]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/rrunner.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[mirror_ubuntu-zesty-kernel.git] / drivers / net / rrunner.c
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3 *
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5 *
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
19 *
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
22 *
23 * PCI DMA mapping code partly based on work by Francois Romieu.
24 */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
44
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
65
66 /*
67 * Implementation notes:
68 *
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
74 * chunk.
75 *
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
79 */
80
81 /*
82 * sysctl_[wr]mem_max are checked at init time to see if they are at
83 * least 256KB and increased to 256KB if they are not. This is done to
84 * avoid ending up with socket buffers smaller than the MTU size,
85 */
86
87 static int __devinit rr_init_one(struct pci_dev *pdev,
88 const struct pci_device_id *ent)
89 {
90 struct net_device *dev;
91 static int version_disp;
92 u8 pci_latency;
93 struct rr_private *rrpriv;
94 void *tmpptr;
95 dma_addr_t ring_dma;
96 int ret = -ENOMEM;
97
98 dev = alloc_hippi_dev(sizeof(struct rr_private));
99 if (!dev)
100 goto out3;
101
102 ret = pci_enable_device(pdev);
103 if (ret) {
104 ret = -ENODEV;
105 goto out2;
106 }
107
108 rrpriv = netdev_priv(dev);
109
110 SET_NETDEV_DEV(dev, &pdev->dev);
111
112 if (pci_request_regions(pdev, "rrunner")) {
113 ret = -EIO;
114 goto out;
115 }
116
117 pci_set_drvdata(pdev, dev);
118
119 rrpriv->pci_dev = pdev;
120
121 spin_lock_init(&rrpriv->lock);
122
123 dev->irq = pdev->irq;
124 dev->open = &rr_open;
125 dev->hard_start_xmit = &rr_start_xmit;
126 dev->stop = &rr_close;
127 dev->do_ioctl = &rr_ioctl;
128
129 dev->base_addr = pci_resource_start(pdev, 0);
130
131 /* display version info if adapter is found */
132 if (!version_disp) {
133 /* set display flag to TRUE so that */
134 /* we only display this string ONCE */
135 version_disp = 1;
136 printk(version);
137 }
138
139 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
140 if (pci_latency <= 0x58){
141 pci_latency = 0x58;
142 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
143 }
144
145 pci_set_master(pdev);
146
147 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
148 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
149 dev->base_addr, dev->irq, pci_latency);
150
151 /*
152 * Remap the regs into kernel space.
153 */
154
155 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
156
157 if (!rrpriv->regs){
158 printk(KERN_ERR "%s: Unable to map I/O register, "
159 "RoadRunner will be disabled.\n", dev->name);
160 ret = -EIO;
161 goto out;
162 }
163
164 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
165 rrpriv->tx_ring = tmpptr;
166 rrpriv->tx_ring_dma = ring_dma;
167
168 if (!tmpptr) {
169 ret = -ENOMEM;
170 goto out;
171 }
172
173 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
174 rrpriv->rx_ring = tmpptr;
175 rrpriv->rx_ring_dma = ring_dma;
176
177 if (!tmpptr) {
178 ret = -ENOMEM;
179 goto out;
180 }
181
182 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
183 rrpriv->evt_ring = tmpptr;
184 rrpriv->evt_ring_dma = ring_dma;
185
186 if (!tmpptr) {
187 ret = -ENOMEM;
188 goto out;
189 }
190
191 /*
192 * Don't access any register before this point!
193 */
194 #ifdef __BIG_ENDIAN
195 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
196 &rrpriv->regs->HostCtrl);
197 #endif
198 /*
199 * Need to add a case for little-endian 64-bit hosts here.
200 */
201
202 rr_init(dev);
203
204 dev->base_addr = 0;
205
206 ret = register_netdev(dev);
207 if (ret)
208 goto out;
209 return 0;
210
211 out:
212 if (rrpriv->rx_ring)
213 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
214 rrpriv->rx_ring_dma);
215 if (rrpriv->tx_ring)
216 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
217 rrpriv->tx_ring_dma);
218 if (rrpriv->regs)
219 iounmap(rrpriv->regs);
220 if (pdev) {
221 pci_release_regions(pdev);
222 pci_set_drvdata(pdev, NULL);
223 }
224 out2:
225 free_netdev(dev);
226 out3:
227 return ret;
228 }
229
230 static void __devexit rr_remove_one (struct pci_dev *pdev)
231 {
232 struct net_device *dev = pci_get_drvdata(pdev);
233
234 if (dev) {
235 struct rr_private *rr = netdev_priv(dev);
236
237 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
238 printk(KERN_ERR "%s: trying to unload running NIC\n",
239 dev->name);
240 writel(HALT_NIC, &rr->regs->HostCtrl);
241 }
242
243 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
244 rr->evt_ring_dma);
245 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
246 rr->rx_ring_dma);
247 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
248 rr->tx_ring_dma);
249 unregister_netdev(dev);
250 iounmap(rr->regs);
251 free_netdev(dev);
252 pci_release_regions(pdev);
253 pci_disable_device(pdev);
254 pci_set_drvdata(pdev, NULL);
255 }
256 }
257
258
259 /*
260 * Commands are considered to be slow, thus there is no reason to
261 * inline this.
262 */
263 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
264 {
265 struct rr_regs __iomem *regs;
266 u32 idx;
267
268 regs = rrpriv->regs;
269 /*
270 * This is temporary - it will go away in the final version.
271 * We probably also want to make this function inline.
272 */
273 if (readl(&regs->HostCtrl) & NIC_HALTED){
274 printk("issuing command for halted NIC, code 0x%x, "
275 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
276 if (readl(&regs->Mode) & FATAL_ERR)
277 printk("error codes Fail1 %02x, Fail2 %02x\n",
278 readl(&regs->Fail1), readl(&regs->Fail2));
279 }
280
281 idx = rrpriv->info->cmd_ctrl.pi;
282
283 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
284 wmb();
285
286 idx = (idx - 1) % CMD_RING_ENTRIES;
287 rrpriv->info->cmd_ctrl.pi = idx;
288 wmb();
289
290 if (readl(&regs->Mode) & FATAL_ERR)
291 printk("error code %02x\n", readl(&regs->Fail1));
292 }
293
294
295 /*
296 * Reset the board in a sensible manner. The NIC is already halted
297 * when we get here and a spin-lock is held.
298 */
299 static int rr_reset(struct net_device *dev)
300 {
301 struct rr_private *rrpriv;
302 struct rr_regs __iomem *regs;
303 struct eeprom *hw = NULL;
304 u32 start_pc;
305 int i;
306
307 rrpriv = netdev_priv(dev);
308 regs = rrpriv->regs;
309
310 rr_load_firmware(dev);
311
312 writel(0x01000000, &regs->TX_state);
313 writel(0xff800000, &regs->RX_state);
314 writel(0, &regs->AssistState);
315 writel(CLEAR_INTA, &regs->LocalCtrl);
316 writel(0x01, &regs->BrkPt);
317 writel(0, &regs->Timer);
318 writel(0, &regs->TimerRef);
319 writel(RESET_DMA, &regs->DmaReadState);
320 writel(RESET_DMA, &regs->DmaWriteState);
321 writel(0, &regs->DmaWriteHostHi);
322 writel(0, &regs->DmaWriteHostLo);
323 writel(0, &regs->DmaReadHostHi);
324 writel(0, &regs->DmaReadHostLo);
325 writel(0, &regs->DmaReadLen);
326 writel(0, &regs->DmaWriteLen);
327 writel(0, &regs->DmaWriteLcl);
328 writel(0, &regs->DmaWriteIPchecksum);
329 writel(0, &regs->DmaReadLcl);
330 writel(0, &regs->DmaReadIPchecksum);
331 writel(0, &regs->PciState);
332 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
333 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
334 #elif (BITS_PER_LONG == 64)
335 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
336 #else
337 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
338 #endif
339
340 #if 0
341 /*
342 * Don't worry, this is just black magic.
343 */
344 writel(0xdf000, &regs->RxBase);
345 writel(0xdf000, &regs->RxPrd);
346 writel(0xdf000, &regs->RxCon);
347 writel(0xce000, &regs->TxBase);
348 writel(0xce000, &regs->TxPrd);
349 writel(0xce000, &regs->TxCon);
350 writel(0, &regs->RxIndPro);
351 writel(0, &regs->RxIndCon);
352 writel(0, &regs->RxIndRef);
353 writel(0, &regs->TxIndPro);
354 writel(0, &regs->TxIndCon);
355 writel(0, &regs->TxIndRef);
356 writel(0xcc000, &regs->pad10[0]);
357 writel(0, &regs->DrCmndPro);
358 writel(0, &regs->DrCmndCon);
359 writel(0, &regs->DwCmndPro);
360 writel(0, &regs->DwCmndCon);
361 writel(0, &regs->DwCmndRef);
362 writel(0, &regs->DrDataPro);
363 writel(0, &regs->DrDataCon);
364 writel(0, &regs->DrDataRef);
365 writel(0, &regs->DwDataPro);
366 writel(0, &regs->DwDataCon);
367 writel(0, &regs->DwDataRef);
368 #endif
369
370 writel(0xffffffff, &regs->MbEvent);
371 writel(0, &regs->Event);
372
373 writel(0, &regs->TxPi);
374 writel(0, &regs->IpRxPi);
375
376 writel(0, &regs->EvtCon);
377 writel(0, &regs->EvtPrd);
378
379 rrpriv->info->evt_ctrl.pi = 0;
380
381 for (i = 0; i < CMD_RING_ENTRIES; i++)
382 writel(0, &regs->CmdRing[i]);
383
384 /*
385 * Why 32 ? is this not cache line size dependent?
386 */
387 writel(RBURST_64|WBURST_64, &regs->PciState);
388 wmb();
389
390 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
391
392 #if (DEBUG > 1)
393 printk("%s: Executing firmware at address 0x%06x\n",
394 dev->name, start_pc);
395 #endif
396
397 writel(start_pc + 0x800, &regs->Pc);
398 wmb();
399 udelay(5);
400
401 writel(start_pc, &regs->Pc);
402 wmb();
403
404 return 0;
405 }
406
407
408 /*
409 * Read a string from the EEPROM.
410 */
411 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
412 unsigned long offset,
413 unsigned char *buf,
414 unsigned long length)
415 {
416 struct rr_regs __iomem *regs = rrpriv->regs;
417 u32 misc, io, host, i;
418
419 io = readl(&regs->ExtIo);
420 writel(0, &regs->ExtIo);
421 misc = readl(&regs->LocalCtrl);
422 writel(0, &regs->LocalCtrl);
423 host = readl(&regs->HostCtrl);
424 writel(host | HALT_NIC, &regs->HostCtrl);
425 mb();
426
427 for (i = 0; i < length; i++){
428 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
429 mb();
430 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
431 mb();
432 }
433
434 writel(host, &regs->HostCtrl);
435 writel(misc, &regs->LocalCtrl);
436 writel(io, &regs->ExtIo);
437 mb();
438 return i;
439 }
440
441
442 /*
443 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
444 * it to our CPU byte-order.
445 */
446 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
447 void * offset)
448 {
449 u32 word;
450
451 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
452 (char *)&word, 4) == 4))
453 return be32_to_cpu(word);
454 return 0;
455 }
456
457
458 /*
459 * Write a string to the EEPROM.
460 *
461 * This is only called when the firmware is not running.
462 */
463 static unsigned int write_eeprom(struct rr_private *rrpriv,
464 unsigned long offset,
465 unsigned char *buf,
466 unsigned long length)
467 {
468 struct rr_regs __iomem *regs = rrpriv->regs;
469 u32 misc, io, data, i, j, ready, error = 0;
470
471 io = readl(&regs->ExtIo);
472 writel(0, &regs->ExtIo);
473 misc = readl(&regs->LocalCtrl);
474 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
475 mb();
476
477 for (i = 0; i < length; i++){
478 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
479 mb();
480 data = buf[i] << 24;
481 /*
482 * Only try to write the data if it is not the same
483 * value already.
484 */
485 if ((readl(&regs->WinData) & 0xff000000) != data){
486 writel(data, &regs->WinData);
487 ready = 0;
488 j = 0;
489 mb();
490 while(!ready){
491 udelay(20);
492 if ((readl(&regs->WinData) & 0xff000000) ==
493 data)
494 ready = 1;
495 mb();
496 if (j++ > 5000){
497 printk("data mismatch: %08x, "
498 "WinData %08x\n", data,
499 readl(&regs->WinData));
500 ready = 1;
501 error = 1;
502 }
503 }
504 }
505 }
506
507 writel(misc, &regs->LocalCtrl);
508 writel(io, &regs->ExtIo);
509 mb();
510
511 return error;
512 }
513
514
515 static int __devinit rr_init(struct net_device *dev)
516 {
517 struct rr_private *rrpriv;
518 struct rr_regs __iomem *regs;
519 struct eeprom *hw = NULL;
520 u32 sram_size, rev;
521 DECLARE_MAC_BUF(mac);
522
523 rrpriv = netdev_priv(dev);
524 regs = rrpriv->regs;
525
526 rev = readl(&regs->FwRev);
527 rrpriv->fw_rev = rev;
528 if (rev > 0x00020024)
529 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
530 ((rev >> 8) & 0xff), (rev & 0xff));
531 else if (rev >= 0x00020000) {
532 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
533 "later is recommended)\n", (rev >> 16),
534 ((rev >> 8) & 0xff), (rev & 0xff));
535 }else{
536 printk(" Firmware revision too old: %i.%i.%i, please "
537 "upgrade to 2.0.37 or later.\n",
538 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
539 }
540
541 #if (DEBUG > 2)
542 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
543 #endif
544
545 /*
546 * Read the hardware address from the eeprom. The HW address
547 * is not really necessary for HIPPI but awfully convenient.
548 * The pointer arithmetic to put it in dev_addr is ugly, but
549 * Donald Becker does it this way for the GigE version of this
550 * card and it's shorter and more portable than any
551 * other method I've seen. -VAL
552 */
553
554 *(u16 *)(dev->dev_addr) =
555 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
556 *(u32 *)(dev->dev_addr+2) =
557 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
558
559 printk(" MAC: %s\n", print_mac(mac, dev->dev_addr));
560
561 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
562 printk(" SRAM size 0x%06x\n", sram_size);
563
564 if (sysctl_rmem_max < 262144){
565 printk(" Receive socket buffer limit too low (%i), "
566 "setting to 262144\n", sysctl_rmem_max);
567 sysctl_rmem_max = 262144;
568 }
569
570 if (sysctl_wmem_max < 262144){
571 printk(" Transmit socket buffer limit too low (%i), "
572 "setting to 262144\n", sysctl_wmem_max);
573 sysctl_wmem_max = 262144;
574 }
575
576 return 0;
577 }
578
579
580 static int rr_init1(struct net_device *dev)
581 {
582 struct rr_private *rrpriv;
583 struct rr_regs __iomem *regs;
584 unsigned long myjif, flags;
585 struct cmd cmd;
586 u32 hostctrl;
587 int ecode = 0;
588 short i;
589
590 rrpriv = netdev_priv(dev);
591 regs = rrpriv->regs;
592
593 spin_lock_irqsave(&rrpriv->lock, flags);
594
595 hostctrl = readl(&regs->HostCtrl);
596 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
597 wmb();
598
599 if (hostctrl & PARITY_ERR){
600 printk("%s: Parity error halting NIC - this is serious!\n",
601 dev->name);
602 spin_unlock_irqrestore(&rrpriv->lock, flags);
603 ecode = -EFAULT;
604 goto error;
605 }
606
607 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
608 set_infoaddr(regs, rrpriv->info_dma);
609
610 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
611 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
612 rrpriv->info->evt_ctrl.mode = 0;
613 rrpriv->info->evt_ctrl.pi = 0;
614 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
615
616 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
617 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
618 rrpriv->info->cmd_ctrl.mode = 0;
619 rrpriv->info->cmd_ctrl.pi = 15;
620
621 for (i = 0; i < CMD_RING_ENTRIES; i++) {
622 writel(0, &regs->CmdRing[i]);
623 }
624
625 for (i = 0; i < TX_RING_ENTRIES; i++) {
626 rrpriv->tx_ring[i].size = 0;
627 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
628 rrpriv->tx_skbuff[i] = NULL;
629 }
630 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
631 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
632 rrpriv->info->tx_ctrl.mode = 0;
633 rrpriv->info->tx_ctrl.pi = 0;
634 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
635
636 /*
637 * Set dirty_tx before we start receiving interrupts, otherwise
638 * the interrupt handler might think it is supposed to process
639 * tx ints before we are up and running, which may cause a null
640 * pointer access in the int handler.
641 */
642 rrpriv->tx_full = 0;
643 rrpriv->cur_rx = 0;
644 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
645
646 rr_reset(dev);
647
648 /* Tuning values */
649 writel(0x5000, &regs->ConRetry);
650 writel(0x100, &regs->ConRetryTmr);
651 writel(0x500000, &regs->ConTmout);
652 writel(0x60, &regs->IntrTmr);
653 writel(0x500000, &regs->TxDataMvTimeout);
654 writel(0x200000, &regs->RxDataMvTimeout);
655 writel(0x80, &regs->WriteDmaThresh);
656 writel(0x80, &regs->ReadDmaThresh);
657
658 rrpriv->fw_running = 0;
659 wmb();
660
661 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
662 writel(hostctrl, &regs->HostCtrl);
663 wmb();
664
665 spin_unlock_irqrestore(&rrpriv->lock, flags);
666
667 for (i = 0; i < RX_RING_ENTRIES; i++) {
668 struct sk_buff *skb;
669 dma_addr_t addr;
670
671 rrpriv->rx_ring[i].mode = 0;
672 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
673 if (!skb) {
674 printk(KERN_WARNING "%s: Unable to allocate memory "
675 "for receive ring - halting NIC\n", dev->name);
676 ecode = -ENOMEM;
677 goto error;
678 }
679 rrpriv->rx_skbuff[i] = skb;
680 addr = pci_map_single(rrpriv->pci_dev, skb->data,
681 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
682 /*
683 * Sanity test to see if we conflict with the DMA
684 * limitations of the Roadrunner.
685 */
686 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
687 printk("skb alloc error\n");
688
689 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
690 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
691 }
692
693 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
694 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
695 rrpriv->rx_ctrl[4].mode = 8;
696 rrpriv->rx_ctrl[4].pi = 0;
697 wmb();
698 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
699
700 udelay(1000);
701
702 /*
703 * Now start the FirmWare.
704 */
705 cmd.code = C_START_FW;
706 cmd.ring = 0;
707 cmd.index = 0;
708
709 rr_issue_cmd(rrpriv, &cmd);
710
711 /*
712 * Give the FirmWare time to chew on the `get running' command.
713 */
714 myjif = jiffies + 5 * HZ;
715 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
716 cpu_relax();
717
718 netif_start_queue(dev);
719
720 return ecode;
721
722 error:
723 /*
724 * We might have gotten here because we are out of memory,
725 * make sure we release everything we allocated before failing
726 */
727 for (i = 0; i < RX_RING_ENTRIES; i++) {
728 struct sk_buff *skb = rrpriv->rx_skbuff[i];
729
730 if (skb) {
731 pci_unmap_single(rrpriv->pci_dev,
732 rrpriv->rx_ring[i].addr.addrlo,
733 dev->mtu + HIPPI_HLEN,
734 PCI_DMA_FROMDEVICE);
735 rrpriv->rx_ring[i].size = 0;
736 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
737 dev_kfree_skb(skb);
738 rrpriv->rx_skbuff[i] = NULL;
739 }
740 }
741 return ecode;
742 }
743
744
745 /*
746 * All events are considered to be slow (RX/TX ints do not generate
747 * events) and are handled here, outside the main interrupt handler,
748 * to reduce the size of the handler.
749 */
750 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
751 {
752 struct rr_private *rrpriv;
753 struct rr_regs __iomem *regs;
754 u32 tmp;
755
756 rrpriv = netdev_priv(dev);
757 regs = rrpriv->regs;
758
759 while (prodidx != eidx){
760 switch (rrpriv->evt_ring[eidx].code){
761 case E_NIC_UP:
762 tmp = readl(&regs->FwRev);
763 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
764 "up and running\n", dev->name,
765 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
766 rrpriv->fw_running = 1;
767 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
768 wmb();
769 break;
770 case E_LINK_ON:
771 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
772 break;
773 case E_LINK_OFF:
774 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
775 break;
776 case E_RX_IDLE:
777 printk(KERN_WARNING "%s: RX data not moving\n",
778 dev->name);
779 goto drop;
780 case E_WATCHDOG:
781 printk(KERN_INFO "%s: The watchdog is here to see "
782 "us\n", dev->name);
783 break;
784 case E_INTERN_ERR:
785 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
786 dev->name);
787 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
788 &regs->HostCtrl);
789 wmb();
790 break;
791 case E_HOST_ERR:
792 printk(KERN_ERR "%s: Host software error\n",
793 dev->name);
794 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
795 &regs->HostCtrl);
796 wmb();
797 break;
798 /*
799 * TX events.
800 */
801 case E_CON_REJ:
802 printk(KERN_WARNING "%s: Connection rejected\n",
803 dev->name);
804 dev->stats.tx_aborted_errors++;
805 break;
806 case E_CON_TMOUT:
807 printk(KERN_WARNING "%s: Connection timeout\n",
808 dev->name);
809 break;
810 case E_DISC_ERR:
811 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
812 dev->name);
813 dev->stats.tx_aborted_errors++;
814 break;
815 case E_INT_PRTY:
816 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
817 dev->name);
818 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819 &regs->HostCtrl);
820 wmb();
821 break;
822 case E_TX_IDLE:
823 printk(KERN_WARNING "%s: Transmitter idle\n",
824 dev->name);
825 break;
826 case E_TX_LINK_DROP:
827 printk(KERN_WARNING "%s: Link lost during transmit\n",
828 dev->name);
829 dev->stats.tx_aborted_errors++;
830 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
831 &regs->HostCtrl);
832 wmb();
833 break;
834 case E_TX_INV_RNG:
835 printk(KERN_ERR "%s: Invalid send ring block\n",
836 dev->name);
837 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
838 &regs->HostCtrl);
839 wmb();
840 break;
841 case E_TX_INV_BUF:
842 printk(KERN_ERR "%s: Invalid send buffer address\n",
843 dev->name);
844 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
845 &regs->HostCtrl);
846 wmb();
847 break;
848 case E_TX_INV_DSC:
849 printk(KERN_ERR "%s: Invalid descriptor address\n",
850 dev->name);
851 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
852 &regs->HostCtrl);
853 wmb();
854 break;
855 /*
856 * RX events.
857 */
858 case E_RX_RNG_OUT:
859 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
860 break;
861
862 case E_RX_PAR_ERR:
863 printk(KERN_WARNING "%s: Receive parity error\n",
864 dev->name);
865 goto drop;
866 case E_RX_LLRC_ERR:
867 printk(KERN_WARNING "%s: Receive LLRC error\n",
868 dev->name);
869 goto drop;
870 case E_PKT_LN_ERR:
871 printk(KERN_WARNING "%s: Receive packet length "
872 "error\n", dev->name);
873 goto drop;
874 case E_DTA_CKSM_ERR:
875 printk(KERN_WARNING "%s: Data checksum error\n",
876 dev->name);
877 goto drop;
878 case E_SHT_BST:
879 printk(KERN_WARNING "%s: Unexpected short burst "
880 "error\n", dev->name);
881 goto drop;
882 case E_STATE_ERR:
883 printk(KERN_WARNING "%s: Recv. state transition"
884 " error\n", dev->name);
885 goto drop;
886 case E_UNEXP_DATA:
887 printk(KERN_WARNING "%s: Unexpected data error\n",
888 dev->name);
889 goto drop;
890 case E_LST_LNK_ERR:
891 printk(KERN_WARNING "%s: Link lost error\n",
892 dev->name);
893 goto drop;
894 case E_FRM_ERR:
895 printk(KERN_WARNING "%s: Framming Error\n",
896 dev->name);
897 goto drop;
898 case E_FLG_SYN_ERR:
899 printk(KERN_WARNING "%s: Flag sync. lost during"
900 "packet\n", dev->name);
901 goto drop;
902 case E_RX_INV_BUF:
903 printk(KERN_ERR "%s: Invalid receive buffer "
904 "address\n", dev->name);
905 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
906 &regs->HostCtrl);
907 wmb();
908 break;
909 case E_RX_INV_DSC:
910 printk(KERN_ERR "%s: Invalid receive descriptor "
911 "address\n", dev->name);
912 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
913 &regs->HostCtrl);
914 wmb();
915 break;
916 case E_RNG_BLK:
917 printk(KERN_ERR "%s: Invalid ring block\n",
918 dev->name);
919 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
920 &regs->HostCtrl);
921 wmb();
922 break;
923 drop:
924 /* Label packet to be dropped.
925 * Actual dropping occurs in rx
926 * handling.
927 *
928 * The index of packet we get to drop is
929 * the index of the packet following
930 * the bad packet. -kbf
931 */
932 {
933 u16 index = rrpriv->evt_ring[eidx].index;
934 index = (index + (RX_RING_ENTRIES - 1)) %
935 RX_RING_ENTRIES;
936 rrpriv->rx_ring[index].mode |=
937 (PACKET_BAD | PACKET_END);
938 }
939 break;
940 default:
941 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
942 dev->name, rrpriv->evt_ring[eidx].code);
943 }
944 eidx = (eidx + 1) % EVT_RING_ENTRIES;
945 }
946
947 rrpriv->info->evt_ctrl.pi = eidx;
948 wmb();
949 return eidx;
950 }
951
952
953 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
954 {
955 struct rr_private *rrpriv = netdev_priv(dev);
956 struct rr_regs __iomem *regs = rrpriv->regs;
957
958 do {
959 struct rx_desc *desc;
960 u32 pkt_len;
961
962 desc = &(rrpriv->rx_ring[index]);
963 pkt_len = desc->size;
964 #if (DEBUG > 2)
965 printk("index %i, rxlimit %i\n", index, rxlimit);
966 printk("len %x, mode %x\n", pkt_len, desc->mode);
967 #endif
968 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
969 dev->stats.rx_dropped++;
970 goto defer;
971 }
972
973 if (pkt_len > 0){
974 struct sk_buff *skb, *rx_skb;
975
976 rx_skb = rrpriv->rx_skbuff[index];
977
978 if (pkt_len < PKT_COPY_THRESHOLD) {
979 skb = alloc_skb(pkt_len, GFP_ATOMIC);
980 if (skb == NULL){
981 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
982 dev->stats.rx_dropped++;
983 goto defer;
984 } else {
985 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
986 desc->addr.addrlo,
987 pkt_len,
988 PCI_DMA_FROMDEVICE);
989
990 memcpy(skb_put(skb, pkt_len),
991 rx_skb->data, pkt_len);
992
993 pci_dma_sync_single_for_device(rrpriv->pci_dev,
994 desc->addr.addrlo,
995 pkt_len,
996 PCI_DMA_FROMDEVICE);
997 }
998 }else{
999 struct sk_buff *newskb;
1000
1001 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
1002 GFP_ATOMIC);
1003 if (newskb){
1004 dma_addr_t addr;
1005
1006 pci_unmap_single(rrpriv->pci_dev,
1007 desc->addr.addrlo, dev->mtu +
1008 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1009 skb = rx_skb;
1010 skb_put(skb, pkt_len);
1011 rrpriv->rx_skbuff[index] = newskb;
1012 addr = pci_map_single(rrpriv->pci_dev,
1013 newskb->data,
1014 dev->mtu + HIPPI_HLEN,
1015 PCI_DMA_FROMDEVICE);
1016 set_rraddr(&desc->addr, addr);
1017 } else {
1018 printk("%s: Out of memory, deferring "
1019 "packet\n", dev->name);
1020 dev->stats.rx_dropped++;
1021 goto defer;
1022 }
1023 }
1024 skb->protocol = hippi_type_trans(skb, dev);
1025
1026 netif_rx(skb); /* send it up */
1027
1028 dev->last_rx = jiffies;
1029 dev->stats.rx_packets++;
1030 dev->stats.rx_bytes += pkt_len;
1031 }
1032 defer:
1033 desc->mode = 0;
1034 desc->size = dev->mtu + HIPPI_HLEN;
1035
1036 if ((index & 7) == 7)
1037 writel(index, &regs->IpRxPi);
1038
1039 index = (index + 1) % RX_RING_ENTRIES;
1040 } while(index != rxlimit);
1041
1042 rrpriv->cur_rx = index;
1043 wmb();
1044 }
1045
1046
1047 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1048 {
1049 struct rr_private *rrpriv;
1050 struct rr_regs __iomem *regs;
1051 struct net_device *dev = (struct net_device *)dev_id;
1052 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1053
1054 rrpriv = netdev_priv(dev);
1055 regs = rrpriv->regs;
1056
1057 if (!(readl(&regs->HostCtrl) & RR_INT))
1058 return IRQ_NONE;
1059
1060 spin_lock(&rrpriv->lock);
1061
1062 prodidx = readl(&regs->EvtPrd);
1063 txcsmr = (prodidx >> 8) & 0xff;
1064 rxlimit = (prodidx >> 16) & 0xff;
1065 prodidx &= 0xff;
1066
1067 #if (DEBUG > 2)
1068 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1069 prodidx, rrpriv->info->evt_ctrl.pi);
1070 #endif
1071 /*
1072 * Order here is important. We must handle events
1073 * before doing anything else in order to catch
1074 * such things as LLRC errors, etc -kbf
1075 */
1076
1077 eidx = rrpriv->info->evt_ctrl.pi;
1078 if (prodidx != eidx)
1079 eidx = rr_handle_event(dev, prodidx, eidx);
1080
1081 rxindex = rrpriv->cur_rx;
1082 if (rxindex != rxlimit)
1083 rx_int(dev, rxlimit, rxindex);
1084
1085 txcon = rrpriv->dirty_tx;
1086 if (txcsmr != txcon) {
1087 do {
1088 /* Due to occational firmware TX producer/consumer out
1089 * of sync. error need to check entry in ring -kbf
1090 */
1091 if(rrpriv->tx_skbuff[txcon]){
1092 struct tx_desc *desc;
1093 struct sk_buff *skb;
1094
1095 desc = &(rrpriv->tx_ring[txcon]);
1096 skb = rrpriv->tx_skbuff[txcon];
1097
1098 dev->stats.tx_packets++;
1099 dev->stats.tx_bytes += skb->len;
1100
1101 pci_unmap_single(rrpriv->pci_dev,
1102 desc->addr.addrlo, skb->len,
1103 PCI_DMA_TODEVICE);
1104 dev_kfree_skb_irq(skb);
1105
1106 rrpriv->tx_skbuff[txcon] = NULL;
1107 desc->size = 0;
1108 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1109 desc->mode = 0;
1110 }
1111 txcon = (txcon + 1) % TX_RING_ENTRIES;
1112 } while (txcsmr != txcon);
1113 wmb();
1114
1115 rrpriv->dirty_tx = txcon;
1116 if (rrpriv->tx_full && rr_if_busy(dev) &&
1117 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1118 != rrpriv->dirty_tx)){
1119 rrpriv->tx_full = 0;
1120 netif_wake_queue(dev);
1121 }
1122 }
1123
1124 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1125 writel(eidx, &regs->EvtCon);
1126 wmb();
1127
1128 spin_unlock(&rrpriv->lock);
1129 return IRQ_HANDLED;
1130 }
1131
1132 static inline void rr_raz_tx(struct rr_private *rrpriv,
1133 struct net_device *dev)
1134 {
1135 int i;
1136
1137 for (i = 0; i < TX_RING_ENTRIES; i++) {
1138 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1139
1140 if (skb) {
1141 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1142
1143 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1144 skb->len, PCI_DMA_TODEVICE);
1145 desc->size = 0;
1146 set_rraddr(&desc->addr, 0);
1147 dev_kfree_skb(skb);
1148 rrpriv->tx_skbuff[i] = NULL;
1149 }
1150 }
1151 }
1152
1153
1154 static inline void rr_raz_rx(struct rr_private *rrpriv,
1155 struct net_device *dev)
1156 {
1157 int i;
1158
1159 for (i = 0; i < RX_RING_ENTRIES; i++) {
1160 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1161
1162 if (skb) {
1163 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1164
1165 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1166 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1167 desc->size = 0;
1168 set_rraddr(&desc->addr, 0);
1169 dev_kfree_skb(skb);
1170 rrpriv->rx_skbuff[i] = NULL;
1171 }
1172 }
1173 }
1174
1175 static void rr_timer(unsigned long data)
1176 {
1177 struct net_device *dev = (struct net_device *)data;
1178 struct rr_private *rrpriv = netdev_priv(dev);
1179 struct rr_regs __iomem *regs = rrpriv->regs;
1180 unsigned long flags;
1181
1182 if (readl(&regs->HostCtrl) & NIC_HALTED){
1183 printk("%s: Restarting nic\n", dev->name);
1184 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1185 memset(rrpriv->info, 0, sizeof(struct rr_info));
1186 wmb();
1187
1188 rr_raz_tx(rrpriv, dev);
1189 rr_raz_rx(rrpriv, dev);
1190
1191 if (rr_init1(dev)) {
1192 spin_lock_irqsave(&rrpriv->lock, flags);
1193 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1194 &regs->HostCtrl);
1195 spin_unlock_irqrestore(&rrpriv->lock, flags);
1196 }
1197 }
1198 rrpriv->timer.expires = RUN_AT(5*HZ);
1199 add_timer(&rrpriv->timer);
1200 }
1201
1202
1203 static int rr_open(struct net_device *dev)
1204 {
1205 struct rr_private *rrpriv = netdev_priv(dev);
1206 struct pci_dev *pdev = rrpriv->pci_dev;
1207 struct rr_regs __iomem *regs;
1208 int ecode = 0;
1209 unsigned long flags;
1210 dma_addr_t dma_addr;
1211
1212 regs = rrpriv->regs;
1213
1214 if (rrpriv->fw_rev < 0x00020000) {
1215 printk(KERN_WARNING "%s: trying to configure device with "
1216 "obsolete firmware\n", dev->name);
1217 ecode = -EBUSY;
1218 goto error;
1219 }
1220
1221 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1222 256 * sizeof(struct ring_ctrl),
1223 &dma_addr);
1224 if (!rrpriv->rx_ctrl) {
1225 ecode = -ENOMEM;
1226 goto error;
1227 }
1228 rrpriv->rx_ctrl_dma = dma_addr;
1229 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1230
1231 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1232 &dma_addr);
1233 if (!rrpriv->info) {
1234 ecode = -ENOMEM;
1235 goto error;
1236 }
1237 rrpriv->info_dma = dma_addr;
1238 memset(rrpriv->info, 0, sizeof(struct rr_info));
1239 wmb();
1240
1241 spin_lock_irqsave(&rrpriv->lock, flags);
1242 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1243 readl(&regs->HostCtrl);
1244 spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1247 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1248 dev->name, dev->irq);
1249 ecode = -EAGAIN;
1250 goto error;
1251 }
1252
1253 if ((ecode = rr_init1(dev)))
1254 goto error;
1255
1256 /* Set the timer to switch to check for link beat and perhaps switch
1257 to an alternate media type. */
1258 init_timer(&rrpriv->timer);
1259 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1260 rrpriv->timer.data = (unsigned long)dev;
1261 rrpriv->timer.function = &rr_timer; /* timer handler */
1262 add_timer(&rrpriv->timer);
1263
1264 netif_start_queue(dev);
1265
1266 return ecode;
1267
1268 error:
1269 spin_lock_irqsave(&rrpriv->lock, flags);
1270 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1271 spin_unlock_irqrestore(&rrpriv->lock, flags);
1272
1273 if (rrpriv->info) {
1274 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1275 rrpriv->info_dma);
1276 rrpriv->info = NULL;
1277 }
1278 if (rrpriv->rx_ctrl) {
1279 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1280 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1281 rrpriv->rx_ctrl = NULL;
1282 }
1283
1284 netif_stop_queue(dev);
1285
1286 return ecode;
1287 }
1288
1289
1290 static void rr_dump(struct net_device *dev)
1291 {
1292 struct rr_private *rrpriv;
1293 struct rr_regs __iomem *regs;
1294 u32 index, cons;
1295 short i;
1296 int len;
1297
1298 rrpriv = netdev_priv(dev);
1299 regs = rrpriv->regs;
1300
1301 printk("%s: dumping NIC TX rings\n", dev->name);
1302
1303 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1304 readl(&regs->RxPrd), readl(&regs->TxPrd),
1305 readl(&regs->EvtPrd), readl(&regs->TxPi),
1306 rrpriv->info->tx_ctrl.pi);
1307
1308 printk("Error code 0x%x\n", readl(&regs->Fail1));
1309
1310 index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1311 cons = rrpriv->dirty_tx;
1312 printk("TX ring index %i, TX consumer %i\n",
1313 index, cons);
1314
1315 if (rrpriv->tx_skbuff[index]){
1316 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1317 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1318 for (i = 0; i < len; i++){
1319 if (!(i & 7))
1320 printk("\n");
1321 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1322 }
1323 printk("\n");
1324 }
1325
1326 if (rrpriv->tx_skbuff[cons]){
1327 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1328 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1329 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1330 rrpriv->tx_ring[cons].mode,
1331 rrpriv->tx_ring[cons].size,
1332 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1333 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1334 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1335 for (i = 0; i < len; i++){
1336 if (!(i & 7))
1337 printk("\n");
1338 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1339 }
1340 printk("\n");
1341 }
1342
1343 printk("dumping TX ring info:\n");
1344 for (i = 0; i < TX_RING_ENTRIES; i++)
1345 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1346 rrpriv->tx_ring[i].mode,
1347 rrpriv->tx_ring[i].size,
1348 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1349
1350 }
1351
1352
1353 static int rr_close(struct net_device *dev)
1354 {
1355 struct rr_private *rrpriv;
1356 struct rr_regs __iomem *regs;
1357 unsigned long flags;
1358 u32 tmp;
1359 short i;
1360
1361 netif_stop_queue(dev);
1362
1363 rrpriv = netdev_priv(dev);
1364 regs = rrpriv->regs;
1365
1366 /*
1367 * Lock to make sure we are not cleaning up while another CPU
1368 * is handling interrupts.
1369 */
1370 spin_lock_irqsave(&rrpriv->lock, flags);
1371
1372 tmp = readl(&regs->HostCtrl);
1373 if (tmp & NIC_HALTED){
1374 printk("%s: NIC already halted\n", dev->name);
1375 rr_dump(dev);
1376 }else{
1377 tmp |= HALT_NIC | RR_CLEAR_INT;
1378 writel(tmp, &regs->HostCtrl);
1379 readl(&regs->HostCtrl);
1380 }
1381
1382 rrpriv->fw_running = 0;
1383
1384 del_timer_sync(&rrpriv->timer);
1385
1386 writel(0, &regs->TxPi);
1387 writel(0, &regs->IpRxPi);
1388
1389 writel(0, &regs->EvtCon);
1390 writel(0, &regs->EvtPrd);
1391
1392 for (i = 0; i < CMD_RING_ENTRIES; i++)
1393 writel(0, &regs->CmdRing[i]);
1394
1395 rrpriv->info->tx_ctrl.entries = 0;
1396 rrpriv->info->cmd_ctrl.pi = 0;
1397 rrpriv->info->evt_ctrl.pi = 0;
1398 rrpriv->rx_ctrl[4].entries = 0;
1399
1400 rr_raz_tx(rrpriv, dev);
1401 rr_raz_rx(rrpriv, dev);
1402
1403 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1404 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1405 rrpriv->rx_ctrl = NULL;
1406
1407 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1408 rrpriv->info, rrpriv->info_dma);
1409 rrpriv->info = NULL;
1410
1411 free_irq(dev->irq, dev);
1412 spin_unlock_irqrestore(&rrpriv->lock, flags);
1413
1414 return 0;
1415 }
1416
1417
1418 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1419 {
1420 struct rr_private *rrpriv = netdev_priv(dev);
1421 struct rr_regs __iomem *regs = rrpriv->regs;
1422 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1423 struct ring_ctrl *txctrl;
1424 unsigned long flags;
1425 u32 index, len = skb->len;
1426 u32 *ifield;
1427 struct sk_buff *new_skb;
1428
1429 if (readl(&regs->Mode) & FATAL_ERR)
1430 printk("error codes Fail1 %02x, Fail2 %02x\n",
1431 readl(&regs->Fail1), readl(&regs->Fail2));
1432
1433 /*
1434 * We probably need to deal with tbusy here to prevent overruns.
1435 */
1436
1437 if (skb_headroom(skb) < 8){
1438 printk("incoming skb too small - reallocating\n");
1439 if (!(new_skb = dev_alloc_skb(len + 8))) {
1440 dev_kfree_skb(skb);
1441 netif_wake_queue(dev);
1442 return -EBUSY;
1443 }
1444 skb_reserve(new_skb, 8);
1445 skb_put(new_skb, len);
1446 skb_copy_from_linear_data(skb, new_skb->data, len);
1447 dev_kfree_skb(skb);
1448 skb = new_skb;
1449 }
1450
1451 ifield = (u32 *)skb_push(skb, 8);
1452
1453 ifield[0] = 0;
1454 ifield[1] = hcb->ifield;
1455
1456 /*
1457 * We don't need the lock before we are actually going to start
1458 * fiddling with the control blocks.
1459 */
1460 spin_lock_irqsave(&rrpriv->lock, flags);
1461
1462 txctrl = &rrpriv->info->tx_ctrl;
1463
1464 index = txctrl->pi;
1465
1466 rrpriv->tx_skbuff[index] = skb;
1467 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1468 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1469 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1470 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1471 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1472 wmb();
1473 writel(txctrl->pi, &regs->TxPi);
1474
1475 if (txctrl->pi == rrpriv->dirty_tx){
1476 rrpriv->tx_full = 1;
1477 netif_stop_queue(dev);
1478 }
1479
1480 spin_unlock_irqrestore(&rrpriv->lock, flags);
1481
1482 dev->trans_start = jiffies;
1483 return 0;
1484 }
1485
1486
1487 /*
1488 * Read the firmware out of the EEPROM and put it into the SRAM
1489 * (or from user space - later)
1490 *
1491 * This operation requires the NIC to be halted and is performed with
1492 * interrupts disabled and with the spinlock hold.
1493 */
1494 static int rr_load_firmware(struct net_device *dev)
1495 {
1496 struct rr_private *rrpriv;
1497 struct rr_regs __iomem *regs;
1498 unsigned long eptr, segptr;
1499 int i, j;
1500 u32 localctrl, sptr, len, tmp;
1501 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1502 struct eeprom *hw = NULL;
1503
1504 rrpriv = netdev_priv(dev);
1505 regs = rrpriv->regs;
1506
1507 if (dev->flags & IFF_UP)
1508 return -EBUSY;
1509
1510 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1511 printk("%s: Trying to load firmware to a running NIC.\n",
1512 dev->name);
1513 return -EBUSY;
1514 }
1515
1516 localctrl = readl(&regs->LocalCtrl);
1517 writel(0, &regs->LocalCtrl);
1518
1519 writel(0, &regs->EvtPrd);
1520 writel(0, &regs->RxPrd);
1521 writel(0, &regs->TxPrd);
1522
1523 /*
1524 * First wipe the entire SRAM, otherwise we might run into all
1525 * kinds of trouble ... sigh, this took almost all afternoon
1526 * to track down ;-(
1527 */
1528 io = readl(&regs->ExtIo);
1529 writel(0, &regs->ExtIo);
1530 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1531
1532 for (i = 200; i < sram_size / 4; i++){
1533 writel(i * 4, &regs->WinBase);
1534 mb();
1535 writel(0, &regs->WinData);
1536 mb();
1537 }
1538 writel(io, &regs->ExtIo);
1539 mb();
1540
1541 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1542 &hw->rncd_info.AddrRunCodeSegs);
1543 eptr = ((eptr & 0x1fffff) >> 3);
1544
1545 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1546 p2len = (p2len << 2);
1547 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1548 p2size = ((p2size & 0x1fffff) >> 3);
1549
1550 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1551 printk("%s: eptr is invalid\n", dev->name);
1552 goto out;
1553 }
1554
1555 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1556
1557 if (revision != 1){
1558 printk("%s: invalid firmware format (%i)\n",
1559 dev->name, revision);
1560 goto out;
1561 }
1562
1563 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1564 eptr +=4;
1565 #if (DEBUG > 1)
1566 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1567 #endif
1568
1569 for (i = 0; i < nr_seg; i++){
1570 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1571 eptr += 4;
1572 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1573 eptr += 4;
1574 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1575 segptr = ((segptr & 0x1fffff) >> 3);
1576 eptr += 4;
1577 #if (DEBUG > 1)
1578 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1579 dev->name, i, sptr, len, segptr);
1580 #endif
1581 for (j = 0; j < len; j++){
1582 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1583 writel(sptr, &regs->WinBase);
1584 mb();
1585 writel(tmp, &regs->WinData);
1586 mb();
1587 segptr += 4;
1588 sptr += 4;
1589 }
1590 }
1591
1592 out:
1593 writel(localctrl, &regs->LocalCtrl);
1594 mb();
1595 return 0;
1596 }
1597
1598
1599 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1600 {
1601 struct rr_private *rrpriv;
1602 unsigned char *image, *oldimage;
1603 unsigned long flags;
1604 unsigned int i;
1605 int error = -EOPNOTSUPP;
1606
1607 rrpriv = netdev_priv(dev);
1608
1609 switch(cmd){
1610 case SIOCRRGFW:
1611 if (!capable(CAP_SYS_RAWIO)){
1612 return -EPERM;
1613 }
1614
1615 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1616 if (!image){
1617 printk(KERN_ERR "%s: Unable to allocate memory "
1618 "for EEPROM image\n", dev->name);
1619 return -ENOMEM;
1620 }
1621
1622
1623 if (rrpriv->fw_running){
1624 printk("%s: Firmware already running\n", dev->name);
1625 error = -EPERM;
1626 goto gf_out;
1627 }
1628
1629 spin_lock_irqsave(&rrpriv->lock, flags);
1630 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1631 spin_unlock_irqrestore(&rrpriv->lock, flags);
1632 if (i != EEPROM_BYTES){
1633 printk(KERN_ERR "%s: Error reading EEPROM\n",
1634 dev->name);
1635 error = -EFAULT;
1636 goto gf_out;
1637 }
1638 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1639 if (error)
1640 error = -EFAULT;
1641 gf_out:
1642 kfree(image);
1643 return error;
1644
1645 case SIOCRRPFW:
1646 if (!capable(CAP_SYS_RAWIO)){
1647 return -EPERM;
1648 }
1649
1650 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1651 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1652 if (!image || !oldimage) {
1653 printk(KERN_ERR "%s: Unable to allocate memory "
1654 "for EEPROM image\n", dev->name);
1655 error = -ENOMEM;
1656 goto wf_out;
1657 }
1658
1659 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1660 if (error) {
1661 error = -EFAULT;
1662 goto wf_out;
1663 }
1664
1665 if (rrpriv->fw_running){
1666 printk("%s: Firmware already running\n", dev->name);
1667 error = -EPERM;
1668 goto wf_out;
1669 }
1670
1671 printk("%s: Updating EEPROM firmware\n", dev->name);
1672
1673 spin_lock_irqsave(&rrpriv->lock, flags);
1674 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1675 if (error)
1676 printk(KERN_ERR "%s: Error writing EEPROM\n",
1677 dev->name);
1678
1679 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1680 spin_unlock_irqrestore(&rrpriv->lock, flags);
1681
1682 if (i != EEPROM_BYTES)
1683 printk(KERN_ERR "%s: Error reading back EEPROM "
1684 "image\n", dev->name);
1685
1686 error = memcmp(image, oldimage, EEPROM_BYTES);
1687 if (error){
1688 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1689 dev->name);
1690 error = -EFAULT;
1691 }
1692 wf_out:
1693 kfree(oldimage);
1694 kfree(image);
1695 return error;
1696
1697 case SIOCRRID:
1698 return put_user(0x52523032, (int __user *)rq->ifr_data);
1699 default:
1700 return error;
1701 }
1702 }
1703
1704 static struct pci_device_id rr_pci_tbl[] = {
1705 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1706 PCI_ANY_ID, PCI_ANY_ID, },
1707 { 0,}
1708 };
1709 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1710
1711 static struct pci_driver rr_driver = {
1712 .name = "rrunner",
1713 .id_table = rr_pci_tbl,
1714 .probe = rr_init_one,
1715 .remove = __devexit_p(rr_remove_one),
1716 };
1717
1718 static int __init rr_init_module(void)
1719 {
1720 return pci_register_driver(&rr_driver);
1721 }
1722
1723 static void __exit rr_cleanup_module(void)
1724 {
1725 pci_unregister_driver(&rr_driver);
1726 }
1727
1728 module_init(rr_init_module);
1729 module_exit(rr_cleanup_module);
1730
1731 /*
1732 * Local variables:
1733 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1734 * End:
1735 */