]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ixgbevf/ixgbevf_main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52 "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
57
58 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
59 [board_82599_vf] = &ixgbevf_vf_info,
60 };
61
62 /* ixgbevf_pci_tbl - PCI Device ID Table
63 *
64 * Wildcard entries (PCI_ANY_ID) should come last
65 * Last entry must be all 0s
66 *
67 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68 * Class, Class Mask, private data (not used) }
69 */
70 static struct pci_device_id ixgbevf_pci_tbl[] = {
71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
72 board_82599_vf},
73
74 /* required last entry */
75 {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
81 MODULE_LICENSE("GPL");
82 MODULE_VERSION(DRV_VERSION);
83
84 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
85
86 /* forward decls */
87 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
88 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
89 u32 itr_reg);
90
91 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
92 struct ixgbevf_ring *rx_ring,
93 u32 val)
94 {
95 /*
96 * Force memory writes to complete before letting h/w
97 * know there are new descriptors to fetch. (Only
98 * applicable for weak-ordered memory model archs,
99 * such as IA-64).
100 */
101 wmb();
102 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
103 }
104
105 /*
106 * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
107 * @adapter: pointer to adapter struct
108 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
109 * @queue: queue to map the corresponding interrupt to
110 * @msix_vector: the vector to map to the corresponding queue
111 *
112 */
113 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
114 u8 queue, u8 msix_vector)
115 {
116 u32 ivar, index;
117 struct ixgbe_hw *hw = &adapter->hw;
118 if (direction == -1) {
119 /* other causes */
120 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
121 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
122 ivar &= ~0xFF;
123 ivar |= msix_vector;
124 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
125 } else {
126 /* tx or rx causes */
127 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128 index = ((16 * (queue & 1)) + (8 * direction));
129 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
130 ivar &= ~(0xFF << index);
131 ivar |= (msix_vector << index);
132 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
133 }
134 }
135
136 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
137 struct ixgbevf_tx_buffer
138 *tx_buffer_info)
139 {
140 if (tx_buffer_info->dma) {
141 if (tx_buffer_info->mapped_as_page)
142 dma_unmap_page(&adapter->pdev->dev,
143 tx_buffer_info->dma,
144 tx_buffer_info->length,
145 DMA_TO_DEVICE);
146 else
147 dma_unmap_single(&adapter->pdev->dev,
148 tx_buffer_info->dma,
149 tx_buffer_info->length,
150 DMA_TO_DEVICE);
151 tx_buffer_info->dma = 0;
152 }
153 if (tx_buffer_info->skb) {
154 dev_kfree_skb_any(tx_buffer_info->skb);
155 tx_buffer_info->skb = NULL;
156 }
157 tx_buffer_info->time_stamp = 0;
158 /* tx_buffer_info must be completely set up in the transmit path */
159 }
160
161 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
162 struct ixgbevf_ring *tx_ring,
163 unsigned int eop)
164 {
165 struct ixgbe_hw *hw = &adapter->hw;
166 u32 head, tail;
167
168 /* Detect a transmit hang in hardware, this serializes the
169 * check with the clearing of time_stamp and movement of eop */
170 head = readl(hw->hw_addr + tx_ring->head);
171 tail = readl(hw->hw_addr + tx_ring->tail);
172 adapter->detect_tx_hung = false;
173 if ((head != tail) &&
174 tx_ring->tx_buffer_info[eop].time_stamp &&
175 time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
176 /* detected Tx unit hang */
177 union ixgbe_adv_tx_desc *tx_desc;
178 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
179 printk(KERN_ERR "Detected Tx Unit Hang\n"
180 " Tx Queue <%d>\n"
181 " TDH, TDT <%x>, <%x>\n"
182 " next_to_use <%x>\n"
183 " next_to_clean <%x>\n"
184 "tx_buffer_info[next_to_clean]\n"
185 " time_stamp <%lx>\n"
186 " jiffies <%lx>\n",
187 tx_ring->queue_index,
188 head, tail,
189 tx_ring->next_to_use, eop,
190 tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
191 return true;
192 }
193
194 return false;
195 }
196
197 #define IXGBE_MAX_TXD_PWR 14
198 #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
199
200 /* Tx Descriptors needed, worst case */
201 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
202 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
203 #ifdef MAX_SKB_FRAGS
204 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
205 MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1) /* for context */
206 #else
207 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
208 #endif
209
210 static void ixgbevf_tx_timeout(struct net_device *netdev);
211
212 /**
213 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
214 * @adapter: board private structure
215 * @tx_ring: tx ring to clean
216 **/
217 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
218 struct ixgbevf_ring *tx_ring)
219 {
220 struct net_device *netdev = adapter->netdev;
221 struct ixgbe_hw *hw = &adapter->hw;
222 union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
223 struct ixgbevf_tx_buffer *tx_buffer_info;
224 unsigned int i, eop, count = 0;
225 unsigned int total_bytes = 0, total_packets = 0;
226
227 i = tx_ring->next_to_clean;
228 eop = tx_ring->tx_buffer_info[i].next_to_watch;
229 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
230
231 while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
232 (count < tx_ring->work_limit)) {
233 bool cleaned = false;
234 for ( ; !cleaned; count++) {
235 struct sk_buff *skb;
236 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
237 tx_buffer_info = &tx_ring->tx_buffer_info[i];
238 cleaned = (i == eop);
239 skb = tx_buffer_info->skb;
240
241 if (cleaned && skb) {
242 unsigned int segs, bytecount;
243
244 /* gso_segs is currently only valid for tcp */
245 segs = skb_shinfo(skb)->gso_segs ?: 1;
246 /* multiply data chunks by size of headers */
247 bytecount = ((segs - 1) * skb_headlen(skb)) +
248 skb->len;
249 total_packets += segs;
250 total_bytes += bytecount;
251 }
252
253 ixgbevf_unmap_and_free_tx_resource(adapter,
254 tx_buffer_info);
255
256 tx_desc->wb.status = 0;
257
258 i++;
259 if (i == tx_ring->count)
260 i = 0;
261 }
262
263 eop = tx_ring->tx_buffer_info[i].next_to_watch;
264 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
265 }
266
267 tx_ring->next_to_clean = i;
268
269 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
270 if (unlikely(count && netif_carrier_ok(netdev) &&
271 (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
272 /* Make sure that anybody stopping the queue after this
273 * sees the new next_to_clean.
274 */
275 smp_mb();
276 #ifdef HAVE_TX_MQ
277 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
278 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279 netif_wake_subqueue(netdev, tx_ring->queue_index);
280 ++adapter->restart_queue;
281 }
282 #else
283 if (netif_queue_stopped(netdev) &&
284 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
285 netif_wake_queue(netdev);
286 ++adapter->restart_queue;
287 }
288 #endif
289 }
290
291 if (adapter->detect_tx_hung) {
292 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
293 /* schedule immediate reset if we believe we hung */
294 printk(KERN_INFO
295 "tx hang %d detected, resetting adapter\n",
296 adapter->tx_timeout_count + 1);
297 ixgbevf_tx_timeout(adapter->netdev);
298 }
299 }
300
301 /* re-arm the interrupt */
302 if ((count >= tx_ring->work_limit) &&
303 (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
304 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
305 }
306
307 tx_ring->total_bytes += total_bytes;
308 tx_ring->total_packets += total_packets;
309
310 adapter->net_stats.tx_bytes += total_bytes;
311 adapter->net_stats.tx_packets += total_packets;
312
313 return (count < tx_ring->work_limit);
314 }
315
316 /**
317 * ixgbevf_receive_skb - Send a completed packet up the stack
318 * @q_vector: structure containing interrupt and ring information
319 * @skb: packet to send up
320 * @status: hardware indication of status of receive
321 * @rx_ring: rx descriptor ring (for a specific queue) to setup
322 * @rx_desc: rx descriptor
323 **/
324 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
325 struct sk_buff *skb, u8 status,
326 struct ixgbevf_ring *ring,
327 union ixgbe_adv_rx_desc *rx_desc)
328 {
329 struct ixgbevf_adapter *adapter = q_vector->adapter;
330 bool is_vlan = (status & IXGBE_RXD_STAT_VP);
331 u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
332 int ret;
333
334 if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
335 if (adapter->vlgrp && is_vlan)
336 vlan_gro_receive(&q_vector->napi,
337 adapter->vlgrp,
338 tag, skb);
339 else
340 napi_gro_receive(&q_vector->napi, skb);
341 } else {
342 if (adapter->vlgrp && is_vlan)
343 ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
344 else
345 ret = netif_rx(skb);
346 }
347 }
348
349 /**
350 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
351 * @adapter: address of board private structure
352 * @status_err: hardware indication of status of receive
353 * @skb: skb currently being received and modified
354 **/
355 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
356 u32 status_err, struct sk_buff *skb)
357 {
358 skb->ip_summed = CHECKSUM_NONE;
359
360 /* Rx csum disabled */
361 if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
362 return;
363
364 /* if IP and error */
365 if ((status_err & IXGBE_RXD_STAT_IPCS) &&
366 (status_err & IXGBE_RXDADV_ERR_IPE)) {
367 adapter->hw_csum_rx_error++;
368 return;
369 }
370
371 if (!(status_err & IXGBE_RXD_STAT_L4CS))
372 return;
373
374 if (status_err & IXGBE_RXDADV_ERR_TCPE) {
375 adapter->hw_csum_rx_error++;
376 return;
377 }
378
379 /* It must be a TCP or UDP packet with a valid checksum */
380 skb->ip_summed = CHECKSUM_UNNECESSARY;
381 adapter->hw_csum_rx_good++;
382 }
383
384 /**
385 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
386 * @adapter: address of board private structure
387 **/
388 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
389 struct ixgbevf_ring *rx_ring,
390 int cleaned_count)
391 {
392 struct pci_dev *pdev = adapter->pdev;
393 union ixgbe_adv_rx_desc *rx_desc;
394 struct ixgbevf_rx_buffer *bi;
395 struct sk_buff *skb;
396 unsigned int i;
397 unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
398
399 i = rx_ring->next_to_use;
400 bi = &rx_ring->rx_buffer_info[i];
401
402 while (cleaned_count--) {
403 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
404
405 if (!bi->page_dma &&
406 (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
407 if (!bi->page) {
408 bi->page = netdev_alloc_page(adapter->netdev);
409 if (!bi->page) {
410 adapter->alloc_rx_page_failed++;
411 goto no_buffers;
412 }
413 bi->page_offset = 0;
414 } else {
415 /* use a half page if we're re-using */
416 bi->page_offset ^= (PAGE_SIZE / 2);
417 }
418
419 bi->page_dma = dma_map_page(&pdev->dev, bi->page,
420 bi->page_offset,
421 (PAGE_SIZE / 2),
422 DMA_FROM_DEVICE);
423 }
424
425 skb = bi->skb;
426 if (!skb) {
427 skb = netdev_alloc_skb(adapter->netdev,
428 bufsz);
429
430 if (!skb) {
431 adapter->alloc_rx_buff_failed++;
432 goto no_buffers;
433 }
434
435 /*
436 * Make buffer alignment 2 beyond a 16 byte boundary
437 * this will result in a 16 byte aligned IP header after
438 * the 14 byte MAC header is removed
439 */
440 skb_reserve(skb, NET_IP_ALIGN);
441
442 bi->skb = skb;
443 }
444 if (!bi->dma) {
445 bi->dma = dma_map_single(&pdev->dev, skb->data,
446 rx_ring->rx_buf_len,
447 DMA_FROM_DEVICE);
448 }
449 /* Refresh the desc even if buffer_addrs didn't change because
450 * each write-back erases this info. */
451 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
452 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
453 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
454 } else {
455 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
456 }
457
458 i++;
459 if (i == rx_ring->count)
460 i = 0;
461 bi = &rx_ring->rx_buffer_info[i];
462 }
463
464 no_buffers:
465 if (rx_ring->next_to_use != i) {
466 rx_ring->next_to_use = i;
467 if (i-- == 0)
468 i = (rx_ring->count - 1);
469
470 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
471 }
472 }
473
474 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
475 u64 qmask)
476 {
477 u32 mask;
478 struct ixgbe_hw *hw = &adapter->hw;
479
480 mask = (qmask & 0xFFFFFFFF);
481 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
482 }
483
484 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
485 {
486 return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
487 }
488
489 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
490 {
491 return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
492 }
493
494 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
495 struct ixgbevf_ring *rx_ring,
496 int *work_done, int work_to_do)
497 {
498 struct ixgbevf_adapter *adapter = q_vector->adapter;
499 struct pci_dev *pdev = adapter->pdev;
500 union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
501 struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
502 struct sk_buff *skb;
503 unsigned int i;
504 u32 len, staterr;
505 u16 hdr_info;
506 bool cleaned = false;
507 int cleaned_count = 0;
508 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
509
510 i = rx_ring->next_to_clean;
511 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
512 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513 rx_buffer_info = &rx_ring->rx_buffer_info[i];
514
515 while (staterr & IXGBE_RXD_STAT_DD) {
516 u32 upper_len = 0;
517 if (*work_done >= work_to_do)
518 break;
519 (*work_done)++;
520
521 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
522 hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
523 len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
524 IXGBE_RXDADV_HDRBUFLEN_SHIFT;
525 if (hdr_info & IXGBE_RXDADV_SPH)
526 adapter->rx_hdr_split++;
527 if (len > IXGBEVF_RX_HDR_SIZE)
528 len = IXGBEVF_RX_HDR_SIZE;
529 upper_len = le16_to_cpu(rx_desc->wb.upper.length);
530 } else {
531 len = le16_to_cpu(rx_desc->wb.upper.length);
532 }
533 cleaned = true;
534 skb = rx_buffer_info->skb;
535 prefetch(skb->data - NET_IP_ALIGN);
536 rx_buffer_info->skb = NULL;
537
538 if (rx_buffer_info->dma) {
539 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
540 rx_ring->rx_buf_len,
541 DMA_FROM_DEVICE);
542 rx_buffer_info->dma = 0;
543 skb_put(skb, len);
544 }
545
546 if (upper_len) {
547 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
548 PAGE_SIZE / 2, DMA_FROM_DEVICE);
549 rx_buffer_info->page_dma = 0;
550 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
551 rx_buffer_info->page,
552 rx_buffer_info->page_offset,
553 upper_len);
554
555 if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
556 (page_count(rx_buffer_info->page) != 1))
557 rx_buffer_info->page = NULL;
558 else
559 get_page(rx_buffer_info->page);
560
561 skb->len += upper_len;
562 skb->data_len += upper_len;
563 skb->truesize += upper_len;
564 }
565
566 i++;
567 if (i == rx_ring->count)
568 i = 0;
569
570 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
571 prefetch(next_rxd);
572 cleaned_count++;
573
574 next_buffer = &rx_ring->rx_buffer_info[i];
575
576 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
577 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
578 rx_buffer_info->skb = next_buffer->skb;
579 rx_buffer_info->dma = next_buffer->dma;
580 next_buffer->skb = skb;
581 next_buffer->dma = 0;
582 } else {
583 skb->next = next_buffer->skb;
584 skb->next->prev = skb;
585 }
586 adapter->non_eop_descs++;
587 goto next_desc;
588 }
589
590 /* ERR_MASK will only have valid bits if EOP set */
591 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
592 dev_kfree_skb_irq(skb);
593 goto next_desc;
594 }
595
596 ixgbevf_rx_checksum(adapter, staterr, skb);
597
598 /* probably a little skewed due to removing CRC */
599 total_rx_bytes += skb->len;
600 total_rx_packets++;
601
602 /*
603 * Work around issue of some types of VM to VM loop back
604 * packets not getting split correctly
605 */
606 if (staterr & IXGBE_RXD_STAT_LB) {
607 u32 header_fixup_len = skb_headlen(skb);
608 if (header_fixup_len < 14)
609 skb_push(skb, header_fixup_len);
610 }
611 skb->protocol = eth_type_trans(skb, adapter->netdev);
612
613 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
614
615 next_desc:
616 rx_desc->wb.upper.status_error = 0;
617
618 /* return some buffers to hardware, one at a time is too slow */
619 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
620 ixgbevf_alloc_rx_buffers(adapter, rx_ring,
621 cleaned_count);
622 cleaned_count = 0;
623 }
624
625 /* use prefetched values */
626 rx_desc = next_rxd;
627 rx_buffer_info = &rx_ring->rx_buffer_info[i];
628
629 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
630 }
631
632 rx_ring->next_to_clean = i;
633 cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
634
635 if (cleaned_count)
636 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
637
638 rx_ring->total_packets += total_rx_packets;
639 rx_ring->total_bytes += total_rx_bytes;
640 adapter->net_stats.rx_bytes += total_rx_bytes;
641 adapter->net_stats.rx_packets += total_rx_packets;
642
643 return cleaned;
644 }
645
646 /**
647 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
648 * @napi: napi struct with our devices info in it
649 * @budget: amount of work driver is allowed to do this pass, in packets
650 *
651 * This function is optimized for cleaning one queue only on a single
652 * q_vector!!!
653 **/
654 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
655 {
656 struct ixgbevf_q_vector *q_vector =
657 container_of(napi, struct ixgbevf_q_vector, napi);
658 struct ixgbevf_adapter *adapter = q_vector->adapter;
659 struct ixgbevf_ring *rx_ring = NULL;
660 int work_done = 0;
661 long r_idx;
662
663 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
664 rx_ring = &(adapter->rx_ring[r_idx]);
665
666 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
667
668 /* If all Rx work done, exit the polling mode */
669 if (work_done < budget) {
670 napi_complete(napi);
671 if (adapter->itr_setting & 1)
672 ixgbevf_set_itr_msix(q_vector);
673 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
674 ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
675 }
676
677 return work_done;
678 }
679
680 /**
681 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
682 * @napi: napi struct with our devices info in it
683 * @budget: amount of work driver is allowed to do this pass, in packets
684 *
685 * This function will clean more than one rx queue associated with a
686 * q_vector.
687 **/
688 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
689 {
690 struct ixgbevf_q_vector *q_vector =
691 container_of(napi, struct ixgbevf_q_vector, napi);
692 struct ixgbevf_adapter *adapter = q_vector->adapter;
693 struct ixgbevf_ring *rx_ring = NULL;
694 int work_done = 0, i;
695 long r_idx;
696 u64 enable_mask = 0;
697
698 /* attempt to distribute budget to each queue fairly, but don't allow
699 * the budget to go below 1 because we'll exit polling */
700 budget /= (q_vector->rxr_count ?: 1);
701 budget = max(budget, 1);
702 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
703 for (i = 0; i < q_vector->rxr_count; i++) {
704 rx_ring = &(adapter->rx_ring[r_idx]);
705 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
706 enable_mask |= rx_ring->v_idx;
707 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
708 r_idx + 1);
709 }
710
711 #ifndef HAVE_NETDEV_NAPI_LIST
712 if (!netif_running(adapter->netdev))
713 work_done = 0;
714
715 #endif
716 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
717 rx_ring = &(adapter->rx_ring[r_idx]);
718
719 /* If all Rx work done, exit the polling mode */
720 if (work_done < budget) {
721 napi_complete(napi);
722 if (adapter->itr_setting & 1)
723 ixgbevf_set_itr_msix(q_vector);
724 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
725 ixgbevf_irq_enable_queues(adapter, enable_mask);
726 }
727
728 return work_done;
729 }
730
731
732 /**
733 * ixgbevf_configure_msix - Configure MSI-X hardware
734 * @adapter: board private structure
735 *
736 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
737 * interrupts.
738 **/
739 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
740 {
741 struct ixgbevf_q_vector *q_vector;
742 struct ixgbe_hw *hw = &adapter->hw;
743 int i, j, q_vectors, v_idx, r_idx;
744 u32 mask;
745
746 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
747
748 /*
749 * Populate the IVAR table and set the ITR values to the
750 * corresponding register.
751 */
752 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
753 q_vector = adapter->q_vector[v_idx];
754 /* XXX for_each_set_bit(...) */
755 r_idx = find_first_bit(q_vector->rxr_idx,
756 adapter->num_rx_queues);
757
758 for (i = 0; i < q_vector->rxr_count; i++) {
759 j = adapter->rx_ring[r_idx].reg_idx;
760 ixgbevf_set_ivar(adapter, 0, j, v_idx);
761 r_idx = find_next_bit(q_vector->rxr_idx,
762 adapter->num_rx_queues,
763 r_idx + 1);
764 }
765 r_idx = find_first_bit(q_vector->txr_idx,
766 adapter->num_tx_queues);
767
768 for (i = 0; i < q_vector->txr_count; i++) {
769 j = adapter->tx_ring[r_idx].reg_idx;
770 ixgbevf_set_ivar(adapter, 1, j, v_idx);
771 r_idx = find_next_bit(q_vector->txr_idx,
772 adapter->num_tx_queues,
773 r_idx + 1);
774 }
775
776 /* if this is a tx only vector halve the interrupt rate */
777 if (q_vector->txr_count && !q_vector->rxr_count)
778 q_vector->eitr = (adapter->eitr_param >> 1);
779 else if (q_vector->rxr_count)
780 /* rx only */
781 q_vector->eitr = adapter->eitr_param;
782
783 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
784 }
785
786 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
787
788 /* set up to autoclear timer, and the vectors */
789 mask = IXGBE_EIMS_ENABLE_MASK;
790 mask &= ~IXGBE_EIMS_OTHER;
791 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
792 }
793
794 enum latency_range {
795 lowest_latency = 0,
796 low_latency = 1,
797 bulk_latency = 2,
798 latency_invalid = 255
799 };
800
801 /**
802 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
803 * @adapter: pointer to adapter
804 * @eitr: eitr setting (ints per sec) to give last timeslice
805 * @itr_setting: current throttle rate in ints/second
806 * @packets: the number of packets during this measurement interval
807 * @bytes: the number of bytes during this measurement interval
808 *
809 * Stores a new ITR value based on packets and byte
810 * counts during the last interrupt. The advantage of per interrupt
811 * computation is faster updates and more accurate ITR for the current
812 * traffic pattern. Constants in this function were computed
813 * based on theoretical maximum wire speed and thresholds were set based
814 * on testing data as well as attempting to minimize response time
815 * while increasing bulk throughput.
816 **/
817 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
818 u32 eitr, u8 itr_setting,
819 int packets, int bytes)
820 {
821 unsigned int retval = itr_setting;
822 u32 timepassed_us;
823 u64 bytes_perint;
824
825 if (packets == 0)
826 goto update_itr_done;
827
828
829 /* simple throttlerate management
830 * 0-20MB/s lowest (100000 ints/s)
831 * 20-100MB/s low (20000 ints/s)
832 * 100-1249MB/s bulk (8000 ints/s)
833 */
834 /* what was last interrupt timeslice? */
835 timepassed_us = 1000000/eitr;
836 bytes_perint = bytes / timepassed_us; /* bytes/usec */
837
838 switch (itr_setting) {
839 case lowest_latency:
840 if (bytes_perint > adapter->eitr_low)
841 retval = low_latency;
842 break;
843 case low_latency:
844 if (bytes_perint > adapter->eitr_high)
845 retval = bulk_latency;
846 else if (bytes_perint <= adapter->eitr_low)
847 retval = lowest_latency;
848 break;
849 case bulk_latency:
850 if (bytes_perint <= adapter->eitr_high)
851 retval = low_latency;
852 break;
853 }
854
855 update_itr_done:
856 return retval;
857 }
858
859 /**
860 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
861 * @adapter: pointer to adapter struct
862 * @v_idx: vector index into q_vector array
863 * @itr_reg: new value to be written in *register* format, not ints/s
864 *
865 * This function is made to be called by ethtool and by the driver
866 * when it needs to update VTEITR registers at runtime. Hardware
867 * specific quirks/differences are taken care of here.
868 */
869 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
870 u32 itr_reg)
871 {
872 struct ixgbe_hw *hw = &adapter->hw;
873
874 itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
875
876 /*
877 * set the WDIS bit to not clear the timer bits and cause an
878 * immediate assertion of the interrupt
879 */
880 itr_reg |= IXGBE_EITR_CNT_WDIS;
881
882 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
883 }
884
885 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
886 {
887 struct ixgbevf_adapter *adapter = q_vector->adapter;
888 u32 new_itr;
889 u8 current_itr, ret_itr;
890 int i, r_idx, v_idx = q_vector->v_idx;
891 struct ixgbevf_ring *rx_ring, *tx_ring;
892
893 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
894 for (i = 0; i < q_vector->txr_count; i++) {
895 tx_ring = &(adapter->tx_ring[r_idx]);
896 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
897 q_vector->tx_itr,
898 tx_ring->total_packets,
899 tx_ring->total_bytes);
900 /* if the result for this queue would decrease interrupt
901 * rate for this vector then use that result */
902 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
903 q_vector->tx_itr - 1 : ret_itr);
904 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
905 r_idx + 1);
906 }
907
908 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
909 for (i = 0; i < q_vector->rxr_count; i++) {
910 rx_ring = &(adapter->rx_ring[r_idx]);
911 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
912 q_vector->rx_itr,
913 rx_ring->total_packets,
914 rx_ring->total_bytes);
915 /* if the result for this queue would decrease interrupt
916 * rate for this vector then use that result */
917 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
918 q_vector->rx_itr - 1 : ret_itr);
919 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
920 r_idx + 1);
921 }
922
923 current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
924
925 switch (current_itr) {
926 /* counts and packets in update_itr are dependent on these numbers */
927 case lowest_latency:
928 new_itr = 100000;
929 break;
930 case low_latency:
931 new_itr = 20000; /* aka hwitr = ~200 */
932 break;
933 case bulk_latency:
934 default:
935 new_itr = 8000;
936 break;
937 }
938
939 if (new_itr != q_vector->eitr) {
940 u32 itr_reg;
941
942 /* save the algorithm value here, not the smoothed one */
943 q_vector->eitr = new_itr;
944 /* do an exponential smoothing */
945 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
946 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
947 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
948 }
949 }
950
951 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
952 {
953 struct net_device *netdev = data;
954 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
955 struct ixgbe_hw *hw = &adapter->hw;
956 u32 eicr;
957 u32 msg;
958
959 eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
960 IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
961
962 if (!hw->mbx.ops.check_for_ack(hw)) {
963 /*
964 * checking for the ack clears the PFACK bit. Place
965 * it back in the v2p_mailbox cache so that anyone
966 * polling for an ack will not miss it. Also
967 * avoid the read below because the code to read
968 * the mailbox will also clear the ack bit. This was
969 * causing lost acks. Just cache the bit and exit
970 * the IRQ handler.
971 */
972 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
973 goto out;
974 }
975
976 /* Not an ack interrupt, go ahead and read the message */
977 hw->mbx.ops.read(hw, &msg, 1);
978
979 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
980 mod_timer(&adapter->watchdog_timer,
981 round_jiffies(jiffies + 1));
982
983 out:
984 return IRQ_HANDLED;
985 }
986
987 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
988 {
989 struct ixgbevf_q_vector *q_vector = data;
990 struct ixgbevf_adapter *adapter = q_vector->adapter;
991 struct ixgbevf_ring *tx_ring;
992 int i, r_idx;
993
994 if (!q_vector->txr_count)
995 return IRQ_HANDLED;
996
997 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
998 for (i = 0; i < q_vector->txr_count; i++) {
999 tx_ring = &(adapter->tx_ring[r_idx]);
1000 tx_ring->total_bytes = 0;
1001 tx_ring->total_packets = 0;
1002 ixgbevf_clean_tx_irq(adapter, tx_ring);
1003 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1004 r_idx + 1);
1005 }
1006
1007 if (adapter->itr_setting & 1)
1008 ixgbevf_set_itr_msix(q_vector);
1009
1010 return IRQ_HANDLED;
1011 }
1012
1013 /**
1014 * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1015 * @irq: unused
1016 * @data: pointer to our q_vector struct for this interrupt vector
1017 **/
1018 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1019 {
1020 struct ixgbevf_q_vector *q_vector = data;
1021 struct ixgbevf_adapter *adapter = q_vector->adapter;
1022 struct ixgbe_hw *hw = &adapter->hw;
1023 struct ixgbevf_ring *rx_ring;
1024 int r_idx;
1025 int i;
1026
1027 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1028 for (i = 0; i < q_vector->rxr_count; i++) {
1029 rx_ring = &(adapter->rx_ring[r_idx]);
1030 rx_ring->total_bytes = 0;
1031 rx_ring->total_packets = 0;
1032 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1033 r_idx + 1);
1034 }
1035
1036 if (!q_vector->rxr_count)
1037 return IRQ_HANDLED;
1038
1039 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1040 rx_ring = &(adapter->rx_ring[r_idx]);
1041 /* disable interrupts on this vector only */
1042 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1043 napi_schedule(&q_vector->napi);
1044
1045
1046 return IRQ_HANDLED;
1047 }
1048
1049 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1050 {
1051 ixgbevf_msix_clean_rx(irq, data);
1052 ixgbevf_msix_clean_tx(irq, data);
1053
1054 return IRQ_HANDLED;
1055 }
1056
1057 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1058 int r_idx)
1059 {
1060 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1061
1062 set_bit(r_idx, q_vector->rxr_idx);
1063 q_vector->rxr_count++;
1064 a->rx_ring[r_idx].v_idx = 1 << v_idx;
1065 }
1066
1067 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1068 int t_idx)
1069 {
1070 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1071
1072 set_bit(t_idx, q_vector->txr_idx);
1073 q_vector->txr_count++;
1074 a->tx_ring[t_idx].v_idx = 1 << v_idx;
1075 }
1076
1077 /**
1078 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1079 * @adapter: board private structure to initialize
1080 *
1081 * This function maps descriptor rings to the queue-specific vectors
1082 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1083 * one vector per ring/queue, but on a constrained vector budget, we
1084 * group the rings as "efficiently" as possible. You would add new
1085 * mapping configurations in here.
1086 **/
1087 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1088 {
1089 int q_vectors;
1090 int v_start = 0;
1091 int rxr_idx = 0, txr_idx = 0;
1092 int rxr_remaining = adapter->num_rx_queues;
1093 int txr_remaining = adapter->num_tx_queues;
1094 int i, j;
1095 int rqpv, tqpv;
1096 int err = 0;
1097
1098 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1099
1100 /*
1101 * The ideal configuration...
1102 * We have enough vectors to map one per queue.
1103 */
1104 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1105 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1106 map_vector_to_rxq(adapter, v_start, rxr_idx);
1107
1108 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1109 map_vector_to_txq(adapter, v_start, txr_idx);
1110 goto out;
1111 }
1112
1113 /*
1114 * If we don't have enough vectors for a 1-to-1
1115 * mapping, we'll have to group them so there are
1116 * multiple queues per vector.
1117 */
1118 /* Re-adjusting *qpv takes care of the remainder. */
1119 for (i = v_start; i < q_vectors; i++) {
1120 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1121 for (j = 0; j < rqpv; j++) {
1122 map_vector_to_rxq(adapter, i, rxr_idx);
1123 rxr_idx++;
1124 rxr_remaining--;
1125 }
1126 }
1127 for (i = v_start; i < q_vectors; i++) {
1128 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1129 for (j = 0; j < tqpv; j++) {
1130 map_vector_to_txq(adapter, i, txr_idx);
1131 txr_idx++;
1132 txr_remaining--;
1133 }
1134 }
1135
1136 out:
1137 return err;
1138 }
1139
1140 /**
1141 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1142 * @adapter: board private structure
1143 *
1144 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1145 * interrupts from the kernel.
1146 **/
1147 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1148 {
1149 struct net_device *netdev = adapter->netdev;
1150 irqreturn_t (*handler)(int, void *);
1151 int i, vector, q_vectors, err;
1152 int ri = 0, ti = 0;
1153
1154 /* Decrement for Other and TCP Timer vectors */
1155 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1156
1157 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count) \
1158 ? &ixgbevf_msix_clean_many : \
1159 (_v)->rxr_count ? &ixgbevf_msix_clean_rx : \
1160 (_v)->txr_count ? &ixgbevf_msix_clean_tx : \
1161 NULL)
1162 for (vector = 0; vector < q_vectors; vector++) {
1163 handler = SET_HANDLER(adapter->q_vector[vector]);
1164
1165 if (handler == &ixgbevf_msix_clean_rx) {
1166 sprintf(adapter->name[vector], "%s-%s-%d",
1167 netdev->name, "rx", ri++);
1168 } else if (handler == &ixgbevf_msix_clean_tx) {
1169 sprintf(adapter->name[vector], "%s-%s-%d",
1170 netdev->name, "tx", ti++);
1171 } else if (handler == &ixgbevf_msix_clean_many) {
1172 sprintf(adapter->name[vector], "%s-%s-%d",
1173 netdev->name, "TxRx", vector);
1174 } else {
1175 /* skip this unused q_vector */
1176 continue;
1177 }
1178 err = request_irq(adapter->msix_entries[vector].vector,
1179 handler, 0, adapter->name[vector],
1180 adapter->q_vector[vector]);
1181 if (err) {
1182 hw_dbg(&adapter->hw,
1183 "request_irq failed for MSIX interrupt "
1184 "Error: %d\n", err);
1185 goto free_queue_irqs;
1186 }
1187 }
1188
1189 sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1190 err = request_irq(adapter->msix_entries[vector].vector,
1191 &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1192 if (err) {
1193 hw_dbg(&adapter->hw,
1194 "request_irq for msix_mbx failed: %d\n", err);
1195 goto free_queue_irqs;
1196 }
1197
1198 return 0;
1199
1200 free_queue_irqs:
1201 for (i = vector - 1; i >= 0; i--)
1202 free_irq(adapter->msix_entries[--vector].vector,
1203 &(adapter->q_vector[i]));
1204 pci_disable_msix(adapter->pdev);
1205 kfree(adapter->msix_entries);
1206 adapter->msix_entries = NULL;
1207 return err;
1208 }
1209
1210 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1211 {
1212 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1213
1214 for (i = 0; i < q_vectors; i++) {
1215 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1216 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1217 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1218 q_vector->rxr_count = 0;
1219 q_vector->txr_count = 0;
1220 q_vector->eitr = adapter->eitr_param;
1221 }
1222 }
1223
1224 /**
1225 * ixgbevf_request_irq - initialize interrupts
1226 * @adapter: board private structure
1227 *
1228 * Attempts to configure interrupts using the best available
1229 * capabilities of the hardware and kernel.
1230 **/
1231 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1232 {
1233 int err = 0;
1234
1235 err = ixgbevf_request_msix_irqs(adapter);
1236
1237 if (err)
1238 hw_dbg(&adapter->hw,
1239 "request_irq failed, Error %d\n", err);
1240
1241 return err;
1242 }
1243
1244 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1245 {
1246 struct net_device *netdev = adapter->netdev;
1247 int i, q_vectors;
1248
1249 q_vectors = adapter->num_msix_vectors;
1250
1251 i = q_vectors - 1;
1252
1253 free_irq(adapter->msix_entries[i].vector, netdev);
1254 i--;
1255
1256 for (; i >= 0; i--) {
1257 free_irq(adapter->msix_entries[i].vector,
1258 adapter->q_vector[i]);
1259 }
1260
1261 ixgbevf_reset_q_vectors(adapter);
1262 }
1263
1264 /**
1265 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1266 * @adapter: board private structure
1267 **/
1268 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1269 {
1270 int i;
1271 struct ixgbe_hw *hw = &adapter->hw;
1272
1273 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1274
1275 IXGBE_WRITE_FLUSH(hw);
1276
1277 for (i = 0; i < adapter->num_msix_vectors; i++)
1278 synchronize_irq(adapter->msix_entries[i].vector);
1279 }
1280
1281 /**
1282 * ixgbevf_irq_enable - Enable default interrupt generation settings
1283 * @adapter: board private structure
1284 **/
1285 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1286 bool queues, bool flush)
1287 {
1288 struct ixgbe_hw *hw = &adapter->hw;
1289 u32 mask;
1290 u64 qmask;
1291
1292 mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1293 qmask = ~0;
1294
1295 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1296
1297 if (queues)
1298 ixgbevf_irq_enable_queues(adapter, qmask);
1299
1300 if (flush)
1301 IXGBE_WRITE_FLUSH(hw);
1302 }
1303
1304 /**
1305 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1306 * @adapter: board private structure
1307 *
1308 * Configure the Tx unit of the MAC after a reset.
1309 **/
1310 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1311 {
1312 u64 tdba;
1313 struct ixgbe_hw *hw = &adapter->hw;
1314 u32 i, j, tdlen, txctrl;
1315
1316 /* Setup the HW Tx Head and Tail descriptor pointers */
1317 for (i = 0; i < adapter->num_tx_queues; i++) {
1318 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1319 j = ring->reg_idx;
1320 tdba = ring->dma;
1321 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1322 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1323 (tdba & DMA_BIT_MASK(32)));
1324 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1325 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1326 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1327 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1328 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1329 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1330 /* Disable Tx Head Writeback RO bit, since this hoses
1331 * bookkeeping if things aren't delivered in order.
1332 */
1333 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1334 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1335 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1336 }
1337 }
1338
1339 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1340
1341 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1342 {
1343 struct ixgbevf_ring *rx_ring;
1344 struct ixgbe_hw *hw = &adapter->hw;
1345 u32 srrctl;
1346
1347 rx_ring = &adapter->rx_ring[index];
1348
1349 srrctl = IXGBE_SRRCTL_DROP_EN;
1350
1351 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1352 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1353 /* grow the amount we can receive on large page machines */
1354 if (bufsz < (PAGE_SIZE / 2))
1355 bufsz = (PAGE_SIZE / 2);
1356 /* cap the bufsz at our largest descriptor size */
1357 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1358
1359 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1360 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1361 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1362 IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1363 IXGBE_SRRCTL_BSIZEHDR_MASK);
1364 } else {
1365 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1366
1367 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1368 srrctl |= IXGBEVF_RXBUFFER_2048 >>
1369 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1370 else
1371 srrctl |= rx_ring->rx_buf_len >>
1372 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1373 }
1374 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1375 }
1376
1377 /**
1378 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1379 * @adapter: board private structure
1380 *
1381 * Configure the Rx unit of the MAC after a reset.
1382 **/
1383 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1384 {
1385 u64 rdba;
1386 struct ixgbe_hw *hw = &adapter->hw;
1387 struct net_device *netdev = adapter->netdev;
1388 int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1389 int i, j;
1390 u32 rdlen;
1391 int rx_buf_len;
1392
1393 /* Decide whether to use packet split mode or not */
1394 if (netdev->mtu > ETH_DATA_LEN) {
1395 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1396 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1397 else
1398 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1399 } else {
1400 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1401 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1402 else
1403 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1404 }
1405
1406 /* Set the RX buffer length according to the mode */
1407 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1408 /* PSRTYPE must be initialized in 82599 */
1409 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1410 IXGBE_PSRTYPE_UDPHDR |
1411 IXGBE_PSRTYPE_IPV4HDR |
1412 IXGBE_PSRTYPE_IPV6HDR |
1413 IXGBE_PSRTYPE_L2HDR;
1414 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1415 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1416 } else {
1417 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1418 if (netdev->mtu <= ETH_DATA_LEN)
1419 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1420 else
1421 rx_buf_len = ALIGN(max_frame, 1024);
1422 }
1423
1424 rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1425 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1426 * the Base and Length of the Rx Descriptor Ring */
1427 for (i = 0; i < adapter->num_rx_queues; i++) {
1428 rdba = adapter->rx_ring[i].dma;
1429 j = adapter->rx_ring[i].reg_idx;
1430 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1431 (rdba & DMA_BIT_MASK(32)));
1432 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1433 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1434 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1435 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1436 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1437 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1438 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1439
1440 ixgbevf_configure_srrctl(adapter, j);
1441 }
1442 }
1443
1444 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1445 struct vlan_group *grp)
1446 {
1447 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1448 struct ixgbe_hw *hw = &adapter->hw;
1449 int i, j;
1450 u32 ctrl;
1451
1452 adapter->vlgrp = grp;
1453
1454 for (i = 0; i < adapter->num_rx_queues; i++) {
1455 j = adapter->rx_ring[i].reg_idx;
1456 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1457 ctrl |= IXGBE_RXDCTL_VME;
1458 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1459 }
1460 }
1461
1462 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1463 {
1464 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1465 struct ixgbe_hw *hw = &adapter->hw;
1466
1467 /* add VID to filter table */
1468 if (hw->mac.ops.set_vfta)
1469 hw->mac.ops.set_vfta(hw, vid, 0, true);
1470 }
1471
1472 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1473 {
1474 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1475 struct ixgbe_hw *hw = &adapter->hw;
1476
1477 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1478 ixgbevf_irq_disable(adapter);
1479
1480 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1481
1482 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1483 ixgbevf_irq_enable(adapter, true, true);
1484
1485 /* remove VID from filter table */
1486 if (hw->mac.ops.set_vfta)
1487 hw->mac.ops.set_vfta(hw, vid, 0, false);
1488 }
1489
1490 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1491 {
1492 ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1493
1494 if (adapter->vlgrp) {
1495 u16 vid;
1496 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1497 if (!vlan_group_get_device(adapter->vlgrp, vid))
1498 continue;
1499 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1500 }
1501 }
1502 }
1503
1504 /**
1505 * ixgbevf_set_rx_mode - Multicast set
1506 * @netdev: network interface device structure
1507 *
1508 * The set_rx_method entry point is called whenever the multicast address
1509 * list or the network interface flags are updated. This routine is
1510 * responsible for configuring the hardware for proper multicast mode.
1511 **/
1512 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1513 {
1514 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1515 struct ixgbe_hw *hw = &adapter->hw;
1516
1517 /* reprogram multicast list */
1518 if (hw->mac.ops.update_mc_addr_list)
1519 hw->mac.ops.update_mc_addr_list(hw, netdev);
1520 }
1521
1522 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1523 {
1524 int q_idx;
1525 struct ixgbevf_q_vector *q_vector;
1526 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1527
1528 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1529 struct napi_struct *napi;
1530 q_vector = adapter->q_vector[q_idx];
1531 if (!q_vector->rxr_count)
1532 continue;
1533 napi = &q_vector->napi;
1534 if (q_vector->rxr_count > 1)
1535 napi->poll = &ixgbevf_clean_rxonly_many;
1536
1537 napi_enable(napi);
1538 }
1539 }
1540
1541 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1542 {
1543 int q_idx;
1544 struct ixgbevf_q_vector *q_vector;
1545 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1546
1547 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1548 q_vector = adapter->q_vector[q_idx];
1549 if (!q_vector->rxr_count)
1550 continue;
1551 napi_disable(&q_vector->napi);
1552 }
1553 }
1554
1555 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1556 {
1557 struct net_device *netdev = adapter->netdev;
1558 int i;
1559
1560 ixgbevf_set_rx_mode(netdev);
1561
1562 ixgbevf_restore_vlan(adapter);
1563
1564 ixgbevf_configure_tx(adapter);
1565 ixgbevf_configure_rx(adapter);
1566 for (i = 0; i < adapter->num_rx_queues; i++) {
1567 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1568 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1569 ring->next_to_use = ring->count - 1;
1570 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1571 }
1572 }
1573
1574 #define IXGBE_MAX_RX_DESC_POLL 10
1575 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1576 int rxr)
1577 {
1578 struct ixgbe_hw *hw = &adapter->hw;
1579 int j = adapter->rx_ring[rxr].reg_idx;
1580 int k;
1581
1582 for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1583 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1584 break;
1585 else
1586 msleep(1);
1587 }
1588 if (k >= IXGBE_MAX_RX_DESC_POLL) {
1589 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1590 "not set within the polling period\n", rxr);
1591 }
1592
1593 ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1594 (adapter->rx_ring[rxr].count - 1));
1595 }
1596
1597 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1598 {
1599 /* Only save pre-reset stats if there are some */
1600 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1601 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1602 adapter->stats.base_vfgprc;
1603 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1604 adapter->stats.base_vfgptc;
1605 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1606 adapter->stats.base_vfgorc;
1607 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1608 adapter->stats.base_vfgotc;
1609 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1610 adapter->stats.base_vfmprc;
1611 }
1612 }
1613
1614 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1615 {
1616 struct ixgbe_hw *hw = &adapter->hw;
1617
1618 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1619 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1620 adapter->stats.last_vfgorc |=
1621 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1622 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1623 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1624 adapter->stats.last_vfgotc |=
1625 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1626 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1627
1628 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1629 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1630 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1631 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1632 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1633 }
1634
1635 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1636 {
1637 struct net_device *netdev = adapter->netdev;
1638 struct ixgbe_hw *hw = &adapter->hw;
1639 int i, j = 0;
1640 int num_rx_rings = adapter->num_rx_queues;
1641 u32 txdctl, rxdctl;
1642
1643 for (i = 0; i < adapter->num_tx_queues; i++) {
1644 j = adapter->tx_ring[i].reg_idx;
1645 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1646 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1647 txdctl |= (8 << 16);
1648 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1649 }
1650
1651 for (i = 0; i < adapter->num_tx_queues; i++) {
1652 j = adapter->tx_ring[i].reg_idx;
1653 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1654 txdctl |= IXGBE_TXDCTL_ENABLE;
1655 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1656 }
1657
1658 for (i = 0; i < num_rx_rings; i++) {
1659 j = adapter->rx_ring[i].reg_idx;
1660 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1661 rxdctl |= IXGBE_RXDCTL_ENABLE;
1662 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1663 ixgbevf_rx_desc_queue_enable(adapter, i);
1664 }
1665
1666 ixgbevf_configure_msix(adapter);
1667
1668 if (hw->mac.ops.set_rar) {
1669 if (is_valid_ether_addr(hw->mac.addr))
1670 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1671 else
1672 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1673 }
1674
1675 clear_bit(__IXGBEVF_DOWN, &adapter->state);
1676 ixgbevf_napi_enable_all(adapter);
1677
1678 /* enable transmits */
1679 netif_tx_start_all_queues(netdev);
1680
1681 ixgbevf_save_reset_stats(adapter);
1682 ixgbevf_init_last_counter_stats(adapter);
1683
1684 /* bring the link up in the watchdog, this could race with our first
1685 * link up interrupt but shouldn't be a problem */
1686 adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1687 adapter->link_check_timeout = jiffies;
1688 mod_timer(&adapter->watchdog_timer, jiffies);
1689 return 0;
1690 }
1691
1692 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1693 {
1694 int err;
1695 struct ixgbe_hw *hw = &adapter->hw;
1696
1697 ixgbevf_configure(adapter);
1698
1699 err = ixgbevf_up_complete(adapter);
1700
1701 /* clear any pending interrupts, may auto mask */
1702 IXGBE_READ_REG(hw, IXGBE_VTEICR);
1703
1704 ixgbevf_irq_enable(adapter, true, true);
1705
1706 return err;
1707 }
1708
1709 /**
1710 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1711 * @adapter: board private structure
1712 * @rx_ring: ring to free buffers from
1713 **/
1714 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1715 struct ixgbevf_ring *rx_ring)
1716 {
1717 struct pci_dev *pdev = adapter->pdev;
1718 unsigned long size;
1719 unsigned int i;
1720
1721 if (!rx_ring->rx_buffer_info)
1722 return;
1723
1724 /* Free all the Rx ring sk_buffs */
1725 for (i = 0; i < rx_ring->count; i++) {
1726 struct ixgbevf_rx_buffer *rx_buffer_info;
1727
1728 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1729 if (rx_buffer_info->dma) {
1730 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1731 rx_ring->rx_buf_len,
1732 DMA_FROM_DEVICE);
1733 rx_buffer_info->dma = 0;
1734 }
1735 if (rx_buffer_info->skb) {
1736 struct sk_buff *skb = rx_buffer_info->skb;
1737 rx_buffer_info->skb = NULL;
1738 do {
1739 struct sk_buff *this = skb;
1740 skb = skb->prev;
1741 dev_kfree_skb(this);
1742 } while (skb);
1743 }
1744 if (!rx_buffer_info->page)
1745 continue;
1746 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1747 PAGE_SIZE / 2, DMA_FROM_DEVICE);
1748 rx_buffer_info->page_dma = 0;
1749 put_page(rx_buffer_info->page);
1750 rx_buffer_info->page = NULL;
1751 rx_buffer_info->page_offset = 0;
1752 }
1753
1754 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1755 memset(rx_ring->rx_buffer_info, 0, size);
1756
1757 /* Zero out the descriptor ring */
1758 memset(rx_ring->desc, 0, rx_ring->size);
1759
1760 rx_ring->next_to_clean = 0;
1761 rx_ring->next_to_use = 0;
1762
1763 if (rx_ring->head)
1764 writel(0, adapter->hw.hw_addr + rx_ring->head);
1765 if (rx_ring->tail)
1766 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1767 }
1768
1769 /**
1770 * ixgbevf_clean_tx_ring - Free Tx Buffers
1771 * @adapter: board private structure
1772 * @tx_ring: ring to be cleaned
1773 **/
1774 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1775 struct ixgbevf_ring *tx_ring)
1776 {
1777 struct ixgbevf_tx_buffer *tx_buffer_info;
1778 unsigned long size;
1779 unsigned int i;
1780
1781 if (!tx_ring->tx_buffer_info)
1782 return;
1783
1784 /* Free all the Tx ring sk_buffs */
1785
1786 for (i = 0; i < tx_ring->count; i++) {
1787 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1788 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1789 }
1790
1791 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1792 memset(tx_ring->tx_buffer_info, 0, size);
1793
1794 memset(tx_ring->desc, 0, tx_ring->size);
1795
1796 tx_ring->next_to_use = 0;
1797 tx_ring->next_to_clean = 0;
1798
1799 if (tx_ring->head)
1800 writel(0, adapter->hw.hw_addr + tx_ring->head);
1801 if (tx_ring->tail)
1802 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1803 }
1804
1805 /**
1806 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1807 * @adapter: board private structure
1808 **/
1809 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1810 {
1811 int i;
1812
1813 for (i = 0; i < adapter->num_rx_queues; i++)
1814 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1815 }
1816
1817 /**
1818 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1819 * @adapter: board private structure
1820 **/
1821 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1822 {
1823 int i;
1824
1825 for (i = 0; i < adapter->num_tx_queues; i++)
1826 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1827 }
1828
1829 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1830 {
1831 struct net_device *netdev = adapter->netdev;
1832 struct ixgbe_hw *hw = &adapter->hw;
1833 u32 txdctl;
1834 int i, j;
1835
1836 /* signal that we are down to the interrupt handler */
1837 set_bit(__IXGBEVF_DOWN, &adapter->state);
1838 /* disable receives */
1839
1840 netif_tx_disable(netdev);
1841
1842 msleep(10);
1843
1844 netif_tx_stop_all_queues(netdev);
1845
1846 ixgbevf_irq_disable(adapter);
1847
1848 ixgbevf_napi_disable_all(adapter);
1849
1850 del_timer_sync(&adapter->watchdog_timer);
1851 /* can't call flush scheduled work here because it can deadlock
1852 * if linkwatch_event tries to acquire the rtnl_lock which we are
1853 * holding */
1854 while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1855 msleep(1);
1856
1857 /* disable transmits in the hardware now that interrupts are off */
1858 for (i = 0; i < adapter->num_tx_queues; i++) {
1859 j = adapter->tx_ring[i].reg_idx;
1860 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1861 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1862 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1863 }
1864
1865 netif_carrier_off(netdev);
1866
1867 if (!pci_channel_offline(adapter->pdev))
1868 ixgbevf_reset(adapter);
1869
1870 ixgbevf_clean_all_tx_rings(adapter);
1871 ixgbevf_clean_all_rx_rings(adapter);
1872 }
1873
1874 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1875 {
1876 struct ixgbe_hw *hw = &adapter->hw;
1877
1878 WARN_ON(in_interrupt());
1879
1880 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1881 msleep(1);
1882
1883 /*
1884 * Check if PF is up before re-init. If not then skip until
1885 * later when the PF is up and ready to service requests from
1886 * the VF via mailbox. If the VF is up and running then the
1887 * watchdog task will continue to schedule reset tasks until
1888 * the PF is up and running.
1889 */
1890 if (!hw->mac.ops.reset_hw(hw)) {
1891 ixgbevf_down(adapter);
1892 ixgbevf_up(adapter);
1893 }
1894
1895 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1896 }
1897
1898 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1899 {
1900 struct ixgbe_hw *hw = &adapter->hw;
1901 struct net_device *netdev = adapter->netdev;
1902
1903 if (hw->mac.ops.reset_hw(hw))
1904 hw_dbg(hw, "PF still resetting\n");
1905 else
1906 hw->mac.ops.init_hw(hw);
1907
1908 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1909 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1910 netdev->addr_len);
1911 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1912 netdev->addr_len);
1913 }
1914 }
1915
1916 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1917 int vectors)
1918 {
1919 int err, vector_threshold;
1920
1921 /* We'll want at least 3 (vector_threshold):
1922 * 1) TxQ[0] Cleanup
1923 * 2) RxQ[0] Cleanup
1924 * 3) Other (Link Status Change, etc.)
1925 */
1926 vector_threshold = MIN_MSIX_COUNT;
1927
1928 /* The more we get, the more we will assign to Tx/Rx Cleanup
1929 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1930 * Right now, we simply care about how many we'll get; we'll
1931 * set them up later while requesting irq's.
1932 */
1933 while (vectors >= vector_threshold) {
1934 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1935 vectors);
1936 if (!err) /* Success in acquiring all requested vectors. */
1937 break;
1938 else if (err < 0)
1939 vectors = 0; /* Nasty failure, quit now */
1940 else /* err == number of vectors we should try again with */
1941 vectors = err;
1942 }
1943
1944 if (vectors < vector_threshold) {
1945 /* Can't allocate enough MSI-X interrupts? Oh well.
1946 * This just means we'll go with either a single MSI
1947 * vector or fall back to legacy interrupts.
1948 */
1949 hw_dbg(&adapter->hw,
1950 "Unable to allocate MSI-X interrupts\n");
1951 kfree(adapter->msix_entries);
1952 adapter->msix_entries = NULL;
1953 } else {
1954 /*
1955 * Adjust for only the vectors we'll use, which is minimum
1956 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1957 * vectors we were allocated.
1958 */
1959 adapter->num_msix_vectors = vectors;
1960 }
1961 }
1962
1963 /*
1964 * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1965 * @adapter: board private structure to initialize
1966 *
1967 * This is the top level queue allocation routine. The order here is very
1968 * important, starting with the "most" number of features turned on at once,
1969 * and ending with the smallest set of features. This way large combinations
1970 * can be allocated if they're turned on, and smaller combinations are the
1971 * fallthrough conditions.
1972 *
1973 **/
1974 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1975 {
1976 /* Start with base case */
1977 adapter->num_rx_queues = 1;
1978 adapter->num_tx_queues = 1;
1979 adapter->num_rx_pools = adapter->num_rx_queues;
1980 adapter->num_rx_queues_per_pool = 1;
1981 }
1982
1983 /**
1984 * ixgbevf_alloc_queues - Allocate memory for all rings
1985 * @adapter: board private structure to initialize
1986 *
1987 * We allocate one ring per queue at run-time since we don't know the
1988 * number of queues at compile-time. The polling_netdev array is
1989 * intended for Multiqueue, but should work fine with a single queue.
1990 **/
1991 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1992 {
1993 int i;
1994
1995 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1996 sizeof(struct ixgbevf_ring), GFP_KERNEL);
1997 if (!adapter->tx_ring)
1998 goto err_tx_ring_allocation;
1999
2000 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2001 sizeof(struct ixgbevf_ring), GFP_KERNEL);
2002 if (!adapter->rx_ring)
2003 goto err_rx_ring_allocation;
2004
2005 for (i = 0; i < adapter->num_tx_queues; i++) {
2006 adapter->tx_ring[i].count = adapter->tx_ring_count;
2007 adapter->tx_ring[i].queue_index = i;
2008 adapter->tx_ring[i].reg_idx = i;
2009 }
2010
2011 for (i = 0; i < adapter->num_rx_queues; i++) {
2012 adapter->rx_ring[i].count = adapter->rx_ring_count;
2013 adapter->rx_ring[i].queue_index = i;
2014 adapter->rx_ring[i].reg_idx = i;
2015 }
2016
2017 return 0;
2018
2019 err_rx_ring_allocation:
2020 kfree(adapter->tx_ring);
2021 err_tx_ring_allocation:
2022 return -ENOMEM;
2023 }
2024
2025 /**
2026 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2027 * @adapter: board private structure to initialize
2028 *
2029 * Attempt to configure the interrupts using the best available
2030 * capabilities of the hardware and the kernel.
2031 **/
2032 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2033 {
2034 int err = 0;
2035 int vector, v_budget;
2036
2037 /*
2038 * It's easy to be greedy for MSI-X vectors, but it really
2039 * doesn't do us much good if we have a lot more vectors
2040 * than CPU's. So let's be conservative and only ask for
2041 * (roughly) twice the number of vectors as there are CPU's.
2042 */
2043 v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2044 (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2045
2046 /* A failure in MSI-X entry allocation isn't fatal, but it does
2047 * mean we disable MSI-X capabilities of the adapter. */
2048 adapter->msix_entries = kcalloc(v_budget,
2049 sizeof(struct msix_entry), GFP_KERNEL);
2050 if (!adapter->msix_entries) {
2051 err = -ENOMEM;
2052 goto out;
2053 }
2054
2055 for (vector = 0; vector < v_budget; vector++)
2056 adapter->msix_entries[vector].entry = vector;
2057
2058 ixgbevf_acquire_msix_vectors(adapter, v_budget);
2059
2060 out:
2061 return err;
2062 }
2063
2064 /**
2065 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2066 * @adapter: board private structure to initialize
2067 *
2068 * We allocate one q_vector per queue interrupt. If allocation fails we
2069 * return -ENOMEM.
2070 **/
2071 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2072 {
2073 int q_idx, num_q_vectors;
2074 struct ixgbevf_q_vector *q_vector;
2075 int napi_vectors;
2076 int (*poll)(struct napi_struct *, int);
2077
2078 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2079 napi_vectors = adapter->num_rx_queues;
2080 poll = &ixgbevf_clean_rxonly;
2081
2082 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2083 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2084 if (!q_vector)
2085 goto err_out;
2086 q_vector->adapter = adapter;
2087 q_vector->v_idx = q_idx;
2088 q_vector->eitr = adapter->eitr_param;
2089 if (q_idx < napi_vectors)
2090 netif_napi_add(adapter->netdev, &q_vector->napi,
2091 (*poll), 64);
2092 adapter->q_vector[q_idx] = q_vector;
2093 }
2094
2095 return 0;
2096
2097 err_out:
2098 while (q_idx) {
2099 q_idx--;
2100 q_vector = adapter->q_vector[q_idx];
2101 netif_napi_del(&q_vector->napi);
2102 kfree(q_vector);
2103 adapter->q_vector[q_idx] = NULL;
2104 }
2105 return -ENOMEM;
2106 }
2107
2108 /**
2109 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2110 * @adapter: board private structure to initialize
2111 *
2112 * This function frees the memory allocated to the q_vectors. In addition if
2113 * NAPI is enabled it will delete any references to the NAPI struct prior
2114 * to freeing the q_vector.
2115 **/
2116 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2117 {
2118 int q_idx, num_q_vectors;
2119 int napi_vectors;
2120
2121 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2122 napi_vectors = adapter->num_rx_queues;
2123
2124 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2125 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2126
2127 adapter->q_vector[q_idx] = NULL;
2128 if (q_idx < napi_vectors)
2129 netif_napi_del(&q_vector->napi);
2130 kfree(q_vector);
2131 }
2132 }
2133
2134 /**
2135 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2136 * @adapter: board private structure
2137 *
2138 **/
2139 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2140 {
2141 pci_disable_msix(adapter->pdev);
2142 kfree(adapter->msix_entries);
2143 adapter->msix_entries = NULL;
2144 }
2145
2146 /**
2147 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2148 * @adapter: board private structure to initialize
2149 *
2150 **/
2151 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2152 {
2153 int err;
2154
2155 /* Number of supported queues */
2156 ixgbevf_set_num_queues(adapter);
2157
2158 err = ixgbevf_set_interrupt_capability(adapter);
2159 if (err) {
2160 hw_dbg(&adapter->hw,
2161 "Unable to setup interrupt capabilities\n");
2162 goto err_set_interrupt;
2163 }
2164
2165 err = ixgbevf_alloc_q_vectors(adapter);
2166 if (err) {
2167 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2168 "vectors\n");
2169 goto err_alloc_q_vectors;
2170 }
2171
2172 err = ixgbevf_alloc_queues(adapter);
2173 if (err) {
2174 printk(KERN_ERR "Unable to allocate memory for queues\n");
2175 goto err_alloc_queues;
2176 }
2177
2178 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2179 "Tx Queue count = %u\n",
2180 (adapter->num_rx_queues > 1) ? "Enabled" :
2181 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2182
2183 set_bit(__IXGBEVF_DOWN, &adapter->state);
2184
2185 return 0;
2186 err_alloc_queues:
2187 ixgbevf_free_q_vectors(adapter);
2188 err_alloc_q_vectors:
2189 ixgbevf_reset_interrupt_capability(adapter);
2190 err_set_interrupt:
2191 return err;
2192 }
2193
2194 /**
2195 * ixgbevf_sw_init - Initialize general software structures
2196 * (struct ixgbevf_adapter)
2197 * @adapter: board private structure to initialize
2198 *
2199 * ixgbevf_sw_init initializes the Adapter private data structure.
2200 * Fields are initialized based on PCI device information and
2201 * OS network device settings (MTU size).
2202 **/
2203 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2204 {
2205 struct ixgbe_hw *hw = &adapter->hw;
2206 struct pci_dev *pdev = adapter->pdev;
2207 int err;
2208
2209 /* PCI config space info */
2210
2211 hw->vendor_id = pdev->vendor;
2212 hw->device_id = pdev->device;
2213 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2214 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2215 hw->subsystem_device_id = pdev->subsystem_device;
2216
2217 hw->mbx.ops.init_params(hw);
2218 hw->mac.max_tx_queues = MAX_TX_QUEUES;
2219 hw->mac.max_rx_queues = MAX_RX_QUEUES;
2220 err = hw->mac.ops.reset_hw(hw);
2221 if (err) {
2222 dev_info(&pdev->dev,
2223 "PF still in reset state, assigning new address\n");
2224 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2225 } else {
2226 err = hw->mac.ops.init_hw(hw);
2227 if (err) {
2228 printk(KERN_ERR "init_shared_code failed: %d\n", err);
2229 goto out;
2230 }
2231 }
2232
2233 /* Enable dynamic interrupt throttling rates */
2234 adapter->eitr_param = 20000;
2235 adapter->itr_setting = 1;
2236
2237 /* set defaults for eitr in MegaBytes */
2238 adapter->eitr_low = 10;
2239 adapter->eitr_high = 20;
2240
2241 /* set default ring sizes */
2242 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2243 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2244
2245 /* enable rx csum by default */
2246 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2247
2248 set_bit(__IXGBEVF_DOWN, &adapter->state);
2249
2250 out:
2251 return err;
2252 }
2253
2254 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2255 { \
2256 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2257 if (current_counter < last_counter) \
2258 counter += 0x100000000LL; \
2259 last_counter = current_counter; \
2260 counter &= 0xFFFFFFFF00000000LL; \
2261 counter |= current_counter; \
2262 }
2263
2264 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2265 { \
2266 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2267 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2268 u64 current_counter = (current_counter_msb << 32) | \
2269 current_counter_lsb; \
2270 if (current_counter < last_counter) \
2271 counter += 0x1000000000LL; \
2272 last_counter = current_counter; \
2273 counter &= 0xFFFFFFF000000000LL; \
2274 counter |= current_counter; \
2275 }
2276 /**
2277 * ixgbevf_update_stats - Update the board statistics counters.
2278 * @adapter: board private structure
2279 **/
2280 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2281 {
2282 struct ixgbe_hw *hw = &adapter->hw;
2283
2284 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2285 adapter->stats.vfgprc);
2286 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2287 adapter->stats.vfgptc);
2288 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2289 adapter->stats.last_vfgorc,
2290 adapter->stats.vfgorc);
2291 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2292 adapter->stats.last_vfgotc,
2293 adapter->stats.vfgotc);
2294 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2295 adapter->stats.vfmprc);
2296
2297 /* Fill out the OS statistics structure */
2298 adapter->net_stats.multicast = adapter->stats.vfmprc -
2299 adapter->stats.base_vfmprc;
2300 }
2301
2302 /**
2303 * ixgbevf_watchdog - Timer Call-back
2304 * @data: pointer to adapter cast into an unsigned long
2305 **/
2306 static void ixgbevf_watchdog(unsigned long data)
2307 {
2308 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2309 struct ixgbe_hw *hw = &adapter->hw;
2310 u64 eics = 0;
2311 int i;
2312
2313 /*
2314 * Do the watchdog outside of interrupt context due to the lovely
2315 * delays that some of the newer hardware requires
2316 */
2317
2318 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2319 goto watchdog_short_circuit;
2320
2321 /* get one bit for every active tx/rx interrupt vector */
2322 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2323 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2324 if (qv->rxr_count || qv->txr_count)
2325 eics |= (1 << i);
2326 }
2327
2328 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2329
2330 watchdog_short_circuit:
2331 schedule_work(&adapter->watchdog_task);
2332 }
2333
2334 /**
2335 * ixgbevf_tx_timeout - Respond to a Tx Hang
2336 * @netdev: network interface device structure
2337 **/
2338 static void ixgbevf_tx_timeout(struct net_device *netdev)
2339 {
2340 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2341
2342 /* Do the reset outside of interrupt context */
2343 schedule_work(&adapter->reset_task);
2344 }
2345
2346 static void ixgbevf_reset_task(struct work_struct *work)
2347 {
2348 struct ixgbevf_adapter *adapter;
2349 adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2350
2351 /* If we're already down or resetting, just bail */
2352 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2353 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2354 return;
2355
2356 adapter->tx_timeout_count++;
2357
2358 ixgbevf_reinit_locked(adapter);
2359 }
2360
2361 /**
2362 * ixgbevf_watchdog_task - worker thread to bring link up
2363 * @work: pointer to work_struct containing our data
2364 **/
2365 static void ixgbevf_watchdog_task(struct work_struct *work)
2366 {
2367 struct ixgbevf_adapter *adapter = container_of(work,
2368 struct ixgbevf_adapter,
2369 watchdog_task);
2370 struct net_device *netdev = adapter->netdev;
2371 struct ixgbe_hw *hw = &adapter->hw;
2372 u32 link_speed = adapter->link_speed;
2373 bool link_up = adapter->link_up;
2374
2375 adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2376
2377 /*
2378 * Always check the link on the watchdog because we have
2379 * no LSC interrupt
2380 */
2381 if (hw->mac.ops.check_link) {
2382 if ((hw->mac.ops.check_link(hw, &link_speed,
2383 &link_up, false)) != 0) {
2384 adapter->link_up = link_up;
2385 adapter->link_speed = link_speed;
2386 netif_carrier_off(netdev);
2387 netif_tx_stop_all_queues(netdev);
2388 schedule_work(&adapter->reset_task);
2389 goto pf_has_reset;
2390 }
2391 } else {
2392 /* always assume link is up, if no check link
2393 * function */
2394 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2395 link_up = true;
2396 }
2397 adapter->link_up = link_up;
2398 adapter->link_speed = link_speed;
2399
2400 if (link_up) {
2401 if (!netif_carrier_ok(netdev)) {
2402 hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2403 (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2404 10 : 1);
2405 netif_carrier_on(netdev);
2406 netif_tx_wake_all_queues(netdev);
2407 } else {
2408 /* Force detection of hung controller */
2409 adapter->detect_tx_hung = true;
2410 }
2411 } else {
2412 adapter->link_up = false;
2413 adapter->link_speed = 0;
2414 if (netif_carrier_ok(netdev)) {
2415 hw_dbg(&adapter->hw, "NIC Link is Down\n");
2416 netif_carrier_off(netdev);
2417 netif_tx_stop_all_queues(netdev);
2418 }
2419 }
2420
2421 ixgbevf_update_stats(adapter);
2422
2423 pf_has_reset:
2424 /* Force detection of hung controller every watchdog period */
2425 adapter->detect_tx_hung = true;
2426
2427 /* Reset the timer */
2428 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2429 mod_timer(&adapter->watchdog_timer,
2430 round_jiffies(jiffies + (2 * HZ)));
2431
2432 adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2433 }
2434
2435 /**
2436 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2437 * @adapter: board private structure
2438 * @tx_ring: Tx descriptor ring for a specific queue
2439 *
2440 * Free all transmit software resources
2441 **/
2442 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2443 struct ixgbevf_ring *tx_ring)
2444 {
2445 struct pci_dev *pdev = adapter->pdev;
2446
2447 ixgbevf_clean_tx_ring(adapter, tx_ring);
2448
2449 vfree(tx_ring->tx_buffer_info);
2450 tx_ring->tx_buffer_info = NULL;
2451
2452 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2453 tx_ring->dma);
2454
2455 tx_ring->desc = NULL;
2456 }
2457
2458 /**
2459 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2460 * @adapter: board private structure
2461 *
2462 * Free all transmit software resources
2463 **/
2464 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2465 {
2466 int i;
2467
2468 for (i = 0; i < adapter->num_tx_queues; i++)
2469 if (adapter->tx_ring[i].desc)
2470 ixgbevf_free_tx_resources(adapter,
2471 &adapter->tx_ring[i]);
2472
2473 }
2474
2475 /**
2476 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2477 * @adapter: board private structure
2478 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2479 *
2480 * Return 0 on success, negative on failure
2481 **/
2482 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2483 struct ixgbevf_ring *tx_ring)
2484 {
2485 struct pci_dev *pdev = adapter->pdev;
2486 int size;
2487
2488 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2489 tx_ring->tx_buffer_info = vmalloc(size);
2490 if (!tx_ring->tx_buffer_info)
2491 goto err;
2492 memset(tx_ring->tx_buffer_info, 0, size);
2493
2494 /* round up to nearest 4K */
2495 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2496 tx_ring->size = ALIGN(tx_ring->size, 4096);
2497
2498 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2499 &tx_ring->dma, GFP_KERNEL);
2500 if (!tx_ring->desc)
2501 goto err;
2502
2503 tx_ring->next_to_use = 0;
2504 tx_ring->next_to_clean = 0;
2505 tx_ring->work_limit = tx_ring->count;
2506 return 0;
2507
2508 err:
2509 vfree(tx_ring->tx_buffer_info);
2510 tx_ring->tx_buffer_info = NULL;
2511 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2512 "descriptor ring\n");
2513 return -ENOMEM;
2514 }
2515
2516 /**
2517 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2518 * @adapter: board private structure
2519 *
2520 * If this function returns with an error, then it's possible one or
2521 * more of the rings is populated (while the rest are not). It is the
2522 * callers duty to clean those orphaned rings.
2523 *
2524 * Return 0 on success, negative on failure
2525 **/
2526 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2527 {
2528 int i, err = 0;
2529
2530 for (i = 0; i < adapter->num_tx_queues; i++) {
2531 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2532 if (!err)
2533 continue;
2534 hw_dbg(&adapter->hw,
2535 "Allocation for Tx Queue %u failed\n", i);
2536 break;
2537 }
2538
2539 return err;
2540 }
2541
2542 /**
2543 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2544 * @adapter: board private structure
2545 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2546 *
2547 * Returns 0 on success, negative on failure
2548 **/
2549 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2550 struct ixgbevf_ring *rx_ring)
2551 {
2552 struct pci_dev *pdev = adapter->pdev;
2553 int size;
2554
2555 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2556 rx_ring->rx_buffer_info = vmalloc(size);
2557 if (!rx_ring->rx_buffer_info) {
2558 hw_dbg(&adapter->hw,
2559 "Unable to vmalloc buffer memory for "
2560 "the receive descriptor ring\n");
2561 goto alloc_failed;
2562 }
2563 memset(rx_ring->rx_buffer_info, 0, size);
2564
2565 /* Round up to nearest 4K */
2566 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2567 rx_ring->size = ALIGN(rx_ring->size, 4096);
2568
2569 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2570 &rx_ring->dma, GFP_KERNEL);
2571
2572 if (!rx_ring->desc) {
2573 hw_dbg(&adapter->hw,
2574 "Unable to allocate memory for "
2575 "the receive descriptor ring\n");
2576 vfree(rx_ring->rx_buffer_info);
2577 rx_ring->rx_buffer_info = NULL;
2578 goto alloc_failed;
2579 }
2580
2581 rx_ring->next_to_clean = 0;
2582 rx_ring->next_to_use = 0;
2583
2584 return 0;
2585 alloc_failed:
2586 return -ENOMEM;
2587 }
2588
2589 /**
2590 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2591 * @adapter: board private structure
2592 *
2593 * If this function returns with an error, then it's possible one or
2594 * more of the rings is populated (while the rest are not). It is the
2595 * callers duty to clean those orphaned rings.
2596 *
2597 * Return 0 on success, negative on failure
2598 **/
2599 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2600 {
2601 int i, err = 0;
2602
2603 for (i = 0; i < adapter->num_rx_queues; i++) {
2604 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2605 if (!err)
2606 continue;
2607 hw_dbg(&adapter->hw,
2608 "Allocation for Rx Queue %u failed\n", i);
2609 break;
2610 }
2611 return err;
2612 }
2613
2614 /**
2615 * ixgbevf_free_rx_resources - Free Rx Resources
2616 * @adapter: board private structure
2617 * @rx_ring: ring to clean the resources from
2618 *
2619 * Free all receive software resources
2620 **/
2621 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2622 struct ixgbevf_ring *rx_ring)
2623 {
2624 struct pci_dev *pdev = adapter->pdev;
2625
2626 ixgbevf_clean_rx_ring(adapter, rx_ring);
2627
2628 vfree(rx_ring->rx_buffer_info);
2629 rx_ring->rx_buffer_info = NULL;
2630
2631 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2632 rx_ring->dma);
2633
2634 rx_ring->desc = NULL;
2635 }
2636
2637 /**
2638 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2639 * @adapter: board private structure
2640 *
2641 * Free all receive software resources
2642 **/
2643 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2644 {
2645 int i;
2646
2647 for (i = 0; i < adapter->num_rx_queues; i++)
2648 if (adapter->rx_ring[i].desc)
2649 ixgbevf_free_rx_resources(adapter,
2650 &adapter->rx_ring[i]);
2651 }
2652
2653 /**
2654 * ixgbevf_open - Called when a network interface is made active
2655 * @netdev: network interface device structure
2656 *
2657 * Returns 0 on success, negative value on failure
2658 *
2659 * The open entry point is called when a network interface is made
2660 * active by the system (IFF_UP). At this point all resources needed
2661 * for transmit and receive operations are allocated, the interrupt
2662 * handler is registered with the OS, the watchdog timer is started,
2663 * and the stack is notified that the interface is ready.
2664 **/
2665 static int ixgbevf_open(struct net_device *netdev)
2666 {
2667 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2668 struct ixgbe_hw *hw = &adapter->hw;
2669 int err;
2670
2671 /* disallow open during test */
2672 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2673 return -EBUSY;
2674
2675 if (hw->adapter_stopped) {
2676 ixgbevf_reset(adapter);
2677 /* if adapter is still stopped then PF isn't up and
2678 * the vf can't start. */
2679 if (hw->adapter_stopped) {
2680 err = IXGBE_ERR_MBX;
2681 printk(KERN_ERR "Unable to start - perhaps the PF"
2682 " Driver isn't up yet\n");
2683 goto err_setup_reset;
2684 }
2685 }
2686
2687 /* allocate transmit descriptors */
2688 err = ixgbevf_setup_all_tx_resources(adapter);
2689 if (err)
2690 goto err_setup_tx;
2691
2692 /* allocate receive descriptors */
2693 err = ixgbevf_setup_all_rx_resources(adapter);
2694 if (err)
2695 goto err_setup_rx;
2696
2697 ixgbevf_configure(adapter);
2698
2699 /*
2700 * Map the Tx/Rx rings to the vectors we were allotted.
2701 * if request_irq will be called in this function map_rings
2702 * must be called *before* up_complete
2703 */
2704 ixgbevf_map_rings_to_vectors(adapter);
2705
2706 err = ixgbevf_up_complete(adapter);
2707 if (err)
2708 goto err_up;
2709
2710 /* clear any pending interrupts, may auto mask */
2711 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2712 err = ixgbevf_request_irq(adapter);
2713 if (err)
2714 goto err_req_irq;
2715
2716 ixgbevf_irq_enable(adapter, true, true);
2717
2718 return 0;
2719
2720 err_req_irq:
2721 ixgbevf_down(adapter);
2722 err_up:
2723 ixgbevf_free_irq(adapter);
2724 err_setup_rx:
2725 ixgbevf_free_all_rx_resources(adapter);
2726 err_setup_tx:
2727 ixgbevf_free_all_tx_resources(adapter);
2728 ixgbevf_reset(adapter);
2729
2730 err_setup_reset:
2731
2732 return err;
2733 }
2734
2735 /**
2736 * ixgbevf_close - Disables a network interface
2737 * @netdev: network interface device structure
2738 *
2739 * Returns 0, this is not allowed to fail
2740 *
2741 * The close entry point is called when an interface is de-activated
2742 * by the OS. The hardware is still under the drivers control, but
2743 * needs to be disabled. A global MAC reset is issued to stop the
2744 * hardware, and all transmit and receive resources are freed.
2745 **/
2746 static int ixgbevf_close(struct net_device *netdev)
2747 {
2748 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2749
2750 ixgbevf_down(adapter);
2751 ixgbevf_free_irq(adapter);
2752
2753 ixgbevf_free_all_tx_resources(adapter);
2754 ixgbevf_free_all_rx_resources(adapter);
2755
2756 return 0;
2757 }
2758
2759 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2760 struct ixgbevf_ring *tx_ring,
2761 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2762 {
2763 struct ixgbe_adv_tx_context_desc *context_desc;
2764 unsigned int i;
2765 int err;
2766 struct ixgbevf_tx_buffer *tx_buffer_info;
2767 u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2768 u32 mss_l4len_idx, l4len;
2769
2770 if (skb_is_gso(skb)) {
2771 if (skb_header_cloned(skb)) {
2772 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2773 if (err)
2774 return err;
2775 }
2776 l4len = tcp_hdrlen(skb);
2777 *hdr_len += l4len;
2778
2779 if (skb->protocol == htons(ETH_P_IP)) {
2780 struct iphdr *iph = ip_hdr(skb);
2781 iph->tot_len = 0;
2782 iph->check = 0;
2783 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2784 iph->daddr, 0,
2785 IPPROTO_TCP,
2786 0);
2787 adapter->hw_tso_ctxt++;
2788 } else if (skb_is_gso_v6(skb)) {
2789 ipv6_hdr(skb)->payload_len = 0;
2790 tcp_hdr(skb)->check =
2791 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2792 &ipv6_hdr(skb)->daddr,
2793 0, IPPROTO_TCP, 0);
2794 adapter->hw_tso6_ctxt++;
2795 }
2796
2797 i = tx_ring->next_to_use;
2798
2799 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2800 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2801
2802 /* VLAN MACLEN IPLEN */
2803 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2804 vlan_macip_lens |=
2805 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2806 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2807 IXGBE_ADVTXD_MACLEN_SHIFT);
2808 *hdr_len += skb_network_offset(skb);
2809 vlan_macip_lens |=
2810 (skb_transport_header(skb) - skb_network_header(skb));
2811 *hdr_len +=
2812 (skb_transport_header(skb) - skb_network_header(skb));
2813 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2814 context_desc->seqnum_seed = 0;
2815
2816 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2817 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2818 IXGBE_ADVTXD_DTYP_CTXT);
2819
2820 if (skb->protocol == htons(ETH_P_IP))
2821 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2822 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2823 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2824
2825 /* MSS L4LEN IDX */
2826 mss_l4len_idx =
2827 (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2828 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2829 /* use index 1 for TSO */
2830 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2831 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2832
2833 tx_buffer_info->time_stamp = jiffies;
2834 tx_buffer_info->next_to_watch = i;
2835
2836 i++;
2837 if (i == tx_ring->count)
2838 i = 0;
2839 tx_ring->next_to_use = i;
2840
2841 return true;
2842 }
2843
2844 return false;
2845 }
2846
2847 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2848 struct ixgbevf_ring *tx_ring,
2849 struct sk_buff *skb, u32 tx_flags)
2850 {
2851 struct ixgbe_adv_tx_context_desc *context_desc;
2852 unsigned int i;
2853 struct ixgbevf_tx_buffer *tx_buffer_info;
2854 u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2855
2856 if (skb->ip_summed == CHECKSUM_PARTIAL ||
2857 (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2858 i = tx_ring->next_to_use;
2859 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2860 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2861
2862 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2863 vlan_macip_lens |= (tx_flags &
2864 IXGBE_TX_FLAGS_VLAN_MASK);
2865 vlan_macip_lens |= (skb_network_offset(skb) <<
2866 IXGBE_ADVTXD_MACLEN_SHIFT);
2867 if (skb->ip_summed == CHECKSUM_PARTIAL)
2868 vlan_macip_lens |= (skb_transport_header(skb) -
2869 skb_network_header(skb));
2870
2871 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2872 context_desc->seqnum_seed = 0;
2873
2874 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2875 IXGBE_ADVTXD_DTYP_CTXT);
2876
2877 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2878 switch (skb->protocol) {
2879 case __constant_htons(ETH_P_IP):
2880 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2881 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2882 type_tucmd_mlhl |=
2883 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2884 break;
2885 case __constant_htons(ETH_P_IPV6):
2886 /* XXX what about other V6 headers?? */
2887 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2888 type_tucmd_mlhl |=
2889 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2890 break;
2891 default:
2892 if (unlikely(net_ratelimit())) {
2893 printk(KERN_WARNING
2894 "partial checksum but "
2895 "proto=%x!\n",
2896 skb->protocol);
2897 }
2898 break;
2899 }
2900 }
2901
2902 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2903 /* use index zero for tx checksum offload */
2904 context_desc->mss_l4len_idx = 0;
2905
2906 tx_buffer_info->time_stamp = jiffies;
2907 tx_buffer_info->next_to_watch = i;
2908
2909 adapter->hw_csum_tx_good++;
2910 i++;
2911 if (i == tx_ring->count)
2912 i = 0;
2913 tx_ring->next_to_use = i;
2914
2915 return true;
2916 }
2917
2918 return false;
2919 }
2920
2921 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2922 struct ixgbevf_ring *tx_ring,
2923 struct sk_buff *skb, u32 tx_flags,
2924 unsigned int first)
2925 {
2926 struct pci_dev *pdev = adapter->pdev;
2927 struct ixgbevf_tx_buffer *tx_buffer_info;
2928 unsigned int len;
2929 unsigned int total = skb->len;
2930 unsigned int offset = 0, size;
2931 int count = 0;
2932 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2933 unsigned int f;
2934 int i;
2935
2936 i = tx_ring->next_to_use;
2937
2938 len = min(skb_headlen(skb), total);
2939 while (len) {
2940 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2941 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2942
2943 tx_buffer_info->length = size;
2944 tx_buffer_info->mapped_as_page = false;
2945 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2946 skb->data + offset,
2947 size, DMA_TO_DEVICE);
2948 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2949 goto dma_error;
2950 tx_buffer_info->time_stamp = jiffies;
2951 tx_buffer_info->next_to_watch = i;
2952
2953 len -= size;
2954 total -= size;
2955 offset += size;
2956 count++;
2957 i++;
2958 if (i == tx_ring->count)
2959 i = 0;
2960 }
2961
2962 for (f = 0; f < nr_frags; f++) {
2963 struct skb_frag_struct *frag;
2964
2965 frag = &skb_shinfo(skb)->frags[f];
2966 len = min((unsigned int)frag->size, total);
2967 offset = frag->page_offset;
2968
2969 while (len) {
2970 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2971 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2972
2973 tx_buffer_info->length = size;
2974 tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2975 frag->page,
2976 offset,
2977 size,
2978 DMA_TO_DEVICE);
2979 tx_buffer_info->mapped_as_page = true;
2980 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2981 goto dma_error;
2982 tx_buffer_info->time_stamp = jiffies;
2983 tx_buffer_info->next_to_watch = i;
2984
2985 len -= size;
2986 total -= size;
2987 offset += size;
2988 count++;
2989 i++;
2990 if (i == tx_ring->count)
2991 i = 0;
2992 }
2993 if (total == 0)
2994 break;
2995 }
2996
2997 if (i == 0)
2998 i = tx_ring->count - 1;
2999 else
3000 i = i - 1;
3001 tx_ring->tx_buffer_info[i].skb = skb;
3002 tx_ring->tx_buffer_info[first].next_to_watch = i;
3003
3004 return count;
3005
3006 dma_error:
3007 dev_err(&pdev->dev, "TX DMA map failed\n");
3008
3009 /* clear timestamp and dma mappings for failed tx_buffer_info map */
3010 tx_buffer_info->dma = 0;
3011 tx_buffer_info->time_stamp = 0;
3012 tx_buffer_info->next_to_watch = 0;
3013 count--;
3014
3015 /* clear timestamp and dma mappings for remaining portion of packet */
3016 while (count >= 0) {
3017 count--;
3018 i--;
3019 if (i < 0)
3020 i += tx_ring->count;
3021 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3022 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3023 }
3024
3025 return count;
3026 }
3027
3028 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3029 struct ixgbevf_ring *tx_ring, int tx_flags,
3030 int count, u32 paylen, u8 hdr_len)
3031 {
3032 union ixgbe_adv_tx_desc *tx_desc = NULL;
3033 struct ixgbevf_tx_buffer *tx_buffer_info;
3034 u32 olinfo_status = 0, cmd_type_len = 0;
3035 unsigned int i;
3036
3037 u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3038
3039 cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3040
3041 cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3042
3043 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3044 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3045
3046 if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3047 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3048
3049 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3050 IXGBE_ADVTXD_POPTS_SHIFT;
3051
3052 /* use index 1 context for tso */
3053 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3054 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3055 olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3056 IXGBE_ADVTXD_POPTS_SHIFT;
3057
3058 } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3059 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3060 IXGBE_ADVTXD_POPTS_SHIFT;
3061
3062 olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3063
3064 i = tx_ring->next_to_use;
3065 while (count--) {
3066 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3067 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3068 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3069 tx_desc->read.cmd_type_len =
3070 cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3071 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3072 i++;
3073 if (i == tx_ring->count)
3074 i = 0;
3075 }
3076
3077 tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3078
3079 /*
3080 * Force memory writes to complete before letting h/w
3081 * know there are new descriptors to fetch. (Only
3082 * applicable for weak-ordered memory model archs,
3083 * such as IA-64).
3084 */
3085 wmb();
3086
3087 tx_ring->next_to_use = i;
3088 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3089 }
3090
3091 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3092 struct ixgbevf_ring *tx_ring, int size)
3093 {
3094 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3095
3096 netif_stop_subqueue(netdev, tx_ring->queue_index);
3097 /* Herbert's original patch had:
3098 * smp_mb__after_netif_stop_queue();
3099 * but since that doesn't exist yet, just open code it. */
3100 smp_mb();
3101
3102 /* We need to check again in a case another CPU has just
3103 * made room available. */
3104 if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3105 return -EBUSY;
3106
3107 /* A reprieve! - use start_queue because it doesn't call schedule */
3108 netif_start_subqueue(netdev, tx_ring->queue_index);
3109 ++adapter->restart_queue;
3110 return 0;
3111 }
3112
3113 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3114 struct ixgbevf_ring *tx_ring, int size)
3115 {
3116 if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3117 return 0;
3118 return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3119 }
3120
3121 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3122 {
3123 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3124 struct ixgbevf_ring *tx_ring;
3125 unsigned int first;
3126 unsigned int tx_flags = 0;
3127 u8 hdr_len = 0;
3128 int r_idx = 0, tso;
3129 int count = 0;
3130
3131 unsigned int f;
3132
3133 tx_ring = &adapter->tx_ring[r_idx];
3134
3135 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3136 tx_flags |= vlan_tx_tag_get(skb);
3137 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3138 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3139 }
3140
3141 /* four things can cause us to need a context descriptor */
3142 if (skb_is_gso(skb) ||
3143 (skb->ip_summed == CHECKSUM_PARTIAL) ||
3144 (tx_flags & IXGBE_TX_FLAGS_VLAN))
3145 count++;
3146
3147 count += TXD_USE_COUNT(skb_headlen(skb));
3148 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3149 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3150
3151 if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3152 adapter->tx_busy++;
3153 return NETDEV_TX_BUSY;
3154 }
3155
3156 first = tx_ring->next_to_use;
3157
3158 if (skb->protocol == htons(ETH_P_IP))
3159 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3160 tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3161 if (tso < 0) {
3162 dev_kfree_skb_any(skb);
3163 return NETDEV_TX_OK;
3164 }
3165
3166 if (tso)
3167 tx_flags |= IXGBE_TX_FLAGS_TSO;
3168 else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3169 (skb->ip_summed == CHECKSUM_PARTIAL))
3170 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3171
3172 ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3173 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3174 skb->len, hdr_len);
3175
3176 ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3177
3178 return NETDEV_TX_OK;
3179 }
3180
3181 /**
3182 * ixgbevf_get_stats - Get System Network Statistics
3183 * @netdev: network interface device structure
3184 *
3185 * Returns the address of the device statistics structure.
3186 * The statistics are actually updated from the timer callback.
3187 **/
3188 static struct net_device_stats *ixgbevf_get_stats(struct net_device *netdev)
3189 {
3190 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3191
3192 /* only return the current stats */
3193 return &adapter->net_stats;
3194 }
3195
3196 /**
3197 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3198 * @netdev: network interface device structure
3199 * @p: pointer to an address structure
3200 *
3201 * Returns 0 on success, negative on failure
3202 **/
3203 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3204 {
3205 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3206 struct ixgbe_hw *hw = &adapter->hw;
3207 struct sockaddr *addr = p;
3208
3209 if (!is_valid_ether_addr(addr->sa_data))
3210 return -EADDRNOTAVAIL;
3211
3212 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3213 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3214
3215 if (hw->mac.ops.set_rar)
3216 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3217
3218 return 0;
3219 }
3220
3221 /**
3222 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3223 * @netdev: network interface device structure
3224 * @new_mtu: new value for maximum frame size
3225 *
3226 * Returns 0 on success, negative on failure
3227 **/
3228 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3229 {
3230 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3231 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3232
3233 /* MTU < 68 is an error and causes problems on some kernels */
3234 if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3235 return -EINVAL;
3236
3237 hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3238 netdev->mtu, new_mtu);
3239 /* must set new MTU before calling down or up */
3240 netdev->mtu = new_mtu;
3241
3242 if (netif_running(netdev))
3243 ixgbevf_reinit_locked(adapter);
3244
3245 return 0;
3246 }
3247
3248 static void ixgbevf_shutdown(struct pci_dev *pdev)
3249 {
3250 struct net_device *netdev = pci_get_drvdata(pdev);
3251 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3252
3253 netif_device_detach(netdev);
3254
3255 if (netif_running(netdev)) {
3256 ixgbevf_down(adapter);
3257 ixgbevf_free_irq(adapter);
3258 ixgbevf_free_all_tx_resources(adapter);
3259 ixgbevf_free_all_rx_resources(adapter);
3260 }
3261
3262 #ifdef CONFIG_PM
3263 pci_save_state(pdev);
3264 #endif
3265
3266 pci_disable_device(pdev);
3267 }
3268
3269 static const struct net_device_ops ixgbe_netdev_ops = {
3270 .ndo_open = &ixgbevf_open,
3271 .ndo_stop = &ixgbevf_close,
3272 .ndo_start_xmit = &ixgbevf_xmit_frame,
3273 .ndo_get_stats = &ixgbevf_get_stats,
3274 .ndo_set_rx_mode = &ixgbevf_set_rx_mode,
3275 .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3276 .ndo_validate_addr = eth_validate_addr,
3277 .ndo_set_mac_address = &ixgbevf_set_mac,
3278 .ndo_change_mtu = &ixgbevf_change_mtu,
3279 .ndo_tx_timeout = &ixgbevf_tx_timeout,
3280 .ndo_vlan_rx_register = &ixgbevf_vlan_rx_register,
3281 .ndo_vlan_rx_add_vid = &ixgbevf_vlan_rx_add_vid,
3282 .ndo_vlan_rx_kill_vid = &ixgbevf_vlan_rx_kill_vid,
3283 };
3284
3285 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3286 {
3287 struct ixgbevf_adapter *adapter;
3288 adapter = netdev_priv(dev);
3289 dev->netdev_ops = &ixgbe_netdev_ops;
3290 ixgbevf_set_ethtool_ops(dev);
3291 dev->watchdog_timeo = 5 * HZ;
3292 }
3293
3294 /**
3295 * ixgbevf_probe - Device Initialization Routine
3296 * @pdev: PCI device information struct
3297 * @ent: entry in ixgbevf_pci_tbl
3298 *
3299 * Returns 0 on success, negative on failure
3300 *
3301 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3302 * The OS initialization, configuring of the adapter private structure,
3303 * and a hardware reset occur.
3304 **/
3305 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3306 const struct pci_device_id *ent)
3307 {
3308 struct net_device *netdev;
3309 struct ixgbevf_adapter *adapter = NULL;
3310 struct ixgbe_hw *hw = NULL;
3311 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3312 static int cards_found;
3313 int err, pci_using_dac;
3314
3315 err = pci_enable_device(pdev);
3316 if (err)
3317 return err;
3318
3319 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3320 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3321 pci_using_dac = 1;
3322 } else {
3323 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3324 if (err) {
3325 err = dma_set_coherent_mask(&pdev->dev,
3326 DMA_BIT_MASK(32));
3327 if (err) {
3328 dev_err(&pdev->dev, "No usable DMA "
3329 "configuration, aborting\n");
3330 goto err_dma;
3331 }
3332 }
3333 pci_using_dac = 0;
3334 }
3335
3336 err = pci_request_regions(pdev, ixgbevf_driver_name);
3337 if (err) {
3338 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3339 goto err_pci_reg;
3340 }
3341
3342 pci_set_master(pdev);
3343
3344 #ifdef HAVE_TX_MQ
3345 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3346 MAX_TX_QUEUES);
3347 #else
3348 netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3349 #endif
3350 if (!netdev) {
3351 err = -ENOMEM;
3352 goto err_alloc_etherdev;
3353 }
3354
3355 SET_NETDEV_DEV(netdev, &pdev->dev);
3356
3357 pci_set_drvdata(pdev, netdev);
3358 adapter = netdev_priv(netdev);
3359
3360 adapter->netdev = netdev;
3361 adapter->pdev = pdev;
3362 hw = &adapter->hw;
3363 hw->back = adapter;
3364 adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3365
3366 /*
3367 * call save state here in standalone driver because it relies on
3368 * adapter struct to exist, and needs to call netdev_priv
3369 */
3370 pci_save_state(pdev);
3371
3372 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3373 pci_resource_len(pdev, 0));
3374 if (!hw->hw_addr) {
3375 err = -EIO;
3376 goto err_ioremap;
3377 }
3378
3379 ixgbevf_assign_netdev_ops(netdev);
3380
3381 adapter->bd_number = cards_found;
3382
3383 /* Setup hw api */
3384 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3385 hw->mac.type = ii->mac;
3386
3387 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3388 sizeof(struct ixgbe_mac_operations));
3389
3390 adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3391 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3392 adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3393
3394 /* setup the private structure */
3395 err = ixgbevf_sw_init(adapter);
3396
3397 netdev->features = NETIF_F_SG |
3398 NETIF_F_IP_CSUM |
3399 NETIF_F_HW_VLAN_TX |
3400 NETIF_F_HW_VLAN_RX |
3401 NETIF_F_HW_VLAN_FILTER;
3402
3403 netdev->features |= NETIF_F_IPV6_CSUM;
3404 netdev->features |= NETIF_F_TSO;
3405 netdev->features |= NETIF_F_TSO6;
3406 netdev->features |= NETIF_F_GRO;
3407 netdev->vlan_features |= NETIF_F_TSO;
3408 netdev->vlan_features |= NETIF_F_TSO6;
3409 netdev->vlan_features |= NETIF_F_IP_CSUM;
3410 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3411 netdev->vlan_features |= NETIF_F_SG;
3412
3413 if (pci_using_dac)
3414 netdev->features |= NETIF_F_HIGHDMA;
3415
3416 /* The HW MAC address was set and/or determined in sw_init */
3417 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3418 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3419
3420 if (!is_valid_ether_addr(netdev->dev_addr)) {
3421 printk(KERN_ERR "invalid MAC address\n");
3422 err = -EIO;
3423 goto err_sw_init;
3424 }
3425
3426 init_timer(&adapter->watchdog_timer);
3427 adapter->watchdog_timer.function = &ixgbevf_watchdog;
3428 adapter->watchdog_timer.data = (unsigned long)adapter;
3429
3430 INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3431 INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3432
3433 err = ixgbevf_init_interrupt_scheme(adapter);
3434 if (err)
3435 goto err_sw_init;
3436
3437 /* pick up the PCI bus settings for reporting later */
3438 if (hw->mac.ops.get_bus_info)
3439 hw->mac.ops.get_bus_info(hw);
3440
3441
3442 netif_carrier_off(netdev);
3443 netif_tx_stop_all_queues(netdev);
3444
3445 strcpy(netdev->name, "eth%d");
3446
3447 err = register_netdev(netdev);
3448 if (err)
3449 goto err_register;
3450
3451 adapter->netdev_registered = true;
3452
3453 ixgbevf_init_last_counter_stats(adapter);
3454
3455 /* print the MAC address */
3456 hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3457 netdev->dev_addr[0],
3458 netdev->dev_addr[1],
3459 netdev->dev_addr[2],
3460 netdev->dev_addr[3],
3461 netdev->dev_addr[4],
3462 netdev->dev_addr[5]);
3463
3464 hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3465
3466 hw_dbg(hw, "LRO is disabled\n");
3467
3468 hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3469 cards_found++;
3470 return 0;
3471
3472 err_register:
3473 err_sw_init:
3474 ixgbevf_reset_interrupt_capability(adapter);
3475 iounmap(hw->hw_addr);
3476 err_ioremap:
3477 free_netdev(netdev);
3478 err_alloc_etherdev:
3479 pci_release_regions(pdev);
3480 err_pci_reg:
3481 err_dma:
3482 pci_disable_device(pdev);
3483 return err;
3484 }
3485
3486 /**
3487 * ixgbevf_remove - Device Removal Routine
3488 * @pdev: PCI device information struct
3489 *
3490 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3491 * that it should release a PCI device. The could be caused by a
3492 * Hot-Plug event, or because the driver is going to be removed from
3493 * memory.
3494 **/
3495 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3496 {
3497 struct net_device *netdev = pci_get_drvdata(pdev);
3498 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3499
3500 set_bit(__IXGBEVF_DOWN, &adapter->state);
3501
3502 del_timer_sync(&adapter->watchdog_timer);
3503
3504 cancel_work_sync(&adapter->watchdog_task);
3505
3506 flush_scheduled_work();
3507
3508 if (adapter->netdev_registered) {
3509 unregister_netdev(netdev);
3510 adapter->netdev_registered = false;
3511 }
3512
3513 ixgbevf_reset_interrupt_capability(adapter);
3514
3515 iounmap(adapter->hw.hw_addr);
3516 pci_release_regions(pdev);
3517
3518 hw_dbg(&adapter->hw, "Remove complete\n");
3519
3520 kfree(adapter->tx_ring);
3521 kfree(adapter->rx_ring);
3522
3523 free_netdev(netdev);
3524
3525 pci_disable_device(pdev);
3526 }
3527
3528 static struct pci_driver ixgbevf_driver = {
3529 .name = ixgbevf_driver_name,
3530 .id_table = ixgbevf_pci_tbl,
3531 .probe = ixgbevf_probe,
3532 .remove = __devexit_p(ixgbevf_remove),
3533 .shutdown = ixgbevf_shutdown,
3534 };
3535
3536 /**
3537 * ixgbe_init_module - Driver Registration Routine
3538 *
3539 * ixgbe_init_module is the first routine called when the driver is
3540 * loaded. All it does is register with the PCI subsystem.
3541 **/
3542 static int __init ixgbevf_init_module(void)
3543 {
3544 int ret;
3545 printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3546 ixgbevf_driver_version);
3547
3548 printk(KERN_INFO "%s\n", ixgbevf_copyright);
3549
3550 ret = pci_register_driver(&ixgbevf_driver);
3551 return ret;
3552 }
3553
3554 module_init(ixgbevf_init_module);
3555
3556 /**
3557 * ixgbe_exit_module - Driver Exit Cleanup Routine
3558 *
3559 * ixgbe_exit_module is called just before the driver is removed
3560 * from memory.
3561 **/
3562 static void __exit ixgbevf_exit_module(void)
3563 {
3564 pci_unregister_driver(&ixgbevf_driver);
3565 }
3566
3567 #ifdef DEBUG
3568 /**
3569 * ixgbe_get_hw_dev_name - return device name string
3570 * used by hardware layer to print debugging information
3571 **/
3572 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3573 {
3574 struct ixgbevf_adapter *adapter = hw->back;
3575 return adapter->netdev->name;
3576 }
3577
3578 #endif
3579 module_exit(ixgbevf_exit_module);
3580
3581 /* ixgbevf_main.c */