]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/macmace.c
net: use bitrev8
[mirror_ubuntu-bionic-kernel.git] / drivers / net / macmace.c
1 /*
2 * Driver for the Macintosh 68K onboard MACE controller with PSC
3 * driven DMA. The MACE driver code is derived from mace.c. The
4 * Mac68k theory of operation is courtesy of the MacBSD wizards.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Copyright (C) 1996 Paul Mackerras.
12 * Copyright (C) 1998 Alan Cox <alan@redhat.com>
13 *
14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
15 */
16
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/delay.h>
23 #include <linux/string.h>
24 #include <linux/crc32.h>
25 #include <linux/bitrev.h>
26 #include <asm/io.h>
27 #include <asm/pgtable.h>
28 #include <asm/irq.h>
29 #include <asm/macintosh.h>
30 #include <asm/macints.h>
31 #include <asm/mac_psc.h>
32 #include <asm/page.h>
33 #include "mace.h"
34
35 #define N_TX_RING 1
36 #define N_RX_RING 8
37 #define N_RX_PAGES ((N_RX_RING * 0x0800 + PAGE_SIZE - 1) / PAGE_SIZE)
38 #define TX_TIMEOUT HZ
39
40 /* Bits in transmit DMA status */
41 #define TX_DMA_ERR 0x80
42
43 /* The MACE is simply wired down on a Mac68K box */
44
45 #define MACE_BASE (void *)(0x50F1C000)
46 #define MACE_PROM (void *)(0x50F08001)
47
48 struct mace_data {
49 volatile struct mace *mace;
50 volatile unsigned char *tx_ring;
51 volatile unsigned char *tx_ring_phys;
52 volatile unsigned char *rx_ring;
53 volatile unsigned char *rx_ring_phys;
54 int dma_intr;
55 struct net_device_stats stats;
56 int rx_slot, rx_tail;
57 int tx_slot, tx_sloti, tx_count;
58 };
59
60 struct mace_frame {
61 u16 len;
62 u16 status;
63 u16 rntpc;
64 u16 rcvcc;
65 u32 pad1;
66 u32 pad2;
67 u8 data[1];
68 /* And frame continues.. */
69 };
70
71 #define PRIV_BYTES sizeof(struct mace_data)
72
73 extern void psc_debug_dump(void);
74
75 static int mace_open(struct net_device *dev);
76 static int mace_close(struct net_device *dev);
77 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
78 static struct net_device_stats *mace_stats(struct net_device *dev);
79 static void mace_set_multicast(struct net_device *dev);
80 static int mace_set_address(struct net_device *dev, void *addr);
81 static irqreturn_t mace_interrupt(int irq, void *dev_id);
82 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
83 static void mace_tx_timeout(struct net_device *dev);
84
85 /*
86 * Load a receive DMA channel with a base address and ring length
87 */
88
89 static void mace_load_rxdma_base(struct net_device *dev, int set)
90 {
91 struct mace_data *mp = (struct mace_data *) dev->priv;
92
93 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
94 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
95 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
96 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
97 mp->rx_tail = 0;
98 }
99
100 /*
101 * Reset the receive DMA subsystem
102 */
103
104 static void mace_rxdma_reset(struct net_device *dev)
105 {
106 struct mace_data *mp = (struct mace_data *) dev->priv;
107 volatile struct mace *mace = mp->mace;
108 u8 maccc = mace->maccc;
109
110 mace->maccc = maccc & ~ENRCV;
111
112 psc_write_word(PSC_ENETRD_CTL, 0x8800);
113 mace_load_rxdma_base(dev, 0x00);
114 psc_write_word(PSC_ENETRD_CTL, 0x0400);
115
116 psc_write_word(PSC_ENETRD_CTL, 0x8800);
117 mace_load_rxdma_base(dev, 0x10);
118 psc_write_word(PSC_ENETRD_CTL, 0x0400);
119
120 mace->maccc = maccc;
121 mp->rx_slot = 0;
122
123 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
124 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
125 }
126
127 /*
128 * Reset the transmit DMA subsystem
129 */
130
131 static void mace_txdma_reset(struct net_device *dev)
132 {
133 struct mace_data *mp = (struct mace_data *) dev->priv;
134 volatile struct mace *mace = mp->mace;
135 u8 maccc;
136
137 psc_write_word(PSC_ENETWR_CTL, 0x8800);
138
139 maccc = mace->maccc;
140 mace->maccc = maccc & ~ENXMT;
141
142 mp->tx_slot = mp->tx_sloti = 0;
143 mp->tx_count = N_TX_RING;
144
145 psc_write_word(PSC_ENETWR_CTL, 0x0400);
146 mace->maccc = maccc;
147 }
148
149 /*
150 * Disable DMA
151 */
152
153 static void mace_dma_off(struct net_device *dev)
154 {
155 psc_write_word(PSC_ENETRD_CTL, 0x8800);
156 psc_write_word(PSC_ENETRD_CTL, 0x1000);
157 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
158 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
159
160 psc_write_word(PSC_ENETWR_CTL, 0x8800);
161 psc_write_word(PSC_ENETWR_CTL, 0x1000);
162 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
163 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
164 }
165
166 /*
167 * Not really much of a probe. The hardware table tells us if this
168 * model of Macintrash has a MACE (AV macintoshes)
169 */
170
171 struct net_device *mace_probe(int unit)
172 {
173 int j;
174 struct mace_data *mp;
175 unsigned char *addr;
176 struct net_device *dev;
177 unsigned char checksum = 0;
178 static int found = 0;
179 int err;
180
181 if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
182 return ERR_PTR(-ENODEV);
183
184 found = 1; /* prevent 'finding' one on every device probe */
185
186 dev = alloc_etherdev(PRIV_BYTES);
187 if (!dev)
188 return ERR_PTR(-ENOMEM);
189
190 if (unit >= 0)
191 sprintf(dev->name, "eth%d", unit);
192
193 mp = (struct mace_data *) dev->priv;
194 dev->base_addr = (u32)MACE_BASE;
195 mp->mace = (volatile struct mace *) MACE_BASE;
196
197 dev->irq = IRQ_MAC_MACE;
198 mp->dma_intr = IRQ_MAC_MACE_DMA;
199
200 /*
201 * The PROM contains 8 bytes which total 0xFF when XOR'd
202 * together. Due to the usual peculiar apple brain damage
203 * the bytes are spaced out in a strange boundary and the
204 * bits are reversed.
205 */
206
207 addr = (void *)MACE_PROM;
208
209 for (j = 0; j < 6; ++j) {
210 u8 v = bitrev8(addr[j<<4]);
211 checksum ^= v;
212 dev->dev_addr[j] = v;
213 }
214 for (; j < 8; ++j) {
215 checksum ^= bitrev8(addr[j<<4]);
216 }
217
218 if (checksum != 0xFF) {
219 free_netdev(dev);
220 return ERR_PTR(-ENODEV);
221 }
222
223 memset(&mp->stats, 0, sizeof(mp->stats));
224
225 dev->open = mace_open;
226 dev->stop = mace_close;
227 dev->hard_start_xmit = mace_xmit_start;
228 dev->tx_timeout = mace_tx_timeout;
229 dev->watchdog_timeo = TX_TIMEOUT;
230 dev->get_stats = mace_stats;
231 dev->set_multicast_list = mace_set_multicast;
232 dev->set_mac_address = mace_set_address;
233
234 printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]);
235 for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]);
236 printk("\n");
237
238 err = register_netdev(dev);
239 if (!err)
240 return dev;
241
242 free_netdev(dev);
243 return ERR_PTR(err);
244 }
245
246 /*
247 * Load the address on a mace controller.
248 */
249
250 static int mace_set_address(struct net_device *dev, void *addr)
251 {
252 unsigned char *p = addr;
253 struct mace_data *mp = (struct mace_data *) dev->priv;
254 volatile struct mace *mb = mp->mace;
255 int i;
256 unsigned long flags;
257 u8 maccc;
258
259 local_irq_save(flags);
260
261 maccc = mb->maccc;
262
263 /* load up the hardware address */
264 mb->iac = ADDRCHG | PHYADDR;
265 while ((mb->iac & ADDRCHG) != 0);
266
267 for (i = 0; i < 6; ++i) {
268 mb->padr = dev->dev_addr[i] = p[i];
269 }
270
271 mb->maccc = maccc;
272 local_irq_restore(flags);
273
274 return 0;
275 }
276
277 /*
278 * Open the Macintosh MACE. Most of this is playing with the DMA
279 * engine. The ethernet chip is quite friendly.
280 */
281
282 static int mace_open(struct net_device *dev)
283 {
284 struct mace_data *mp = (struct mace_data *) dev->priv;
285 volatile struct mace *mb = mp->mace;
286 #if 0
287 int i;
288
289 i = 200;
290 while (--i) {
291 mb->biucc = SWRST;
292 if (mb->biucc & SWRST) {
293 udelay(10);
294 continue;
295 }
296 break;
297 }
298 if (!i) {
299 printk(KERN_ERR "%s: software reset failed!!\n", dev->name);
300 return -EAGAIN;
301 }
302 #endif
303
304 mb->biucc = XMTSP_64;
305 mb->fifocc = XMTFW_16 | RCVFW_64 | XMTFWU | RCVFWU | XMTBRST | RCVBRST;
306 mb->xmtfc = AUTO_PAD_XMIT;
307 mb->plscc = PORTSEL_AUI;
308 /* mb->utr = RTRD; */
309
310 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
311 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
312 return -EAGAIN;
313 }
314 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
315 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
316 free_irq(dev->irq, dev);
317 return -EAGAIN;
318 }
319
320 /* Allocate the DMA ring buffers */
321
322 mp->rx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, N_RX_PAGES);
323 mp->tx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, 0);
324
325 if (mp->tx_ring==NULL || mp->rx_ring==NULL) {
326 if (mp->rx_ring) free_pages((u32) mp->rx_ring, N_RX_PAGES);
327 if (mp->tx_ring) free_pages((u32) mp->tx_ring, 0);
328 free_irq(dev->irq, dev);
329 free_irq(mp->dma_intr, dev);
330 printk(KERN_ERR "%s: unable to allocate DMA buffers\n", dev->name);
331 return -ENOMEM;
332 }
333
334 mp->rx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->rx_ring);
335 mp->tx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->tx_ring);
336
337 /* We want the Rx buffer to be uncached and the Tx buffer to be writethrough */
338
339 kernel_set_cachemode((void *)mp->rx_ring, N_RX_PAGES * PAGE_SIZE, IOMAP_NOCACHE_NONSER);
340 kernel_set_cachemode((void *)mp->tx_ring, PAGE_SIZE, IOMAP_WRITETHROUGH);
341
342 mace_dma_off(dev);
343
344 /* Not sure what these do */
345
346 psc_write_word(PSC_ENETWR_CTL, 0x9000);
347 psc_write_word(PSC_ENETRD_CTL, 0x9000);
348 psc_write_word(PSC_ENETWR_CTL, 0x0400);
349 psc_write_word(PSC_ENETRD_CTL, 0x0400);
350
351 #if 0
352 /* load up the hardware address */
353
354 mb->iac = ADDRCHG | PHYADDR;
355
356 while ((mb->iac & ADDRCHG) != 0);
357
358 for (i = 0; i < 6; ++i)
359 mb->padr = dev->dev_addr[i];
360
361 /* clear the multicast filter */
362 mb->iac = ADDRCHG | LOGADDR;
363
364 while ((mb->iac & ADDRCHG) != 0);
365
366 for (i = 0; i < 8; ++i)
367 mb->ladrf = 0;
368
369 mb->plscc = PORTSEL_GPSI + ENPLSIO;
370
371 mb->maccc = ENXMT | ENRCV;
372 mb->imr = RCVINT;
373 #endif
374
375 mace_rxdma_reset(dev);
376 mace_txdma_reset(dev);
377
378 return 0;
379 }
380
381 /*
382 * Shut down the mace and its interrupt channel
383 */
384
385 static int mace_close(struct net_device *dev)
386 {
387 struct mace_data *mp = (struct mace_data *) dev->priv;
388 volatile struct mace *mb = mp->mace;
389
390 mb->maccc = 0; /* disable rx and tx */
391 mb->imr = 0xFF; /* disable all irqs */
392 mace_dma_off(dev); /* disable rx and tx dma */
393
394 free_irq(dev->irq, dev);
395 free_irq(IRQ_MAC_MACE_DMA, dev);
396
397 free_pages((u32) mp->rx_ring, N_RX_PAGES);
398 free_pages((u32) mp->tx_ring, 0);
399
400 return 0;
401 }
402
403 /*
404 * Transmit a frame
405 */
406
407 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
408 {
409 struct mace_data *mp = (struct mace_data *) dev->priv;
410
411 /* Stop the queue if the buffer is full */
412
413 if (!mp->tx_count) {
414 netif_stop_queue(dev);
415 return 1;
416 }
417 mp->tx_count--;
418
419 mp->stats.tx_packets++;
420 mp->stats.tx_bytes += skb->len;
421
422 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
423
424 memcpy((void *) mp->tx_ring, skb->data, skb->len);
425
426 /* load the Tx DMA and fire it off */
427
428 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
429 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
430 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
431
432 mp->tx_slot ^= 0x10;
433
434 dev_kfree_skb(skb);
435
436 return 0;
437 }
438
439 static struct net_device_stats *mace_stats(struct net_device *dev)
440 {
441 struct mace_data *p = (struct mace_data *) dev->priv;
442 return &p->stats;
443 }
444
445 static void mace_set_multicast(struct net_device *dev)
446 {
447 struct mace_data *mp = (struct mace_data *) dev->priv;
448 volatile struct mace *mb = mp->mace;
449 int i, j;
450 u32 crc;
451 u8 maccc;
452
453 maccc = mb->maccc;
454 mb->maccc &= ~PROM;
455
456 if (dev->flags & IFF_PROMISC) {
457 mb->maccc |= PROM;
458 } else {
459 unsigned char multicast_filter[8];
460 struct dev_mc_list *dmi = dev->mc_list;
461
462 if (dev->flags & IFF_ALLMULTI) {
463 for (i = 0; i < 8; i++) {
464 multicast_filter[i] = 0xFF;
465 }
466 } else {
467 for (i = 0; i < 8; i++)
468 multicast_filter[i] = 0;
469 for (i = 0; i < dev->mc_count; i++) {
470 crc = ether_crc_le(6, dmi->dmi_addr);
471 j = crc >> 26; /* bit number in multicast_filter */
472 multicast_filter[j >> 3] |= 1 << (j & 7);
473 dmi = dmi->next;
474 }
475 }
476
477 mb->iac = ADDRCHG | LOGADDR;
478 while (mb->iac & ADDRCHG);
479
480 for (i = 0; i < 8; ++i) {
481 mb->ladrf = multicast_filter[i];
482 }
483 }
484
485 mb->maccc = maccc;
486 }
487
488 /*
489 * Miscellaneous interrupts are handled here. We may end up
490 * having to bash the chip on the head for bad errors
491 */
492
493 static void mace_handle_misc_intrs(struct mace_data *mp, int intr)
494 {
495 volatile struct mace *mb = mp->mace;
496 static int mace_babbles, mace_jabbers;
497
498 if (intr & MPCO) {
499 mp->stats.rx_missed_errors += 256;
500 }
501 mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */
502
503 if (intr & RNTPCO) {
504 mp->stats.rx_length_errors += 256;
505 }
506 mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */
507
508 if (intr & CERR) {
509 ++mp->stats.tx_heartbeat_errors;
510 }
511 if (intr & BABBLE) {
512 if (mace_babbles++ < 4) {
513 printk(KERN_DEBUG "mace: babbling transmitter\n");
514 }
515 }
516 if (intr & JABBER) {
517 if (mace_jabbers++ < 4) {
518 printk(KERN_DEBUG "mace: jabbering transceiver\n");
519 }
520 }
521 }
522
523 /*
524 * A transmit error has occurred. (We kick the transmit side from
525 * the DMA completion)
526 */
527
528 static void mace_xmit_error(struct net_device *dev)
529 {
530 struct mace_data *mp = (struct mace_data *) dev->priv;
531 volatile struct mace *mb = mp->mace;
532 u8 xmtfs, xmtrc;
533
534 xmtfs = mb->xmtfs;
535 xmtrc = mb->xmtrc;
536
537 if (xmtfs & XMTSV) {
538 if (xmtfs & UFLO) {
539 printk("%s: DMA underrun.\n", dev->name);
540 mp->stats.tx_errors++;
541 mp->stats.tx_fifo_errors++;
542 mace_txdma_reset(dev);
543 }
544 if (xmtfs & RTRY) {
545 mp->stats.collisions++;
546 }
547 }
548 }
549
550 /*
551 * A receive interrupt occurred.
552 */
553
554 static void mace_recv_interrupt(struct net_device *dev)
555 {
556 /* struct mace_data *mp = (struct mace_data *) dev->priv; */
557 // volatile struct mace *mb = mp->mace;
558 }
559
560 /*
561 * Process the chip interrupt
562 */
563
564 static irqreturn_t mace_interrupt(int irq, void *dev_id)
565 {
566 struct net_device *dev = (struct net_device *) dev_id;
567 struct mace_data *mp = (struct mace_data *) dev->priv;
568 volatile struct mace *mb = mp->mace;
569 u8 ir;
570
571 ir = mb->ir;
572 mace_handle_misc_intrs(mp, ir);
573
574 if (ir & XMTINT) {
575 mace_xmit_error(dev);
576 }
577 if (ir & RCVINT) {
578 mace_recv_interrupt(dev);
579 }
580 return IRQ_HANDLED;
581 }
582
583 static void mace_tx_timeout(struct net_device *dev)
584 {
585 /* struct mace_data *mp = (struct mace_data *) dev->priv; */
586 // volatile struct mace *mb = mp->mace;
587 }
588
589 /*
590 * Handle a newly arrived frame
591 */
592
593 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
594 {
595 struct mace_data *mp = (struct mace_data *) dev->priv;
596 struct sk_buff *skb;
597
598 if (mf->status & RS_OFLO) {
599 printk("%s: fifo overflow.\n", dev->name);
600 mp->stats.rx_errors++;
601 mp->stats.rx_fifo_errors++;
602 }
603 if (mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR))
604 mp->stats.rx_errors++;
605
606 if (mf->status&RS_CLSN) {
607 mp->stats.collisions++;
608 }
609 if (mf->status&RS_FRAMERR) {
610 mp->stats.rx_frame_errors++;
611 }
612 if (mf->status&RS_FCSERR) {
613 mp->stats.rx_crc_errors++;
614 }
615
616 skb = dev_alloc_skb(mf->len+2);
617 if (!skb) {
618 mp->stats.rx_dropped++;
619 return;
620 }
621 skb_reserve(skb,2);
622 memcpy(skb_put(skb, mf->len), mf->data, mf->len);
623
624 skb->dev = dev;
625 skb->protocol = eth_type_trans(skb, dev);
626 netif_rx(skb);
627 dev->last_rx = jiffies;
628 mp->stats.rx_packets++;
629 mp->stats.rx_bytes += mf->len;
630 }
631
632 /*
633 * The PSC has passed us a DMA interrupt event.
634 */
635
636 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
637 {
638 struct net_device *dev = (struct net_device *) dev_id;
639 struct mace_data *mp = (struct mace_data *) dev->priv;
640 int left, head;
641 u16 status;
642 u32 baka;
643
644 /* Not sure what this does */
645
646 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
647 if (!(baka & 0x60000000)) return IRQ_NONE;
648
649 /*
650 * Process the read queue
651 */
652
653 status = psc_read_word(PSC_ENETRD_CTL);
654
655 if (status & 0x2000) {
656 mace_rxdma_reset(dev);
657 } else if (status & 0x0100) {
658 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
659
660 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
661 head = N_RX_RING - left;
662
663 /* Loop through the ring buffer and process new packages */
664
665 while (mp->rx_tail < head) {
666 mace_dma_rx_frame(dev, (struct mace_frame *) (mp->rx_ring + (mp->rx_tail * 0x0800)));
667 mp->rx_tail++;
668 }
669
670 /* If we're out of buffers in this ring then switch to */
671 /* the other set, otherwise just reactivate this one. */
672
673 if (!left) {
674 mace_load_rxdma_base(dev, mp->rx_slot);
675 mp->rx_slot ^= 0x10;
676 } else {
677 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
678 }
679 }
680
681 /*
682 * Process the write queue
683 */
684
685 status = psc_read_word(PSC_ENETWR_CTL);
686
687 if (status & 0x2000) {
688 mace_txdma_reset(dev);
689 } else if (status & 0x0100) {
690 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
691 mp->tx_sloti ^= 0x10;
692 mp->tx_count++;
693 netif_wake_queue(dev);
694 }
695 return IRQ_HANDLED;
696 }
697
698 MODULE_LICENSE("GPL");