]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ixgbe/ixgbe_82599.c
Merge branch 'tip/tracing/core' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ixgbe / ixgbe_82599.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe.h"
33 #include "ixgbe_phy.h"
34 #include "ixgbe_mbx.h"
35
36 #define IXGBE_82599_MAX_TX_QUEUES 128
37 #define IXGBE_82599_MAX_RX_QUEUES 128
38 #define IXGBE_82599_RAR_ENTRIES 128
39 #define IXGBE_82599_MC_TBL_SIZE 128
40 #define IXGBE_82599_VFT_TBL_SIZE 128
41
42 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
43 ixgbe_link_speed speed,
44 bool autoneg,
45 bool autoneg_wait_to_complete);
46 static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
47 ixgbe_link_speed speed,
48 bool autoneg,
49 bool autoneg_wait_to_complete);
50 s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
51 bool autoneg_wait_to_complete);
52 s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
53 ixgbe_link_speed speed,
54 bool autoneg,
55 bool autoneg_wait_to_complete);
56 static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
57 ixgbe_link_speed *speed,
58 bool *autoneg);
59 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
60 ixgbe_link_speed speed,
61 bool autoneg,
62 bool autoneg_wait_to_complete);
63 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw);
64
65 static void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw)
66 {
67 struct ixgbe_mac_info *mac = &hw->mac;
68 if (hw->phy.multispeed_fiber) {
69 /* Set up dual speed SFP+ support */
70 mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber;
71 } else {
72 if ((mac->ops.get_media_type(hw) ==
73 ixgbe_media_type_backplane) &&
74 (hw->phy.smart_speed == ixgbe_smart_speed_auto ||
75 hw->phy.smart_speed == ixgbe_smart_speed_on))
76 mac->ops.setup_link = &ixgbe_setup_mac_link_smartspeed;
77 else
78 mac->ops.setup_link = &ixgbe_setup_mac_link_82599;
79 }
80 }
81
82 static s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw)
83 {
84 s32 ret_val = 0;
85 u16 list_offset, data_offset, data_value;
86
87 if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) {
88 ixgbe_init_mac_link_ops_82599(hw);
89
90 hw->phy.ops.reset = NULL;
91
92 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
93 &data_offset);
94
95 if (ret_val != 0)
96 goto setup_sfp_out;
97
98 /* PHY config will finish before releasing the semaphore */
99 ret_val = ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
100 if (ret_val != 0) {
101 ret_val = IXGBE_ERR_SWFW_SYNC;
102 goto setup_sfp_out;
103 }
104
105 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
106 while (data_value != 0xffff) {
107 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value);
108 IXGBE_WRITE_FLUSH(hw);
109 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
110 }
111 /* Now restart DSP by setting Restart_AN */
112 IXGBE_WRITE_REG(hw, IXGBE_AUTOC,
113 (IXGBE_READ_REG(hw, IXGBE_AUTOC) | IXGBE_AUTOC_AN_RESTART));
114
115 /* Release the semaphore */
116 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
117 /* Delay obtaining semaphore again to allow FW access */
118 msleep(hw->eeprom.semaphore_delay);
119 }
120
121 setup_sfp_out:
122 return ret_val;
123 }
124
125 /**
126 * ixgbe_get_pcie_msix_count_82599 - Gets MSI-X vector count
127 * @hw: pointer to hardware structure
128 *
129 * Read PCIe configuration space, and get the MSI-X vector count from
130 * the capabilities table.
131 **/
132 static u32 ixgbe_get_pcie_msix_count_82599(struct ixgbe_hw *hw)
133 {
134 struct ixgbe_adapter *adapter = hw->back;
135 u16 msix_count;
136 pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
137 &msix_count);
138 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
139
140 /* MSI-X count is zero-based in HW, so increment to give proper value */
141 msix_count++;
142
143 return msix_count;
144 }
145
146 static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw)
147 {
148 struct ixgbe_mac_info *mac = &hw->mac;
149
150 ixgbe_init_mac_link_ops_82599(hw);
151
152 mac->mcft_size = IXGBE_82599_MC_TBL_SIZE;
153 mac->vft_size = IXGBE_82599_VFT_TBL_SIZE;
154 mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES;
155 mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES;
156 mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES;
157 mac->max_msix_vectors = ixgbe_get_pcie_msix_count_82599(hw);
158
159 return 0;
160 }
161
162 /**
163 * ixgbe_init_phy_ops_82599 - PHY/SFP specific init
164 * @hw: pointer to hardware structure
165 *
166 * Initialize any function pointers that were not able to be
167 * set during get_invariants because the PHY/SFP type was
168 * not known. Perform the SFP init if necessary.
169 *
170 **/
171 static s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw)
172 {
173 struct ixgbe_mac_info *mac = &hw->mac;
174 struct ixgbe_phy_info *phy = &hw->phy;
175 s32 ret_val = 0;
176
177 /* Identify the PHY or SFP module */
178 ret_val = phy->ops.identify(hw);
179
180 /* Setup function pointers based on detected SFP module and speeds */
181 ixgbe_init_mac_link_ops_82599(hw);
182
183 /* If copper media, overwrite with copper function pointers */
184 if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) {
185 mac->ops.setup_link = &ixgbe_setup_copper_link_82599;
186 mac->ops.get_link_capabilities =
187 &ixgbe_get_copper_link_capabilities_82599;
188 }
189
190 /* Set necessary function pointers based on phy type */
191 switch (hw->phy.type) {
192 case ixgbe_phy_tn:
193 phy->ops.check_link = &ixgbe_check_phy_link_tnx;
194 phy->ops.get_firmware_version =
195 &ixgbe_get_phy_firmware_version_tnx;
196 break;
197 default:
198 break;
199 }
200
201 return ret_val;
202 }
203
204 /**
205 * ixgbe_get_link_capabilities_82599 - Determines link capabilities
206 * @hw: pointer to hardware structure
207 * @speed: pointer to link speed
208 * @negotiation: true when autoneg or autotry is enabled
209 *
210 * Determines the link capabilities by reading the AUTOC register.
211 **/
212 static s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
213 ixgbe_link_speed *speed,
214 bool *negotiation)
215 {
216 s32 status = 0;
217 u32 autoc = 0;
218
219 /*
220 * Determine link capabilities based on the stored value of AUTOC,
221 * which represents EEPROM defaults. If AUTOC value has not been
222 * stored, use the current register value.
223 */
224 if (hw->mac.orig_link_settings_stored)
225 autoc = hw->mac.orig_autoc;
226 else
227 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
228
229 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
230 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
231 *speed = IXGBE_LINK_SPEED_1GB_FULL;
232 *negotiation = false;
233 break;
234
235 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
236 *speed = IXGBE_LINK_SPEED_10GB_FULL;
237 *negotiation = false;
238 break;
239
240 case IXGBE_AUTOC_LMS_1G_AN:
241 *speed = IXGBE_LINK_SPEED_1GB_FULL;
242 *negotiation = true;
243 break;
244
245 case IXGBE_AUTOC_LMS_10G_SERIAL:
246 *speed = IXGBE_LINK_SPEED_10GB_FULL;
247 *negotiation = false;
248 break;
249
250 case IXGBE_AUTOC_LMS_KX4_KX_KR:
251 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
252 *speed = IXGBE_LINK_SPEED_UNKNOWN;
253 if (autoc & IXGBE_AUTOC_KR_SUPP)
254 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
255 if (autoc & IXGBE_AUTOC_KX4_SUPP)
256 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
257 if (autoc & IXGBE_AUTOC_KX_SUPP)
258 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
259 *negotiation = true;
260 break;
261
262 case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
263 *speed = IXGBE_LINK_SPEED_100_FULL;
264 if (autoc & IXGBE_AUTOC_KR_SUPP)
265 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
266 if (autoc & IXGBE_AUTOC_KX4_SUPP)
267 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
268 if (autoc & IXGBE_AUTOC_KX_SUPP)
269 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
270 *negotiation = true;
271 break;
272
273 case IXGBE_AUTOC_LMS_SGMII_1G_100M:
274 *speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL;
275 *negotiation = false;
276 break;
277
278 default:
279 status = IXGBE_ERR_LINK_SETUP;
280 goto out;
281 break;
282 }
283
284 if (hw->phy.multispeed_fiber) {
285 *speed |= IXGBE_LINK_SPEED_10GB_FULL |
286 IXGBE_LINK_SPEED_1GB_FULL;
287 *negotiation = true;
288 }
289
290 out:
291 return status;
292 }
293
294 /**
295 * ixgbe_get_copper_link_capabilities_82599 - Determines link capabilities
296 * @hw: pointer to hardware structure
297 * @speed: pointer to link speed
298 * @autoneg: boolean auto-negotiation value
299 *
300 * Determines the link capabilities by reading the AUTOC register.
301 **/
302 static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
303 ixgbe_link_speed *speed,
304 bool *autoneg)
305 {
306 s32 status = IXGBE_ERR_LINK_SETUP;
307 u16 speed_ability;
308
309 *speed = 0;
310 *autoneg = true;
311
312 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
313 &speed_ability);
314
315 if (status == 0) {
316 if (speed_ability & MDIO_SPEED_10G)
317 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
318 if (speed_ability & MDIO_PMA_SPEED_1000)
319 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
320 }
321
322 return status;
323 }
324
325 /**
326 * ixgbe_get_media_type_82599 - Get media type
327 * @hw: pointer to hardware structure
328 *
329 * Returns the media type (fiber, copper, backplane)
330 **/
331 static enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw)
332 {
333 enum ixgbe_media_type media_type;
334
335 /* Detect if there is a copper PHY attached. */
336 if (hw->phy.type == ixgbe_phy_cu_unknown ||
337 hw->phy.type == ixgbe_phy_tn) {
338 media_type = ixgbe_media_type_copper;
339 goto out;
340 }
341
342 switch (hw->device_id) {
343 case IXGBE_DEV_ID_82599_KX4:
344 case IXGBE_DEV_ID_82599_KX4_MEZZ:
345 case IXGBE_DEV_ID_82599_COMBO_BACKPLANE:
346 case IXGBE_DEV_ID_82599_KR:
347 case IXGBE_DEV_ID_82599_XAUI_LOM:
348 /* Default device ID is mezzanine card KX/KX4 */
349 media_type = ixgbe_media_type_backplane;
350 break;
351 case IXGBE_DEV_ID_82599_SFP:
352 case IXGBE_DEV_ID_82599_SFP_EM:
353 media_type = ixgbe_media_type_fiber;
354 break;
355 case IXGBE_DEV_ID_82599_CX4:
356 media_type = ixgbe_media_type_cx4;
357 break;
358 default:
359 media_type = ixgbe_media_type_unknown;
360 break;
361 }
362 out:
363 return media_type;
364 }
365
366 /**
367 * ixgbe_start_mac_link_82599 - Setup MAC link settings
368 * @hw: pointer to hardware structure
369 * @autoneg_wait_to_complete: true when waiting for completion is needed
370 *
371 * Configures link settings based on values in the ixgbe_hw struct.
372 * Restarts the link. Performs autonegotiation if needed.
373 **/
374 s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
375 bool autoneg_wait_to_complete)
376 {
377 u32 autoc_reg;
378 u32 links_reg;
379 u32 i;
380 s32 status = 0;
381
382 /* Restart link */
383 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
384 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
385 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
386
387 /* Only poll for autoneg to complete if specified to do so */
388 if (autoneg_wait_to_complete) {
389 if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
390 IXGBE_AUTOC_LMS_KX4_KX_KR ||
391 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
392 IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
393 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
394 IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
395 links_reg = 0; /* Just in case Autoneg time = 0 */
396 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
397 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
398 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
399 break;
400 msleep(100);
401 }
402 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
403 status = IXGBE_ERR_AUTONEG_NOT_COMPLETE;
404 hw_dbg(hw, "Autoneg did not complete.\n");
405 }
406 }
407 }
408
409 /* Add delay to filter out noises during initial link setup */
410 msleep(50);
411
412 return status;
413 }
414
415 /**
416 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
417 * @hw: pointer to hardware structure
418 * @speed: new link speed
419 * @autoneg: true if autonegotiation enabled
420 * @autoneg_wait_to_complete: true when waiting for completion is needed
421 *
422 * Set the link speed in the AUTOC register and restarts link.
423 **/
424 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
425 ixgbe_link_speed speed,
426 bool autoneg,
427 bool autoneg_wait_to_complete)
428 {
429 s32 status = 0;
430 ixgbe_link_speed phy_link_speed;
431 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
432 u32 speedcnt = 0;
433 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
434 bool link_up = false;
435 bool negotiation;
436 int i;
437
438 /* Mask off requested but non-supported speeds */
439 hw->mac.ops.get_link_capabilities(hw, &phy_link_speed, &negotiation);
440 speed &= phy_link_speed;
441
442 /*
443 * When the driver changes the link speeds that it can support,
444 * it sets autotry_restart to true to indicate that we need to
445 * initiate a new autotry session with the link partner. To do
446 * so, we set the speed then disable and re-enable the tx laser, to
447 * alert the link partner that it also needs to restart autotry on its
448 * end. This is consistent with true clause 37 autoneg, which also
449 * involves a loss of signal.
450 */
451
452 /*
453 * Try each speed one by one, highest priority first. We do this in
454 * software because 10gb fiber doesn't support speed autonegotiation.
455 */
456 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
457 speedcnt++;
458 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
459
460 /* If we already have link at this speed, just jump out */
461 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
462
463 if ((phy_link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
464 goto out;
465
466 /* Set the module link speed */
467 esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5);
468 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
469
470 /* Allow module to change analog characteristics (1G->10G) */
471 msleep(40);
472
473 status = ixgbe_setup_mac_link_82599(hw,
474 IXGBE_LINK_SPEED_10GB_FULL,
475 autoneg,
476 autoneg_wait_to_complete);
477 if (status != 0)
478 return status;
479
480 /* Flap the tx laser if it has not already been done */
481 if (hw->mac.autotry_restart) {
482 /* Disable tx laser; allow 100us to go dark per spec */
483 esdp_reg |= IXGBE_ESDP_SDP3;
484 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
485 udelay(100);
486
487 /* Enable tx laser; allow 2ms to light up per spec */
488 esdp_reg &= ~IXGBE_ESDP_SDP3;
489 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
490 msleep(2);
491
492 hw->mac.autotry_restart = false;
493 }
494
495 /*
496 * Wait for the controller to acquire link. Per IEEE 802.3ap,
497 * Section 73.10.2, we may have to wait up to 500ms if KR is
498 * attempted. 82599 uses the same timing for 10g SFI.
499 */
500
501 for (i = 0; i < 5; i++) {
502 /* Wait for the link partner to also set speed */
503 msleep(100);
504
505 /* If we have link, just jump out */
506 hw->mac.ops.check_link(hw, &phy_link_speed,
507 &link_up, false);
508 if (link_up)
509 goto out;
510 }
511 }
512
513 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
514 speedcnt++;
515 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
516 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
517
518 /* If we already have link at this speed, just jump out */
519 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
520
521 if ((phy_link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
522 goto out;
523
524 /* Set the module link speed */
525 esdp_reg &= ~IXGBE_ESDP_SDP5;
526 esdp_reg |= IXGBE_ESDP_SDP5_DIR;
527 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
528
529 /* Allow module to change analog characteristics (10G->1G) */
530 msleep(40);
531
532 status = ixgbe_setup_mac_link_82599(hw,
533 IXGBE_LINK_SPEED_1GB_FULL,
534 autoneg,
535 autoneg_wait_to_complete);
536 if (status != 0)
537 return status;
538
539 /* Flap the tx laser if it has not already been done */
540 if (hw->mac.autotry_restart) {
541 /* Disable tx laser; allow 100us to go dark per spec */
542 esdp_reg |= IXGBE_ESDP_SDP3;
543 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
544 udelay(100);
545
546 /* Enable tx laser; allow 2ms to light up per spec */
547 esdp_reg &= ~IXGBE_ESDP_SDP3;
548 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
549 msleep(2);
550
551 hw->mac.autotry_restart = false;
552 }
553
554 /* Wait for the link partner to also set speed */
555 msleep(100);
556
557 /* If we have link, just jump out */
558 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
559 if (link_up)
560 goto out;
561 }
562
563 /*
564 * We didn't get link. Configure back to the highest speed we tried,
565 * (if there was more than one). We call ourselves back with just the
566 * single highest speed that the user requested.
567 */
568 if (speedcnt > 1)
569 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
570 highest_link_speed,
571 autoneg,
572 autoneg_wait_to_complete);
573
574 out:
575 /* Set autoneg_advertised value based on input link speed */
576 hw->phy.autoneg_advertised = 0;
577
578 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
579 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
580
581 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
582 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
583
584 return status;
585 }
586
587 /**
588 * ixgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed
589 * @hw: pointer to hardware structure
590 * @speed: new link speed
591 * @autoneg: true if autonegotiation enabled
592 * @autoneg_wait_to_complete: true when waiting for completion is needed
593 *
594 * Implements the Intel SmartSpeed algorithm.
595 **/
596 static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
597 ixgbe_link_speed speed, bool autoneg,
598 bool autoneg_wait_to_complete)
599 {
600 s32 status = 0;
601 ixgbe_link_speed link_speed;
602 s32 i, j;
603 bool link_up = false;
604 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
605
606 hw_dbg(hw, "ixgbe_setup_mac_link_smartspeed.\n");
607
608 /* Set autoneg_advertised value based on input link speed */
609 hw->phy.autoneg_advertised = 0;
610
611 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
612 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
613
614 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
615 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
616
617 if (speed & IXGBE_LINK_SPEED_100_FULL)
618 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
619
620 /*
621 * Implement Intel SmartSpeed algorithm. SmartSpeed will reduce the
622 * autoneg advertisement if link is unable to be established at the
623 * highest negotiated rate. This can sometimes happen due to integrity
624 * issues with the physical media connection.
625 */
626
627 /* First, try to get link with full advertisement */
628 hw->phy.smart_speed_active = false;
629 for (j = 0; j < IXGBE_SMARTSPEED_MAX_RETRIES; j++) {
630 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
631 autoneg_wait_to_complete);
632 if (status)
633 goto out;
634
635 /*
636 * Wait for the controller to acquire link. Per IEEE 802.3ap,
637 * Section 73.10.2, we may have to wait up to 500ms if KR is
638 * attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per
639 * Table 9 in the AN MAS.
640 */
641 for (i = 0; i < 5; i++) {
642 mdelay(100);
643
644 /* If we have link, just jump out */
645 hw->mac.ops.check_link(hw, &link_speed,
646 &link_up, false);
647 if (link_up)
648 goto out;
649 }
650 }
651
652 /*
653 * We didn't get link. If we advertised KR plus one of KX4/KX
654 * (or BX4/BX), then disable KR and try again.
655 */
656 if (((autoc_reg & IXGBE_AUTOC_KR_SUPP) == 0) ||
657 ((autoc_reg & IXGBE_AUTOC_KX4_KX_SUPP_MASK) == 0))
658 goto out;
659
660 /* Turn SmartSpeed on to disable KR support */
661 hw->phy.smart_speed_active = true;
662 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
663 autoneg_wait_to_complete);
664 if (status)
665 goto out;
666
667 /*
668 * Wait for the controller to acquire link. 600ms will allow for
669 * the AN link_fail_inhibit_timer as well for multiple cycles of
670 * parallel detect, both 10g and 1g. This allows for the maximum
671 * connect attempts as defined in the AN MAS table 73-7.
672 */
673 for (i = 0; i < 6; i++) {
674 mdelay(100);
675
676 /* If we have link, just jump out */
677 hw->mac.ops.check_link(hw, &link_speed,
678 &link_up, false);
679 if (link_up)
680 goto out;
681 }
682
683 /* We didn't get link. Turn SmartSpeed back off. */
684 hw->phy.smart_speed_active = false;
685 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
686 autoneg_wait_to_complete);
687
688 out:
689 return status;
690 }
691
692 /**
693 * ixgbe_check_mac_link_82599 - Determine link and speed status
694 * @hw: pointer to hardware structure
695 * @speed: pointer to link speed
696 * @link_up: true when link is up
697 * @link_up_wait_to_complete: bool used to wait for link up or not
698 *
699 * Reads the links register to determine if link is up and the current speed
700 **/
701 static s32 ixgbe_check_mac_link_82599(struct ixgbe_hw *hw,
702 ixgbe_link_speed *speed,
703 bool *link_up,
704 bool link_up_wait_to_complete)
705 {
706 u32 links_reg;
707 u32 i;
708
709 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
710 if (link_up_wait_to_complete) {
711 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
712 if (links_reg & IXGBE_LINKS_UP) {
713 *link_up = true;
714 break;
715 } else {
716 *link_up = false;
717 }
718 msleep(100);
719 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
720 }
721 } else {
722 if (links_reg & IXGBE_LINKS_UP)
723 *link_up = true;
724 else
725 *link_up = false;
726 }
727
728 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
729 IXGBE_LINKS_SPEED_10G_82599)
730 *speed = IXGBE_LINK_SPEED_10GB_FULL;
731 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
732 IXGBE_LINKS_SPEED_1G_82599)
733 *speed = IXGBE_LINK_SPEED_1GB_FULL;
734 else
735 *speed = IXGBE_LINK_SPEED_100_FULL;
736
737 /* if link is down, zero out the current_mode */
738 if (*link_up == false) {
739 hw->fc.current_mode = ixgbe_fc_none;
740 hw->fc.fc_was_autonegged = false;
741 }
742
743 return 0;
744 }
745
746 /**
747 * ixgbe_setup_mac_link_82599 - Set MAC link speed
748 * @hw: pointer to hardware structure
749 * @speed: new link speed
750 * @autoneg: true if autonegotiation enabled
751 * @autoneg_wait_to_complete: true when waiting for completion is needed
752 *
753 * Set the link speed in the AUTOC register and restarts link.
754 **/
755 s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
756 ixgbe_link_speed speed, bool autoneg,
757 bool autoneg_wait_to_complete)
758 {
759 s32 status = 0;
760 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
761 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
762 u32 start_autoc = autoc;
763 u32 orig_autoc = 0;
764 u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK;
765 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
766 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
767 u32 links_reg;
768 u32 i;
769 ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN;
770
771 /* Check to see if speed passed in is supported. */
772 hw->mac.ops.get_link_capabilities(hw, &link_capabilities, &autoneg);
773 speed &= link_capabilities;
774
775 if (speed == IXGBE_LINK_SPEED_UNKNOWN) {
776 status = IXGBE_ERR_LINK_SETUP;
777 goto out;
778 }
779
780 /* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
781 if (hw->mac.orig_link_settings_stored)
782 orig_autoc = hw->mac.orig_autoc;
783 else
784 orig_autoc = autoc;
785
786
787 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
788 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
789 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
790 /* Set KX4/KX/KR support according to speed requested */
791 autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP);
792 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
793 if (orig_autoc & IXGBE_AUTOC_KX4_SUPP)
794 autoc |= IXGBE_AUTOC_KX4_SUPP;
795 if ((orig_autoc & IXGBE_AUTOC_KR_SUPP) &&
796 (hw->phy.smart_speed_active == false))
797 autoc |= IXGBE_AUTOC_KR_SUPP;
798 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
799 autoc |= IXGBE_AUTOC_KX_SUPP;
800 } else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) &&
801 (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
802 link_mode == IXGBE_AUTOC_LMS_1G_AN)) {
803 /* Switch from 1G SFI to 10G SFI if requested */
804 if ((speed == IXGBE_LINK_SPEED_10GB_FULL) &&
805 (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) {
806 autoc &= ~IXGBE_AUTOC_LMS_MASK;
807 autoc |= IXGBE_AUTOC_LMS_10G_SERIAL;
808 }
809 } else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) &&
810 (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) {
811 /* Switch from 10G SFI to 1G SFI if requested */
812 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
813 (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) {
814 autoc &= ~IXGBE_AUTOC_LMS_MASK;
815 if (autoneg)
816 autoc |= IXGBE_AUTOC_LMS_1G_AN;
817 else
818 autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN;
819 }
820 }
821
822 if (autoc != start_autoc) {
823 /* Restart link */
824 autoc |= IXGBE_AUTOC_AN_RESTART;
825 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc);
826
827 /* Only poll for autoneg to complete if specified to do so */
828 if (autoneg_wait_to_complete) {
829 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
830 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
831 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
832 links_reg = 0; /*Just in case Autoneg time=0*/
833 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
834 links_reg =
835 IXGBE_READ_REG(hw, IXGBE_LINKS);
836 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
837 break;
838 msleep(100);
839 }
840 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
841 status =
842 IXGBE_ERR_AUTONEG_NOT_COMPLETE;
843 hw_dbg(hw, "Autoneg did not "
844 "complete.\n");
845 }
846 }
847 }
848
849 /* Add delay to filter out noises during initial link setup */
850 msleep(50);
851 }
852
853 out:
854 return status;
855 }
856
857 /**
858 * ixgbe_setup_copper_link_82599 - Set the PHY autoneg advertised field
859 * @hw: pointer to hardware structure
860 * @speed: new link speed
861 * @autoneg: true if autonegotiation enabled
862 * @autoneg_wait_to_complete: true if waiting is needed to complete
863 *
864 * Restarts link on PHY and MAC based on settings passed in.
865 **/
866 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
867 ixgbe_link_speed speed,
868 bool autoneg,
869 bool autoneg_wait_to_complete)
870 {
871 s32 status;
872
873 /* Setup the PHY according to input speed */
874 status = hw->phy.ops.setup_link_speed(hw, speed, autoneg,
875 autoneg_wait_to_complete);
876 /* Set up MAC */
877 ixgbe_start_mac_link_82599(hw, autoneg_wait_to_complete);
878
879 return status;
880 }
881
882 /**
883 * ixgbe_reset_hw_82599 - Perform hardware reset
884 * @hw: pointer to hardware structure
885 *
886 * Resets the hardware by resetting the transmit and receive units, masks
887 * and clears all interrupts, perform a PHY reset, and perform a link (MAC)
888 * reset.
889 **/
890 static s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw)
891 {
892 s32 status = 0;
893 u32 ctrl;
894 u32 i;
895 u32 autoc;
896 u32 autoc2;
897
898 /* Call adapter stop to disable tx/rx and clear interrupts */
899 hw->mac.ops.stop_adapter(hw);
900
901 /* PHY ops must be identified and initialized prior to reset */
902
903 /* Init PHY and function pointers, perform SFP setup */
904 status = hw->phy.ops.init(hw);
905
906 if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
907 goto reset_hw_out;
908
909 /* Setup SFP module if there is one present. */
910 if (hw->phy.sfp_setup_needed) {
911 status = hw->mac.ops.setup_sfp(hw);
912 hw->phy.sfp_setup_needed = false;
913 }
914
915 /* Reset PHY */
916 if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL)
917 hw->phy.ops.reset(hw);
918
919 /*
920 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
921 * access and verify no pending requests before reset
922 */
923 status = ixgbe_disable_pcie_master(hw);
924 if (status != 0) {
925 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
926 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
927 }
928
929 /*
930 * Issue global reset to the MAC. This needs to be a SW reset.
931 * If link reset is used, it might reset the MAC when mng is using it
932 */
933 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
934 IXGBE_WRITE_REG(hw, IXGBE_CTRL, (ctrl | IXGBE_CTRL_RST));
935 IXGBE_WRITE_FLUSH(hw);
936
937 /* Poll for reset bit to self-clear indicating reset is complete */
938 for (i = 0; i < 10; i++) {
939 udelay(1);
940 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
941 if (!(ctrl & IXGBE_CTRL_RST))
942 break;
943 }
944 if (ctrl & IXGBE_CTRL_RST) {
945 status = IXGBE_ERR_RESET_FAILED;
946 hw_dbg(hw, "Reset polling failed to complete.\n");
947 }
948
949 msleep(50);
950
951 /*
952 * Store the original AUTOC/AUTOC2 values if they have not been
953 * stored off yet. Otherwise restore the stored original
954 * values since the reset operation sets back to defaults.
955 */
956 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
957 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
958 if (hw->mac.orig_link_settings_stored == false) {
959 hw->mac.orig_autoc = autoc;
960 hw->mac.orig_autoc2 = autoc2;
961 hw->mac.orig_link_settings_stored = true;
962 } else {
963 if (autoc != hw->mac.orig_autoc)
964 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc |
965 IXGBE_AUTOC_AN_RESTART));
966
967 if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) !=
968 (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) {
969 autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK;
970 autoc2 |= (hw->mac.orig_autoc2 &
971 IXGBE_AUTOC2_UPPER_MASK);
972 IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
973 }
974 }
975
976 /*
977 * Store MAC address from RAR0, clear receive address registers, and
978 * clear the multicast table. Also reset num_rar_entries to 128,
979 * since we modify this value when programming the SAN MAC address.
980 */
981 hw->mac.num_rar_entries = 128;
982 hw->mac.ops.init_rx_addrs(hw);
983
984 /* Store the permanent mac address */
985 hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
986
987 /* Store the permanent SAN mac address */
988 hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);
989
990 /* Add the SAN MAC address to the RAR only if it's a valid address */
991 if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
992 hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1,
993 hw->mac.san_addr, 0, IXGBE_RAH_AV);
994
995 /* Reserve the last RAR for the SAN MAC address */
996 hw->mac.num_rar_entries--;
997 }
998
999 /* Store the alternative WWNN/WWPN prefix */
1000 hw->mac.ops.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
1001 &hw->mac.wwpn_prefix);
1002
1003 reset_hw_out:
1004 return status;
1005 }
1006
1007 /**
1008 * ixgbe_clear_vmdq_82599 - Disassociate a VMDq pool index from a rx address
1009 * @hw: pointer to hardware struct
1010 * @rar: receive address register index to disassociate
1011 * @vmdq: VMDq pool index to remove from the rar
1012 **/
1013 static s32 ixgbe_clear_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
1014 {
1015 u32 mpsar_lo, mpsar_hi;
1016 u32 rar_entries = hw->mac.num_rar_entries;
1017
1018 if (rar < rar_entries) {
1019 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
1020 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
1021
1022 if (!mpsar_lo && !mpsar_hi)
1023 goto done;
1024
1025 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
1026 if (mpsar_lo) {
1027 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
1028 mpsar_lo = 0;
1029 }
1030 if (mpsar_hi) {
1031 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
1032 mpsar_hi = 0;
1033 }
1034 } else if (vmdq < 32) {
1035 mpsar_lo &= ~(1 << vmdq);
1036 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
1037 } else {
1038 mpsar_hi &= ~(1 << (vmdq - 32));
1039 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
1040 }
1041
1042 /* was that the last pool using this rar? */
1043 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
1044 hw->mac.ops.clear_rar(hw, rar);
1045 } else {
1046 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
1047 }
1048
1049 done:
1050 return 0;
1051 }
1052
1053 /**
1054 * ixgbe_set_vmdq_82599 - Associate a VMDq pool index with a rx address
1055 * @hw: pointer to hardware struct
1056 * @rar: receive address register index to associate with a VMDq index
1057 * @vmdq: VMDq pool index
1058 **/
1059 static s32 ixgbe_set_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
1060 {
1061 u32 mpsar;
1062 u32 rar_entries = hw->mac.num_rar_entries;
1063
1064 if (rar < rar_entries) {
1065 if (vmdq < 32) {
1066 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
1067 mpsar |= 1 << vmdq;
1068 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
1069 } else {
1070 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
1071 mpsar |= 1 << (vmdq - 32);
1072 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
1073 }
1074 } else {
1075 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
1076 }
1077 return 0;
1078 }
1079
1080 /**
1081 * ixgbe_set_vfta_82599 - Set VLAN filter table
1082 * @hw: pointer to hardware structure
1083 * @vlan: VLAN id to write to VLAN filter
1084 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
1085 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
1086 *
1087 * Turn on/off specified VLAN in the VLAN filter table.
1088 **/
1089 static s32 ixgbe_set_vfta_82599(struct ixgbe_hw *hw, u32 vlan, u32 vind,
1090 bool vlan_on)
1091 {
1092 u32 regindex;
1093 u32 vlvf_index;
1094 u32 bitindex;
1095 u32 bits;
1096 u32 first_empty_slot;
1097 u32 vt_ctl;
1098
1099 if (vlan > 4095)
1100 return IXGBE_ERR_PARAM;
1101
1102 /*
1103 * this is a 2 part operation - first the VFTA, then the
1104 * VLVF and VLVFB if vind is set
1105 */
1106
1107 /* Part 1
1108 * The VFTA is a bitstring made up of 128 32-bit registers
1109 * that enable the particular VLAN id, much like the MTA:
1110 * bits[11-5]: which register
1111 * bits[4-0]: which bit in the register
1112 */
1113 regindex = (vlan >> 5) & 0x7F;
1114 bitindex = vlan & 0x1F;
1115 bits = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
1116 if (vlan_on)
1117 bits |= (1 << bitindex);
1118 else
1119 bits &= ~(1 << bitindex);
1120 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), bits);
1121
1122
1123 /* Part 2
1124 * If VT mode is set
1125 * Either vlan_on
1126 * make sure the vlan is in VLVF
1127 * set the vind bit in the matching VLVFB
1128 * Or !vlan_on
1129 * clear the pool bit and possibly the vind
1130 */
1131 vt_ctl = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
1132 if (!(vt_ctl & IXGBE_VT_CTL_VT_ENABLE))
1133 goto out;
1134
1135 /* find the vlanid or the first empty slot */
1136 first_empty_slot = 0;
1137
1138 for (vlvf_index = 1; vlvf_index < IXGBE_VLVF_ENTRIES; vlvf_index++) {
1139 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(vlvf_index));
1140 if (!bits && !first_empty_slot)
1141 first_empty_slot = vlvf_index;
1142 else if ((bits & 0x0FFF) == vlan)
1143 break;
1144 }
1145
1146 if (vlvf_index >= IXGBE_VLVF_ENTRIES) {
1147 if (first_empty_slot)
1148 vlvf_index = first_empty_slot;
1149 else {
1150 hw_dbg(hw, "No space in VLVF.\n");
1151 goto out;
1152 }
1153 }
1154
1155 if (vlan_on) {
1156 /* set the pool bit */
1157 if (vind < 32) {
1158 bits = IXGBE_READ_REG(hw,
1159 IXGBE_VLVFB(vlvf_index * 2));
1160 bits |= (1 << vind);
1161 IXGBE_WRITE_REG(hw,
1162 IXGBE_VLVFB(vlvf_index * 2), bits);
1163 } else {
1164 bits = IXGBE_READ_REG(hw,
1165 IXGBE_VLVFB((vlvf_index * 2) + 1));
1166 bits |= (1 << (vind - 32));
1167 IXGBE_WRITE_REG(hw,
1168 IXGBE_VLVFB((vlvf_index * 2) + 1), bits);
1169 }
1170 } else {
1171 /* clear the pool bit */
1172 if (vind < 32) {
1173 bits = IXGBE_READ_REG(hw,
1174 IXGBE_VLVFB(vlvf_index * 2));
1175 bits &= ~(1 << vind);
1176 IXGBE_WRITE_REG(hw,
1177 IXGBE_VLVFB(vlvf_index * 2), bits);
1178 bits |= IXGBE_READ_REG(hw,
1179 IXGBE_VLVFB((vlvf_index * 2) + 1));
1180 } else {
1181 bits = IXGBE_READ_REG(hw,
1182 IXGBE_VLVFB((vlvf_index * 2) + 1));
1183 bits &= ~(1 << (vind - 32));
1184 IXGBE_WRITE_REG(hw,
1185 IXGBE_VLVFB((vlvf_index * 2) + 1), bits);
1186 bits |= IXGBE_READ_REG(hw,
1187 IXGBE_VLVFB(vlvf_index * 2));
1188 }
1189 }
1190
1191 if (bits) {
1192 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
1193 (IXGBE_VLVF_VIEN | vlan));
1194 /* if bits is non-zero then some pools/VFs are still
1195 * using this VLAN ID. Force the VFTA entry to on */
1196 bits = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
1197 bits |= (1 << bitindex);
1198 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), bits);
1199 }
1200 else
1201 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
1202
1203 out:
1204 return 0;
1205 }
1206
1207 /**
1208 * ixgbe_clear_vfta_82599 - Clear VLAN filter table
1209 * @hw: pointer to hardware structure
1210 *
1211 * Clears the VLAN filer table, and the VMDq index associated with the filter
1212 **/
1213 static s32 ixgbe_clear_vfta_82599(struct ixgbe_hw *hw)
1214 {
1215 u32 offset;
1216
1217 for (offset = 0; offset < hw->mac.vft_size; offset++)
1218 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
1219
1220 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
1221 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
1222 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
1223 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
1224 }
1225
1226 return 0;
1227 }
1228
1229 /**
1230 * ixgbe_init_uta_tables_82599 - Initialize the Unicast Table Array
1231 * @hw: pointer to hardware structure
1232 **/
1233 static s32 ixgbe_init_uta_tables_82599(struct ixgbe_hw *hw)
1234 {
1235 int i;
1236 hw_dbg(hw, " Clearing UTA\n");
1237
1238 for (i = 0; i < 128; i++)
1239 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
1240
1241 return 0;
1242 }
1243
1244 /**
1245 * ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables.
1246 * @hw: pointer to hardware structure
1247 **/
1248 s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw)
1249 {
1250 int i;
1251 u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL);
1252 fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE;
1253
1254 /*
1255 * Before starting reinitialization process,
1256 * FDIRCMD.CMD must be zero.
1257 */
1258 for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) {
1259 if (!(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1260 IXGBE_FDIRCMD_CMD_MASK))
1261 break;
1262 udelay(10);
1263 }
1264 if (i >= IXGBE_FDIRCMD_CMD_POLL) {
1265 hw_dbg(hw ,"Flow Director previous command isn't complete, "
1266 "aborting table re-initialization. \n");
1267 return IXGBE_ERR_FDIR_REINIT_FAILED;
1268 }
1269
1270 IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0);
1271 IXGBE_WRITE_FLUSH(hw);
1272 /*
1273 * 82599 adapters flow director init flow cannot be restarted,
1274 * Workaround 82599 silicon errata by performing the following steps
1275 * before re-writing the FDIRCTRL control register with the same value.
1276 * - write 1 to bit 8 of FDIRCMD register &
1277 * - write 0 to bit 8 of FDIRCMD register
1278 */
1279 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1280 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) |
1281 IXGBE_FDIRCMD_CLEARHT));
1282 IXGBE_WRITE_FLUSH(hw);
1283 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1284 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1285 ~IXGBE_FDIRCMD_CLEARHT));
1286 IXGBE_WRITE_FLUSH(hw);
1287 /*
1288 * Clear FDIR Hash register to clear any leftover hashes
1289 * waiting to be programmed.
1290 */
1291 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00);
1292 IXGBE_WRITE_FLUSH(hw);
1293
1294 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1295 IXGBE_WRITE_FLUSH(hw);
1296
1297 /* Poll init-done after we write FDIRCTRL register */
1298 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1299 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1300 IXGBE_FDIRCTRL_INIT_DONE)
1301 break;
1302 udelay(10);
1303 }
1304 if (i >= IXGBE_FDIR_INIT_DONE_POLL) {
1305 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1306 return IXGBE_ERR_FDIR_REINIT_FAILED;
1307 }
1308
1309 /* Clear FDIR statistics registers (read to clear) */
1310 IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT);
1311 IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT);
1312 IXGBE_READ_REG(hw, IXGBE_FDIRMATCH);
1313 IXGBE_READ_REG(hw, IXGBE_FDIRMISS);
1314 IXGBE_READ_REG(hw, IXGBE_FDIRLEN);
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters
1321 * @hw: pointer to hardware structure
1322 * @pballoc: which mode to allocate filters with
1323 **/
1324 s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 pballoc)
1325 {
1326 u32 fdirctrl = 0;
1327 u32 pbsize;
1328 int i;
1329
1330 /*
1331 * Before enabling Flow Director, the Rx Packet Buffer size
1332 * must be reduced. The new value is the current size minus
1333 * flow director memory usage size.
1334 */
1335 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1336 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1337 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1338
1339 /*
1340 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1341 * intialized to zero for non DCB mode otherwise actual total RX PB
1342 * would be bigger than programmed and filter space would run into
1343 * the PB 0 region.
1344 */
1345 for (i = 1; i < 8; i++)
1346 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1347
1348 /* Send interrupt when 64 filters are left */
1349 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1350
1351 /* Set the maximum length per hash bucket to 0xA filters */
1352 fdirctrl |= 0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT;
1353
1354 switch (pballoc) {
1355 case IXGBE_FDIR_PBALLOC_64K:
1356 /* 8k - 1 signature filters */
1357 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1358 break;
1359 case IXGBE_FDIR_PBALLOC_128K:
1360 /* 16k - 1 signature filters */
1361 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1362 break;
1363 case IXGBE_FDIR_PBALLOC_256K:
1364 /* 32k - 1 signature filters */
1365 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1366 break;
1367 default:
1368 /* bad value */
1369 return IXGBE_ERR_CONFIG;
1370 };
1371
1372 /* Move the flexible bytes to use the ethertype - shift 6 words */
1373 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1374
1375 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1376
1377 /* Prime the keys for hashing */
1378 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1379 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1380 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1381 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1382
1383 /*
1384 * Poll init-done after we write the register. Estimated times:
1385 * 10G: PBALLOC = 11b, timing is 60us
1386 * 1G: PBALLOC = 11b, timing is 600us
1387 * 100M: PBALLOC = 11b, timing is 6ms
1388 *
1389 * Multiple these timings by 4 if under full Rx load
1390 *
1391 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1392 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1393 * this might not finish in our poll time, but we can live with that
1394 * for now.
1395 */
1396 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1397 IXGBE_WRITE_FLUSH(hw);
1398 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1399 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1400 IXGBE_FDIRCTRL_INIT_DONE)
1401 break;
1402 msleep(1);
1403 }
1404 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1405 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1406
1407 return 0;
1408 }
1409
1410 /**
1411 * ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters
1412 * @hw: pointer to hardware structure
1413 * @pballoc: which mode to allocate filters with
1414 **/
1415 s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 pballoc)
1416 {
1417 u32 fdirctrl = 0;
1418 u32 pbsize;
1419 int i;
1420
1421 /*
1422 * Before enabling Flow Director, the Rx Packet Buffer size
1423 * must be reduced. The new value is the current size minus
1424 * flow director memory usage size.
1425 */
1426 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1427 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1428 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1429
1430 /*
1431 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1432 * intialized to zero for non DCB mode otherwise actual total RX PB
1433 * would be bigger than programmed and filter space would run into
1434 * the PB 0 region.
1435 */
1436 for (i = 1; i < 8; i++)
1437 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1438
1439 /* Send interrupt when 64 filters are left */
1440 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1441
1442 /* Initialize the drop queue to Rx queue 127 */
1443 fdirctrl |= (127 << IXGBE_FDIRCTRL_DROP_Q_SHIFT);
1444
1445 switch (pballoc) {
1446 case IXGBE_FDIR_PBALLOC_64K:
1447 /* 2k - 1 perfect filters */
1448 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1449 break;
1450 case IXGBE_FDIR_PBALLOC_128K:
1451 /* 4k - 1 perfect filters */
1452 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1453 break;
1454 case IXGBE_FDIR_PBALLOC_256K:
1455 /* 8k - 1 perfect filters */
1456 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1457 break;
1458 default:
1459 /* bad value */
1460 return IXGBE_ERR_CONFIG;
1461 };
1462
1463 /* Turn perfect match filtering on */
1464 fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH;
1465 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1466
1467 /* Move the flexible bytes to use the ethertype - shift 6 words */
1468 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1469
1470 /* Prime the keys for hashing */
1471 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1472 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1473 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1474 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1475
1476 /*
1477 * Poll init-done after we write the register. Estimated times:
1478 * 10G: PBALLOC = 11b, timing is 60us
1479 * 1G: PBALLOC = 11b, timing is 600us
1480 * 100M: PBALLOC = 11b, timing is 6ms
1481 *
1482 * Multiple these timings by 4 if under full Rx load
1483 *
1484 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1485 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1486 * this might not finish in our poll time, but we can live with that
1487 * for now.
1488 */
1489
1490 /* Set the maximum length per hash bucket to 0xA filters */
1491 fdirctrl |= (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT);
1492
1493 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1494 IXGBE_WRITE_FLUSH(hw);
1495 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1496 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1497 IXGBE_FDIRCTRL_INIT_DONE)
1498 break;
1499 msleep(1);
1500 }
1501 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1502 hw_dbg(hw, "Flow Director Perfect poll time exceeded!\n");
1503
1504 return 0;
1505 }
1506
1507
1508 /**
1509 * ixgbe_atr_compute_hash_82599 - Compute the hashes for SW ATR
1510 * @stream: input bitstream to compute the hash on
1511 * @key: 32-bit hash key
1512 **/
1513 static u16 ixgbe_atr_compute_hash_82599(struct ixgbe_atr_input *atr_input,
1514 u32 key)
1515 {
1516 /*
1517 * The algorithm is as follows:
1518 * Hash[15:0] = Sum { S[n] x K[n+16] }, n = 0...350
1519 * where Sum {A[n]}, n = 0...n is bitwise XOR of A[0], A[1]...A[n]
1520 * and A[n] x B[n] is bitwise AND between same length strings
1521 *
1522 * K[n] is 16 bits, defined as:
1523 * for n modulo 32 >= 15, K[n] = K[n % 32 : (n % 32) - 15]
1524 * for n modulo 32 < 15, K[n] =
1525 * K[(n % 32:0) | (31:31 - (14 - (n % 32)))]
1526 *
1527 * S[n] is 16 bits, defined as:
1528 * for n >= 15, S[n] = S[n:n - 15]
1529 * for n < 15, S[n] = S[(n:0) | (350:350 - (14 - n))]
1530 *
1531 * To simplify for programming, the algorithm is implemented
1532 * in software this way:
1533 *
1534 * Key[31:0], Stream[335:0]
1535 *
1536 * tmp_key[11 * 32 - 1:0] = 11{Key[31:0] = key concatenated 11 times
1537 * int_key[350:0] = tmp_key[351:1]
1538 * int_stream[365:0] = Stream[14:0] | Stream[335:0] | Stream[335:321]
1539 *
1540 * hash[15:0] = 0;
1541 * for (i = 0; i < 351; i++) {
1542 * if (int_key[i])
1543 * hash ^= int_stream[(i + 15):i];
1544 * }
1545 */
1546
1547 union {
1548 u64 fill[6];
1549 u32 key[11];
1550 u8 key_stream[44];
1551 } tmp_key;
1552
1553 u8 *stream = (u8 *)atr_input;
1554 u8 int_key[44]; /* upper-most bit unused */
1555 u8 hash_str[46]; /* upper-most 2 bits unused */
1556 u16 hash_result = 0;
1557 int i, j, k, h;
1558
1559 /*
1560 * Initialize the fill member to prevent warnings
1561 * on some compilers
1562 */
1563 tmp_key.fill[0] = 0;
1564
1565 /* First load the temporary key stream */
1566 for (i = 0; i < 6; i++) {
1567 u64 fillkey = ((u64)key << 32) | key;
1568 tmp_key.fill[i] = fillkey;
1569 }
1570
1571 /*
1572 * Set the interim key for the hashing. Bit 352 is unused, so we must
1573 * shift and compensate when building the key.
1574 */
1575
1576 int_key[0] = tmp_key.key_stream[0] >> 1;
1577 for (i = 1, j = 0; i < 44; i++) {
1578 unsigned int this_key = tmp_key.key_stream[j] << 7;
1579 j++;
1580 int_key[i] = (u8)(this_key | (tmp_key.key_stream[j] >> 1));
1581 }
1582
1583 /*
1584 * Set the interim bit string for the hashing. Bits 368 and 367 are
1585 * unused, so shift and compensate when building the string.
1586 */
1587 hash_str[0] = (stream[40] & 0x7f) >> 1;
1588 for (i = 1, j = 40; i < 46; i++) {
1589 unsigned int this_str = stream[j] << 7;
1590 j++;
1591 if (j > 41)
1592 j = 0;
1593 hash_str[i] = (u8)(this_str | (stream[j] >> 1));
1594 }
1595
1596 /*
1597 * Now compute the hash. i is the index into hash_str, j is into our
1598 * key stream, k is counting the number of bits, and h interates within
1599 * each byte.
1600 */
1601 for (i = 45, j = 43, k = 0; k < 351 && i >= 2 && j >= 0; i--, j--) {
1602 for (h = 0; h < 8 && k < 351; h++, k++) {
1603 if (int_key[j] & (1 << h)) {
1604 /*
1605 * Key bit is set, XOR in the current 16-bit
1606 * string. Example of processing:
1607 * h = 0,
1608 * tmp = (hash_str[i - 2] & 0 << 16) |
1609 * (hash_str[i - 1] & 0xff << 8) |
1610 * (hash_str[i] & 0xff >> 0)
1611 * So tmp = hash_str[15 + k:k], since the
1612 * i + 2 clause rolls off the 16-bit value
1613 * h = 7,
1614 * tmp = (hash_str[i - 2] & 0x7f << 9) |
1615 * (hash_str[i - 1] & 0xff << 1) |
1616 * (hash_str[i] & 0x80 >> 7)
1617 */
1618 int tmp = (hash_str[i] >> h);
1619 tmp |= (hash_str[i - 1] << (8 - h));
1620 tmp |= (int)(hash_str[i - 2] & ((1 << h) - 1))
1621 << (16 - h);
1622 hash_result ^= (u16)tmp;
1623 }
1624 }
1625 }
1626
1627 return hash_result;
1628 }
1629
1630 /**
1631 * ixgbe_atr_set_vlan_id_82599 - Sets the VLAN id in the ATR input stream
1632 * @input: input stream to modify
1633 * @vlan: the VLAN id to load
1634 **/
1635 s32 ixgbe_atr_set_vlan_id_82599(struct ixgbe_atr_input *input, u16 vlan)
1636 {
1637 input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] = vlan >> 8;
1638 input->byte_stream[IXGBE_ATR_VLAN_OFFSET] = vlan & 0xff;
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * ixgbe_atr_set_src_ipv4_82599 - Sets the source IPv4 address
1645 * @input: input stream to modify
1646 * @src_addr: the IP address to load
1647 **/
1648 s32 ixgbe_atr_set_src_ipv4_82599(struct ixgbe_atr_input *input, u32 src_addr)
1649 {
1650 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] = src_addr >> 24;
1651 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] =
1652 (src_addr >> 16) & 0xff;
1653 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] =
1654 (src_addr >> 8) & 0xff;
1655 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET] = src_addr & 0xff;
1656
1657 return 0;
1658 }
1659
1660 /**
1661 * ixgbe_atr_set_dst_ipv4_82599 - Sets the destination IPv4 address
1662 * @input: input stream to modify
1663 * @dst_addr: the IP address to load
1664 **/
1665 s32 ixgbe_atr_set_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 dst_addr)
1666 {
1667 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] = dst_addr >> 24;
1668 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] =
1669 (dst_addr >> 16) & 0xff;
1670 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] =
1671 (dst_addr >> 8) & 0xff;
1672 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET] = dst_addr & 0xff;
1673
1674 return 0;
1675 }
1676
1677 /**
1678 * ixgbe_atr_set_src_ipv6_82599 - Sets the source IPv6 address
1679 * @input: input stream to modify
1680 * @src_addr_1: the first 4 bytes of the IP address to load
1681 * @src_addr_2: the second 4 bytes of the IP address to load
1682 * @src_addr_3: the third 4 bytes of the IP address to load
1683 * @src_addr_4: the fourth 4 bytes of the IP address to load
1684 **/
1685 s32 ixgbe_atr_set_src_ipv6_82599(struct ixgbe_atr_input *input,
1686 u32 src_addr_1, u32 src_addr_2,
1687 u32 src_addr_3, u32 src_addr_4)
1688 {
1689 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET] = src_addr_4 & 0xff;
1690 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] =
1691 (src_addr_4 >> 8) & 0xff;
1692 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] =
1693 (src_addr_4 >> 16) & 0xff;
1694 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] = src_addr_4 >> 24;
1695
1696 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4] = src_addr_3 & 0xff;
1697 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] =
1698 (src_addr_3 >> 8) & 0xff;
1699 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] =
1700 (src_addr_3 >> 16) & 0xff;
1701 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] = src_addr_3 >> 24;
1702
1703 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8] = src_addr_2 & 0xff;
1704 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] =
1705 (src_addr_2 >> 8) & 0xff;
1706 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] =
1707 (src_addr_2 >> 16) & 0xff;
1708 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] = src_addr_2 >> 24;
1709
1710 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12] = src_addr_1 & 0xff;
1711 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] =
1712 (src_addr_1 >> 8) & 0xff;
1713 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] =
1714 (src_addr_1 >> 16) & 0xff;
1715 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] = src_addr_1 >> 24;
1716
1717 return 0;
1718 }
1719
1720 /**
1721 * ixgbe_atr_set_dst_ipv6_82599 - Sets the destination IPv6 address
1722 * @input: input stream to modify
1723 * @dst_addr_1: the first 4 bytes of the IP address to load
1724 * @dst_addr_2: the second 4 bytes of the IP address to load
1725 * @dst_addr_3: the third 4 bytes of the IP address to load
1726 * @dst_addr_4: the fourth 4 bytes of the IP address to load
1727 **/
1728 s32 ixgbe_atr_set_dst_ipv6_82599(struct ixgbe_atr_input *input,
1729 u32 dst_addr_1, u32 dst_addr_2,
1730 u32 dst_addr_3, u32 dst_addr_4)
1731 {
1732 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET] = dst_addr_4 & 0xff;
1733 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] =
1734 (dst_addr_4 >> 8) & 0xff;
1735 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] =
1736 (dst_addr_4 >> 16) & 0xff;
1737 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] = dst_addr_4 >> 24;
1738
1739 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4] = dst_addr_3 & 0xff;
1740 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] =
1741 (dst_addr_3 >> 8) & 0xff;
1742 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] =
1743 (dst_addr_3 >> 16) & 0xff;
1744 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] = dst_addr_3 >> 24;
1745
1746 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8] = dst_addr_2 & 0xff;
1747 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] =
1748 (dst_addr_2 >> 8) & 0xff;
1749 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] =
1750 (dst_addr_2 >> 16) & 0xff;
1751 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] = dst_addr_2 >> 24;
1752
1753 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12] = dst_addr_1 & 0xff;
1754 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] =
1755 (dst_addr_1 >> 8) & 0xff;
1756 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] =
1757 (dst_addr_1 >> 16) & 0xff;
1758 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] = dst_addr_1 >> 24;
1759
1760 return 0;
1761 }
1762
1763 /**
1764 * ixgbe_atr_set_src_port_82599 - Sets the source port
1765 * @input: input stream to modify
1766 * @src_port: the source port to load
1767 **/
1768 s32 ixgbe_atr_set_src_port_82599(struct ixgbe_atr_input *input, u16 src_port)
1769 {
1770 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1] = src_port >> 8;
1771 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] = src_port & 0xff;
1772
1773 return 0;
1774 }
1775
1776 /**
1777 * ixgbe_atr_set_dst_port_82599 - Sets the destination port
1778 * @input: input stream to modify
1779 * @dst_port: the destination port to load
1780 **/
1781 s32 ixgbe_atr_set_dst_port_82599(struct ixgbe_atr_input *input, u16 dst_port)
1782 {
1783 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1] = dst_port >> 8;
1784 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] = dst_port & 0xff;
1785
1786 return 0;
1787 }
1788
1789 /**
1790 * ixgbe_atr_set_flex_byte_82599 - Sets the flexible bytes
1791 * @input: input stream to modify
1792 * @flex_bytes: the flexible bytes to load
1793 **/
1794 s32 ixgbe_atr_set_flex_byte_82599(struct ixgbe_atr_input *input, u16 flex_byte)
1795 {
1796 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] = flex_byte >> 8;
1797 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET] = flex_byte & 0xff;
1798
1799 return 0;
1800 }
1801
1802 /**
1803 * ixgbe_atr_set_vm_pool_82599 - Sets the Virtual Machine pool
1804 * @input: input stream to modify
1805 * @vm_pool: the Virtual Machine pool to load
1806 **/
1807 s32 ixgbe_atr_set_vm_pool_82599(struct ixgbe_atr_input *input,
1808 u8 vm_pool)
1809 {
1810 input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET] = vm_pool;
1811
1812 return 0;
1813 }
1814
1815 /**
1816 * ixgbe_atr_set_l4type_82599 - Sets the layer 4 packet type
1817 * @input: input stream to modify
1818 * @l4type: the layer 4 type value to load
1819 **/
1820 s32 ixgbe_atr_set_l4type_82599(struct ixgbe_atr_input *input, u8 l4type)
1821 {
1822 input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET] = l4type;
1823
1824 return 0;
1825 }
1826
1827 /**
1828 * ixgbe_atr_get_vlan_id_82599 - Gets the VLAN id from the ATR input stream
1829 * @input: input stream to search
1830 * @vlan: the VLAN id to load
1831 **/
1832 static s32 ixgbe_atr_get_vlan_id_82599(struct ixgbe_atr_input *input, u16 *vlan)
1833 {
1834 *vlan = input->byte_stream[IXGBE_ATR_VLAN_OFFSET];
1835 *vlan |= input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] << 8;
1836
1837 return 0;
1838 }
1839
1840 /**
1841 * ixgbe_atr_get_src_ipv4_82599 - Gets the source IPv4 address
1842 * @input: input stream to search
1843 * @src_addr: the IP address to load
1844 **/
1845 static s32 ixgbe_atr_get_src_ipv4_82599(struct ixgbe_atr_input *input,
1846 u32 *src_addr)
1847 {
1848 *src_addr = input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET];
1849 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] << 8;
1850 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] << 16;
1851 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] << 24;
1852
1853 return 0;
1854 }
1855
1856 /**
1857 * ixgbe_atr_get_dst_ipv4_82599 - Gets the destination IPv4 address
1858 * @input: input stream to search
1859 * @dst_addr: the IP address to load
1860 **/
1861 static s32 ixgbe_atr_get_dst_ipv4_82599(struct ixgbe_atr_input *input,
1862 u32 *dst_addr)
1863 {
1864 *dst_addr = input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET];
1865 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] << 8;
1866 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] << 16;
1867 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] << 24;
1868
1869 return 0;
1870 }
1871
1872 /**
1873 * ixgbe_atr_get_src_ipv6_82599 - Gets the source IPv6 address
1874 * @input: input stream to search
1875 * @src_addr_1: the first 4 bytes of the IP address to load
1876 * @src_addr_2: the second 4 bytes of the IP address to load
1877 * @src_addr_3: the third 4 bytes of the IP address to load
1878 * @src_addr_4: the fourth 4 bytes of the IP address to load
1879 **/
1880 static s32 ixgbe_atr_get_src_ipv6_82599(struct ixgbe_atr_input *input,
1881 u32 *src_addr_1, u32 *src_addr_2,
1882 u32 *src_addr_3, u32 *src_addr_4)
1883 {
1884 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12];
1885 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] << 8;
1886 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] << 16;
1887 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] << 24;
1888
1889 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8];
1890 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] << 8;
1891 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] << 16;
1892 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] << 24;
1893
1894 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4];
1895 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] << 8;
1896 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] << 16;
1897 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] << 24;
1898
1899 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET];
1900 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] << 8;
1901 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] << 16;
1902 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] << 24;
1903
1904 return 0;
1905 }
1906
1907 /**
1908 * ixgbe_atr_get_dst_ipv6_82599 - Gets the destination IPv6 address
1909 * @input: input stream to search
1910 * @dst_addr_1: the first 4 bytes of the IP address to load
1911 * @dst_addr_2: the second 4 bytes of the IP address to load
1912 * @dst_addr_3: the third 4 bytes of the IP address to load
1913 * @dst_addr_4: the fourth 4 bytes of the IP address to load
1914 **/
1915 s32 ixgbe_atr_get_dst_ipv6_82599(struct ixgbe_atr_input *input,
1916 u32 *dst_addr_1, u32 *dst_addr_2,
1917 u32 *dst_addr_3, u32 *dst_addr_4)
1918 {
1919 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12];
1920 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] << 8;
1921 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] << 16;
1922 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] << 24;
1923
1924 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8];
1925 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] << 8;
1926 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] << 16;
1927 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] << 24;
1928
1929 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4];
1930 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] << 8;
1931 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] << 16;
1932 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] << 24;
1933
1934 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET];
1935 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] << 8;
1936 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] << 16;
1937 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] << 24;
1938
1939 return 0;
1940 }
1941
1942 /**
1943 * ixgbe_atr_get_src_port_82599 - Gets the source port
1944 * @input: input stream to modify
1945 * @src_port: the source port to load
1946 *
1947 * Even though the input is given in big-endian, the FDIRPORT registers
1948 * expect the ports to be programmed in little-endian. Hence the need to swap
1949 * endianness when retrieving the data. This can be confusing since the
1950 * internal hash engine expects it to be big-endian.
1951 **/
1952 static s32 ixgbe_atr_get_src_port_82599(struct ixgbe_atr_input *input,
1953 u16 *src_port)
1954 {
1955 *src_port = input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] << 8;
1956 *src_port |= input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1];
1957
1958 return 0;
1959 }
1960
1961 /**
1962 * ixgbe_atr_get_dst_port_82599 - Gets the destination port
1963 * @input: input stream to modify
1964 * @dst_port: the destination port to load
1965 *
1966 * Even though the input is given in big-endian, the FDIRPORT registers
1967 * expect the ports to be programmed in little-endian. Hence the need to swap
1968 * endianness when retrieving the data. This can be confusing since the
1969 * internal hash engine expects it to be big-endian.
1970 **/
1971 static s32 ixgbe_atr_get_dst_port_82599(struct ixgbe_atr_input *input,
1972 u16 *dst_port)
1973 {
1974 *dst_port = input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] << 8;
1975 *dst_port |= input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1];
1976
1977 return 0;
1978 }
1979
1980 /**
1981 * ixgbe_atr_get_flex_byte_82599 - Gets the flexible bytes
1982 * @input: input stream to modify
1983 * @flex_bytes: the flexible bytes to load
1984 **/
1985 static s32 ixgbe_atr_get_flex_byte_82599(struct ixgbe_atr_input *input,
1986 u16 *flex_byte)
1987 {
1988 *flex_byte = input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET];
1989 *flex_byte |= input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] << 8;
1990
1991 return 0;
1992 }
1993
1994 /**
1995 * ixgbe_atr_get_vm_pool_82599 - Gets the Virtual Machine pool
1996 * @input: input stream to modify
1997 * @vm_pool: the Virtual Machine pool to load
1998 **/
1999 s32 ixgbe_atr_get_vm_pool_82599(struct ixgbe_atr_input *input,
2000 u8 *vm_pool)
2001 {
2002 *vm_pool = input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET];
2003
2004 return 0;
2005 }
2006
2007 /**
2008 * ixgbe_atr_get_l4type_82599 - Gets the layer 4 packet type
2009 * @input: input stream to modify
2010 * @l4type: the layer 4 type value to load
2011 **/
2012 static s32 ixgbe_atr_get_l4type_82599(struct ixgbe_atr_input *input,
2013 u8 *l4type)
2014 {
2015 *l4type = input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET];
2016
2017 return 0;
2018 }
2019
2020 /**
2021 * ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter
2022 * @hw: pointer to hardware structure
2023 * @stream: input bitstream
2024 * @queue: queue index to direct traffic to
2025 **/
2026 s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw,
2027 struct ixgbe_atr_input *input,
2028 u8 queue)
2029 {
2030 u64 fdirhashcmd;
2031 u64 fdircmd;
2032 u32 fdirhash;
2033 u16 bucket_hash, sig_hash;
2034 u8 l4type;
2035
2036 bucket_hash = ixgbe_atr_compute_hash_82599(input,
2037 IXGBE_ATR_BUCKET_HASH_KEY);
2038
2039 /* bucket_hash is only 15 bits */
2040 bucket_hash &= IXGBE_ATR_HASH_MASK;
2041
2042 sig_hash = ixgbe_atr_compute_hash_82599(input,
2043 IXGBE_ATR_SIGNATURE_HASH_KEY);
2044
2045 /* Get the l4type in order to program FDIRCMD properly */
2046 /* lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 */
2047 ixgbe_atr_get_l4type_82599(input, &l4type);
2048
2049 /*
2050 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits
2051 * is for FDIRCMD. Then do a 64-bit register write from FDIRHASH.
2052 */
2053 fdirhash = sig_hash << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
2054
2055 fdircmd = (IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
2056 IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN);
2057
2058 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
2059 case IXGBE_ATR_L4TYPE_TCP:
2060 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
2061 break;
2062 case IXGBE_ATR_L4TYPE_UDP:
2063 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
2064 break;
2065 case IXGBE_ATR_L4TYPE_SCTP:
2066 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
2067 break;
2068 default:
2069 hw_dbg(hw, "Error on l4type input\n");
2070 return IXGBE_ERR_CONFIG;
2071 }
2072
2073 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK)
2074 fdircmd |= IXGBE_FDIRCMD_IPV6;
2075
2076 fdircmd |= ((u64)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT);
2077 fdirhashcmd = ((fdircmd << 32) | fdirhash);
2078
2079 IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd);
2080
2081 return 0;
2082 }
2083
2084 /**
2085 * ixgbe_fdir_add_perfect_filter_82599 - Adds a perfect filter
2086 * @hw: pointer to hardware structure
2087 * @input: input bitstream
2088 * @input_masks: bitwise masks for relevant fields
2089 * @soft_id: software index into the silicon hash tables for filter storage
2090 * @queue: queue index to direct traffic to
2091 *
2092 * Note that the caller to this function must lock before calling, since the
2093 * hardware writes must be protected from one another.
2094 **/
2095 s32 ixgbe_fdir_add_perfect_filter_82599(struct ixgbe_hw *hw,
2096 struct ixgbe_atr_input *input,
2097 struct ixgbe_atr_input_masks *input_masks,
2098 u16 soft_id, u8 queue)
2099 {
2100 u32 fdircmd = 0;
2101 u32 fdirhash;
2102 u32 src_ipv4 = 0, dst_ipv4 = 0;
2103 u32 src_ipv6_1, src_ipv6_2, src_ipv6_3, src_ipv6_4;
2104 u16 src_port, dst_port, vlan_id, flex_bytes;
2105 u16 bucket_hash;
2106 u8 l4type;
2107 u8 fdirm = 0;
2108
2109 /* Get our input values */
2110 ixgbe_atr_get_l4type_82599(input, &l4type);
2111
2112 /*
2113 * Check l4type formatting, and bail out before we touch the hardware
2114 * if there's a configuration issue
2115 */
2116 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
2117 case IXGBE_ATR_L4TYPE_TCP:
2118 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
2119 break;
2120 case IXGBE_ATR_L4TYPE_UDP:
2121 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
2122 break;
2123 case IXGBE_ATR_L4TYPE_SCTP:
2124 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
2125 break;
2126 default:
2127 hw_dbg(hw, "Error on l4type input\n");
2128 return IXGBE_ERR_CONFIG;
2129 }
2130
2131 bucket_hash = ixgbe_atr_compute_hash_82599(input,
2132 IXGBE_ATR_BUCKET_HASH_KEY);
2133
2134 /* bucket_hash is only 15 bits */
2135 bucket_hash &= IXGBE_ATR_HASH_MASK;
2136
2137 ixgbe_atr_get_vlan_id_82599(input, &vlan_id);
2138 ixgbe_atr_get_src_port_82599(input, &src_port);
2139 ixgbe_atr_get_dst_port_82599(input, &dst_port);
2140 ixgbe_atr_get_flex_byte_82599(input, &flex_bytes);
2141
2142 fdirhash = soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
2143
2144 /* Now figure out if we're IPv4 or IPv6 */
2145 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) {
2146 /* IPv6 */
2147 ixgbe_atr_get_src_ipv6_82599(input, &src_ipv6_1, &src_ipv6_2,
2148 &src_ipv6_3, &src_ipv6_4);
2149
2150 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(0), src_ipv6_1);
2151 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(1), src_ipv6_2);
2152 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(2), src_ipv6_3);
2153 /* The last 4 bytes is the same register as IPv4 */
2154 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv6_4);
2155
2156 fdircmd |= IXGBE_FDIRCMD_IPV6;
2157 fdircmd |= IXGBE_FDIRCMD_IPv6DMATCH;
2158 } else {
2159 /* IPv4 */
2160 ixgbe_atr_get_src_ipv4_82599(input, &src_ipv4);
2161 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv4);
2162 }
2163
2164 ixgbe_atr_get_dst_ipv4_82599(input, &dst_ipv4);
2165 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPDA, dst_ipv4);
2166
2167 IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, (vlan_id |
2168 (flex_bytes << IXGBE_FDIRVLAN_FLEX_SHIFT)));
2169 IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, (src_port |
2170 (dst_port << IXGBE_FDIRPORT_DESTINATION_SHIFT)));
2171
2172 /*
2173 * Program the relevant mask registers. If src/dst_port or src/dst_addr
2174 * are zero, then assume a full mask for that field. Also assume that
2175 * a VLAN of 0 is unspecified, so mask that out as well. L4type
2176 * cannot be masked out in this implementation.
2177 *
2178 * This also assumes IPv4 only. IPv6 masking isn't supported at this
2179 * point in time.
2180 */
2181 if (src_ipv4 == 0)
2182 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIP4M, 0xffffffff);
2183 else
2184 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIP4M, input_masks->src_ip_mask);
2185
2186 if (dst_ipv4 == 0)
2187 IXGBE_WRITE_REG(hw, IXGBE_FDIRDIP4M, 0xffffffff);
2188 else
2189 IXGBE_WRITE_REG(hw, IXGBE_FDIRDIP4M, input_masks->dst_ip_mask);
2190
2191 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
2192 case IXGBE_ATR_L4TYPE_TCP:
2193 if (src_port == 0)
2194 IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM, 0xffff);
2195 else
2196 IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
2197 input_masks->src_port_mask);
2198
2199 if (dst_port == 0)
2200 IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
2201 (IXGBE_READ_REG(hw, IXGBE_FDIRTCPM) |
2202 (0xffff << 16)));
2203 else
2204 IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
2205 (IXGBE_READ_REG(hw, IXGBE_FDIRTCPM) |
2206 (input_masks->dst_port_mask << 16)));
2207 break;
2208 case IXGBE_ATR_L4TYPE_UDP:
2209 if (src_port == 0)
2210 IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM, 0xffff);
2211 else
2212 IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
2213 input_masks->src_port_mask);
2214
2215 if (dst_port == 0)
2216 IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
2217 (IXGBE_READ_REG(hw, IXGBE_FDIRUDPM) |
2218 (0xffff << 16)));
2219 else
2220 IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
2221 (IXGBE_READ_REG(hw, IXGBE_FDIRUDPM) |
2222 (input_masks->src_port_mask << 16)));
2223 break;
2224 default:
2225 /* this already would have failed above */
2226 break;
2227 }
2228
2229 /* Program the last mask register, FDIRM */
2230 if (input_masks->vlan_id_mask || !vlan_id)
2231 /* Mask both VLAN and VLANP - bits 0 and 1 */
2232 fdirm |= 0x3;
2233
2234 if (input_masks->data_mask || !flex_bytes)
2235 /* Flex bytes need masking, so mask the whole thing - bit 4 */
2236 fdirm |= 0x10;
2237
2238 /* Now mask VM pool and destination IPv6 - bits 5 and 2 */
2239 fdirm |= 0x24;
2240
2241 IXGBE_WRITE_REG(hw, IXGBE_FDIRM, fdirm);
2242
2243 fdircmd |= IXGBE_FDIRCMD_CMD_ADD_FLOW;
2244 fdircmd |= IXGBE_FDIRCMD_FILTER_UPDATE;
2245 fdircmd |= IXGBE_FDIRCMD_LAST;
2246 fdircmd |= IXGBE_FDIRCMD_QUEUE_EN;
2247 fdircmd |= queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;
2248
2249 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);
2250 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd);
2251
2252 return 0;
2253 }
2254 /**
2255 * ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register
2256 * @hw: pointer to hardware structure
2257 * @reg: analog register to read
2258 * @val: read value
2259 *
2260 * Performs read operation to Omer analog register specified.
2261 **/
2262 static s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val)
2263 {
2264 u32 core_ctl;
2265
2266 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD |
2267 (reg << 8));
2268 IXGBE_WRITE_FLUSH(hw);
2269 udelay(10);
2270 core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL);
2271 *val = (u8)core_ctl;
2272
2273 return 0;
2274 }
2275
2276 /**
2277 * ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register
2278 * @hw: pointer to hardware structure
2279 * @reg: atlas register to write
2280 * @val: value to write
2281 *
2282 * Performs write operation to Omer analog register specified.
2283 **/
2284 static s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val)
2285 {
2286 u32 core_ctl;
2287
2288 core_ctl = (reg << 8) | val;
2289 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl);
2290 IXGBE_WRITE_FLUSH(hw);
2291 udelay(10);
2292
2293 return 0;
2294 }
2295
2296 /**
2297 * ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx
2298 * @hw: pointer to hardware structure
2299 *
2300 * Starts the hardware using the generic start_hw function.
2301 * Then performs device-specific:
2302 * Clears the rate limiter registers.
2303 **/
2304 static s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw)
2305 {
2306 u32 q_num;
2307 s32 ret_val;
2308
2309 ret_val = ixgbe_start_hw_generic(hw);
2310
2311 /* Clear the rate limiters */
2312 for (q_num = 0; q_num < hw->mac.max_tx_queues; q_num++) {
2313 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, q_num);
2314 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
2315 }
2316 IXGBE_WRITE_FLUSH(hw);
2317
2318 /* We need to run link autotry after the driver loads */
2319 hw->mac.autotry_restart = true;
2320
2321 if (ret_val == 0)
2322 ret_val = ixgbe_verify_fw_version_82599(hw);
2323
2324 return ret_val;
2325 }
2326
2327 /**
2328 * ixgbe_identify_phy_82599 - Get physical layer module
2329 * @hw: pointer to hardware structure
2330 *
2331 * Determines the physical layer module found on the current adapter.
2332 **/
2333 static s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw)
2334 {
2335 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
2336 status = ixgbe_identify_phy_generic(hw);
2337 if (status != 0)
2338 status = ixgbe_identify_sfp_module_generic(hw);
2339 return status;
2340 }
2341
2342 /**
2343 * ixgbe_get_supported_physical_layer_82599 - Returns physical layer type
2344 * @hw: pointer to hardware structure
2345 *
2346 * Determines physical layer capabilities of the current configuration.
2347 **/
2348 static u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw)
2349 {
2350 u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN;
2351 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2352 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
2353 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
2354 u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK;
2355 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
2356 u16 ext_ability = 0;
2357 u8 comp_codes_10g = 0;
2358
2359 hw->phy.ops.identify(hw);
2360
2361 if (hw->phy.type == ixgbe_phy_tn ||
2362 hw->phy.type == ixgbe_phy_cu_unknown) {
2363 hw->phy.ops.read_reg(hw, MDIO_PMA_EXTABLE, MDIO_MMD_PMAPMD,
2364 &ext_ability);
2365 if (ext_ability & MDIO_PMA_EXTABLE_10GBT)
2366 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T;
2367 if (ext_ability & MDIO_PMA_EXTABLE_1000BT)
2368 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T;
2369 if (ext_ability & MDIO_PMA_EXTABLE_100BTX)
2370 physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX;
2371 goto out;
2372 }
2373
2374 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
2375 case IXGBE_AUTOC_LMS_1G_AN:
2376 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
2377 if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) {
2378 physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX |
2379 IXGBE_PHYSICAL_LAYER_1000BASE_BX;
2380 goto out;
2381 } else
2382 /* SFI mode so read SFP module */
2383 goto sfp_check;
2384 break;
2385 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
2386 if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4)
2387 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4;
2388 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4)
2389 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2390 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_XAUI)
2391 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_XAUI;
2392 goto out;
2393 break;
2394 case IXGBE_AUTOC_LMS_10G_SERIAL:
2395 if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) {
2396 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2397 goto out;
2398 } else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)
2399 goto sfp_check;
2400 break;
2401 case IXGBE_AUTOC_LMS_KX4_KX_KR:
2402 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
2403 if (autoc & IXGBE_AUTOC_KX_SUPP)
2404 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX;
2405 if (autoc & IXGBE_AUTOC_KX4_SUPP)
2406 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2407 if (autoc & IXGBE_AUTOC_KR_SUPP)
2408 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2409 goto out;
2410 break;
2411 default:
2412 goto out;
2413 break;
2414 }
2415
2416 sfp_check:
2417 /* SFP check must be done last since DA modules are sometimes used to
2418 * test KR mode - we need to id KR mode correctly before SFP module.
2419 * Call identify_sfp because the pluggable module may have changed */
2420 hw->phy.ops.identify_sfp(hw);
2421 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2422 goto out;
2423
2424 switch (hw->phy.type) {
2425 case ixgbe_phy_tw_tyco:
2426 case ixgbe_phy_tw_unknown:
2427 physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU;
2428 break;
2429 case ixgbe_phy_sfp_avago:
2430 case ixgbe_phy_sfp_ftl:
2431 case ixgbe_phy_sfp_intel:
2432 case ixgbe_phy_sfp_unknown:
2433 hw->phy.ops.read_i2c_eeprom(hw,
2434 IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g);
2435 if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
2436 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR;
2437 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
2438 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR;
2439 break;
2440 default:
2441 break;
2442 }
2443
2444 out:
2445 return physical_layer;
2446 }
2447
2448 /**
2449 * ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599
2450 * @hw: pointer to hardware structure
2451 * @regval: register value to write to RXCTRL
2452 *
2453 * Enables the Rx DMA unit for 82599
2454 **/
2455 static s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval)
2456 {
2457 #define IXGBE_MAX_SECRX_POLL 30
2458 int i;
2459 int secrxreg;
2460
2461 /*
2462 * Workaround for 82599 silicon errata when enabling the Rx datapath.
2463 * If traffic is incoming before we enable the Rx unit, it could hang
2464 * the Rx DMA unit. Therefore, make sure the security engine is
2465 * completely disabled prior to enabling the Rx unit.
2466 */
2467 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2468 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2469 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2470 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2471 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2472 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2473 break;
2474 else
2475 udelay(10);
2476 }
2477
2478 /* For informational purposes only */
2479 if (i >= IXGBE_MAX_SECRX_POLL)
2480 hw_dbg(hw, "Rx unit being enabled before security "
2481 "path fully disabled. Continuing with init.\n");
2482
2483 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2484 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2485 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2486 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2487 IXGBE_WRITE_FLUSH(hw);
2488
2489 return 0;
2490 }
2491
2492 /**
2493 * ixgbe_get_device_caps_82599 - Get additional device capabilities
2494 * @hw: pointer to hardware structure
2495 * @device_caps: the EEPROM word with the extra device capabilities
2496 *
2497 * This function will read the EEPROM location for the device capabilities,
2498 * and return the word through device_caps.
2499 **/
2500 static s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps)
2501 {
2502 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
2503
2504 return 0;
2505 }
2506
2507 /**
2508 * ixgbe_get_san_mac_addr_offset_82599 - SAN MAC address offset for 82599
2509 * @hw: pointer to hardware structure
2510 * @san_mac_offset: SAN MAC address offset
2511 *
2512 * This function will read the EEPROM location for the SAN MAC address
2513 * pointer, and returns the value at that location. This is used in both
2514 * get and set mac_addr routines.
2515 **/
2516 static s32 ixgbe_get_san_mac_addr_offset_82599(struct ixgbe_hw *hw,
2517 u16 *san_mac_offset)
2518 {
2519 /*
2520 * First read the EEPROM pointer to see if the MAC addresses are
2521 * available.
2522 */
2523 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2524
2525 return 0;
2526 }
2527
2528 /**
2529 * ixgbe_get_san_mac_addr_82599 - SAN MAC address retrieval for 82599
2530 * @hw: pointer to hardware structure
2531 * @san_mac_addr: SAN MAC address
2532 *
2533 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2534 * per-port, so set_lan_id() must be called before reading the addresses.
2535 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2536 * upon for non-SFP connections, so we must call it here.
2537 **/
2538 static s32 ixgbe_get_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr)
2539 {
2540 u16 san_mac_data, san_mac_offset;
2541 u8 i;
2542
2543 /*
2544 * First read the EEPROM pointer to see if the MAC addresses are
2545 * available. If they're not, no point in calling set_lan_id() here.
2546 */
2547 ixgbe_get_san_mac_addr_offset_82599(hw, &san_mac_offset);
2548
2549 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2550 /*
2551 * No addresses available in this EEPROM. It's not an
2552 * error though, so just wipe the local address and return.
2553 */
2554 for (i = 0; i < 6; i++)
2555 san_mac_addr[i] = 0xFF;
2556
2557 goto san_mac_addr_out;
2558 }
2559
2560 /* make sure we know which port we need to program */
2561 hw->mac.ops.set_lan_id(hw);
2562 /* apply the port offset to the address offset */
2563 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2564 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2565 for (i = 0; i < 3; i++) {
2566 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2567 san_mac_addr[i * 2] = (u8)(san_mac_data);
2568 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2569 san_mac_offset++;
2570 }
2571
2572 san_mac_addr_out:
2573 return 0;
2574 }
2575
2576 /**
2577 * ixgbe_verify_fw_version_82599 - verify fw version for 82599
2578 * @hw: pointer to hardware structure
2579 *
2580 * Verifies that installed the firmware version is 0.6 or higher
2581 * for SFI devices. All 82599 SFI devices should have version 0.6 or higher.
2582 *
2583 * Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or
2584 * if the FW version is not supported.
2585 **/
2586 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw)
2587 {
2588 s32 status = IXGBE_ERR_EEPROM_VERSION;
2589 u16 fw_offset, fw_ptp_cfg_offset;
2590 u16 fw_version = 0;
2591
2592 /* firmware check is only necessary for SFI devices */
2593 if (hw->phy.media_type != ixgbe_media_type_fiber) {
2594 status = 0;
2595 goto fw_version_out;
2596 }
2597
2598 /* get the offset to the Firmware Module block */
2599 hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset);
2600
2601 if ((fw_offset == 0) || (fw_offset == 0xFFFF))
2602 goto fw_version_out;
2603
2604 /* get the offset to the Pass Through Patch Configuration block */
2605 hw->eeprom.ops.read(hw, (fw_offset +
2606 IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR),
2607 &fw_ptp_cfg_offset);
2608
2609 if ((fw_ptp_cfg_offset == 0) || (fw_ptp_cfg_offset == 0xFFFF))
2610 goto fw_version_out;
2611
2612 /* get the firmware version */
2613 hw->eeprom.ops.read(hw, (fw_ptp_cfg_offset +
2614 IXGBE_FW_PATCH_VERSION_4),
2615 &fw_version);
2616
2617 if (fw_version > 0x5)
2618 status = 0;
2619
2620 fw_version_out:
2621 return status;
2622 }
2623
2624 /**
2625 * ixgbe_get_wwn_prefix_82599 - Get alternative WWNN/WWPN prefix from
2626 * the EEPROM
2627 * @hw: pointer to hardware structure
2628 * @wwnn_prefix: the alternative WWNN prefix
2629 * @wwpn_prefix: the alternative WWPN prefix
2630 *
2631 * This function will read the EEPROM from the alternative SAN MAC address
2632 * block to check the support for the alternative WWNN/WWPN prefix support.
2633 **/
2634 static s32 ixgbe_get_wwn_prefix_82599(struct ixgbe_hw *hw, u16 *wwnn_prefix,
2635 u16 *wwpn_prefix)
2636 {
2637 u16 offset, caps;
2638 u16 alt_san_mac_blk_offset;
2639
2640 /* clear output first */
2641 *wwnn_prefix = 0xFFFF;
2642 *wwpn_prefix = 0xFFFF;
2643
2644 /* check if alternative SAN MAC is supported */
2645 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
2646 &alt_san_mac_blk_offset);
2647
2648 if ((alt_san_mac_blk_offset == 0) ||
2649 (alt_san_mac_blk_offset == 0xFFFF))
2650 goto wwn_prefix_out;
2651
2652 /* check capability in alternative san mac address block */
2653 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
2654 hw->eeprom.ops.read(hw, offset, &caps);
2655 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
2656 goto wwn_prefix_out;
2657
2658 /* get the corresponding prefix for WWNN/WWPN */
2659 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
2660 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
2661
2662 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
2663 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
2664
2665 wwn_prefix_out:
2666 return 0;
2667 }
2668
2669 static struct ixgbe_mac_operations mac_ops_82599 = {
2670 .init_hw = &ixgbe_init_hw_generic,
2671 .reset_hw = &ixgbe_reset_hw_82599,
2672 .start_hw = &ixgbe_start_hw_82599,
2673 .clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic,
2674 .get_media_type = &ixgbe_get_media_type_82599,
2675 .get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599,
2676 .enable_rx_dma = &ixgbe_enable_rx_dma_82599,
2677 .get_mac_addr = &ixgbe_get_mac_addr_generic,
2678 .get_san_mac_addr = &ixgbe_get_san_mac_addr_82599,
2679 .get_device_caps = &ixgbe_get_device_caps_82599,
2680 .get_wwn_prefix = &ixgbe_get_wwn_prefix_82599,
2681 .stop_adapter = &ixgbe_stop_adapter_generic,
2682 .get_bus_info = &ixgbe_get_bus_info_generic,
2683 .set_lan_id = &ixgbe_set_lan_id_multi_port_pcie,
2684 .read_analog_reg8 = &ixgbe_read_analog_reg8_82599,
2685 .write_analog_reg8 = &ixgbe_write_analog_reg8_82599,
2686 .setup_link = &ixgbe_setup_mac_link_82599,
2687 .check_link = &ixgbe_check_mac_link_82599,
2688 .get_link_capabilities = &ixgbe_get_link_capabilities_82599,
2689 .led_on = &ixgbe_led_on_generic,
2690 .led_off = &ixgbe_led_off_generic,
2691 .blink_led_start = &ixgbe_blink_led_start_generic,
2692 .blink_led_stop = &ixgbe_blink_led_stop_generic,
2693 .set_rar = &ixgbe_set_rar_generic,
2694 .clear_rar = &ixgbe_clear_rar_generic,
2695 .set_vmdq = &ixgbe_set_vmdq_82599,
2696 .clear_vmdq = &ixgbe_clear_vmdq_82599,
2697 .init_rx_addrs = &ixgbe_init_rx_addrs_generic,
2698 .update_uc_addr_list = &ixgbe_update_uc_addr_list_generic,
2699 .update_mc_addr_list = &ixgbe_update_mc_addr_list_generic,
2700 .enable_mc = &ixgbe_enable_mc_generic,
2701 .disable_mc = &ixgbe_disable_mc_generic,
2702 .clear_vfta = &ixgbe_clear_vfta_82599,
2703 .set_vfta = &ixgbe_set_vfta_82599,
2704 .fc_enable = &ixgbe_fc_enable_generic,
2705 .init_uta_tables = &ixgbe_init_uta_tables_82599,
2706 .setup_sfp = &ixgbe_setup_sfp_modules_82599,
2707 };
2708
2709 static struct ixgbe_eeprom_operations eeprom_ops_82599 = {
2710 .init_params = &ixgbe_init_eeprom_params_generic,
2711 .read = &ixgbe_read_eeprom_generic,
2712 .write = &ixgbe_write_eeprom_generic,
2713 .validate_checksum = &ixgbe_validate_eeprom_checksum_generic,
2714 .update_checksum = &ixgbe_update_eeprom_checksum_generic,
2715 };
2716
2717 static struct ixgbe_phy_operations phy_ops_82599 = {
2718 .identify = &ixgbe_identify_phy_82599,
2719 .identify_sfp = &ixgbe_identify_sfp_module_generic,
2720 .init = &ixgbe_init_phy_ops_82599,
2721 .reset = &ixgbe_reset_phy_generic,
2722 .read_reg = &ixgbe_read_phy_reg_generic,
2723 .write_reg = &ixgbe_write_phy_reg_generic,
2724 .setup_link = &ixgbe_setup_phy_link_generic,
2725 .setup_link_speed = &ixgbe_setup_phy_link_speed_generic,
2726 .read_i2c_byte = &ixgbe_read_i2c_byte_generic,
2727 .write_i2c_byte = &ixgbe_write_i2c_byte_generic,
2728 .read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic,
2729 .write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic,
2730 };
2731
2732 struct ixgbe_info ixgbe_82599_info = {
2733 .mac = ixgbe_mac_82599EB,
2734 .get_invariants = &ixgbe_get_invariants_82599,
2735 .mac_ops = &mac_ops_82599,
2736 .eeprom_ops = &eeprom_ops_82599,
2737 .phy_ops = &phy_ops_82599,
2738 .mbx_ops = &mbx_ops_82599,
2739 };