]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/mace.c
[NET]: Nuke SET_MODULE_OWNER macro.
[mirror_ubuntu-artful-kernel.git] / drivers / net / mace.c
1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1996 Paul Mackerras.
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/crc32.h>
17 #include <linux/spinlock.h>
18 #include <linux/bitrev.h>
19 #include <asm/prom.h>
20 #include <asm/dbdma.h>
21 #include <asm/io.h>
22 #include <asm/pgtable.h>
23 #include <asm/macio.h>
24
25 #include "mace.h"
26
27 static int port_aaui = -1;
28
29 #define N_RX_RING 8
30 #define N_TX_RING 6
31 #define MAX_TX_ACTIVE 1
32 #define NCMDS_TX 1 /* dma commands per element in tx ring */
33 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
34 #define TX_TIMEOUT HZ /* 1 second */
35
36 /* Chip rev needs workaround on HW & multicast addr change */
37 #define BROKEN_ADDRCHG_REV 0x0941
38
39 /* Bits in transmit DMA status */
40 #define TX_DMA_ERR 0x80
41
42 struct mace_data {
43 volatile struct mace __iomem *mace;
44 volatile struct dbdma_regs __iomem *tx_dma;
45 int tx_dma_intr;
46 volatile struct dbdma_regs __iomem *rx_dma;
47 int rx_dma_intr;
48 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
49 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
50 struct sk_buff *rx_bufs[N_RX_RING];
51 int rx_fill;
52 int rx_empty;
53 struct sk_buff *tx_bufs[N_TX_RING];
54 int tx_fill;
55 int tx_empty;
56 unsigned char maccc;
57 unsigned char tx_fullup;
58 unsigned char tx_active;
59 unsigned char tx_bad_runt;
60 struct net_device_stats stats;
61 struct timer_list tx_timeout;
62 int timeout_active;
63 int port_aaui;
64 int chipid;
65 struct macio_dev *mdev;
66 spinlock_t lock;
67 };
68
69 /*
70 * Number of bytes of private data per MACE: allow enough for
71 * the rx and tx dma commands plus a branch dma command each,
72 * and another 16 bytes to allow us to align the dma command
73 * buffers on a 16 byte boundary.
74 */
75 #define PRIV_BYTES (sizeof(struct mace_data) \
76 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
77
78 static int mace_open(struct net_device *dev);
79 static int mace_close(struct net_device *dev);
80 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
81 static struct net_device_stats *mace_stats(struct net_device *dev);
82 static void mace_set_multicast(struct net_device *dev);
83 static void mace_reset(struct net_device *dev);
84 static int mace_set_address(struct net_device *dev, void *addr);
85 static irqreturn_t mace_interrupt(int irq, void *dev_id);
86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
88 static void mace_set_timeout(struct net_device *dev);
89 static void mace_tx_timeout(unsigned long data);
90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
91 static inline void mace_clean_rings(struct mace_data *mp);
92 static void __mace_set_address(struct net_device *dev, void *addr);
93
94 /*
95 * If we can't get a skbuff when we need it, we use this area for DMA.
96 */
97 static unsigned char *dummy_buf;
98
99 static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
100 {
101 struct device_node *mace = macio_get_of_node(mdev);
102 struct net_device *dev;
103 struct mace_data *mp;
104 const unsigned char *addr;
105 int j, rev, rc = -EBUSY;
106
107 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
108 printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
109 mace->full_name);
110 return -ENODEV;
111 }
112
113 addr = of_get_property(mace, "mac-address", NULL);
114 if (addr == NULL) {
115 addr = of_get_property(mace, "local-mac-address", NULL);
116 if (addr == NULL) {
117 printk(KERN_ERR "Can't get mac-address for MACE %s\n",
118 mace->full_name);
119 return -ENODEV;
120 }
121 }
122
123 /*
124 * lazy allocate the driver-wide dummy buffer. (Note that we
125 * never have more than one MACE in the system anyway)
126 */
127 if (dummy_buf == NULL) {
128 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
129 if (dummy_buf == NULL) {
130 printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
131 return -ENOMEM;
132 }
133 }
134
135 if (macio_request_resources(mdev, "mace")) {
136 printk(KERN_ERR "MACE: can't request IO resources !\n");
137 return -EBUSY;
138 }
139
140 dev = alloc_etherdev(PRIV_BYTES);
141 if (!dev) {
142 printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
143 rc = -ENOMEM;
144 goto err_release;
145 }
146 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
147
148 mp = dev->priv;
149 mp->mdev = mdev;
150 macio_set_drvdata(mdev, dev);
151
152 dev->base_addr = macio_resource_start(mdev, 0);
153 mp->mace = ioremap(dev->base_addr, 0x1000);
154 if (mp->mace == NULL) {
155 printk(KERN_ERR "MACE: can't map IO resources !\n");
156 rc = -ENOMEM;
157 goto err_free;
158 }
159 dev->irq = macio_irq(mdev, 0);
160
161 rev = addr[0] == 0 && addr[1] == 0xA0;
162 for (j = 0; j < 6; ++j) {
163 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
164 }
165 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
166 in_8(&mp->mace->chipid_lo);
167
168
169 mp = (struct mace_data *) dev->priv;
170 mp->maccc = ENXMT | ENRCV;
171
172 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
173 if (mp->tx_dma == NULL) {
174 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
175 rc = -ENOMEM;
176 goto err_unmap_io;
177 }
178 mp->tx_dma_intr = macio_irq(mdev, 1);
179
180 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
181 if (mp->rx_dma == NULL) {
182 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
183 rc = -ENOMEM;
184 goto err_unmap_tx_dma;
185 }
186 mp->rx_dma_intr = macio_irq(mdev, 2);
187
188 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
189 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
190
191 memset(&mp->stats, 0, sizeof(mp->stats));
192 memset((char *) mp->tx_cmds, 0,
193 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
194 init_timer(&mp->tx_timeout);
195 spin_lock_init(&mp->lock);
196 mp->timeout_active = 0;
197
198 if (port_aaui >= 0)
199 mp->port_aaui = port_aaui;
200 else {
201 /* Apple Network Server uses the AAUI port */
202 if (machine_is_compatible("AAPL,ShinerESB"))
203 mp->port_aaui = 1;
204 else {
205 #ifdef CONFIG_MACE_AAUI_PORT
206 mp->port_aaui = 1;
207 #else
208 mp->port_aaui = 0;
209 #endif
210 }
211 }
212
213 dev->open = mace_open;
214 dev->stop = mace_close;
215 dev->hard_start_xmit = mace_xmit_start;
216 dev->get_stats = mace_stats;
217 dev->set_multicast_list = mace_set_multicast;
218 dev->set_mac_address = mace_set_address;
219
220 /*
221 * Most of what is below could be moved to mace_open()
222 */
223 mace_reset(dev);
224
225 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
226 if (rc) {
227 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
228 goto err_unmap_rx_dma;
229 }
230 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
231 if (rc) {
232 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
233 goto err_free_irq;
234 }
235 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
236 if (rc) {
237 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
238 goto err_free_tx_irq;
239 }
240
241 rc = register_netdev(dev);
242 if (rc) {
243 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
244 goto err_free_rx_irq;
245 }
246
247 printk(KERN_INFO "%s: MACE at", dev->name);
248 for (j = 0; j < 6; ++j) {
249 printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
250 }
251 printk(", chip revision %d.%d\n", mp->chipid >> 8, mp->chipid & 0xff);
252
253 return 0;
254
255 err_free_rx_irq:
256 free_irq(macio_irq(mdev, 2), dev);
257 err_free_tx_irq:
258 free_irq(macio_irq(mdev, 1), dev);
259 err_free_irq:
260 free_irq(macio_irq(mdev, 0), dev);
261 err_unmap_rx_dma:
262 iounmap(mp->rx_dma);
263 err_unmap_tx_dma:
264 iounmap(mp->tx_dma);
265 err_unmap_io:
266 iounmap(mp->mace);
267 err_free:
268 free_netdev(dev);
269 err_release:
270 macio_release_resources(mdev);
271
272 return rc;
273 }
274
275 static int __devexit mace_remove(struct macio_dev *mdev)
276 {
277 struct net_device *dev = macio_get_drvdata(mdev);
278 struct mace_data *mp;
279
280 BUG_ON(dev == NULL);
281
282 macio_set_drvdata(mdev, NULL);
283
284 mp = dev->priv;
285
286 unregister_netdev(dev);
287
288 free_irq(dev->irq, dev);
289 free_irq(mp->tx_dma_intr, dev);
290 free_irq(mp->rx_dma_intr, dev);
291
292 iounmap(mp->rx_dma);
293 iounmap(mp->tx_dma);
294 iounmap(mp->mace);
295
296 free_netdev(dev);
297
298 macio_release_resources(mdev);
299
300 return 0;
301 }
302
303 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
304 {
305 int i;
306
307 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
308
309 /*
310 * Yes this looks peculiar, but apparently it needs to be this
311 * way on some machines.
312 */
313 for (i = 200; i > 0; --i)
314 if (ld_le32(&dma->control) & RUN)
315 udelay(1);
316 }
317
318 static void mace_reset(struct net_device *dev)
319 {
320 struct mace_data *mp = (struct mace_data *) dev->priv;
321 volatile struct mace __iomem *mb = mp->mace;
322 int i;
323
324 /* soft-reset the chip */
325 i = 200;
326 while (--i) {
327 out_8(&mb->biucc, SWRST);
328 if (in_8(&mb->biucc) & SWRST) {
329 udelay(10);
330 continue;
331 }
332 break;
333 }
334 if (!i) {
335 printk(KERN_ERR "mace: cannot reset chip!\n");
336 return;
337 }
338
339 out_8(&mb->imr, 0xff); /* disable all intrs for now */
340 i = in_8(&mb->ir);
341 out_8(&mb->maccc, 0); /* turn off tx, rx */
342
343 out_8(&mb->biucc, XMTSP_64);
344 out_8(&mb->utr, RTRD);
345 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
346 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
347 out_8(&mb->rcvfc, 0);
348
349 /* load up the hardware address */
350 __mace_set_address(dev, dev->dev_addr);
351
352 /* clear the multicast filter */
353 if (mp->chipid == BROKEN_ADDRCHG_REV)
354 out_8(&mb->iac, LOGADDR);
355 else {
356 out_8(&mb->iac, ADDRCHG | LOGADDR);
357 while ((in_8(&mb->iac) & ADDRCHG) != 0)
358 ;
359 }
360 for (i = 0; i < 8; ++i)
361 out_8(&mb->ladrf, 0);
362
363 /* done changing address */
364 if (mp->chipid != BROKEN_ADDRCHG_REV)
365 out_8(&mb->iac, 0);
366
367 if (mp->port_aaui)
368 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
369 else
370 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
371 }
372
373 static void __mace_set_address(struct net_device *dev, void *addr)
374 {
375 struct mace_data *mp = (struct mace_data *) dev->priv;
376 volatile struct mace __iomem *mb = mp->mace;
377 unsigned char *p = addr;
378 int i;
379
380 /* load up the hardware address */
381 if (mp->chipid == BROKEN_ADDRCHG_REV)
382 out_8(&mb->iac, PHYADDR);
383 else {
384 out_8(&mb->iac, ADDRCHG | PHYADDR);
385 while ((in_8(&mb->iac) & ADDRCHG) != 0)
386 ;
387 }
388 for (i = 0; i < 6; ++i)
389 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
390 if (mp->chipid != BROKEN_ADDRCHG_REV)
391 out_8(&mb->iac, 0);
392 }
393
394 static int mace_set_address(struct net_device *dev, void *addr)
395 {
396 struct mace_data *mp = (struct mace_data *) dev->priv;
397 volatile struct mace __iomem *mb = mp->mace;
398 unsigned long flags;
399
400 spin_lock_irqsave(&mp->lock, flags);
401
402 __mace_set_address(dev, addr);
403
404 /* note: setting ADDRCHG clears ENRCV */
405 out_8(&mb->maccc, mp->maccc);
406
407 spin_unlock_irqrestore(&mp->lock, flags);
408 return 0;
409 }
410
411 static inline void mace_clean_rings(struct mace_data *mp)
412 {
413 int i;
414
415 /* free some skb's */
416 for (i = 0; i < N_RX_RING; ++i) {
417 if (mp->rx_bufs[i] != 0) {
418 dev_kfree_skb(mp->rx_bufs[i]);
419 mp->rx_bufs[i] = NULL;
420 }
421 }
422 for (i = mp->tx_empty; i != mp->tx_fill; ) {
423 dev_kfree_skb(mp->tx_bufs[i]);
424 if (++i >= N_TX_RING)
425 i = 0;
426 }
427 }
428
429 static int mace_open(struct net_device *dev)
430 {
431 struct mace_data *mp = (struct mace_data *) dev->priv;
432 volatile struct mace __iomem *mb = mp->mace;
433 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
434 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
435 volatile struct dbdma_cmd *cp;
436 int i;
437 struct sk_buff *skb;
438 unsigned char *data;
439
440 /* reset the chip */
441 mace_reset(dev);
442
443 /* initialize list of sk_buffs for receiving and set up recv dma */
444 mace_clean_rings(mp);
445 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
446 cp = mp->rx_cmds;
447 for (i = 0; i < N_RX_RING - 1; ++i) {
448 skb = dev_alloc_skb(RX_BUFLEN + 2);
449 if (skb == 0) {
450 data = dummy_buf;
451 } else {
452 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
453 data = skb->data;
454 }
455 mp->rx_bufs[i] = skb;
456 st_le16(&cp->req_count, RX_BUFLEN);
457 st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
458 st_le32(&cp->phy_addr, virt_to_bus(data));
459 cp->xfer_status = 0;
460 ++cp;
461 }
462 mp->rx_bufs[i] = NULL;
463 st_le16(&cp->command, DBDMA_STOP);
464 mp->rx_fill = i;
465 mp->rx_empty = 0;
466
467 /* Put a branch back to the beginning of the receive command list */
468 ++cp;
469 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
470 st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
471
472 /* start rx dma */
473 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
474 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
475 out_le32(&rd->control, (RUN << 16) | RUN);
476
477 /* put a branch at the end of the tx command list */
478 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
479 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
480 st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
481
482 /* reset tx dma */
483 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
484 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
485 mp->tx_fill = 0;
486 mp->tx_empty = 0;
487 mp->tx_fullup = 0;
488 mp->tx_active = 0;
489 mp->tx_bad_runt = 0;
490
491 /* turn it on! */
492 out_8(&mb->maccc, mp->maccc);
493 /* enable all interrupts except receive interrupts */
494 out_8(&mb->imr, RCVINT);
495
496 return 0;
497 }
498
499 static int mace_close(struct net_device *dev)
500 {
501 struct mace_data *mp = (struct mace_data *) dev->priv;
502 volatile struct mace __iomem *mb = mp->mace;
503 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
504 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
505
506 /* disable rx and tx */
507 out_8(&mb->maccc, 0);
508 out_8(&mb->imr, 0xff); /* disable all intrs */
509
510 /* disable rx and tx dma */
511 st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
512 st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
513
514 mace_clean_rings(mp);
515
516 return 0;
517 }
518
519 static inline void mace_set_timeout(struct net_device *dev)
520 {
521 struct mace_data *mp = (struct mace_data *) dev->priv;
522
523 if (mp->timeout_active)
524 del_timer(&mp->tx_timeout);
525 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
526 mp->tx_timeout.function = mace_tx_timeout;
527 mp->tx_timeout.data = (unsigned long) dev;
528 add_timer(&mp->tx_timeout);
529 mp->timeout_active = 1;
530 }
531
532 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
533 {
534 struct mace_data *mp = (struct mace_data *) dev->priv;
535 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
536 volatile struct dbdma_cmd *cp, *np;
537 unsigned long flags;
538 int fill, next, len;
539
540 /* see if there's a free slot in the tx ring */
541 spin_lock_irqsave(&mp->lock, flags);
542 fill = mp->tx_fill;
543 next = fill + 1;
544 if (next >= N_TX_RING)
545 next = 0;
546 if (next == mp->tx_empty) {
547 netif_stop_queue(dev);
548 mp->tx_fullup = 1;
549 spin_unlock_irqrestore(&mp->lock, flags);
550 return 1; /* can't take it at the moment */
551 }
552 spin_unlock_irqrestore(&mp->lock, flags);
553
554 /* partially fill in the dma command block */
555 len = skb->len;
556 if (len > ETH_FRAME_LEN) {
557 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
558 len = ETH_FRAME_LEN;
559 }
560 mp->tx_bufs[fill] = skb;
561 cp = mp->tx_cmds + NCMDS_TX * fill;
562 st_le16(&cp->req_count, len);
563 st_le32(&cp->phy_addr, virt_to_bus(skb->data));
564
565 np = mp->tx_cmds + NCMDS_TX * next;
566 out_le16(&np->command, DBDMA_STOP);
567
568 /* poke the tx dma channel */
569 spin_lock_irqsave(&mp->lock, flags);
570 mp->tx_fill = next;
571 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
572 out_le16(&cp->xfer_status, 0);
573 out_le16(&cp->command, OUTPUT_LAST);
574 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
575 ++mp->tx_active;
576 mace_set_timeout(dev);
577 }
578 if (++next >= N_TX_RING)
579 next = 0;
580 if (next == mp->tx_empty)
581 netif_stop_queue(dev);
582 spin_unlock_irqrestore(&mp->lock, flags);
583
584 return 0;
585 }
586
587 static struct net_device_stats *mace_stats(struct net_device *dev)
588 {
589 struct mace_data *p = (struct mace_data *) dev->priv;
590
591 return &p->stats;
592 }
593
594 static void mace_set_multicast(struct net_device *dev)
595 {
596 struct mace_data *mp = (struct mace_data *) dev->priv;
597 volatile struct mace __iomem *mb = mp->mace;
598 int i, j;
599 u32 crc;
600 unsigned long flags;
601
602 spin_lock_irqsave(&mp->lock, flags);
603 mp->maccc &= ~PROM;
604 if (dev->flags & IFF_PROMISC) {
605 mp->maccc |= PROM;
606 } else {
607 unsigned char multicast_filter[8];
608 struct dev_mc_list *dmi = dev->mc_list;
609
610 if (dev->flags & IFF_ALLMULTI) {
611 for (i = 0; i < 8; i++)
612 multicast_filter[i] = 0xff;
613 } else {
614 for (i = 0; i < 8; i++)
615 multicast_filter[i] = 0;
616 for (i = 0; i < dev->mc_count; i++) {
617 crc = ether_crc_le(6, dmi->dmi_addr);
618 j = crc >> 26; /* bit number in multicast_filter */
619 multicast_filter[j >> 3] |= 1 << (j & 7);
620 dmi = dmi->next;
621 }
622 }
623 #if 0
624 printk("Multicast filter :");
625 for (i = 0; i < 8; i++)
626 printk("%02x ", multicast_filter[i]);
627 printk("\n");
628 #endif
629
630 if (mp->chipid == BROKEN_ADDRCHG_REV)
631 out_8(&mb->iac, LOGADDR);
632 else {
633 out_8(&mb->iac, ADDRCHG | LOGADDR);
634 while ((in_8(&mb->iac) & ADDRCHG) != 0)
635 ;
636 }
637 for (i = 0; i < 8; ++i)
638 out_8(&mb->ladrf, multicast_filter[i]);
639 if (mp->chipid != BROKEN_ADDRCHG_REV)
640 out_8(&mb->iac, 0);
641 }
642 /* reset maccc */
643 out_8(&mb->maccc, mp->maccc);
644 spin_unlock_irqrestore(&mp->lock, flags);
645 }
646
647 static void mace_handle_misc_intrs(struct mace_data *mp, int intr)
648 {
649 volatile struct mace __iomem *mb = mp->mace;
650 static int mace_babbles, mace_jabbers;
651
652 if (intr & MPCO)
653 mp->stats.rx_missed_errors += 256;
654 mp->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
655 if (intr & RNTPCO)
656 mp->stats.rx_length_errors += 256;
657 mp->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
658 if (intr & CERR)
659 ++mp->stats.tx_heartbeat_errors;
660 if (intr & BABBLE)
661 if (mace_babbles++ < 4)
662 printk(KERN_DEBUG "mace: babbling transmitter\n");
663 if (intr & JABBER)
664 if (mace_jabbers++ < 4)
665 printk(KERN_DEBUG "mace: jabbering transceiver\n");
666 }
667
668 static irqreturn_t mace_interrupt(int irq, void *dev_id)
669 {
670 struct net_device *dev = (struct net_device *) dev_id;
671 struct mace_data *mp = (struct mace_data *) dev->priv;
672 volatile struct mace __iomem *mb = mp->mace;
673 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
674 volatile struct dbdma_cmd *cp;
675 int intr, fs, i, stat, x;
676 int xcount, dstat;
677 unsigned long flags;
678 /* static int mace_last_fs, mace_last_xcount; */
679
680 spin_lock_irqsave(&mp->lock, flags);
681 intr = in_8(&mb->ir); /* read interrupt register */
682 in_8(&mb->xmtrc); /* get retries */
683 mace_handle_misc_intrs(mp, intr);
684
685 i = mp->tx_empty;
686 while (in_8(&mb->pr) & XMTSV) {
687 del_timer(&mp->tx_timeout);
688 mp->timeout_active = 0;
689 /*
690 * Clear any interrupt indication associated with this status
691 * word. This appears to unlatch any error indication from
692 * the DMA controller.
693 */
694 intr = in_8(&mb->ir);
695 if (intr != 0)
696 mace_handle_misc_intrs(mp, intr);
697 if (mp->tx_bad_runt) {
698 fs = in_8(&mb->xmtfs);
699 mp->tx_bad_runt = 0;
700 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
701 continue;
702 }
703 dstat = ld_le32(&td->status);
704 /* stop DMA controller */
705 out_le32(&td->control, RUN << 16);
706 /*
707 * xcount is the number of complete frames which have been
708 * written to the fifo but for which status has not been read.
709 */
710 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
711 if (xcount == 0 || (dstat & DEAD)) {
712 /*
713 * If a packet was aborted before the DMA controller has
714 * finished transferring it, it seems that there are 2 bytes
715 * which are stuck in some buffer somewhere. These will get
716 * transmitted as soon as we read the frame status (which
717 * reenables the transmit data transfer request). Turning
718 * off the DMA controller and/or resetting the MACE doesn't
719 * help. So we disable auto-padding and FCS transmission
720 * so the two bytes will only be a runt packet which should
721 * be ignored by other stations.
722 */
723 out_8(&mb->xmtfc, DXMTFCS);
724 }
725 fs = in_8(&mb->xmtfs);
726 if ((fs & XMTSV) == 0) {
727 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
728 fs, xcount, dstat);
729 mace_reset(dev);
730 /*
731 * XXX mace likes to hang the machine after a xmtfs error.
732 * This is hard to reproduce, reseting *may* help
733 */
734 }
735 cp = mp->tx_cmds + NCMDS_TX * i;
736 stat = ld_le16(&cp->xfer_status);
737 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
738 /*
739 * Check whether there were in fact 2 bytes written to
740 * the transmit FIFO.
741 */
742 udelay(1);
743 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
744 if (x != 0) {
745 /* there were two bytes with an end-of-packet indication */
746 mp->tx_bad_runt = 1;
747 mace_set_timeout(dev);
748 } else {
749 /*
750 * Either there weren't the two bytes buffered up, or they
751 * didn't have an end-of-packet indication.
752 * We flush the transmit FIFO just in case (by setting the
753 * XMTFWU bit with the transmitter disabled).
754 */
755 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
756 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
757 udelay(1);
758 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
759 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
760 }
761 }
762 /* dma should have finished */
763 if (i == mp->tx_fill) {
764 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
765 fs, xcount, dstat);
766 continue;
767 }
768 /* Update stats */
769 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
770 ++mp->stats.tx_errors;
771 if (fs & LCAR)
772 ++mp->stats.tx_carrier_errors;
773 if (fs & (UFLO|LCOL|RTRY))
774 ++mp->stats.tx_aborted_errors;
775 } else {
776 mp->stats.tx_bytes += mp->tx_bufs[i]->len;
777 ++mp->stats.tx_packets;
778 }
779 dev_kfree_skb_irq(mp->tx_bufs[i]);
780 --mp->tx_active;
781 if (++i >= N_TX_RING)
782 i = 0;
783 #if 0
784 mace_last_fs = fs;
785 mace_last_xcount = xcount;
786 #endif
787 }
788
789 if (i != mp->tx_empty) {
790 mp->tx_fullup = 0;
791 netif_wake_queue(dev);
792 }
793 mp->tx_empty = i;
794 i += mp->tx_active;
795 if (i >= N_TX_RING)
796 i -= N_TX_RING;
797 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
798 do {
799 /* set up the next one */
800 cp = mp->tx_cmds + NCMDS_TX * i;
801 out_le16(&cp->xfer_status, 0);
802 out_le16(&cp->command, OUTPUT_LAST);
803 ++mp->tx_active;
804 if (++i >= N_TX_RING)
805 i = 0;
806 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
807 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
808 mace_set_timeout(dev);
809 }
810 spin_unlock_irqrestore(&mp->lock, flags);
811 return IRQ_HANDLED;
812 }
813
814 static void mace_tx_timeout(unsigned long data)
815 {
816 struct net_device *dev = (struct net_device *) data;
817 struct mace_data *mp = (struct mace_data *) dev->priv;
818 volatile struct mace __iomem *mb = mp->mace;
819 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
820 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
821 volatile struct dbdma_cmd *cp;
822 unsigned long flags;
823 int i;
824
825 spin_lock_irqsave(&mp->lock, flags);
826 mp->timeout_active = 0;
827 if (mp->tx_active == 0 && !mp->tx_bad_runt)
828 goto out;
829
830 /* update various counters */
831 mace_handle_misc_intrs(mp, in_8(&mb->ir));
832
833 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
834
835 /* turn off both tx and rx and reset the chip */
836 out_8(&mb->maccc, 0);
837 printk(KERN_ERR "mace: transmit timeout - resetting\n");
838 dbdma_reset(td);
839 mace_reset(dev);
840
841 /* restart rx dma */
842 cp = bus_to_virt(ld_le32(&rd->cmdptr));
843 dbdma_reset(rd);
844 out_le16(&cp->xfer_status, 0);
845 out_le32(&rd->cmdptr, virt_to_bus(cp));
846 out_le32(&rd->control, (RUN << 16) | RUN);
847
848 /* fix up the transmit side */
849 i = mp->tx_empty;
850 mp->tx_active = 0;
851 ++mp->stats.tx_errors;
852 if (mp->tx_bad_runt) {
853 mp->tx_bad_runt = 0;
854 } else if (i != mp->tx_fill) {
855 dev_kfree_skb(mp->tx_bufs[i]);
856 if (++i >= N_TX_RING)
857 i = 0;
858 mp->tx_empty = i;
859 }
860 mp->tx_fullup = 0;
861 netif_wake_queue(dev);
862 if (i != mp->tx_fill) {
863 cp = mp->tx_cmds + NCMDS_TX * i;
864 out_le16(&cp->xfer_status, 0);
865 out_le16(&cp->command, OUTPUT_LAST);
866 out_le32(&td->cmdptr, virt_to_bus(cp));
867 out_le32(&td->control, (RUN << 16) | RUN);
868 ++mp->tx_active;
869 mace_set_timeout(dev);
870 }
871
872 /* turn it back on */
873 out_8(&mb->imr, RCVINT);
874 out_8(&mb->maccc, mp->maccc);
875
876 out:
877 spin_unlock_irqrestore(&mp->lock, flags);
878 }
879
880 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
881 {
882 return IRQ_HANDLED;
883 }
884
885 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
886 {
887 struct net_device *dev = (struct net_device *) dev_id;
888 struct mace_data *mp = (struct mace_data *) dev->priv;
889 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
890 volatile struct dbdma_cmd *cp, *np;
891 int i, nb, stat, next;
892 struct sk_buff *skb;
893 unsigned frame_status;
894 static int mace_lost_status;
895 unsigned char *data;
896 unsigned long flags;
897
898 spin_lock_irqsave(&mp->lock, flags);
899 for (i = mp->rx_empty; i != mp->rx_fill; ) {
900 cp = mp->rx_cmds + i;
901 stat = ld_le16(&cp->xfer_status);
902 if ((stat & ACTIVE) == 0) {
903 next = i + 1;
904 if (next >= N_RX_RING)
905 next = 0;
906 np = mp->rx_cmds + next;
907 if (next != mp->rx_fill
908 && (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
909 printk(KERN_DEBUG "mace: lost a status word\n");
910 ++mace_lost_status;
911 } else
912 break;
913 }
914 nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
915 out_le16(&cp->command, DBDMA_STOP);
916 /* got a packet, have a look at it */
917 skb = mp->rx_bufs[i];
918 if (skb == 0) {
919 ++mp->stats.rx_dropped;
920 } else if (nb > 8) {
921 data = skb->data;
922 frame_status = (data[nb-3] << 8) + data[nb-4];
923 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
924 ++mp->stats.rx_errors;
925 if (frame_status & RS_OFLO)
926 ++mp->stats.rx_over_errors;
927 if (frame_status & RS_FRAMERR)
928 ++mp->stats.rx_frame_errors;
929 if (frame_status & RS_FCSERR)
930 ++mp->stats.rx_crc_errors;
931 } else {
932 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
933 * FCS on frames with 802.3 headers. This means that Ethernet
934 * frames have 8 extra octets at the end, while 802.3 frames
935 * have only 4. We need to correctly account for this. */
936 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
937 nb -= 4;
938 else /* Ethernet header; mace includes FCS */
939 nb -= 8;
940 skb_put(skb, nb);
941 skb->protocol = eth_type_trans(skb, dev);
942 mp->stats.rx_bytes += skb->len;
943 netif_rx(skb);
944 dev->last_rx = jiffies;
945 mp->rx_bufs[i] = NULL;
946 ++mp->stats.rx_packets;
947 }
948 } else {
949 ++mp->stats.rx_errors;
950 ++mp->stats.rx_length_errors;
951 }
952
953 /* advance to next */
954 if (++i >= N_RX_RING)
955 i = 0;
956 }
957 mp->rx_empty = i;
958
959 i = mp->rx_fill;
960 for (;;) {
961 next = i + 1;
962 if (next >= N_RX_RING)
963 next = 0;
964 if (next == mp->rx_empty)
965 break;
966 cp = mp->rx_cmds + i;
967 skb = mp->rx_bufs[i];
968 if (skb == 0) {
969 skb = dev_alloc_skb(RX_BUFLEN + 2);
970 if (skb != 0) {
971 skb_reserve(skb, 2);
972 mp->rx_bufs[i] = skb;
973 }
974 }
975 st_le16(&cp->req_count, RX_BUFLEN);
976 data = skb? skb->data: dummy_buf;
977 st_le32(&cp->phy_addr, virt_to_bus(data));
978 out_le16(&cp->xfer_status, 0);
979 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
980 #if 0
981 if ((ld_le32(&rd->status) & ACTIVE) != 0) {
982 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
983 while ((in_le32(&rd->status) & ACTIVE) != 0)
984 ;
985 }
986 #endif
987 i = next;
988 }
989 if (i != mp->rx_fill) {
990 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
991 mp->rx_fill = i;
992 }
993 spin_unlock_irqrestore(&mp->lock, flags);
994 return IRQ_HANDLED;
995 }
996
997 static struct of_device_id mace_match[] =
998 {
999 {
1000 .name = "mace",
1001 },
1002 {},
1003 };
1004 MODULE_DEVICE_TABLE (of, mace_match);
1005
1006 static struct macio_driver mace_driver =
1007 {
1008 .name = "mace",
1009 .match_table = mace_match,
1010 .probe = mace_probe,
1011 .remove = mace_remove,
1012 };
1013
1014
1015 static int __init mace_init(void)
1016 {
1017 return macio_register_driver(&mace_driver);
1018 }
1019
1020 static void __exit mace_cleanup(void)
1021 {
1022 macio_unregister_driver(&mace_driver);
1023
1024 kfree(dummy_buf);
1025 dummy_buf = NULL;
1026 }
1027
1028 MODULE_AUTHOR("Paul Mackerras");
1029 MODULE_DESCRIPTION("PowerMac MACE driver.");
1030 module_param(port_aaui, int, 0);
1031 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1032 MODULE_LICENSE("GPL");
1033
1034 module_init(mace_init);
1035 module_exit(mace_cleanup);