 }
592
593 /*
594 * TX DMA completion handler.
595 */
596 static void sa1100_irda_txdma_irq(void *id)
597 {
598 struct net_device *dev = id;
599 struct sa1100_irda *si = dev->priv;
600 struct sk_buff *skb = si->txskb;
601
602 si->txskb = NULL;
603
604 /*
605 * Wait for the transmission to complete. Unfortunately,
606 * the hardware doesn't give us an interrupt to indicate
607 * "end of frame".
608 */
609 do
610 rmb();
611 while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
612
613 /*
614 * Clear the transmit underrun bit.
615 */
616 Ser2HSSR0 = HSSR0_TUR;
617
618 /*
619 * Do we need to change speed? Note that we're lazy
620 * here - we don't free the old rxskb. We don't need
621 * to allocate a buffer either.
622 */
623 if (si->newspeed) {
624 sa1100_irda_set_speed(si, si->newspeed);
625 si->newspeed = 0;
626 }
627
628 /*
629 * Start reception. This disables the transmitter for
630 * us. This will be using the existing RX buffer.
631 */
632 sa1100_irda_rx_dma_start(si);
633
634 /*
635 * Account and free the packet.
636 */
637 if (skb) {
638 dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
639 si->stats.tx_packets ++;
640 si->stats.tx_bytes += skb->len;
641 dev_kfree_skb_irq(skb);
642 }
643
644 /*
645 * Make sure that the TX queue is available for sending
646 * (for retries). TX has priority over RX at all times.
647 */
648 netif_wake_queue(dev);
649 }
650
651 static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
652 {
653 struct sa1100_irda *si = dev->priv;
654 int speed = irda_get_next_speed(skb);
655
656 /*
657 * Does this packet contain a request to change the interface
658 * speed? If so, remember it until we complete the transmission
659 * of this frame.
660 */
661 if (speed != si->speed && speed != -1)
662 si->newspeed = speed;
663
664 /*
665 * If this is an empty frame, we can bypass a lot.
666 */
667 if (skb->len == 0) {
668 if (si->newspeed) {
669 si->newspeed = 0;
670 sa1100_irda_set_speed(si, speed);
671 }
672 dev_kfree_skb(skb);
673 return 0;
674 }
675
676 if (!IS_FIR(si)) {
677 netif_stop_queue(dev);
678
679 si->tx_buff.data = si->tx_buff.head;
680 si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
681 si->tx_buff.truesize);
682
683 /*
684 * Set the transmit interrupt enable. This will fire
685 * off an interrupt immediately. Note that we disable
686 * the receiver so we won't get spurious characteres
687 * received.
688 */
689 Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
690
691 dev_kfree_skb(skb);
692 } else {
693 int mtt = irda_get_mtt(skb);
694
695 /*
696 * We must not be transmitting...
697 */
698 if (si->txskb)
699 BUG();
700
701 netif_stop_queue(dev);
702
703 si->txskb = skb;
704 si->txbuf_dma = dma_map_single(si->dev, skb->data,
705 skb->len, DMA_TO_DEVICE);
706
707 sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
708
709 /*
710 * If we have a mean turn-around time, impose the specified
711 * specified delay. We could shorten this by timing from
712 * the point we received the packet.
713 */
714 if (mtt)
715 udelay(mtt);
716
717 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
718 }
719
720 dev->trans_start = jiffies;
721
722 return 0;
723 }
724
725 static int
726 sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
727 {
728 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
729 struct sa1100_irda *si = dev->priv;
730 int ret = -EOPNOTSUPP;
731
732 switch (cmd) {
733 case SIOCSBANDWIDTH:
734 if (capable(CAP_NET_ADMIN)) {
735 /*
736 * We are unable to set the speed if the
737 * device is not running.
738 */
739 if (si->open) {
740 ret = sa1100_irda_set_speed(si,
741 rq->ifr_baudrate);
742 } else {
743 printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
744 ret = 0;
745 }
746 }
747 break;
748
749 case SIOCSMEDIABUSY:
750 ret = -EPERM;
751 if (capable(CAP_NET_ADMIN)) {
752 irda_device_set_media_busy(dev, TRUE);
753 ret = 0;
754 }
755 break;
756
757 case SIOCGRECEIVING:
758 rq->ifr_receiving = IS_FIR(si) ? 0
759 : si->rx_buff.state != OUTSIDE_FRAME;
760 break;
761
762 default:
763 break;
764 }
765
766 return ret;
767 }
768
769 static struct net_device_stats *sa1100_irda_stats(struct net_device *dev)
770 {
771 struct sa1100_irda *si = dev->priv;
772 return &si->stats;
773 }
774
775 static int sa1100_irda_start(struct net_device *dev)
776 {
777 struct sa1100_irda *si = dev->priv;
778 int err;
779
780 si->speed = 9600;
781
782 err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
783 if (err)
784 goto err_irq;
785
786 err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
787 NULL, NULL, &si->rxdma);
788 if (err)
789 goto err_rx_dma;
790
791 err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
792 sa1100_irda_txdma_irq, dev, &si->txdma);
793 if (err)
794 goto err_tx_dma;
795
796 /*
797 * The interrupt must remain disabled for now.
798 */
799 disable_irq(dev->irq);
800
801 /*
802 * Setup the serial port for the specified speed.
803 */
804 err = sa1100_irda_startup(si);
805 if (err)
806 goto err_startup;
807
808 /*
809 * Open a new IrLAP layer instance.
810 */
811 si->irlap = irlap_open(dev, &si->qos, "sa1100");
812 err = -ENOMEM;
813 if (!si->irlap)
814 goto err_irlap;
815
816 /*
817 * Now enable the interrupt and start the queue
818 */
819 si->open = 1;
820 sa1100_set_power(si, power_level); /* low power mode */
821 enable_irq(dev->irq);
822 netif_start_queue(dev);
823 return 0;
824
825 err_irlap:
826 si->open = 0;
827 sa1100_irda_shutdown(si);
828 err_startup:
829 sa1100_free_dma(si->txdma);
830 err_tx_dma:
831 sa1100_free_dma(si->rxdma);
832 err_rx_dma:
833 free_irq(dev->irq, dev);
834 err_irq:
835 return err;
836 }
837
838 static int sa1100_irda_stop(struct net_device *dev)
839 {
840 struct sa1100_irda *si = dev->priv;
841
842 disable_irq(dev->irq);
843 sa1100_irda_shutdown(si);
844
845 /*
846 * If we have been doing DMA receive, make sure we
847 * tidy that up cleanly.
848 */
849 if (si->rxskb) {
850 dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
851 DMA_FROM_DEVICE);
852 dev_kfree_skb(si->rxskb);
853 si->rxskb = NULL;
854 }
855
856 /* Stop IrLAP */
857 if (si->irlap) {
858 irlap_close(si->irlap);
859 si->irlap = NULL;
860 }
861
862 netif_stop_queue(dev);
863 si->open = 0;
864
865 /*
866 * Free resources
867 */
868 sa1100_free_dma(si->txdma);
869 sa1100_free_dma(si->rxdma);
870 free_irq(dev->irq, dev);
871
872 sa1100_set_power(si, 0);
873
874 return 0;
875 }
876
877 static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
878 {
879 io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
880 if (io->head != NULL) {
881 io->truesize = size;
882 io->in_frame = FALSE;
883 io->state = OUTSIDE_FRAME;
884 io->data = io->head;
885 }
886 return io->head ? 0 : -ENOMEM;
887 }
888
889 static int sa1100_irda_probe(struct device *_dev)
890 {
891 struct platform_device *pdev = to_platform_device(_dev);
892 struct net_device *dev;
893 struct sa1100_irda *si;
894 unsigned int baudrate_mask;
895 int err;
896
897 if (!pdev->dev.platform_data)
898 return -EINVAL;
899
900 err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
901 if (err)
902 goto err_mem_1;
903 err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
904 if (err)
905 goto err_mem_2;
906 err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
907 if (err)
908 goto err_mem_3;
909
910 dev = alloc_irdadev(sizeof(struct sa1100_irda));
911 if (!dev)
912 goto err_mem_4;
913
914 si = dev->priv;
915 si->dev = &pdev->dev;
916 si->pdata = pdev->dev.platform_data;
917
918 /*
919 * Initialise the HP-SIR buffers
920 */
921 err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
922 if (err)
923 goto err_mem_5;
924 err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
925 if (err)
926 goto err_mem_5;
927
928 dev->hard_start_xmit = sa1100_irda_hard_xmit;
929 dev->open = sa1100_irda_start;
930 dev->stop = sa1100_irda_stop;
931 dev->do_ioctl = sa1100_irda_ioctl;
932 dev->get_stats = sa1100_irda_stats;
933 dev->irq = IRQ_Ser2ICP;
934
935 irda_init_max_qos_capabilies(&si->qos);
936
937 /*
938 * We support original IRDA up to 115k2. (we don't currently
939 * support 4Mbps). Min Turn Time set to 1ms or greater.
940 */
941 baudrate_mask = IR_9600;
942
943 switch (max_rate) {
944 case 4000000: baudrate_mask |= IR_4000000 << 8;
945 case 115200: baudrate_mask |= IR_115200;
946 case 57600: baudrate_mask |= IR_57600;
947 case 38400: baudrate_mask |= IR_38400;
948 case 19200: baudrate_mask |= IR_19200;
949 }
950
951 si->qos.baud_rate.bits &= baudrate_mask;
952 si->qos.min_turn_time.bits = 7;
953
954 irda_qos_bits_to_value(&si->qos);
955
956 si->utcr4 = UTCR4_HPSIR;
957 if (tx_lpm)
958 si->utcr4 |= UTCR4_Z1_6us;
959
960 /*
961 * Initially enable HP-SIR modulation, and ensure that the port
962 * is disabled.
963 */
964 Ser2UTCR3 = 0;
965 Ser2UTCR4 = si->utcr4;
966 Ser2HSCR0 = HSCR0_UART;
967
968 err = register_netdev(dev);
969 if (err == 0)
970 dev_set_drvdata(&pdev->dev, dev);
971
972 if (err) {
973 err_mem_5:
974 kfree(si->tx_buff.head);
975 kfree(si->rx_buff.head);
976 free_netdev(dev);
977 err_mem_4:
978 release_mem_region(__PREG(Ser2HSCR2), 0x04);
979 err_mem_3:
980 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
981 err_mem_2:
982 release_mem_region(__PREG(Ser2UTCR0), 0x24);
983 }
984 err_mem_1:
985 return err;
986 }
987
988 static int sa1100_irda_remove(struct device *_dev)
989 {
990 struct net_device *dev = dev_get_drvdata(_dev);
991
992 if (dev) {
993 struct sa1100_irda *si = dev->priv;
994 unregister_netdev(dev);
995 kfree(si->tx_buff.head);
996 kfree(si->rx_buff.head);
997 free_netdev(dev);
998 }
999
1000 release_mem_region(__PREG(Ser2HSCR2), 0x04);
1001 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1002 release_mem_region(__PREG(Ser2UTCR0), 0x24);
1003
1004 return 0;
1005 }
1006
1007 static struct device_driver sa1100ir_driver = {
1008 .name = "sa11x0-ir",
1009 .bus = &platform_bus_type,
1010 .probe = sa1100_irda_probe,
1011 .remove = sa1100_irda_remove,
1012 .suspend = sa1100_irda_suspend,
1013 .resume = sa1100_irda_resume,
1014 };
1015
1016 static int __init sa1100_irda_init(void)
1017 {
1018 /*
1019 * Limit power level a sensible range.
1020 */
1021 if (power_level < 1)
1022 power_level = 1;
1023 if (power_level > 3)
1024 power_level = 3;
1025
1026 return driver_register(&sa1100ir_driver);
1027 }
1028
1029 static void __exit sa1100_irda_exit(void)
1030 {
1031 driver_unregister(&sa1100ir_driver);
1032 }
1033
1034 module_init(sa1100_irda_init);
1035 module_exit(sa1100_irda_exit);
1036 module_param(power_level, int, 0);
1037 module_param(tx_lpm, int, 0);
1038 module_param(max_rate, int, 0);
1039
1040 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1041 MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1042 MODULE_LICENSE("GPL");
1043 MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1044 MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1045 MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");