]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/s2io.c
Fix occurrences of "the the "
[mirror_ubuntu-bionic-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.22.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[4] = {32,48,48,64};
94 static int rxd_count[4] = {127,85,85,63};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104 }
105
106 /*
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123 struct mac_info *mac_control;
124
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
214 {"rmac_pause_cnt"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
236 {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
255 {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 };
285
286 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
287 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
288 ETH_GSTRING_LEN
289 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
290
291 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
292 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
293
294 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
295 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
296
297 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
298 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
299
300 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
301 init_timer(&timer); \
302 timer.function = handle; \
303 timer.data = (unsigned long) arg; \
304 mod_timer(&timer, (jiffies + exp)) \
305
306 /* Add the vlan */
307 static void s2io_vlan_rx_register(struct net_device *dev,
308 struct vlan_group *grp)
309 {
310 struct s2io_nic *nic = dev->priv;
311 unsigned long flags;
312
313 spin_lock_irqsave(&nic->tx_lock, flags);
314 nic->vlgrp = grp;
315 spin_unlock_irqrestore(&nic->tx_lock, flags);
316 }
317
318 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
319 static int vlan_strip_flag;
320
321 /* Unregister the vlan */
322 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
323 {
324 struct s2io_nic *nic = dev->priv;
325 unsigned long flags;
326
327 spin_lock_irqsave(&nic->tx_lock, flags);
328 vlan_group_set_device(nic->vlgrp, vid, NULL);
329 spin_unlock_irqrestore(&nic->tx_lock, flags);
330 }
331
332 /*
333 * Constants to be programmed into the Xena's registers, to configure
334 * the XAUI.
335 */
336
337 #define END_SIGN 0x0
338 static const u64 herc_act_dtx_cfg[] = {
339 /* Set address */
340 0x8000051536750000ULL, 0x80000515367500E0ULL,
341 /* Write data */
342 0x8000051536750004ULL, 0x80000515367500E4ULL,
343 /* Set address */
344 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
345 /* Write data */
346 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
347 /* Set address */
348 0x801205150D440000ULL, 0x801205150D4400E0ULL,
349 /* Write data */
350 0x801205150D440004ULL, 0x801205150D4400E4ULL,
351 /* Set address */
352 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
353 /* Write data */
354 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
355 /* Done */
356 END_SIGN
357 };
358
359 static const u64 xena_dtx_cfg[] = {
360 /* Set address */
361 0x8000051500000000ULL, 0x80000515000000E0ULL,
362 /* Write data */
363 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
364 /* Set address */
365 0x8001051500000000ULL, 0x80010515000000E0ULL,
366 /* Write data */
367 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
368 /* Set address */
369 0x8002051500000000ULL, 0x80020515000000E0ULL,
370 /* Write data */
371 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
372 END_SIGN
373 };
374
375 /*
376 * Constants for Fixing the MacAddress problem seen mostly on
377 * Alpha machines.
378 */
379 static const u64 fix_mac[] = {
380 0x0060000000000000ULL, 0x0060600000000000ULL,
381 0x0040600000000000ULL, 0x0000600000000000ULL,
382 0x0020600000000000ULL, 0x0060600000000000ULL,
383 0x0020600000000000ULL, 0x0060600000000000ULL,
384 0x0020600000000000ULL, 0x0060600000000000ULL,
385 0x0020600000000000ULL, 0x0060600000000000ULL,
386 0x0020600000000000ULL, 0x0060600000000000ULL,
387 0x0020600000000000ULL, 0x0060600000000000ULL,
388 0x0020600000000000ULL, 0x0060600000000000ULL,
389 0x0020600000000000ULL, 0x0060600000000000ULL,
390 0x0020600000000000ULL, 0x0060600000000000ULL,
391 0x0020600000000000ULL, 0x0060600000000000ULL,
392 0x0020600000000000ULL, 0x0000600000000000ULL,
393 0x0040600000000000ULL, 0x0060600000000000ULL,
394 END_SIGN
395 };
396
397 MODULE_LICENSE("GPL");
398 MODULE_VERSION(DRV_VERSION);
399
400
401 /* Module Loadable parameters. */
402 S2IO_PARM_INT(tx_fifo_num, 1);
403 S2IO_PARM_INT(rx_ring_num, 1);
404
405
406 S2IO_PARM_INT(rx_ring_mode, 1);
407 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
408 S2IO_PARM_INT(rmac_pause_time, 0x100);
409 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
410 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
411 S2IO_PARM_INT(shared_splits, 0);
412 S2IO_PARM_INT(tmac_util_period, 5);
413 S2IO_PARM_INT(rmac_util_period, 5);
414 S2IO_PARM_INT(bimodal, 0);
415 S2IO_PARM_INT(l3l4hdr_size, 128);
416 /* Frequency of Rx desc syncs expressed as power of 2 */
417 S2IO_PARM_INT(rxsync_frequency, 3);
418 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
419 S2IO_PARM_INT(intr_type, 0);
420 /* Large receive offload feature */
421 S2IO_PARM_INT(lro, 0);
422 /* Max pkts to be aggregated by LRO at one time. If not specified,
423 * aggregation happens until we hit max IP pkt size(64K)
424 */
425 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
426 S2IO_PARM_INT(indicate_max_pkts, 0);
427
428 S2IO_PARM_INT(napi, 1);
429 S2IO_PARM_INT(ufo, 0);
430 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
431
432 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
433 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
434 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
435 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
436 static unsigned int rts_frm_len[MAX_RX_RINGS] =
437 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
438
439 module_param_array(tx_fifo_len, uint, NULL, 0);
440 module_param_array(rx_ring_sz, uint, NULL, 0);
441 module_param_array(rts_frm_len, uint, NULL, 0);
442
443 /*
444 * S2IO device table.
445 * This table lists all the devices that this driver supports.
446 */
447 static struct pci_device_id s2io_tbl[] __devinitdata = {
448 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
449 PCI_ANY_ID, PCI_ANY_ID},
450 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
451 PCI_ANY_ID, PCI_ANY_ID},
452 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
453 PCI_ANY_ID, PCI_ANY_ID},
454 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
455 PCI_ANY_ID, PCI_ANY_ID},
456 {0,}
457 };
458
459 MODULE_DEVICE_TABLE(pci, s2io_tbl);
460
461 static struct pci_driver s2io_driver = {
462 .name = "S2IO",
463 .id_table = s2io_tbl,
464 .probe = s2io_init_nic,
465 .remove = __devexit_p(s2io_rem_nic),
466 };
467
468 /* A simplifier macro used both by init and free shared_mem Fns(). */
469 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
470
471 /**
472 * init_shared_mem - Allocation and Initialization of Memory
473 * @nic: Device private variable.
474 * Description: The function allocates all the memory areas shared
475 * between the NIC and the driver. This includes Tx descriptors,
476 * Rx descriptors and the statistics block.
477 */
478
479 static int init_shared_mem(struct s2io_nic *nic)
480 {
481 u32 size;
482 void *tmp_v_addr, *tmp_v_addr_next;
483 dma_addr_t tmp_p_addr, tmp_p_addr_next;
484 struct RxD_block *pre_rxd_blk = NULL;
485 int i, j, blk_cnt;
486 int lst_size, lst_per_page;
487 struct net_device *dev = nic->dev;
488 unsigned long tmp;
489 struct buffAdd *ba;
490
491 struct mac_info *mac_control;
492 struct config_param *config;
493
494 mac_control = &nic->mac_control;
495 config = &nic->config;
496
497
498 /* Allocation and initialization of TXDLs in FIOFs */
499 size = 0;
500 for (i = 0; i < config->tx_fifo_num; i++) {
501 size += config->tx_cfg[i].fifo_len;
502 }
503 if (size > MAX_AVAILABLE_TXDS) {
504 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
505 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
506 return -EINVAL;
507 }
508
509 lst_size = (sizeof(struct TxD) * config->max_txds);
510 lst_per_page = PAGE_SIZE / lst_size;
511
512 for (i = 0; i < config->tx_fifo_num; i++) {
513 int fifo_len = config->tx_cfg[i].fifo_len;
514 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
515 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
516 GFP_KERNEL);
517 if (!mac_control->fifos[i].list_info) {
518 DBG_PRINT(INFO_DBG,
519 "Malloc failed for list_info\n");
520 return -ENOMEM;
521 }
522 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
523 }
524 for (i = 0; i < config->tx_fifo_num; i++) {
525 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
526 lst_per_page);
527 mac_control->fifos[i].tx_curr_put_info.offset = 0;
528 mac_control->fifos[i].tx_curr_put_info.fifo_len =
529 config->tx_cfg[i].fifo_len - 1;
530 mac_control->fifos[i].tx_curr_get_info.offset = 0;
531 mac_control->fifos[i].tx_curr_get_info.fifo_len =
532 config->tx_cfg[i].fifo_len - 1;
533 mac_control->fifos[i].fifo_no = i;
534 mac_control->fifos[i].nic = nic;
535 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
536
537 for (j = 0; j < page_num; j++) {
538 int k = 0;
539 dma_addr_t tmp_p;
540 void *tmp_v;
541 tmp_v = pci_alloc_consistent(nic->pdev,
542 PAGE_SIZE, &tmp_p);
543 if (!tmp_v) {
544 DBG_PRINT(INFO_DBG,
545 "pci_alloc_consistent ");
546 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
547 return -ENOMEM;
548 }
549 /* If we got a zero DMA address(can happen on
550 * certain platforms like PPC), reallocate.
551 * Store virtual address of page we don't want,
552 * to be freed later.
553 */
554 if (!tmp_p) {
555 mac_control->zerodma_virt_addr = tmp_v;
556 DBG_PRINT(INIT_DBG,
557 "%s: Zero DMA address for TxDL. ", dev->name);
558 DBG_PRINT(INIT_DBG,
559 "Virtual address %p\n", tmp_v);
560 tmp_v = pci_alloc_consistent(nic->pdev,
561 PAGE_SIZE, &tmp_p);
562 if (!tmp_v) {
563 DBG_PRINT(INFO_DBG,
564 "pci_alloc_consistent ");
565 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
566 return -ENOMEM;
567 }
568 }
569 while (k < lst_per_page) {
570 int l = (j * lst_per_page) + k;
571 if (l == config->tx_cfg[i].fifo_len)
572 break;
573 mac_control->fifos[i].list_info[l].list_virt_addr =
574 tmp_v + (k * lst_size);
575 mac_control->fifos[i].list_info[l].list_phy_addr =
576 tmp_p + (k * lst_size);
577 k++;
578 }
579 }
580 }
581
582 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
583 if (!nic->ufo_in_band_v)
584 return -ENOMEM;
585
586 /* Allocation and initialization of RXDs in Rings */
587 size = 0;
588 for (i = 0; i < config->rx_ring_num; i++) {
589 if (config->rx_cfg[i].num_rxd %
590 (rxd_count[nic->rxd_mode] + 1)) {
591 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
592 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
593 i);
594 DBG_PRINT(ERR_DBG, "RxDs per Block");
595 return FAILURE;
596 }
597 size += config->rx_cfg[i].num_rxd;
598 mac_control->rings[i].block_count =
599 config->rx_cfg[i].num_rxd /
600 (rxd_count[nic->rxd_mode] + 1 );
601 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
602 mac_control->rings[i].block_count;
603 }
604 if (nic->rxd_mode == RXD_MODE_1)
605 size = (size * (sizeof(struct RxD1)));
606 else
607 size = (size * (sizeof(struct RxD3)));
608
609 for (i = 0; i < config->rx_ring_num; i++) {
610 mac_control->rings[i].rx_curr_get_info.block_index = 0;
611 mac_control->rings[i].rx_curr_get_info.offset = 0;
612 mac_control->rings[i].rx_curr_get_info.ring_len =
613 config->rx_cfg[i].num_rxd - 1;
614 mac_control->rings[i].rx_curr_put_info.block_index = 0;
615 mac_control->rings[i].rx_curr_put_info.offset = 0;
616 mac_control->rings[i].rx_curr_put_info.ring_len =
617 config->rx_cfg[i].num_rxd - 1;
618 mac_control->rings[i].nic = nic;
619 mac_control->rings[i].ring_no = i;
620
621 blk_cnt = config->rx_cfg[i].num_rxd /
622 (rxd_count[nic->rxd_mode] + 1);
623 /* Allocating all the Rx blocks */
624 for (j = 0; j < blk_cnt; j++) {
625 struct rx_block_info *rx_blocks;
626 int l;
627
628 rx_blocks = &mac_control->rings[i].rx_blocks[j];
629 size = SIZE_OF_BLOCK; //size is always page size
630 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
631 &tmp_p_addr);
632 if (tmp_v_addr == NULL) {
633 /*
634 * In case of failure, free_shared_mem()
635 * is called, which should free any
636 * memory that was alloced till the
637 * failure happened.
638 */
639 rx_blocks->block_virt_addr = tmp_v_addr;
640 return -ENOMEM;
641 }
642 memset(tmp_v_addr, 0, size);
643 rx_blocks->block_virt_addr = tmp_v_addr;
644 rx_blocks->block_dma_addr = tmp_p_addr;
645 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
646 rxd_count[nic->rxd_mode],
647 GFP_KERNEL);
648 if (!rx_blocks->rxds)
649 return -ENOMEM;
650 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
651 rx_blocks->rxds[l].virt_addr =
652 rx_blocks->block_virt_addr +
653 (rxd_size[nic->rxd_mode] * l);
654 rx_blocks->rxds[l].dma_addr =
655 rx_blocks->block_dma_addr +
656 (rxd_size[nic->rxd_mode] * l);
657 }
658 }
659 /* Interlinking all Rx Blocks */
660 for (j = 0; j < blk_cnt; j++) {
661 tmp_v_addr =
662 mac_control->rings[i].rx_blocks[j].block_virt_addr;
663 tmp_v_addr_next =
664 mac_control->rings[i].rx_blocks[(j + 1) %
665 blk_cnt].block_virt_addr;
666 tmp_p_addr =
667 mac_control->rings[i].rx_blocks[j].block_dma_addr;
668 tmp_p_addr_next =
669 mac_control->rings[i].rx_blocks[(j + 1) %
670 blk_cnt].block_dma_addr;
671
672 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
673 pre_rxd_blk->reserved_2_pNext_RxD_block =
674 (unsigned long) tmp_v_addr_next;
675 pre_rxd_blk->pNext_RxD_Blk_physical =
676 (u64) tmp_p_addr_next;
677 }
678 }
679 if (nic->rxd_mode >= RXD_MODE_3A) {
680 /*
681 * Allocation of Storages for buffer addresses in 2BUFF mode
682 * and the buffers as well.
683 */
684 for (i = 0; i < config->rx_ring_num; i++) {
685 blk_cnt = config->rx_cfg[i].num_rxd /
686 (rxd_count[nic->rxd_mode]+ 1);
687 mac_control->rings[i].ba =
688 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
689 GFP_KERNEL);
690 if (!mac_control->rings[i].ba)
691 return -ENOMEM;
692 for (j = 0; j < blk_cnt; j++) {
693 int k = 0;
694 mac_control->rings[i].ba[j] =
695 kmalloc((sizeof(struct buffAdd) *
696 (rxd_count[nic->rxd_mode] + 1)),
697 GFP_KERNEL);
698 if (!mac_control->rings[i].ba[j])
699 return -ENOMEM;
700 while (k != rxd_count[nic->rxd_mode]) {
701 ba = &mac_control->rings[i].ba[j][k];
702
703 ba->ba_0_org = (void *) kmalloc
704 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
705 if (!ba->ba_0_org)
706 return -ENOMEM;
707 tmp = (unsigned long)ba->ba_0_org;
708 tmp += ALIGN_SIZE;
709 tmp &= ~((unsigned long) ALIGN_SIZE);
710 ba->ba_0 = (void *) tmp;
711
712 ba->ba_1_org = (void *) kmalloc
713 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
714 if (!ba->ba_1_org)
715 return -ENOMEM;
716 tmp = (unsigned long) ba->ba_1_org;
717 tmp += ALIGN_SIZE;
718 tmp &= ~((unsigned long) ALIGN_SIZE);
719 ba->ba_1 = (void *) tmp;
720 k++;
721 }
722 }
723 }
724 }
725
726 /* Allocation and initialization of Statistics block */
727 size = sizeof(struct stat_block);
728 mac_control->stats_mem = pci_alloc_consistent
729 (nic->pdev, size, &mac_control->stats_mem_phy);
730
731 if (!mac_control->stats_mem) {
732 /*
733 * In case of failure, free_shared_mem() is called, which
734 * should free any memory that was alloced till the
735 * failure happened.
736 */
737 return -ENOMEM;
738 }
739 mac_control->stats_mem_sz = size;
740
741 tmp_v_addr = mac_control->stats_mem;
742 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
743 memset(tmp_v_addr, 0, size);
744 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
745 (unsigned long long) tmp_p_addr);
746
747 return SUCCESS;
748 }
749
750 /**
751 * free_shared_mem - Free the allocated Memory
752 * @nic: Device private variable.
753 * Description: This function is to free all memory locations allocated by
754 * the init_shared_mem() function and return it to the kernel.
755 */
756
757 static void free_shared_mem(struct s2io_nic *nic)
758 {
759 int i, j, blk_cnt, size;
760 void *tmp_v_addr;
761 dma_addr_t tmp_p_addr;
762 struct mac_info *mac_control;
763 struct config_param *config;
764 int lst_size, lst_per_page;
765 struct net_device *dev = nic->dev;
766
767 if (!nic)
768 return;
769
770 mac_control = &nic->mac_control;
771 config = &nic->config;
772
773 lst_size = (sizeof(struct TxD) * config->max_txds);
774 lst_per_page = PAGE_SIZE / lst_size;
775
776 for (i = 0; i < config->tx_fifo_num; i++) {
777 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
778 lst_per_page);
779 for (j = 0; j < page_num; j++) {
780 int mem_blks = (j * lst_per_page);
781 if (!mac_control->fifos[i].list_info)
782 return;
783 if (!mac_control->fifos[i].list_info[mem_blks].
784 list_virt_addr)
785 break;
786 pci_free_consistent(nic->pdev, PAGE_SIZE,
787 mac_control->fifos[i].
788 list_info[mem_blks].
789 list_virt_addr,
790 mac_control->fifos[i].
791 list_info[mem_blks].
792 list_phy_addr);
793 }
794 /* If we got a zero DMA address during allocation,
795 * free the page now
796 */
797 if (mac_control->zerodma_virt_addr) {
798 pci_free_consistent(nic->pdev, PAGE_SIZE,
799 mac_control->zerodma_virt_addr,
800 (dma_addr_t)0);
801 DBG_PRINT(INIT_DBG,
802 "%s: Freeing TxDL with zero DMA addr. ",
803 dev->name);
804 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
805 mac_control->zerodma_virt_addr);
806 }
807 kfree(mac_control->fifos[i].list_info);
808 }
809
810 size = SIZE_OF_BLOCK;
811 for (i = 0; i < config->rx_ring_num; i++) {
812 blk_cnt = mac_control->rings[i].block_count;
813 for (j = 0; j < blk_cnt; j++) {
814 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
815 block_virt_addr;
816 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
817 block_dma_addr;
818 if (tmp_v_addr == NULL)
819 break;
820 pci_free_consistent(nic->pdev, size,
821 tmp_v_addr, tmp_p_addr);
822 kfree(mac_control->rings[i].rx_blocks[j].rxds);
823 }
824 }
825
826 if (nic->rxd_mode >= RXD_MODE_3A) {
827 /* Freeing buffer storage addresses in 2BUFF mode. */
828 for (i = 0; i < config->rx_ring_num; i++) {
829 blk_cnt = config->rx_cfg[i].num_rxd /
830 (rxd_count[nic->rxd_mode] + 1);
831 for (j = 0; j < blk_cnt; j++) {
832 int k = 0;
833 if (!mac_control->rings[i].ba[j])
834 continue;
835 while (k != rxd_count[nic->rxd_mode]) {
836 struct buffAdd *ba =
837 &mac_control->rings[i].ba[j][k];
838 kfree(ba->ba_0_org);
839 kfree(ba->ba_1_org);
840 k++;
841 }
842 kfree(mac_control->rings[i].ba[j]);
843 }
844 kfree(mac_control->rings[i].ba);
845 }
846 }
847
848 if (mac_control->stats_mem) {
849 pci_free_consistent(nic->pdev,
850 mac_control->stats_mem_sz,
851 mac_control->stats_mem,
852 mac_control->stats_mem_phy);
853 }
854 if (nic->ufo_in_band_v)
855 kfree(nic->ufo_in_band_v);
856 }
857
858 /**
859 * s2io_verify_pci_mode -
860 */
861
862 static int s2io_verify_pci_mode(struct s2io_nic *nic)
863 {
864 struct XENA_dev_config __iomem *bar0 = nic->bar0;
865 register u64 val64 = 0;
866 int mode;
867
868 val64 = readq(&bar0->pci_mode);
869 mode = (u8)GET_PCI_MODE(val64);
870
871 if ( val64 & PCI_MODE_UNKNOWN_MODE)
872 return -1; /* Unknown PCI mode */
873 return mode;
874 }
875
876 #define NEC_VENID 0x1033
877 #define NEC_DEVID 0x0125
878 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
879 {
880 struct pci_dev *tdev = NULL;
881 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
882 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
883 if (tdev->bus == s2io_pdev->bus->parent)
884 pci_dev_put(tdev);
885 return 1;
886 }
887 }
888 return 0;
889 }
890
891 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
892 /**
893 * s2io_print_pci_mode -
894 */
895 static int s2io_print_pci_mode(struct s2io_nic *nic)
896 {
897 struct XENA_dev_config __iomem *bar0 = nic->bar0;
898 register u64 val64 = 0;
899 int mode;
900 struct config_param *config = &nic->config;
901
902 val64 = readq(&bar0->pci_mode);
903 mode = (u8)GET_PCI_MODE(val64);
904
905 if ( val64 & PCI_MODE_UNKNOWN_MODE)
906 return -1; /* Unknown PCI mode */
907
908 config->bus_speed = bus_speed[mode];
909
910 if (s2io_on_nec_bridge(nic->pdev)) {
911 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
912 nic->dev->name);
913 return mode;
914 }
915
916 if (val64 & PCI_MODE_32_BITS) {
917 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
918 } else {
919 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
920 }
921
922 switch(mode) {
923 case PCI_MODE_PCI_33:
924 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
925 break;
926 case PCI_MODE_PCI_66:
927 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
928 break;
929 case PCI_MODE_PCIX_M1_66:
930 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
931 break;
932 case PCI_MODE_PCIX_M1_100:
933 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
934 break;
935 case PCI_MODE_PCIX_M1_133:
936 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
937 break;
938 case PCI_MODE_PCIX_M2_66:
939 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
940 break;
941 case PCI_MODE_PCIX_M2_100:
942 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
943 break;
944 case PCI_MODE_PCIX_M2_133:
945 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
946 break;
947 default:
948 return -1; /* Unsupported bus speed */
949 }
950
951 return mode;
952 }
953
954 /**
955 * init_nic - Initialization of hardware
956 * @nic: device peivate variable
957 * Description: The function sequentially configures every block
958 * of the H/W from their reset values.
959 * Return Value: SUCCESS on success and
960 * '-1' on failure (endian settings incorrect).
961 */
962
963 static int init_nic(struct s2io_nic *nic)
964 {
965 struct XENA_dev_config __iomem *bar0 = nic->bar0;
966 struct net_device *dev = nic->dev;
967 register u64 val64 = 0;
968 void __iomem *add;
969 u32 time;
970 int i, j;
971 struct mac_info *mac_control;
972 struct config_param *config;
973 int dtx_cnt = 0;
974 unsigned long long mem_share;
975 int mem_size;
976
977 mac_control = &nic->mac_control;
978 config = &nic->config;
979
980 /* to set the swapper controle on the card */
981 if(s2io_set_swapper(nic)) {
982 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
983 return -1;
984 }
985
986 /*
987 * Herc requires EOI to be removed from reset before XGXS, so..
988 */
989 if (nic->device_type & XFRAME_II_DEVICE) {
990 val64 = 0xA500000000ULL;
991 writeq(val64, &bar0->sw_reset);
992 msleep(500);
993 val64 = readq(&bar0->sw_reset);
994 }
995
996 /* Remove XGXS from reset state */
997 val64 = 0;
998 writeq(val64, &bar0->sw_reset);
999 msleep(500);
1000 val64 = readq(&bar0->sw_reset);
1001
1002 /* Enable Receiving broadcasts */
1003 add = &bar0->mac_cfg;
1004 val64 = readq(&bar0->mac_cfg);
1005 val64 |= MAC_RMAC_BCAST_ENABLE;
1006 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1007 writel((u32) val64, add);
1008 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1009 writel((u32) (val64 >> 32), (add + 4));
1010
1011 /* Read registers in all blocks */
1012 val64 = readq(&bar0->mac_int_mask);
1013 val64 = readq(&bar0->mc_int_mask);
1014 val64 = readq(&bar0->xgxs_int_mask);
1015
1016 /* Set MTU */
1017 val64 = dev->mtu;
1018 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1019
1020 if (nic->device_type & XFRAME_II_DEVICE) {
1021 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1022 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1023 &bar0->dtx_control, UF);
1024 if (dtx_cnt & 0x1)
1025 msleep(1); /* Necessary!! */
1026 dtx_cnt++;
1027 }
1028 } else {
1029 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1030 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1031 &bar0->dtx_control, UF);
1032 val64 = readq(&bar0->dtx_control);
1033 dtx_cnt++;
1034 }
1035 }
1036
1037 /* Tx DMA Initialization */
1038 val64 = 0;
1039 writeq(val64, &bar0->tx_fifo_partition_0);
1040 writeq(val64, &bar0->tx_fifo_partition_1);
1041 writeq(val64, &bar0->tx_fifo_partition_2);
1042 writeq(val64, &bar0->tx_fifo_partition_3);
1043
1044
1045 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1046 val64 |=
1047 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1048 13) | vBIT(config->tx_cfg[i].fifo_priority,
1049 ((i * 32) + 5), 3);
1050
1051 if (i == (config->tx_fifo_num - 1)) {
1052 if (i % 2 == 0)
1053 i++;
1054 }
1055
1056 switch (i) {
1057 case 1:
1058 writeq(val64, &bar0->tx_fifo_partition_0);
1059 val64 = 0;
1060 break;
1061 case 3:
1062 writeq(val64, &bar0->tx_fifo_partition_1);
1063 val64 = 0;
1064 break;
1065 case 5:
1066 writeq(val64, &bar0->tx_fifo_partition_2);
1067 val64 = 0;
1068 break;
1069 case 7:
1070 writeq(val64, &bar0->tx_fifo_partition_3);
1071 break;
1072 }
1073 }
1074
1075 /*
1076 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1077 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1078 */
1079 if ((nic->device_type == XFRAME_I_DEVICE) &&
1080 (get_xena_rev_id(nic->pdev) < 4))
1081 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1082
1083 val64 = readq(&bar0->tx_fifo_partition_0);
1084 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1085 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1086
1087 /*
1088 * Initialization of Tx_PA_CONFIG register to ignore packet
1089 * integrity checking.
1090 */
1091 val64 = readq(&bar0->tx_pa_cfg);
1092 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1093 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1094 writeq(val64, &bar0->tx_pa_cfg);
1095
1096 /* Rx DMA intialization. */
1097 val64 = 0;
1098 for (i = 0; i < config->rx_ring_num; i++) {
1099 val64 |=
1100 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1101 3);
1102 }
1103 writeq(val64, &bar0->rx_queue_priority);
1104
1105 /*
1106 * Allocating equal share of memory to all the
1107 * configured Rings.
1108 */
1109 val64 = 0;
1110 if (nic->device_type & XFRAME_II_DEVICE)
1111 mem_size = 32;
1112 else
1113 mem_size = 64;
1114
1115 for (i = 0; i < config->rx_ring_num; i++) {
1116 switch (i) {
1117 case 0:
1118 mem_share = (mem_size / config->rx_ring_num +
1119 mem_size % config->rx_ring_num);
1120 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1121 continue;
1122 case 1:
1123 mem_share = (mem_size / config->rx_ring_num);
1124 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1125 continue;
1126 case 2:
1127 mem_share = (mem_size / config->rx_ring_num);
1128 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1129 continue;
1130 case 3:
1131 mem_share = (mem_size / config->rx_ring_num);
1132 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1133 continue;
1134 case 4:
1135 mem_share = (mem_size / config->rx_ring_num);
1136 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1137 continue;
1138 case 5:
1139 mem_share = (mem_size / config->rx_ring_num);
1140 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1141 continue;
1142 case 6:
1143 mem_share = (mem_size / config->rx_ring_num);
1144 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1145 continue;
1146 case 7:
1147 mem_share = (mem_size / config->rx_ring_num);
1148 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1149 continue;
1150 }
1151 }
1152 writeq(val64, &bar0->rx_queue_cfg);
1153
1154 /*
1155 * Filling Tx round robin registers
1156 * as per the number of FIFOs
1157 */
1158 switch (config->tx_fifo_num) {
1159 case 1:
1160 val64 = 0x0000000000000000ULL;
1161 writeq(val64, &bar0->tx_w_round_robin_0);
1162 writeq(val64, &bar0->tx_w_round_robin_1);
1163 writeq(val64, &bar0->tx_w_round_robin_2);
1164 writeq(val64, &bar0->tx_w_round_robin_3);
1165 writeq(val64, &bar0->tx_w_round_robin_4);
1166 break;
1167 case 2:
1168 val64 = 0x0000010000010000ULL;
1169 writeq(val64, &bar0->tx_w_round_robin_0);
1170 val64 = 0x0100000100000100ULL;
1171 writeq(val64, &bar0->tx_w_round_robin_1);
1172 val64 = 0x0001000001000001ULL;
1173 writeq(val64, &bar0->tx_w_round_robin_2);
1174 val64 = 0x0000010000010000ULL;
1175 writeq(val64, &bar0->tx_w_round_robin_3);
1176 val64 = 0x0100000000000000ULL;
1177 writeq(val64, &bar0->tx_w_round_robin_4);
1178 break;
1179 case 3:
1180 val64 = 0x0001000102000001ULL;
1181 writeq(val64, &bar0->tx_w_round_robin_0);
1182 val64 = 0x0001020000010001ULL;
1183 writeq(val64, &bar0->tx_w_round_robin_1);
1184 val64 = 0x0200000100010200ULL;
1185 writeq(val64, &bar0->tx_w_round_robin_2);
1186 val64 = 0x0001000102000001ULL;
1187 writeq(val64, &bar0->tx_w_round_robin_3);
1188 val64 = 0x0001020000000000ULL;
1189 writeq(val64, &bar0->tx_w_round_robin_4);
1190 break;
1191 case 4:
1192 val64 = 0x0001020300010200ULL;
1193 writeq(val64, &bar0->tx_w_round_robin_0);
1194 val64 = 0x0100000102030001ULL;
1195 writeq(val64, &bar0->tx_w_round_robin_1);
1196 val64 = 0x0200010000010203ULL;
1197 writeq(val64, &bar0->tx_w_round_robin_2);
1198 val64 = 0x0001020001000001ULL;
1199 writeq(val64, &bar0->tx_w_round_robin_3);
1200 val64 = 0x0203000100000000ULL;
1201 writeq(val64, &bar0->tx_w_round_robin_4);
1202 break;
1203 case 5:
1204 val64 = 0x0001000203000102ULL;
1205 writeq(val64, &bar0->tx_w_round_robin_0);
1206 val64 = 0x0001020001030004ULL;
1207 writeq(val64, &bar0->tx_w_round_robin_1);
1208 val64 = 0x0001000203000102ULL;
1209 writeq(val64, &bar0->tx_w_round_robin_2);
1210 val64 = 0x0001020001030004ULL;
1211 writeq(val64, &bar0->tx_w_round_robin_3);
1212 val64 = 0x0001000000000000ULL;
1213 writeq(val64, &bar0->tx_w_round_robin_4);
1214 break;
1215 case 6:
1216 val64 = 0x0001020304000102ULL;
1217 writeq(val64, &bar0->tx_w_round_robin_0);
1218 val64 = 0x0304050001020001ULL;
1219 writeq(val64, &bar0->tx_w_round_robin_1);
1220 val64 = 0x0203000100000102ULL;
1221 writeq(val64, &bar0->tx_w_round_robin_2);
1222 val64 = 0x0304000102030405ULL;
1223 writeq(val64, &bar0->tx_w_round_robin_3);
1224 val64 = 0x0001000200000000ULL;
1225 writeq(val64, &bar0->tx_w_round_robin_4);
1226 break;
1227 case 7:
1228 val64 = 0x0001020001020300ULL;
1229 writeq(val64, &bar0->tx_w_round_robin_0);
1230 val64 = 0x0102030400010203ULL;
1231 writeq(val64, &bar0->tx_w_round_robin_1);
1232 val64 = 0x0405060001020001ULL;
1233 writeq(val64, &bar0->tx_w_round_robin_2);
1234 val64 = 0x0304050000010200ULL;
1235 writeq(val64, &bar0->tx_w_round_robin_3);
1236 val64 = 0x0102030000000000ULL;
1237 writeq(val64, &bar0->tx_w_round_robin_4);
1238 break;
1239 case 8:
1240 val64 = 0x0001020300040105ULL;
1241 writeq(val64, &bar0->tx_w_round_robin_0);
1242 val64 = 0x0200030106000204ULL;
1243 writeq(val64, &bar0->tx_w_round_robin_1);
1244 val64 = 0x0103000502010007ULL;
1245 writeq(val64, &bar0->tx_w_round_robin_2);
1246 val64 = 0x0304010002060500ULL;
1247 writeq(val64, &bar0->tx_w_round_robin_3);
1248 val64 = 0x0103020400000000ULL;
1249 writeq(val64, &bar0->tx_w_round_robin_4);
1250 break;
1251 }
1252
1253 /* Enable all configured Tx FIFO partitions */
1254 val64 = readq(&bar0->tx_fifo_partition_0);
1255 val64 |= (TX_FIFO_PARTITION_EN);
1256 writeq(val64, &bar0->tx_fifo_partition_0);
1257
1258 /* Filling the Rx round robin registers as per the
1259 * number of Rings and steering based on QoS.
1260 */
1261 switch (config->rx_ring_num) {
1262 case 1:
1263 val64 = 0x8080808080808080ULL;
1264 writeq(val64, &bar0->rts_qos_steering);
1265 break;
1266 case 2:
1267 val64 = 0x0000010000010000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_0);
1269 val64 = 0x0100000100000100ULL;
1270 writeq(val64, &bar0->rx_w_round_robin_1);
1271 val64 = 0x0001000001000001ULL;
1272 writeq(val64, &bar0->rx_w_round_robin_2);
1273 val64 = 0x0000010000010000ULL;
1274 writeq(val64, &bar0->rx_w_round_robin_3);
1275 val64 = 0x0100000000000000ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_4);
1277
1278 val64 = 0x8080808040404040ULL;
1279 writeq(val64, &bar0->rts_qos_steering);
1280 break;
1281 case 3:
1282 val64 = 0x0001000102000001ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_0);
1284 val64 = 0x0001020000010001ULL;
1285 writeq(val64, &bar0->rx_w_round_robin_1);
1286 val64 = 0x0200000100010200ULL;
1287 writeq(val64, &bar0->rx_w_round_robin_2);
1288 val64 = 0x0001000102000001ULL;
1289 writeq(val64, &bar0->rx_w_round_robin_3);
1290 val64 = 0x0001020000000000ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_4);
1292
1293 val64 = 0x8080804040402020ULL;
1294 writeq(val64, &bar0->rts_qos_steering);
1295 break;
1296 case 4:
1297 val64 = 0x0001020300010200ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_0);
1299 val64 = 0x0100000102030001ULL;
1300 writeq(val64, &bar0->rx_w_round_robin_1);
1301 val64 = 0x0200010000010203ULL;
1302 writeq(val64, &bar0->rx_w_round_robin_2);
1303 val64 = 0x0001020001000001ULL;
1304 writeq(val64, &bar0->rx_w_round_robin_3);
1305 val64 = 0x0203000100000000ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_4);
1307
1308 val64 = 0x8080404020201010ULL;
1309 writeq(val64, &bar0->rts_qos_steering);
1310 break;
1311 case 5:
1312 val64 = 0x0001000203000102ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_0);
1314 val64 = 0x0001020001030004ULL;
1315 writeq(val64, &bar0->rx_w_round_robin_1);
1316 val64 = 0x0001000203000102ULL;
1317 writeq(val64, &bar0->rx_w_round_robin_2);
1318 val64 = 0x0001020001030004ULL;
1319 writeq(val64, &bar0->rx_w_round_robin_3);
1320 val64 = 0x0001000000000000ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_4);
1322
1323 val64 = 0x8080404020201008ULL;
1324 writeq(val64, &bar0->rts_qos_steering);
1325 break;
1326 case 6:
1327 val64 = 0x0001020304000102ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_0);
1329 val64 = 0x0304050001020001ULL;
1330 writeq(val64, &bar0->rx_w_round_robin_1);
1331 val64 = 0x0203000100000102ULL;
1332 writeq(val64, &bar0->rx_w_round_robin_2);
1333 val64 = 0x0304000102030405ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_3);
1335 val64 = 0x0001000200000000ULL;
1336 writeq(val64, &bar0->rx_w_round_robin_4);
1337
1338 val64 = 0x8080404020100804ULL;
1339 writeq(val64, &bar0->rts_qos_steering);
1340 break;
1341 case 7:
1342 val64 = 0x0001020001020300ULL;
1343 writeq(val64, &bar0->rx_w_round_robin_0);
1344 val64 = 0x0102030400010203ULL;
1345 writeq(val64, &bar0->rx_w_round_robin_1);
1346 val64 = 0x0405060001020001ULL;
1347 writeq(val64, &bar0->rx_w_round_robin_2);
1348 val64 = 0x0304050000010200ULL;
1349 writeq(val64, &bar0->rx_w_round_robin_3);
1350 val64 = 0x0102030000000000ULL;
1351 writeq(val64, &bar0->rx_w_round_robin_4);
1352
1353 val64 = 0x8080402010080402ULL;
1354 writeq(val64, &bar0->rts_qos_steering);
1355 break;
1356 case 8:
1357 val64 = 0x0001020300040105ULL;
1358 writeq(val64, &bar0->rx_w_round_robin_0);
1359 val64 = 0x0200030106000204ULL;
1360 writeq(val64, &bar0->rx_w_round_robin_1);
1361 val64 = 0x0103000502010007ULL;
1362 writeq(val64, &bar0->rx_w_round_robin_2);
1363 val64 = 0x0304010002060500ULL;
1364 writeq(val64, &bar0->rx_w_round_robin_3);
1365 val64 = 0x0103020400000000ULL;
1366 writeq(val64, &bar0->rx_w_round_robin_4);
1367
1368 val64 = 0x8040201008040201ULL;
1369 writeq(val64, &bar0->rts_qos_steering);
1370 break;
1371 }
1372
1373 /* UDP Fix */
1374 val64 = 0;
1375 for (i = 0; i < 8; i++)
1376 writeq(val64, &bar0->rts_frm_len_n[i]);
1377
1378 /* Set the default rts frame length for the rings configured */
1379 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1380 for (i = 0 ; i < config->rx_ring_num ; i++)
1381 writeq(val64, &bar0->rts_frm_len_n[i]);
1382
1383 /* Set the frame length for the configured rings
1384 * desired by the user
1385 */
1386 for (i = 0; i < config->rx_ring_num; i++) {
1387 /* If rts_frm_len[i] == 0 then it is assumed that user not
1388 * specified frame length steering.
1389 * If the user provides the frame length then program
1390 * the rts_frm_len register for those values or else
1391 * leave it as it is.
1392 */
1393 if (rts_frm_len[i] != 0) {
1394 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1395 &bar0->rts_frm_len_n[i]);
1396 }
1397 }
1398
1399 /* Disable differentiated services steering logic */
1400 for (i = 0; i < 64; i++) {
1401 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1402 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1403 dev->name);
1404 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1405 return FAILURE;
1406 }
1407 }
1408
1409 /* Program statistics memory */
1410 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1411
1412 if (nic->device_type == XFRAME_II_DEVICE) {
1413 val64 = STAT_BC(0x320);
1414 writeq(val64, &bar0->stat_byte_cnt);
1415 }
1416
1417 /*
1418 * Initializing the sampling rate for the device to calculate the
1419 * bandwidth utilization.
1420 */
1421 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1422 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1423 writeq(val64, &bar0->mac_link_util);
1424
1425
1426 /*
1427 * Initializing the Transmit and Receive Traffic Interrupt
1428 * Scheme.
1429 */
1430 /*
1431 * TTI Initialization. Default Tx timer gets us about
1432 * 250 interrupts per sec. Continuous interrupts are enabled
1433 * by default.
1434 */
1435 if (nic->device_type == XFRAME_II_DEVICE) {
1436 int count = (nic->config.bus_speed * 125)/2;
1437 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1438 } else {
1439
1440 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1441 }
1442 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1443 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1444 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1445 if (use_continuous_tx_intrs)
1446 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1447 writeq(val64, &bar0->tti_data1_mem);
1448
1449 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1450 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1451 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1452 writeq(val64, &bar0->tti_data2_mem);
1453
1454 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1455 writeq(val64, &bar0->tti_command_mem);
1456
1457 /*
1458 * Once the operation completes, the Strobe bit of the command
1459 * register will be reset. We poll for this particular condition
1460 * We wait for a maximum of 500ms for the operation to complete,
1461 * if it's not complete by then we return error.
1462 */
1463 time = 0;
1464 while (TRUE) {
1465 val64 = readq(&bar0->tti_command_mem);
1466 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1467 break;
1468 }
1469 if (time > 10) {
1470 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1471 dev->name);
1472 return -1;
1473 }
1474 msleep(50);
1475 time++;
1476 }
1477
1478 if (nic->config.bimodal) {
1479 int k = 0;
1480 for (k = 0; k < config->rx_ring_num; k++) {
1481 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1482 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1483 writeq(val64, &bar0->tti_command_mem);
1484
1485 /*
1486 * Once the operation completes, the Strobe bit of the command
1487 * register will be reset. We poll for this particular condition
1488 * We wait for a maximum of 500ms for the operation to complete,
1489 * if it's not complete by then we return error.
1490 */
1491 time = 0;
1492 while (TRUE) {
1493 val64 = readq(&bar0->tti_command_mem);
1494 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1495 break;
1496 }
1497 if (time > 10) {
1498 DBG_PRINT(ERR_DBG,
1499 "%s: TTI init Failed\n",
1500 dev->name);
1501 return -1;
1502 }
1503 time++;
1504 msleep(50);
1505 }
1506 }
1507 } else {
1508
1509 /* RTI Initialization */
1510 if (nic->device_type == XFRAME_II_DEVICE) {
1511 /*
1512 * Programmed to generate Apprx 500 Intrs per
1513 * second
1514 */
1515 int count = (nic->config.bus_speed * 125)/4;
1516 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1517 } else {
1518 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1519 }
1520 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1521 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1522 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1523
1524 writeq(val64, &bar0->rti_data1_mem);
1525
1526 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1527 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1528 if (nic->intr_type == MSI_X)
1529 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1530 RTI_DATA2_MEM_RX_UFC_D(0x40));
1531 else
1532 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1533 RTI_DATA2_MEM_RX_UFC_D(0x80));
1534 writeq(val64, &bar0->rti_data2_mem);
1535
1536 for (i = 0; i < config->rx_ring_num; i++) {
1537 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1538 | RTI_CMD_MEM_OFFSET(i);
1539 writeq(val64, &bar0->rti_command_mem);
1540
1541 /*
1542 * Once the operation completes, the Strobe bit of the
1543 * command register will be reset. We poll for this
1544 * particular condition. We wait for a maximum of 500ms
1545 * for the operation to complete, if it's not complete
1546 * by then we return error.
1547 */
1548 time = 0;
1549 while (TRUE) {
1550 val64 = readq(&bar0->rti_command_mem);
1551 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1552 break;
1553 }
1554 if (time > 10) {
1555 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1556 dev->name);
1557 return -1;
1558 }
1559 time++;
1560 msleep(50);
1561 }
1562 }
1563 }
1564
1565 /*
1566 * Initializing proper values as Pause threshold into all
1567 * the 8 Queues on Rx side.
1568 */
1569 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1570 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1571
1572 /* Disable RMAC PAD STRIPPING */
1573 add = &bar0->mac_cfg;
1574 val64 = readq(&bar0->mac_cfg);
1575 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1576 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1577 writel((u32) (val64), add);
1578 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1579 writel((u32) (val64 >> 32), (add + 4));
1580 val64 = readq(&bar0->mac_cfg);
1581
1582 /* Enable FCS stripping by adapter */
1583 add = &bar0->mac_cfg;
1584 val64 = readq(&bar0->mac_cfg);
1585 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1586 if (nic->device_type == XFRAME_II_DEVICE)
1587 writeq(val64, &bar0->mac_cfg);
1588 else {
1589 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1590 writel((u32) (val64), add);
1591 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1592 writel((u32) (val64 >> 32), (add + 4));
1593 }
1594
1595 /*
1596 * Set the time value to be inserted in the pause frame
1597 * generated by xena.
1598 */
1599 val64 = readq(&bar0->rmac_pause_cfg);
1600 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1601 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1602 writeq(val64, &bar0->rmac_pause_cfg);
1603
1604 /*
1605 * Set the Threshold Limit for Generating the pause frame
1606 * If the amount of data in any Queue exceeds ratio of
1607 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1608 * pause frame is generated
1609 */
1610 val64 = 0;
1611 for (i = 0; i < 4; i++) {
1612 val64 |=
1613 (((u64) 0xFF00 | nic->mac_control.
1614 mc_pause_threshold_q0q3)
1615 << (i * 2 * 8));
1616 }
1617 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1618
1619 val64 = 0;
1620 for (i = 0; i < 4; i++) {
1621 val64 |=
1622 (((u64) 0xFF00 | nic->mac_control.
1623 mc_pause_threshold_q4q7)
1624 << (i * 2 * 8));
1625 }
1626 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1627
1628 /*
1629 * TxDMA will stop Read request if the number of read split has
1630 * exceeded the limit pointed by shared_splits
1631 */
1632 val64 = readq(&bar0->pic_control);
1633 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1634 writeq(val64, &bar0->pic_control);
1635
1636 if (nic->config.bus_speed == 266) {
1637 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1638 writeq(0x0, &bar0->read_retry_delay);
1639 writeq(0x0, &bar0->write_retry_delay);
1640 }
1641
1642 /*
1643 * Programming the Herc to split every write transaction
1644 * that does not start on an ADB to reduce disconnects.
1645 */
1646 if (nic->device_type == XFRAME_II_DEVICE) {
1647 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1648 MISC_LINK_STABILITY_PRD(3);
1649 writeq(val64, &bar0->misc_control);
1650 val64 = readq(&bar0->pic_control2);
1651 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1652 writeq(val64, &bar0->pic_control2);
1653 }
1654 if (strstr(nic->product_name, "CX4")) {
1655 val64 = TMAC_AVG_IPG(0x17);
1656 writeq(val64, &bar0->tmac_avg_ipg);
1657 }
1658
1659 return SUCCESS;
1660 }
1661 #define LINK_UP_DOWN_INTERRUPT 1
1662 #define MAC_RMAC_ERR_TIMER 2
1663
1664 static int s2io_link_fault_indication(struct s2io_nic *nic)
1665 {
1666 if (nic->intr_type != INTA)
1667 return MAC_RMAC_ERR_TIMER;
1668 if (nic->device_type == XFRAME_II_DEVICE)
1669 return LINK_UP_DOWN_INTERRUPT;
1670 else
1671 return MAC_RMAC_ERR_TIMER;
1672 }
1673
1674 /**
1675 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1676 * @nic: device private variable,
1677 * @mask: A mask indicating which Intr block must be modified and,
1678 * @flag: A flag indicating whether to enable or disable the Intrs.
1679 * Description: This function will either disable or enable the interrupts
1680 * depending on the flag argument. The mask argument can be used to
1681 * enable/disable any Intr block.
1682 * Return Value: NONE.
1683 */
1684
1685 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1686 {
1687 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1688 register u64 val64 = 0, temp64 = 0;
1689
1690 /* Top level interrupt classification */
1691 /* PIC Interrupts */
1692 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1693 /* Enable PIC Intrs in the general intr mask register */
1694 val64 = TXPIC_INT_M;
1695 if (flag == ENABLE_INTRS) {
1696 temp64 = readq(&bar0->general_int_mask);
1697 temp64 &= ~((u64) val64);
1698 writeq(temp64, &bar0->general_int_mask);
1699 /*
1700 * If Hercules adapter enable GPIO otherwise
1701 * disable all PCIX, Flash, MDIO, IIC and GPIO
1702 * interrupts for now.
1703 * TODO
1704 */
1705 if (s2io_link_fault_indication(nic) ==
1706 LINK_UP_DOWN_INTERRUPT ) {
1707 temp64 = readq(&bar0->pic_int_mask);
1708 temp64 &= ~((u64) PIC_INT_GPIO);
1709 writeq(temp64, &bar0->pic_int_mask);
1710 temp64 = readq(&bar0->gpio_int_mask);
1711 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1712 writeq(temp64, &bar0->gpio_int_mask);
1713 } else {
1714 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1715 }
1716 /*
1717 * No MSI Support is available presently, so TTI and
1718 * RTI interrupts are also disabled.
1719 */
1720 } else if (flag == DISABLE_INTRS) {
1721 /*
1722 * Disable PIC Intrs in the general
1723 * intr mask register
1724 */
1725 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1726 temp64 = readq(&bar0->general_int_mask);
1727 val64 |= temp64;
1728 writeq(val64, &bar0->general_int_mask);
1729 }
1730 }
1731
1732 /* MAC Interrupts */
1733 /* Enabling/Disabling MAC interrupts */
1734 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1735 val64 = TXMAC_INT_M | RXMAC_INT_M;
1736 if (flag == ENABLE_INTRS) {
1737 temp64 = readq(&bar0->general_int_mask);
1738 temp64 &= ~((u64) val64);
1739 writeq(temp64, &bar0->general_int_mask);
1740 /*
1741 * All MAC block error interrupts are disabled for now
1742 * TODO
1743 */
1744 } else if (flag == DISABLE_INTRS) {
1745 /*
1746 * Disable MAC Intrs in the general intr mask register
1747 */
1748 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1749 writeq(DISABLE_ALL_INTRS,
1750 &bar0->mac_rmac_err_mask);
1751
1752 temp64 = readq(&bar0->general_int_mask);
1753 val64 |= temp64;
1754 writeq(val64, &bar0->general_int_mask);
1755 }
1756 }
1757
1758 /* Tx traffic interrupts */
1759 if (mask & TX_TRAFFIC_INTR) {
1760 val64 = TXTRAFFIC_INT_M;
1761 if (flag == ENABLE_INTRS) {
1762 temp64 = readq(&bar0->general_int_mask);
1763 temp64 &= ~((u64) val64);
1764 writeq(temp64, &bar0->general_int_mask);
1765 /*
1766 * Enable all the Tx side interrupts
1767 * writing 0 Enables all 64 TX interrupt levels
1768 */
1769 writeq(0x0, &bar0->tx_traffic_mask);
1770 } else if (flag == DISABLE_INTRS) {
1771 /*
1772 * Disable Tx Traffic Intrs in the general intr mask
1773 * register.
1774 */
1775 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1776 temp64 = readq(&bar0->general_int_mask);
1777 val64 |= temp64;
1778 writeq(val64, &bar0->general_int_mask);
1779 }
1780 }
1781
1782 /* Rx traffic interrupts */
1783 if (mask & RX_TRAFFIC_INTR) {
1784 val64 = RXTRAFFIC_INT_M;
1785 if (flag == ENABLE_INTRS) {
1786 temp64 = readq(&bar0->general_int_mask);
1787 temp64 &= ~((u64) val64);
1788 writeq(temp64, &bar0->general_int_mask);
1789 /* writing 0 Enables all 8 RX interrupt levels */
1790 writeq(0x0, &bar0->rx_traffic_mask);
1791 } else if (flag == DISABLE_INTRS) {
1792 /*
1793 * Disable Rx Traffic Intrs in the general intr mask
1794 * register.
1795 */
1796 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1797 temp64 = readq(&bar0->general_int_mask);
1798 val64 |= temp64;
1799 writeq(val64, &bar0->general_int_mask);
1800 }
1801 }
1802 }
1803
1804 /**
1805 * verify_pcc_quiescent- Checks for PCC quiescent state
1806 * Return: 1 If PCC is quiescence
1807 * 0 If PCC is not quiescence
1808 */
1809 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1810 {
1811 int ret = 0, herc;
1812 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1813 u64 val64 = readq(&bar0->adapter_status);
1814
1815 herc = (sp->device_type == XFRAME_II_DEVICE);
1816
1817 if (flag == FALSE) {
1818 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1819 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1820 ret = 1;
1821 } else {
1822 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1823 ret = 1;
1824 }
1825 } else {
1826 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1827 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1828 ADAPTER_STATUS_RMAC_PCC_IDLE))
1829 ret = 1;
1830 } else {
1831 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1832 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1833 ret = 1;
1834 }
1835 }
1836
1837 return ret;
1838 }
1839 /**
1840 * verify_xena_quiescence - Checks whether the H/W is ready
1841 * Description: Returns whether the H/W is ready to go or not. Depending
1842 * on whether adapter enable bit was written or not the comparison
1843 * differs and the calling function passes the input argument flag to
1844 * indicate this.
1845 * Return: 1 If xena is quiescence
1846 * 0 If Xena is not quiescence
1847 */
1848
1849 static int verify_xena_quiescence(struct s2io_nic *sp)
1850 {
1851 int mode;
1852 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1853 u64 val64 = readq(&bar0->adapter_status);
1854 mode = s2io_verify_pci_mode(sp);
1855
1856 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1857 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1858 return 0;
1859 }
1860 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1861 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1862 return 0;
1863 }
1864 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1865 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1866 return 0;
1867 }
1868 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1869 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1870 return 0;
1871 }
1872 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1873 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1874 return 0;
1875 }
1876 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1877 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1878 return 0;
1879 }
1880 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1881 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1882 return 0;
1883 }
1884 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1885 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1886 return 0;
1887 }
1888
1889 /*
1890 * In PCI 33 mode, the P_PLL is not used, and therefore,
1891 * the the P_PLL_LOCK bit in the adapter_status register will
1892 * not be asserted.
1893 */
1894 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1895 sp->device_type == XFRAME_II_DEVICE && mode !=
1896 PCI_MODE_PCI_33) {
1897 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1898 return 0;
1899 }
1900 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1901 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1902 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1903 return 0;
1904 }
1905 return 1;
1906 }
1907
1908 /**
1909 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1910 * @sp: Pointer to device specifc structure
1911 * Description :
1912 * New procedure to clear mac address reading problems on Alpha platforms
1913 *
1914 */
1915
1916 static void fix_mac_address(struct s2io_nic * sp)
1917 {
1918 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1919 u64 val64;
1920 int i = 0;
1921
1922 while (fix_mac[i] != END_SIGN) {
1923 writeq(fix_mac[i++], &bar0->gpio_control);
1924 udelay(10);
1925 val64 = readq(&bar0->gpio_control);
1926 }
1927 }
1928
1929 /**
1930 * start_nic - Turns the device on
1931 * @nic : device private variable.
1932 * Description:
1933 * This function actually turns the device on. Before this function is
1934 * called,all Registers are configured from their reset states
1935 * and shared memory is allocated but the NIC is still quiescent. On
1936 * calling this function, the device interrupts are cleared and the NIC is
1937 * literally switched on by writing into the adapter control register.
1938 * Return Value:
1939 * SUCCESS on success and -1 on failure.
1940 */
1941
1942 static int start_nic(struct s2io_nic *nic)
1943 {
1944 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1945 struct net_device *dev = nic->dev;
1946 register u64 val64 = 0;
1947 u16 subid, i;
1948 struct mac_info *mac_control;
1949 struct config_param *config;
1950
1951 mac_control = &nic->mac_control;
1952 config = &nic->config;
1953
1954 /* PRC Initialization and configuration */
1955 for (i = 0; i < config->rx_ring_num; i++) {
1956 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1957 &bar0->prc_rxd0_n[i]);
1958
1959 val64 = readq(&bar0->prc_ctrl_n[i]);
1960 if (nic->config.bimodal)
1961 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1962 if (nic->rxd_mode == RXD_MODE_1)
1963 val64 |= PRC_CTRL_RC_ENABLED;
1964 else
1965 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1966 if (nic->device_type == XFRAME_II_DEVICE)
1967 val64 |= PRC_CTRL_GROUP_READS;
1968 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1969 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1970 writeq(val64, &bar0->prc_ctrl_n[i]);
1971 }
1972
1973 if (nic->rxd_mode == RXD_MODE_3B) {
1974 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1975 val64 = readq(&bar0->rx_pa_cfg);
1976 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1977 writeq(val64, &bar0->rx_pa_cfg);
1978 }
1979
1980 if (vlan_tag_strip == 0) {
1981 val64 = readq(&bar0->rx_pa_cfg);
1982 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
1983 writeq(val64, &bar0->rx_pa_cfg);
1984 vlan_strip_flag = 0;
1985 }
1986
1987 /*
1988 * Enabling MC-RLDRAM. After enabling the device, we timeout
1989 * for around 100ms, which is approximately the time required
1990 * for the device to be ready for operation.
1991 */
1992 val64 = readq(&bar0->mc_rldram_mrs);
1993 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1994 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1995 val64 = readq(&bar0->mc_rldram_mrs);
1996
1997 msleep(100); /* Delay by around 100 ms. */
1998
1999 /* Enabling ECC Protection. */
2000 val64 = readq(&bar0->adapter_control);
2001 val64 &= ~ADAPTER_ECC_EN;
2002 writeq(val64, &bar0->adapter_control);
2003
2004 /*
2005 * Clearing any possible Link state change interrupts that
2006 * could have popped up just before Enabling the card.
2007 */
2008 val64 = readq(&bar0->mac_rmac_err_reg);
2009 if (val64)
2010 writeq(val64, &bar0->mac_rmac_err_reg);
2011
2012 /*
2013 * Verify if the device is ready to be enabled, if so enable
2014 * it.
2015 */
2016 val64 = readq(&bar0->adapter_status);
2017 if (!verify_xena_quiescence(nic)) {
2018 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2019 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2020 (unsigned long long) val64);
2021 return FAILURE;
2022 }
2023
2024 /*
2025 * With some switches, link might be already up at this point.
2026 * Because of this weird behavior, when we enable laser,
2027 * we may not get link. We need to handle this. We cannot
2028 * figure out which switch is misbehaving. So we are forced to
2029 * make a global change.
2030 */
2031
2032 /* Enabling Laser. */
2033 val64 = readq(&bar0->adapter_control);
2034 val64 |= ADAPTER_EOI_TX_ON;
2035 writeq(val64, &bar0->adapter_control);
2036
2037 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2038 /*
2039 * Dont see link state interrupts initally on some switches,
2040 * so directly scheduling the link state task here.
2041 */
2042 schedule_work(&nic->set_link_task);
2043 }
2044 /* SXE-002: Initialize link and activity LED */
2045 subid = nic->pdev->subsystem_device;
2046 if (((subid & 0xFF) >= 0x07) &&
2047 (nic->device_type == XFRAME_I_DEVICE)) {
2048 val64 = readq(&bar0->gpio_control);
2049 val64 |= 0x0000800000000000ULL;
2050 writeq(val64, &bar0->gpio_control);
2051 val64 = 0x0411040400000000ULL;
2052 writeq(val64, (void __iomem *)bar0 + 0x2700);
2053 }
2054
2055 return SUCCESS;
2056 }
2057 /**
2058 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2059 */
2060 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2061 TxD *txdlp, int get_off)
2062 {
2063 struct s2io_nic *nic = fifo_data->nic;
2064 struct sk_buff *skb;
2065 struct TxD *txds;
2066 u16 j, frg_cnt;
2067
2068 txds = txdlp;
2069 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2070 pci_unmap_single(nic->pdev, (dma_addr_t)
2071 txds->Buffer_Pointer, sizeof(u64),
2072 PCI_DMA_TODEVICE);
2073 txds++;
2074 }
2075
2076 skb = (struct sk_buff *) ((unsigned long)
2077 txds->Host_Control);
2078 if (!skb) {
2079 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2080 return NULL;
2081 }
2082 pci_unmap_single(nic->pdev, (dma_addr_t)
2083 txds->Buffer_Pointer,
2084 skb->len - skb->data_len,
2085 PCI_DMA_TODEVICE);
2086 frg_cnt = skb_shinfo(skb)->nr_frags;
2087 if (frg_cnt) {
2088 txds++;
2089 for (j = 0; j < frg_cnt; j++, txds++) {
2090 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2091 if (!txds->Buffer_Pointer)
2092 break;
2093 pci_unmap_page(nic->pdev, (dma_addr_t)
2094 txds->Buffer_Pointer,
2095 frag->size, PCI_DMA_TODEVICE);
2096 }
2097 }
2098 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2099 return(skb);
2100 }
2101
2102 /**
2103 * free_tx_buffers - Free all queued Tx buffers
2104 * @nic : device private variable.
2105 * Description:
2106 * Free all queued Tx buffers.
2107 * Return Value: void
2108 */
2109
2110 static void free_tx_buffers(struct s2io_nic *nic)
2111 {
2112 struct net_device *dev = nic->dev;
2113 struct sk_buff *skb;
2114 struct TxD *txdp;
2115 int i, j;
2116 struct mac_info *mac_control;
2117 struct config_param *config;
2118 int cnt = 0;
2119
2120 mac_control = &nic->mac_control;
2121 config = &nic->config;
2122
2123 for (i = 0; i < config->tx_fifo_num; i++) {
2124 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2125 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2126 list_virt_addr;
2127 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2128 if (skb) {
2129 dev_kfree_skb(skb);
2130 cnt++;
2131 }
2132 }
2133 DBG_PRINT(INTR_DBG,
2134 "%s:forcibly freeing %d skbs on FIFO%d\n",
2135 dev->name, cnt, i);
2136 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2137 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2138 }
2139 }
2140
2141 /**
2142 * stop_nic - To stop the nic
2143 * @nic ; device private variable.
2144 * Description:
2145 * This function does exactly the opposite of what the start_nic()
2146 * function does. This function is called to stop the device.
2147 * Return Value:
2148 * void.
2149 */
2150
2151 static void stop_nic(struct s2io_nic *nic)
2152 {
2153 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2154 register u64 val64 = 0;
2155 u16 interruptible;
2156 struct mac_info *mac_control;
2157 struct config_param *config;
2158
2159 mac_control = &nic->mac_control;
2160 config = &nic->config;
2161
2162 /* Disable all interrupts */
2163 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2164 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2165 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2166 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2167
2168 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2169 val64 = readq(&bar0->adapter_control);
2170 val64 &= ~(ADAPTER_CNTL_EN);
2171 writeq(val64, &bar0->adapter_control);
2172 }
2173
2174 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2175 sk_buff *skb)
2176 {
2177 struct net_device *dev = nic->dev;
2178 struct sk_buff *frag_list;
2179 void *tmp;
2180
2181 /* Buffer-1 receives L3/L4 headers */
2182 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2183 (nic->pdev, skb->data, l3l4hdr_size + 4,
2184 PCI_DMA_FROMDEVICE);
2185
2186 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2187 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2188 if (skb_shinfo(skb)->frag_list == NULL) {
2189 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2190 return -ENOMEM ;
2191 }
2192 frag_list = skb_shinfo(skb)->frag_list;
2193 skb->truesize += frag_list->truesize;
2194 frag_list->next = NULL;
2195 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2196 frag_list->data = tmp;
2197 skb_reset_tail_pointer(frag_list);
2198
2199 /* Buffer-2 receives L4 data payload */
2200 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2201 frag_list->data, dev->mtu,
2202 PCI_DMA_FROMDEVICE);
2203 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2204 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2205
2206 return SUCCESS;
2207 }
2208
2209 /**
2210 * fill_rx_buffers - Allocates the Rx side skbs
2211 * @nic: device private variable
2212 * @ring_no: ring number
2213 * Description:
2214 * The function allocates Rx side skbs and puts the physical
2215 * address of these buffers into the RxD buffer pointers, so that the NIC
2216 * can DMA the received frame into these locations.
2217 * The NIC supports 3 receive modes, viz
2218 * 1. single buffer,
2219 * 2. three buffer and
2220 * 3. Five buffer modes.
2221 * Each mode defines how many fragments the received frame will be split
2222 * up into by the NIC. The frame is split into L3 header, L4 Header,
2223 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2224 * is split into 3 fragments. As of now only single buffer mode is
2225 * supported.
2226 * Return Value:
2227 * SUCCESS on success or an appropriate -ve value on failure.
2228 */
2229
2230 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2231 {
2232 struct net_device *dev = nic->dev;
2233 struct sk_buff *skb;
2234 struct RxD_t *rxdp;
2235 int off, off1, size, block_no, block_no1;
2236 u32 alloc_tab = 0;
2237 u32 alloc_cnt;
2238 struct mac_info *mac_control;
2239 struct config_param *config;
2240 u64 tmp;
2241 struct buffAdd *ba;
2242 unsigned long flags;
2243 struct RxD_t *first_rxdp = NULL;
2244 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2245
2246 mac_control = &nic->mac_control;
2247 config = &nic->config;
2248 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2249 atomic_read(&nic->rx_bufs_left[ring_no]);
2250
2251 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2252 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2253 while (alloc_tab < alloc_cnt) {
2254 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2255 block_index;
2256 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2257
2258 rxdp = mac_control->rings[ring_no].
2259 rx_blocks[block_no].rxds[off].virt_addr;
2260
2261 if ((block_no == block_no1) && (off == off1) &&
2262 (rxdp->Host_Control)) {
2263 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2264 dev->name);
2265 DBG_PRINT(INTR_DBG, " info equated\n");
2266 goto end;
2267 }
2268 if (off && (off == rxd_count[nic->rxd_mode])) {
2269 mac_control->rings[ring_no].rx_curr_put_info.
2270 block_index++;
2271 if (mac_control->rings[ring_no].rx_curr_put_info.
2272 block_index == mac_control->rings[ring_no].
2273 block_count)
2274 mac_control->rings[ring_no].rx_curr_put_info.
2275 block_index = 0;
2276 block_no = mac_control->rings[ring_no].
2277 rx_curr_put_info.block_index;
2278 if (off == rxd_count[nic->rxd_mode])
2279 off = 0;
2280 mac_control->rings[ring_no].rx_curr_put_info.
2281 offset = off;
2282 rxdp = mac_control->rings[ring_no].
2283 rx_blocks[block_no].block_virt_addr;
2284 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2285 dev->name, rxdp);
2286 }
2287 if(!napi) {
2288 spin_lock_irqsave(&nic->put_lock, flags);
2289 mac_control->rings[ring_no].put_pos =
2290 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2291 spin_unlock_irqrestore(&nic->put_lock, flags);
2292 } else {
2293 mac_control->rings[ring_no].put_pos =
2294 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2295 }
2296 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2297 ((nic->rxd_mode >= RXD_MODE_3A) &&
2298 (rxdp->Control_2 & BIT(0)))) {
2299 mac_control->rings[ring_no].rx_curr_put_info.
2300 offset = off;
2301 goto end;
2302 }
2303 /* calculate size of skb based on ring mode */
2304 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2305 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2306 if (nic->rxd_mode == RXD_MODE_1)
2307 size += NET_IP_ALIGN;
2308 else if (nic->rxd_mode == RXD_MODE_3B)
2309 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2310 else
2311 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2312
2313 /* allocate skb */
2314 skb = dev_alloc_skb(size);
2315 if(!skb) {
2316 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2317 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2318 if (first_rxdp) {
2319 wmb();
2320 first_rxdp->Control_1 |= RXD_OWN_XENA;
2321 }
2322 return -ENOMEM ;
2323 }
2324 if (nic->rxd_mode == RXD_MODE_1) {
2325 /* 1 buffer mode - normal operation mode */
2326 memset(rxdp, 0, sizeof(struct RxD1));
2327 skb_reserve(skb, NET_IP_ALIGN);
2328 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2329 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2330 PCI_DMA_FROMDEVICE);
2331 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2332
2333 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2334 /*
2335 * 2 or 3 buffer mode -
2336 * Both 2 buffer mode and 3 buffer mode provides 128
2337 * byte aligned receive buffers.
2338 *
2339 * 3 buffer mode provides header separation where in
2340 * skb->data will have L3/L4 headers where as
2341 * skb_shinfo(skb)->frag_list will have the L4 data
2342 * payload
2343 */
2344
2345 /* save the buffer pointers to avoid frequent dma mapping */
2346 Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2347 Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
2348 memset(rxdp, 0, sizeof(struct RxD3));
2349 /* restore the buffer pointers for dma sync*/
2350 ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2351 ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2352
2353 ba = &mac_control->rings[ring_no].ba[block_no][off];
2354 skb_reserve(skb, BUF0_LEN);
2355 tmp = (u64)(unsigned long) skb->data;
2356 tmp += ALIGN_SIZE;
2357 tmp &= ~ALIGN_SIZE;
2358 skb->data = (void *) (unsigned long)tmp;
2359 skb_reset_tail_pointer(skb);
2360
2361 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2362 ((struct RxD3*)rxdp)->Buffer0_ptr =
2363 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2364 PCI_DMA_FROMDEVICE);
2365 else
2366 pci_dma_sync_single_for_device(nic->pdev,
2367 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2368 BUF0_LEN, PCI_DMA_FROMDEVICE);
2369 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2370 if (nic->rxd_mode == RXD_MODE_3B) {
2371 /* Two buffer mode */
2372
2373 /*
2374 * Buffer2 will have L3/L4 header plus
2375 * L4 payload
2376 */
2377 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2378 (nic->pdev, skb->data, dev->mtu + 4,
2379 PCI_DMA_FROMDEVICE);
2380
2381 /* Buffer-1 will be dummy buffer. Not used */
2382 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2383 ((struct RxD3*)rxdp)->Buffer1_ptr =
2384 pci_map_single(nic->pdev,
2385 ba->ba_1, BUF1_LEN,
2386 PCI_DMA_FROMDEVICE);
2387 }
2388 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2389 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2390 (dev->mtu + 4);
2391 } else {
2392 /* 3 buffer mode */
2393 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2394 dev_kfree_skb_irq(skb);
2395 if (first_rxdp) {
2396 wmb();
2397 first_rxdp->Control_1 |=
2398 RXD_OWN_XENA;
2399 }
2400 return -ENOMEM ;
2401 }
2402 }
2403 rxdp->Control_2 |= BIT(0);
2404 }
2405 rxdp->Host_Control = (unsigned long) (skb);
2406 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2407 rxdp->Control_1 |= RXD_OWN_XENA;
2408 off++;
2409 if (off == (rxd_count[nic->rxd_mode] + 1))
2410 off = 0;
2411 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2412
2413 rxdp->Control_2 |= SET_RXD_MARKER;
2414 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2415 if (first_rxdp) {
2416 wmb();
2417 first_rxdp->Control_1 |= RXD_OWN_XENA;
2418 }
2419 first_rxdp = rxdp;
2420 }
2421 atomic_inc(&nic->rx_bufs_left[ring_no]);
2422 alloc_tab++;
2423 }
2424
2425 end:
2426 /* Transfer ownership of first descriptor to adapter just before
2427 * exiting. Before that, use memory barrier so that ownership
2428 * and other fields are seen by adapter correctly.
2429 */
2430 if (first_rxdp) {
2431 wmb();
2432 first_rxdp->Control_1 |= RXD_OWN_XENA;
2433 }
2434
2435 return SUCCESS;
2436 }
2437
2438 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2439 {
2440 struct net_device *dev = sp->dev;
2441 int j;
2442 struct sk_buff *skb;
2443 struct RxD_t *rxdp;
2444 struct mac_info *mac_control;
2445 struct buffAdd *ba;
2446
2447 mac_control = &sp->mac_control;
2448 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2449 rxdp = mac_control->rings[ring_no].
2450 rx_blocks[blk].rxds[j].virt_addr;
2451 skb = (struct sk_buff *)
2452 ((unsigned long) rxdp->Host_Control);
2453 if (!skb) {
2454 continue;
2455 }
2456 if (sp->rxd_mode == RXD_MODE_1) {
2457 pci_unmap_single(sp->pdev, (dma_addr_t)
2458 ((struct RxD1*)rxdp)->Buffer0_ptr,
2459 dev->mtu +
2460 HEADER_ETHERNET_II_802_3_SIZE
2461 + HEADER_802_2_SIZE +
2462 HEADER_SNAP_SIZE,
2463 PCI_DMA_FROMDEVICE);
2464 memset(rxdp, 0, sizeof(struct RxD1));
2465 } else if(sp->rxd_mode == RXD_MODE_3B) {
2466 ba = &mac_control->rings[ring_no].
2467 ba[blk][j];
2468 pci_unmap_single(sp->pdev, (dma_addr_t)
2469 ((struct RxD3*)rxdp)->Buffer0_ptr,
2470 BUF0_LEN,
2471 PCI_DMA_FROMDEVICE);
2472 pci_unmap_single(sp->pdev, (dma_addr_t)
2473 ((struct RxD3*)rxdp)->Buffer1_ptr,
2474 BUF1_LEN,
2475 PCI_DMA_FROMDEVICE);
2476 pci_unmap_single(sp->pdev, (dma_addr_t)
2477 ((struct RxD3*)rxdp)->Buffer2_ptr,
2478 dev->mtu + 4,
2479 PCI_DMA_FROMDEVICE);
2480 memset(rxdp, 0, sizeof(struct RxD3));
2481 } else {
2482 pci_unmap_single(sp->pdev, (dma_addr_t)
2483 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2484 PCI_DMA_FROMDEVICE);
2485 pci_unmap_single(sp->pdev, (dma_addr_t)
2486 ((struct RxD3*)rxdp)->Buffer1_ptr,
2487 l3l4hdr_size + 4,
2488 PCI_DMA_FROMDEVICE);
2489 pci_unmap_single(sp->pdev, (dma_addr_t)
2490 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2491 PCI_DMA_FROMDEVICE);
2492 memset(rxdp, 0, sizeof(struct RxD3));
2493 }
2494 dev_kfree_skb(skb);
2495 atomic_dec(&sp->rx_bufs_left[ring_no]);
2496 }
2497 }
2498
2499 /**
2500 * free_rx_buffers - Frees all Rx buffers
2501 * @sp: device private variable.
2502 * Description:
2503 * This function will free all Rx buffers allocated by host.
2504 * Return Value:
2505 * NONE.
2506 */
2507
2508 static void free_rx_buffers(struct s2io_nic *sp)
2509 {
2510 struct net_device *dev = sp->dev;
2511 int i, blk = 0, buf_cnt = 0;
2512 struct mac_info *mac_control;
2513 struct config_param *config;
2514
2515 mac_control = &sp->mac_control;
2516 config = &sp->config;
2517
2518 for (i = 0; i < config->rx_ring_num; i++) {
2519 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2520 free_rxd_blk(sp,i,blk);
2521
2522 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2523 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2524 mac_control->rings[i].rx_curr_put_info.offset = 0;
2525 mac_control->rings[i].rx_curr_get_info.offset = 0;
2526 atomic_set(&sp->rx_bufs_left[i], 0);
2527 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2528 dev->name, buf_cnt, i);
2529 }
2530 }
2531
2532 /**
2533 * s2io_poll - Rx interrupt handler for NAPI support
2534 * @dev : pointer to the device structure.
2535 * @budget : The number of packets that were budgeted to be processed
2536 * during one pass through the 'Poll" function.
2537 * Description:
2538 * Comes into picture only if NAPI support has been incorporated. It does
2539 * the same thing that rx_intr_handler does, but not in a interrupt context
2540 * also It will process only a given number of packets.
2541 * Return value:
2542 * 0 on success and 1 if there are No Rx packets to be processed.
2543 */
2544
2545 static int s2io_poll(struct net_device *dev, int *budget)
2546 {
2547 struct s2io_nic *nic = dev->priv;
2548 int pkt_cnt = 0, org_pkts_to_process;
2549 struct mac_info *mac_control;
2550 struct config_param *config;
2551 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2552 int i;
2553
2554 atomic_inc(&nic->isr_cnt);
2555 mac_control = &nic->mac_control;
2556 config = &nic->config;
2557
2558 nic->pkts_to_process = *budget;
2559 if (nic->pkts_to_process > dev->quota)
2560 nic->pkts_to_process = dev->quota;
2561 org_pkts_to_process = nic->pkts_to_process;
2562
2563 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2564 readl(&bar0->rx_traffic_int);
2565
2566 for (i = 0; i < config->rx_ring_num; i++) {
2567 rx_intr_handler(&mac_control->rings[i]);
2568 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2569 if (!nic->pkts_to_process) {
2570 /* Quota for the current iteration has been met */
2571 goto no_rx;
2572 }
2573 }
2574 if (!pkt_cnt)
2575 pkt_cnt = 1;
2576
2577 dev->quota -= pkt_cnt;
2578 *budget -= pkt_cnt;
2579 netif_rx_complete(dev);
2580
2581 for (i = 0; i < config->rx_ring_num; i++) {
2582 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2583 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2584 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2585 break;
2586 }
2587 }
2588 /* Re enable the Rx interrupts. */
2589 writeq(0x0, &bar0->rx_traffic_mask);
2590 readl(&bar0->rx_traffic_mask);
2591 atomic_dec(&nic->isr_cnt);
2592 return 0;
2593
2594 no_rx:
2595 dev->quota -= pkt_cnt;
2596 *budget -= pkt_cnt;
2597
2598 for (i = 0; i < config->rx_ring_num; i++) {
2599 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2600 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2601 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2602 break;
2603 }
2604 }
2605 atomic_dec(&nic->isr_cnt);
2606 return 1;
2607 }
2608
2609 #ifdef CONFIG_NET_POLL_CONTROLLER
2610 /**
2611 * s2io_netpoll - netpoll event handler entry point
2612 * @dev : pointer to the device structure.
2613 * Description:
2614 * This function will be called by upper layer to check for events on the
2615 * interface in situations where interrupts are disabled. It is used for
2616 * specific in-kernel networking tasks, such as remote consoles and kernel
2617 * debugging over the network (example netdump in RedHat).
2618 */
2619 static void s2io_netpoll(struct net_device *dev)
2620 {
2621 struct s2io_nic *nic = dev->priv;
2622 struct mac_info *mac_control;
2623 struct config_param *config;
2624 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2625 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2626 int i;
2627
2628 disable_irq(dev->irq);
2629
2630 atomic_inc(&nic->isr_cnt);
2631 mac_control = &nic->mac_control;
2632 config = &nic->config;
2633
2634 writeq(val64, &bar0->rx_traffic_int);
2635 writeq(val64, &bar0->tx_traffic_int);
2636
2637 /* we need to free up the transmitted skbufs or else netpoll will
2638 * run out of skbs and will fail and eventually netpoll application such
2639 * as netdump will fail.
2640 */
2641 for (i = 0; i < config->tx_fifo_num; i++)
2642 tx_intr_handler(&mac_control->fifos[i]);
2643
2644 /* check for received packet and indicate up to network */
2645 for (i = 0; i < config->rx_ring_num; i++)
2646 rx_intr_handler(&mac_control->rings[i]);
2647
2648 for (i = 0; i < config->rx_ring_num; i++) {
2649 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2650 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2651 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2652 break;
2653 }
2654 }
2655 atomic_dec(&nic->isr_cnt);
2656 enable_irq(dev->irq);
2657 return;
2658 }
2659 #endif
2660
2661 /**
2662 * rx_intr_handler - Rx interrupt handler
2663 * @nic: device private variable.
2664 * Description:
2665 * If the interrupt is because of a received frame or if the
2666 * receive ring contains fresh as yet un-processed frames,this function is
2667 * called. It picks out the RxD at which place the last Rx processing had
2668 * stopped and sends the skb to the OSM's Rx handler and then increments
2669 * the offset.
2670 * Return Value:
2671 * NONE.
2672 */
2673 static void rx_intr_handler(struct ring_info *ring_data)
2674 {
2675 struct s2io_nic *nic = ring_data->nic;
2676 struct net_device *dev = (struct net_device *) nic->dev;
2677 int get_block, put_block, put_offset;
2678 struct rx_curr_get_info get_info, put_info;
2679 struct RxD_t *rxdp;
2680 struct sk_buff *skb;
2681 int pkt_cnt = 0;
2682 int i;
2683
2684 spin_lock(&nic->rx_lock);
2685 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2686 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2687 __FUNCTION__, dev->name);
2688 spin_unlock(&nic->rx_lock);
2689 return;
2690 }
2691
2692 get_info = ring_data->rx_curr_get_info;
2693 get_block = get_info.block_index;
2694 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2695 put_block = put_info.block_index;
2696 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2697 if (!napi) {
2698 spin_lock(&nic->put_lock);
2699 put_offset = ring_data->put_pos;
2700 spin_unlock(&nic->put_lock);
2701 } else
2702 put_offset = ring_data->put_pos;
2703
2704 while (RXD_IS_UP2DT(rxdp)) {
2705 /*
2706 * If your are next to put index then it's
2707 * FIFO full condition
2708 */
2709 if ((get_block == put_block) &&
2710 (get_info.offset + 1) == put_info.offset) {
2711 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2712 break;
2713 }
2714 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2715 if (skb == NULL) {
2716 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2717 dev->name);
2718 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2719 spin_unlock(&nic->rx_lock);
2720 return;
2721 }
2722 if (nic->rxd_mode == RXD_MODE_1) {
2723 pci_unmap_single(nic->pdev, (dma_addr_t)
2724 ((struct RxD1*)rxdp)->Buffer0_ptr,
2725 dev->mtu +
2726 HEADER_ETHERNET_II_802_3_SIZE +
2727 HEADER_802_2_SIZE +
2728 HEADER_SNAP_SIZE,
2729 PCI_DMA_FROMDEVICE);
2730 } else if (nic->rxd_mode == RXD_MODE_3B) {
2731 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2732 ((struct RxD3*)rxdp)->Buffer0_ptr,
2733 BUF0_LEN, PCI_DMA_FROMDEVICE);
2734 pci_unmap_single(nic->pdev, (dma_addr_t)
2735 ((struct RxD3*)rxdp)->Buffer2_ptr,
2736 dev->mtu + 4,
2737 PCI_DMA_FROMDEVICE);
2738 } else {
2739 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2740 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2741 PCI_DMA_FROMDEVICE);
2742 pci_unmap_single(nic->pdev, (dma_addr_t)
2743 ((struct RxD3*)rxdp)->Buffer1_ptr,
2744 l3l4hdr_size + 4,
2745 PCI_DMA_FROMDEVICE);
2746 pci_unmap_single(nic->pdev, (dma_addr_t)
2747 ((struct RxD3*)rxdp)->Buffer2_ptr,
2748 dev->mtu, PCI_DMA_FROMDEVICE);
2749 }
2750 prefetch(skb->data);
2751 rx_osm_handler(ring_data, rxdp);
2752 get_info.offset++;
2753 ring_data->rx_curr_get_info.offset = get_info.offset;
2754 rxdp = ring_data->rx_blocks[get_block].
2755 rxds[get_info.offset].virt_addr;
2756 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2757 get_info.offset = 0;
2758 ring_data->rx_curr_get_info.offset = get_info.offset;
2759 get_block++;
2760 if (get_block == ring_data->block_count)
2761 get_block = 0;
2762 ring_data->rx_curr_get_info.block_index = get_block;
2763 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2764 }
2765
2766 nic->pkts_to_process -= 1;
2767 if ((napi) && (!nic->pkts_to_process))
2768 break;
2769 pkt_cnt++;
2770 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2771 break;
2772 }
2773 if (nic->lro) {
2774 /* Clear all LRO sessions before exiting */
2775 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2776 struct lro *lro = &nic->lro0_n[i];
2777 if (lro->in_use) {
2778 update_L3L4_header(nic, lro);
2779 queue_rx_frame(lro->parent);
2780 clear_lro_session(lro);
2781 }
2782 }
2783 }
2784
2785 spin_unlock(&nic->rx_lock);
2786 }
2787
2788 /**
2789 * tx_intr_handler - Transmit interrupt handler
2790 * @nic : device private variable
2791 * Description:
2792 * If an interrupt was raised to indicate DMA complete of the
2793 * Tx packet, this function is called. It identifies the last TxD
2794 * whose buffer was freed and frees all skbs whose data have already
2795 * DMA'ed into the NICs internal memory.
2796 * Return Value:
2797 * NONE
2798 */
2799
2800 static void tx_intr_handler(struct fifo_info *fifo_data)
2801 {
2802 struct s2io_nic *nic = fifo_data->nic;
2803 struct net_device *dev = (struct net_device *) nic->dev;
2804 struct tx_curr_get_info get_info, put_info;
2805 struct sk_buff *skb;
2806 struct TxD *txdlp;
2807
2808 get_info = fifo_data->tx_curr_get_info;
2809 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2810 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2811 list_virt_addr;
2812 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2813 (get_info.offset != put_info.offset) &&
2814 (txdlp->Host_Control)) {
2815 /* Check for TxD errors */
2816 if (txdlp->Control_1 & TXD_T_CODE) {
2817 unsigned long long err;
2818 err = txdlp->Control_1 & TXD_T_CODE;
2819 if (err & 0x1) {
2820 nic->mac_control.stats_info->sw_stat.
2821 parity_err_cnt++;
2822 }
2823 if ((err >> 48) == 0xA) {
2824 DBG_PRINT(TX_DBG, "TxD returned due \
2825 to loss of link\n");
2826 }
2827 else {
2828 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2829 }
2830 }
2831
2832 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2833 if (skb == NULL) {
2834 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2835 __FUNCTION__);
2836 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2837 return;
2838 }
2839
2840 /* Updating the statistics block */
2841 nic->stats.tx_bytes += skb->len;
2842 dev_kfree_skb_irq(skb);
2843
2844 get_info.offset++;
2845 if (get_info.offset == get_info.fifo_len + 1)
2846 get_info.offset = 0;
2847 txdlp = (struct TxD *) fifo_data->list_info
2848 [get_info.offset].list_virt_addr;
2849 fifo_data->tx_curr_get_info.offset =
2850 get_info.offset;
2851 }
2852
2853 spin_lock(&nic->tx_lock);
2854 if (netif_queue_stopped(dev))
2855 netif_wake_queue(dev);
2856 spin_unlock(&nic->tx_lock);
2857 }
2858
2859 /**
2860 * s2io_mdio_write - Function to write in to MDIO registers
2861 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2862 * @addr : address value
2863 * @value : data value
2864 * @dev : pointer to net_device structure
2865 * Description:
2866 * This function is used to write values to the MDIO registers
2867 * NONE
2868 */
2869 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2870 {
2871 u64 val64 = 0x0;
2872 struct s2io_nic *sp = dev->priv;
2873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2874
2875 //address transaction
2876 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2877 | MDIO_MMD_DEV_ADDR(mmd_type)
2878 | MDIO_MMS_PRT_ADDR(0x0);
2879 writeq(val64, &bar0->mdio_control);
2880 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2881 writeq(val64, &bar0->mdio_control);
2882 udelay(100);
2883
2884 //Data transaction
2885 val64 = 0x0;
2886 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2887 | MDIO_MMD_DEV_ADDR(mmd_type)
2888 | MDIO_MMS_PRT_ADDR(0x0)
2889 | MDIO_MDIO_DATA(value)
2890 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2891 writeq(val64, &bar0->mdio_control);
2892 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2893 writeq(val64, &bar0->mdio_control);
2894 udelay(100);
2895
2896 val64 = 0x0;
2897 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2898 | MDIO_MMD_DEV_ADDR(mmd_type)
2899 | MDIO_MMS_PRT_ADDR(0x0)
2900 | MDIO_OP(MDIO_OP_READ_TRANS);
2901 writeq(val64, &bar0->mdio_control);
2902 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2903 writeq(val64, &bar0->mdio_control);
2904 udelay(100);
2905
2906 }
2907
2908 /**
2909 * s2io_mdio_read - Function to write in to MDIO registers
2910 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2911 * @addr : address value
2912 * @dev : pointer to net_device structure
2913 * Description:
2914 * This function is used to read values to the MDIO registers
2915 * NONE
2916 */
2917 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2918 {
2919 u64 val64 = 0x0;
2920 u64 rval64 = 0x0;
2921 struct s2io_nic *sp = dev->priv;
2922 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2923
2924 /* address transaction */
2925 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2926 | MDIO_MMD_DEV_ADDR(mmd_type)
2927 | MDIO_MMS_PRT_ADDR(0x0);
2928 writeq(val64, &bar0->mdio_control);
2929 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2930 writeq(val64, &bar0->mdio_control);
2931 udelay(100);
2932
2933 /* Data transaction */
2934 val64 = 0x0;
2935 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2936 | MDIO_MMD_DEV_ADDR(mmd_type)
2937 | MDIO_MMS_PRT_ADDR(0x0)
2938 | MDIO_OP(MDIO_OP_READ_TRANS);
2939 writeq(val64, &bar0->mdio_control);
2940 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2941 writeq(val64, &bar0->mdio_control);
2942 udelay(100);
2943
2944 /* Read the value from regs */
2945 rval64 = readq(&bar0->mdio_control);
2946 rval64 = rval64 & 0xFFFF0000;
2947 rval64 = rval64 >> 16;
2948 return rval64;
2949 }
2950 /**
2951 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2952 * @counter : couter value to be updated
2953 * @flag : flag to indicate the status
2954 * @type : counter type
2955 * Description:
2956 * This function is to check the status of the xpak counters value
2957 * NONE
2958 */
2959
2960 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2961 {
2962 u64 mask = 0x3;
2963 u64 val64;
2964 int i;
2965 for(i = 0; i <index; i++)
2966 mask = mask << 0x2;
2967
2968 if(flag > 0)
2969 {
2970 *counter = *counter + 1;
2971 val64 = *regs_stat & mask;
2972 val64 = val64 >> (index * 0x2);
2973 val64 = val64 + 1;
2974 if(val64 == 3)
2975 {
2976 switch(type)
2977 {
2978 case 1:
2979 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2980 "service. Excessive temperatures may "
2981 "result in premature transceiver "
2982 "failure \n");
2983 break;
2984 case 2:
2985 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2986 "service Excessive bias currents may "
2987 "indicate imminent laser diode "
2988 "failure \n");
2989 break;
2990 case 3:
2991 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2992 "service Excessive laser output "
2993 "power may saturate far-end "
2994 "receiver\n");
2995 break;
2996 default:
2997 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2998 "type \n");
2999 }
3000 val64 = 0x0;
3001 }
3002 val64 = val64 << (index * 0x2);
3003 *regs_stat = (*regs_stat & (~mask)) | (val64);
3004
3005 } else {
3006 *regs_stat = *regs_stat & (~mask);
3007 }
3008 }
3009
3010 /**
3011 * s2io_updt_xpak_counter - Function to update the xpak counters
3012 * @dev : pointer to net_device struct
3013 * Description:
3014 * This function is to upate the status of the xpak counters value
3015 * NONE
3016 */
3017 static void s2io_updt_xpak_counter(struct net_device *dev)
3018 {
3019 u16 flag = 0x0;
3020 u16 type = 0x0;
3021 u16 val16 = 0x0;
3022 u64 val64 = 0x0;
3023 u64 addr = 0x0;
3024
3025 struct s2io_nic *sp = dev->priv;
3026 struct stat_block *stat_info = sp->mac_control.stats_info;
3027
3028 /* Check the communication with the MDIO slave */
3029 addr = 0x0000;
3030 val64 = 0x0;
3031 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3032 if((val64 == 0xFFFF) || (val64 == 0x0000))
3033 {
3034 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3035 "Returned %llx\n", (unsigned long long)val64);
3036 return;
3037 }
3038
3039 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3040 if(val64 != 0x2040)
3041 {
3042 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3043 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3044 (unsigned long long)val64);
3045 return;
3046 }
3047
3048 /* Loading the DOM register to MDIO register */
3049 addr = 0xA100;
3050 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3051 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3052
3053 /* Reading the Alarm flags */
3054 addr = 0xA070;
3055 val64 = 0x0;
3056 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3057
3058 flag = CHECKBIT(val64, 0x7);
3059 type = 1;
3060 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3061 &stat_info->xpak_stat.xpak_regs_stat,
3062 0x0, flag, type);
3063
3064 if(CHECKBIT(val64, 0x6))
3065 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3066
3067 flag = CHECKBIT(val64, 0x3);
3068 type = 2;
3069 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3070 &stat_info->xpak_stat.xpak_regs_stat,
3071 0x2, flag, type);
3072
3073 if(CHECKBIT(val64, 0x2))
3074 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3075
3076 flag = CHECKBIT(val64, 0x1);
3077 type = 3;
3078 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3079 &stat_info->xpak_stat.xpak_regs_stat,
3080 0x4, flag, type);
3081
3082 if(CHECKBIT(val64, 0x0))
3083 stat_info->xpak_stat.alarm_laser_output_power_low++;
3084
3085 /* Reading the Warning flags */
3086 addr = 0xA074;
3087 val64 = 0x0;
3088 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3089
3090 if(CHECKBIT(val64, 0x7))
3091 stat_info->xpak_stat.warn_transceiver_temp_high++;
3092
3093 if(CHECKBIT(val64, 0x6))
3094 stat_info->xpak_stat.warn_transceiver_temp_low++;
3095
3096 if(CHECKBIT(val64, 0x3))
3097 stat_info->xpak_stat.warn_laser_bias_current_high++;
3098
3099 if(CHECKBIT(val64, 0x2))
3100 stat_info->xpak_stat.warn_laser_bias_current_low++;
3101
3102 if(CHECKBIT(val64, 0x1))
3103 stat_info->xpak_stat.warn_laser_output_power_high++;
3104
3105 if(CHECKBIT(val64, 0x0))
3106 stat_info->xpak_stat.warn_laser_output_power_low++;
3107 }
3108
3109 /**
3110 * alarm_intr_handler - Alarm Interrrupt handler
3111 * @nic: device private variable
3112 * Description: If the interrupt was neither because of Rx packet or Tx
3113 * complete, this function is called. If the interrupt was to indicate
3114 * a loss of link, the OSM link status handler is invoked for any other
3115 * alarm interrupt the block that raised the interrupt is displayed
3116 * and a H/W reset is issued.
3117 * Return Value:
3118 * NONE
3119 */
3120
3121 static void alarm_intr_handler(struct s2io_nic *nic)
3122 {
3123 struct net_device *dev = (struct net_device *) nic->dev;
3124 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3125 register u64 val64 = 0, err_reg = 0;
3126 u64 cnt;
3127 int i;
3128 if (atomic_read(&nic->card_state) == CARD_DOWN)
3129 return;
3130 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3131 /* Handling the XPAK counters update */
3132 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3133 /* waiting for an hour */
3134 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3135 } else {
3136 s2io_updt_xpak_counter(dev);
3137 /* reset the count to zero */
3138 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3139 }
3140
3141 /* Handling link status change error Intr */
3142 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3143 err_reg = readq(&bar0->mac_rmac_err_reg);
3144 writeq(err_reg, &bar0->mac_rmac_err_reg);
3145 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3146 schedule_work(&nic->set_link_task);
3147 }
3148 }
3149
3150 /* Handling Ecc errors */
3151 val64 = readq(&bar0->mc_err_reg);
3152 writeq(val64, &bar0->mc_err_reg);
3153 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3154 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3155 nic->mac_control.stats_info->sw_stat.
3156 double_ecc_errs++;
3157 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3158 dev->name);
3159 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3160 if (nic->device_type != XFRAME_II_DEVICE) {
3161 /* Reset XframeI only if critical error */
3162 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3163 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3164 netif_stop_queue(dev);
3165 schedule_work(&nic->rst_timer_task);
3166 nic->mac_control.stats_info->sw_stat.
3167 soft_reset_cnt++;
3168 }
3169 }
3170 } else {
3171 nic->mac_control.stats_info->sw_stat.
3172 single_ecc_errs++;
3173 }
3174 }
3175
3176 /* In case of a serious error, the device will be Reset. */
3177 val64 = readq(&bar0->serr_source);
3178 if (val64 & SERR_SOURCE_ANY) {
3179 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3180 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3181 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3182 (unsigned long long)val64);
3183 netif_stop_queue(dev);
3184 schedule_work(&nic->rst_timer_task);
3185 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3186 }
3187
3188 /*
3189 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3190 * Error occurs, the adapter will be recycled by disabling the
3191 * adapter enable bit and enabling it again after the device
3192 * becomes Quiescent.
3193 */
3194 val64 = readq(&bar0->pcc_err_reg);
3195 writeq(val64, &bar0->pcc_err_reg);
3196 if (val64 & PCC_FB_ECC_DB_ERR) {
3197 u64 ac = readq(&bar0->adapter_control);
3198 ac &= ~(ADAPTER_CNTL_EN);
3199 writeq(ac, &bar0->adapter_control);
3200 ac = readq(&bar0->adapter_control);
3201 schedule_work(&nic->set_link_task);
3202 }
3203 /* Check for data parity error */
3204 val64 = readq(&bar0->pic_int_status);
3205 if (val64 & PIC_INT_GPIO) {
3206 val64 = readq(&bar0->gpio_int_reg);
3207 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3208 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3209 schedule_work(&nic->rst_timer_task);
3210 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3211 }
3212 }
3213
3214 /* Check for ring full counter */
3215 if (nic->device_type & XFRAME_II_DEVICE) {
3216 val64 = readq(&bar0->ring_bump_counter1);
3217 for (i=0; i<4; i++) {
3218 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3219 cnt >>= 64 - ((i+1)*16);
3220 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3221 += cnt;
3222 }
3223
3224 val64 = readq(&bar0->ring_bump_counter2);
3225 for (i=0; i<4; i++) {
3226 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3227 cnt >>= 64 - ((i+1)*16);
3228 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3229 += cnt;
3230 }
3231 }
3232
3233 /* Other type of interrupts are not being handled now, TODO */
3234 }
3235
3236 /**
3237 * wait_for_cmd_complete - waits for a command to complete.
3238 * @sp : private member of the device structure, which is a pointer to the
3239 * s2io_nic structure.
3240 * Description: Function that waits for a command to Write into RMAC
3241 * ADDR DATA registers to be completed and returns either success or
3242 * error depending on whether the command was complete or not.
3243 * Return value:
3244 * SUCCESS on success and FAILURE on failure.
3245 */
3246
3247 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3248 int bit_state)
3249 {
3250 int ret = FAILURE, cnt = 0, delay = 1;
3251 u64 val64;
3252
3253 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3254 return FAILURE;
3255
3256 do {
3257 val64 = readq(addr);
3258 if (bit_state == S2IO_BIT_RESET) {
3259 if (!(val64 & busy_bit)) {
3260 ret = SUCCESS;
3261 break;
3262 }
3263 } else {
3264 if (!(val64 & busy_bit)) {
3265 ret = SUCCESS;
3266 break;
3267 }
3268 }
3269
3270 if(in_interrupt())
3271 mdelay(delay);
3272 else
3273 msleep(delay);
3274
3275 if (++cnt >= 10)
3276 delay = 50;
3277 } while (cnt < 20);
3278 return ret;
3279 }
3280 /*
3281 * check_pci_device_id - Checks if the device id is supported
3282 * @id : device id
3283 * Description: Function to check if the pci device id is supported by driver.
3284 * Return value: Actual device id if supported else PCI_ANY_ID
3285 */
3286 static u16 check_pci_device_id(u16 id)
3287 {
3288 switch (id) {
3289 case PCI_DEVICE_ID_HERC_WIN:
3290 case PCI_DEVICE_ID_HERC_UNI:
3291 return XFRAME_II_DEVICE;
3292 case PCI_DEVICE_ID_S2IO_UNI:
3293 case PCI_DEVICE_ID_S2IO_WIN:
3294 return XFRAME_I_DEVICE;
3295 default:
3296 return PCI_ANY_ID;
3297 }
3298 }
3299
3300 /**
3301 * s2io_reset - Resets the card.
3302 * @sp : private member of the device structure.
3303 * Description: Function to Reset the card. This function then also
3304 * restores the previously saved PCI configuration space registers as
3305 * the card reset also resets the configuration space.
3306 * Return value:
3307 * void.
3308 */
3309
3310 static void s2io_reset(struct s2io_nic * sp)
3311 {
3312 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3313 u64 val64;
3314 u16 subid, pci_cmd;
3315 int i;
3316 u16 val16;
3317 unsigned long long reset_cnt = 0;
3318 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3319 __FUNCTION__, sp->dev->name);
3320
3321 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3322 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3323
3324 if (sp->device_type == XFRAME_II_DEVICE) {
3325 int ret;
3326 ret = pci_set_power_state(sp->pdev, 3);
3327 if (!ret)
3328 ret = pci_set_power_state(sp->pdev, 0);
3329 else {
3330 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3331 __FUNCTION__);
3332 goto old_way;
3333 }
3334 msleep(20);
3335 goto new_way;
3336 }
3337 old_way:
3338 val64 = SW_RESET_ALL;
3339 writeq(val64, &bar0->sw_reset);
3340 new_way:
3341 if (strstr(sp->product_name, "CX4")) {
3342 msleep(750);
3343 }
3344 msleep(250);
3345 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3346
3347 /* Restore the PCI state saved during initialization. */
3348 pci_restore_state(sp->pdev);
3349 pci_read_config_word(sp->pdev, 0x2, &val16);
3350 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3351 break;
3352 msleep(200);
3353 }
3354
3355 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3356 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3357 }
3358
3359 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3360
3361 s2io_init_pci(sp);
3362
3363 /* Set swapper to enable I/O register access */
3364 s2io_set_swapper(sp);
3365
3366 /* Restore the MSIX table entries from local variables */
3367 restore_xmsi_data(sp);
3368
3369 /* Clear certain PCI/PCI-X fields after reset */
3370 if (sp->device_type == XFRAME_II_DEVICE) {
3371 /* Clear "detected parity error" bit */
3372 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3373
3374 /* Clearing PCIX Ecc status register */
3375 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3376
3377 /* Clearing PCI_STATUS error reflected here */
3378 writeq(BIT(62), &bar0->txpic_int_reg);
3379 }
3380
3381 /* Reset device statistics maintained by OS */
3382 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3383 /* save reset count */
3384 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3385 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3386 /* restore reset count */
3387 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3388
3389 /* SXE-002: Configure link and activity LED to turn it off */
3390 subid = sp->pdev->subsystem_device;
3391 if (((subid & 0xFF) >= 0x07) &&
3392 (sp->device_type == XFRAME_I_DEVICE)) {
3393 val64 = readq(&bar0->gpio_control);
3394 val64 |= 0x0000800000000000ULL;
3395 writeq(val64, &bar0->gpio_control);
3396 val64 = 0x0411040400000000ULL;
3397 writeq(val64, (void __iomem *)bar0 + 0x2700);
3398 }
3399
3400 /*
3401 * Clear spurious ECC interrupts that would have occured on
3402 * XFRAME II cards after reset.
3403 */
3404 if (sp->device_type == XFRAME_II_DEVICE) {
3405 val64 = readq(&bar0->pcc_err_reg);
3406 writeq(val64, &bar0->pcc_err_reg);
3407 }
3408
3409 /* restore the previously assigned mac address */
3410 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3411
3412 sp->device_enabled_once = FALSE;
3413 }
3414
3415 /**
3416 * s2io_set_swapper - to set the swapper controle on the card
3417 * @sp : private member of the device structure,
3418 * pointer to the s2io_nic structure.
3419 * Description: Function to set the swapper control on the card
3420 * correctly depending on the 'endianness' of the system.
3421 * Return value:
3422 * SUCCESS on success and FAILURE on failure.
3423 */
3424
3425 static int s2io_set_swapper(struct s2io_nic * sp)
3426 {
3427 struct net_device *dev = sp->dev;
3428 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3429 u64 val64, valt, valr;
3430
3431 /*
3432 * Set proper endian settings and verify the same by reading
3433 * the PIF Feed-back register.
3434 */
3435
3436 val64 = readq(&bar0->pif_rd_swapper_fb);
3437 if (val64 != 0x0123456789ABCDEFULL) {
3438 int i = 0;
3439 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3440 0x8100008181000081ULL, /* FE=1, SE=0 */
3441 0x4200004242000042ULL, /* FE=0, SE=1 */
3442 0}; /* FE=0, SE=0 */
3443
3444 while(i<4) {
3445 writeq(value[i], &bar0->swapper_ctrl);
3446 val64 = readq(&bar0->pif_rd_swapper_fb);
3447 if (val64 == 0x0123456789ABCDEFULL)
3448 break;
3449 i++;
3450 }
3451 if (i == 4) {
3452 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3453 dev->name);
3454 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3455 (unsigned long long) val64);
3456 return FAILURE;
3457 }
3458 valr = value[i];
3459 } else {
3460 valr = readq(&bar0->swapper_ctrl);
3461 }
3462
3463 valt = 0x0123456789ABCDEFULL;
3464 writeq(valt, &bar0->xmsi_address);
3465 val64 = readq(&bar0->xmsi_address);
3466
3467 if(val64 != valt) {
3468 int i = 0;
3469 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3470 0x0081810000818100ULL, /* FE=1, SE=0 */
3471 0x0042420000424200ULL, /* FE=0, SE=1 */
3472 0}; /* FE=0, SE=0 */
3473
3474 while(i<4) {
3475 writeq((value[i] | valr), &bar0->swapper_ctrl);
3476 writeq(valt, &bar0->xmsi_address);
3477 val64 = readq(&bar0->xmsi_address);
3478 if(val64 == valt)
3479 break;
3480 i++;
3481 }
3482 if(i == 4) {
3483 unsigned long long x = val64;
3484 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3485 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3486 return FAILURE;
3487 }
3488 }
3489 val64 = readq(&bar0->swapper_ctrl);
3490 val64 &= 0xFFFF000000000000ULL;
3491
3492 #ifdef __BIG_ENDIAN
3493 /*
3494 * The device by default set to a big endian format, so a
3495 * big endian driver need not set anything.
3496 */
3497 val64 |= (SWAPPER_CTRL_TXP_FE |
3498 SWAPPER_CTRL_TXP_SE |
3499 SWAPPER_CTRL_TXD_R_FE |
3500 SWAPPER_CTRL_TXD_W_FE |
3501 SWAPPER_CTRL_TXF_R_FE |
3502 SWAPPER_CTRL_RXD_R_FE |
3503 SWAPPER_CTRL_RXD_W_FE |
3504 SWAPPER_CTRL_RXF_W_FE |
3505 SWAPPER_CTRL_XMSI_FE |
3506 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3507 if (sp->intr_type == INTA)
3508 val64 |= SWAPPER_CTRL_XMSI_SE;
3509 writeq(val64, &bar0->swapper_ctrl);
3510 #else
3511 /*
3512 * Initially we enable all bits to make it accessible by the
3513 * driver, then we selectively enable only those bits that
3514 * we want to set.
3515 */
3516 val64 |= (SWAPPER_CTRL_TXP_FE |
3517 SWAPPER_CTRL_TXP_SE |
3518 SWAPPER_CTRL_TXD_R_FE |
3519 SWAPPER_CTRL_TXD_R_SE |
3520 SWAPPER_CTRL_TXD_W_FE |
3521 SWAPPER_CTRL_TXD_W_SE |
3522 SWAPPER_CTRL_TXF_R_FE |
3523 SWAPPER_CTRL_RXD_R_FE |
3524 SWAPPER_CTRL_RXD_R_SE |
3525 SWAPPER_CTRL_RXD_W_FE |
3526 SWAPPER_CTRL_RXD_W_SE |
3527 SWAPPER_CTRL_RXF_W_FE |
3528 SWAPPER_CTRL_XMSI_FE |
3529 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3530 if (sp->intr_type == INTA)
3531 val64 |= SWAPPER_CTRL_XMSI_SE;
3532 writeq(val64, &bar0->swapper_ctrl);
3533 #endif
3534 val64 = readq(&bar0->swapper_ctrl);
3535
3536 /*
3537 * Verifying if endian settings are accurate by reading a
3538 * feedback register.
3539 */
3540 val64 = readq(&bar0->pif_rd_swapper_fb);
3541 if (val64 != 0x0123456789ABCDEFULL) {
3542 /* Endian settings are incorrect, calls for another dekko. */
3543 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3544 dev->name);
3545 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3546 (unsigned long long) val64);
3547 return FAILURE;
3548 }
3549
3550 return SUCCESS;
3551 }
3552
3553 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3554 {
3555 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3556 u64 val64;
3557 int ret = 0, cnt = 0;
3558
3559 do {
3560 val64 = readq(&bar0->xmsi_access);
3561 if (!(val64 & BIT(15)))
3562 break;
3563 mdelay(1);
3564 cnt++;
3565 } while(cnt < 5);
3566 if (cnt == 5) {
3567 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3568 ret = 1;
3569 }
3570
3571 return ret;
3572 }
3573
3574 static void restore_xmsi_data(struct s2io_nic *nic)
3575 {
3576 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3577 u64 val64;
3578 int i;
3579
3580 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3581 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3582 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3583 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3584 writeq(val64, &bar0->xmsi_access);
3585 if (wait_for_msix_trans(nic, i)) {
3586 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3587 continue;
3588 }
3589 }
3590 }
3591
3592 static void store_xmsi_data(struct s2io_nic *nic)
3593 {
3594 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3595 u64 val64, addr, data;
3596 int i;
3597
3598 /* Store and display */
3599 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3600 val64 = (BIT(15) | vBIT(i, 26, 6));
3601 writeq(val64, &bar0->xmsi_access);
3602 if (wait_for_msix_trans(nic, i)) {
3603 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3604 continue;
3605 }
3606 addr = readq(&bar0->xmsi_address);
3607 data = readq(&bar0->xmsi_data);
3608 if (addr && data) {
3609 nic->msix_info[i].addr = addr;
3610 nic->msix_info[i].data = data;
3611 }
3612 }
3613 }
3614
3615 int s2io_enable_msi(struct s2io_nic *nic)
3616 {
3617 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3618 u16 msi_ctrl, msg_val;
3619 struct config_param *config = &nic->config;
3620 struct net_device *dev = nic->dev;
3621 u64 val64, tx_mat, rx_mat;
3622 int i, err;
3623
3624 val64 = readq(&bar0->pic_control);
3625 val64 &= ~BIT(1);
3626 writeq(val64, &bar0->pic_control);
3627
3628 err = pci_enable_msi(nic->pdev);
3629 if (err) {
3630 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3631 nic->dev->name);
3632 return err;
3633 }
3634
3635 /*
3636 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3637 * for interrupt handling.
3638 */
3639 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3640 msg_val ^= 0x1;
3641 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3642 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3643
3644 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3645 msi_ctrl |= 0x10;
3646 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3647
3648 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3649 tx_mat = readq(&bar0->tx_mat0_n[0]);
3650 for (i=0; i<config->tx_fifo_num; i++) {
3651 tx_mat |= TX_MAT_SET(i, 1);
3652 }
3653 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3654
3655 rx_mat = readq(&bar0->rx_mat);
3656 for (i=0; i<config->rx_ring_num; i++) {
3657 rx_mat |= RX_MAT_SET(i, 1);
3658 }
3659 writeq(rx_mat, &bar0->rx_mat);
3660
3661 dev->irq = nic->pdev->irq;
3662 return 0;
3663 }
3664
3665 static int s2io_enable_msi_x(struct s2io_nic *nic)
3666 {
3667 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3668 u64 tx_mat, rx_mat;
3669 u16 msi_control; /* Temp variable */
3670 int ret, i, j, msix_indx = 1;
3671
3672 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3673 GFP_KERNEL);
3674 if (nic->entries == NULL) {
3675 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3676 return -ENOMEM;
3677 }
3678 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3679
3680 nic->s2io_entries =
3681 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3682 GFP_KERNEL);
3683 if (nic->s2io_entries == NULL) {
3684 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3685 kfree(nic->entries);
3686 return -ENOMEM;
3687 }
3688 memset(nic->s2io_entries, 0,
3689 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3690
3691 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3692 nic->entries[i].entry = i;
3693 nic->s2io_entries[i].entry = i;
3694 nic->s2io_entries[i].arg = NULL;
3695 nic->s2io_entries[i].in_use = 0;
3696 }
3697
3698 tx_mat = readq(&bar0->tx_mat0_n[0]);
3699 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3700 tx_mat |= TX_MAT_SET(i, msix_indx);
3701 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3702 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3703 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3704 }
3705 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3706
3707 if (!nic->config.bimodal) {
3708 rx_mat = readq(&bar0->rx_mat);
3709 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3710 rx_mat |= RX_MAT_SET(j, msix_indx);
3711 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3712 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3713 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3714 }
3715 writeq(rx_mat, &bar0->rx_mat);
3716 } else {
3717 tx_mat = readq(&bar0->tx_mat0_n[7]);
3718 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3719 tx_mat |= TX_MAT_SET(i, msix_indx);
3720 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3721 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3722 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3723 }
3724 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3725 }
3726
3727 nic->avail_msix_vectors = 0;
3728 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3729 /* We fail init if error or we get less vectors than min required */
3730 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3731 nic->avail_msix_vectors = ret;
3732 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3733 }
3734 if (ret) {
3735 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3736 kfree(nic->entries);
3737 kfree(nic->s2io_entries);
3738 nic->entries = NULL;
3739 nic->s2io_entries = NULL;
3740 nic->avail_msix_vectors = 0;
3741 return -ENOMEM;
3742 }
3743 if (!nic->avail_msix_vectors)
3744 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3745
3746 /*
3747 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3748 * in the herc NIC. (Temp change, needs to be removed later)
3749 */
3750 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3751 msi_control |= 0x1; /* Enable MSI */
3752 pci_write_config_word(nic->pdev, 0x42, msi_control);
3753
3754 return 0;
3755 }
3756
3757 /* ********************************************************* *
3758 * Functions defined below concern the OS part of the driver *
3759 * ********************************************************* */
3760
3761 /**
3762 * s2io_open - open entry point of the driver
3763 * @dev : pointer to the device structure.
3764 * Description:
3765 * This function is the open entry point of the driver. It mainly calls a
3766 * function to allocate Rx buffers and inserts them into the buffer
3767 * descriptors and then enables the Rx part of the NIC.
3768 * Return value:
3769 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3770 * file on failure.
3771 */
3772
3773 static int s2io_open(struct net_device *dev)
3774 {
3775 struct s2io_nic *sp = dev->priv;
3776 int err = 0;
3777
3778 /*
3779 * Make sure you have link off by default every time
3780 * Nic is initialized
3781 */
3782 netif_carrier_off(dev);
3783 sp->last_link_state = 0;
3784
3785 /* Initialize H/W and enable interrupts */
3786 err = s2io_card_up(sp);
3787 if (err) {
3788 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3789 dev->name);
3790 goto hw_init_failed;
3791 }
3792
3793 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3794 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3795 s2io_card_down(sp);
3796 err = -ENODEV;
3797 goto hw_init_failed;
3798 }
3799
3800 netif_start_queue(dev);
3801 return 0;
3802
3803 hw_init_failed:
3804 if (sp->intr_type == MSI_X) {
3805 if (sp->entries)
3806 kfree(sp->entries);
3807 if (sp->s2io_entries)
3808 kfree(sp->s2io_entries);
3809 }
3810 return err;
3811 }
3812
3813 /**
3814 * s2io_close -close entry point of the driver
3815 * @dev : device pointer.
3816 * Description:
3817 * This is the stop entry point of the driver. It needs to undo exactly
3818 * whatever was done by the open entry point,thus it's usually referred to
3819 * as the close function.Among other things this function mainly stops the
3820 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3821 * Return value:
3822 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3823 * file on failure.
3824 */
3825
3826 static int s2io_close(struct net_device *dev)
3827 {
3828 struct s2io_nic *sp = dev->priv;
3829
3830 netif_stop_queue(dev);
3831 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3832 s2io_card_down(sp);
3833
3834 sp->device_close_flag = TRUE; /* Device is shut down. */
3835 return 0;
3836 }
3837
3838 /**
3839 * s2io_xmit - Tx entry point of te driver
3840 * @skb : the socket buffer containing the Tx data.
3841 * @dev : device pointer.
3842 * Description :
3843 * This function is the Tx entry point of the driver. S2IO NIC supports
3844 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3845 * NOTE: when device cant queue the pkt,just the trans_start variable will
3846 * not be upadted.
3847 * Return value:
3848 * 0 on success & 1 on failure.
3849 */
3850
3851 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3852 {
3853 struct s2io_nic *sp = dev->priv;
3854 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3855 register u64 val64;
3856 struct TxD *txdp;
3857 struct TxFIFO_element __iomem *tx_fifo;
3858 unsigned long flags;
3859 u16 vlan_tag = 0;
3860 int vlan_priority = 0;
3861 struct mac_info *mac_control;
3862 struct config_param *config;
3863 int offload_type;
3864
3865 mac_control = &sp->mac_control;
3866 config = &sp->config;
3867
3868 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3869 spin_lock_irqsave(&sp->tx_lock, flags);
3870 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3871 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3872 dev->name);
3873 spin_unlock_irqrestore(&sp->tx_lock, flags);
3874 dev_kfree_skb(skb);
3875 return 0;
3876 }
3877
3878 queue = 0;
3879
3880 /* Get Fifo number to Transmit based on vlan priority */
3881 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3882 vlan_tag = vlan_tx_tag_get(skb);
3883 vlan_priority = vlan_tag >> 13;
3884 queue = config->fifo_mapping[vlan_priority];
3885 }
3886
3887 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3888 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3889 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3890 list_virt_addr;
3891
3892 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3893 /* Avoid "put" pointer going beyond "get" pointer */
3894 if (txdp->Host_Control ||
3895 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3896 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3897 netif_stop_queue(dev);
3898 dev_kfree_skb(skb);
3899 spin_unlock_irqrestore(&sp->tx_lock, flags);
3900 return 0;
3901 }
3902
3903 /* A buffer with no data will be dropped */
3904 if (!skb->len) {
3905 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3906 dev_kfree_skb(skb);
3907 spin_unlock_irqrestore(&sp->tx_lock, flags);
3908 return 0;
3909 }
3910
3911 offload_type = s2io_offload_type(skb);
3912 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3913 txdp->Control_1 |= TXD_TCP_LSO_EN;
3914 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3915 }
3916 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3917 txdp->Control_2 |=
3918 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3919 TXD_TX_CKO_UDP_EN);
3920 }
3921 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3922 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3923 txdp->Control_2 |= config->tx_intr_type;
3924
3925 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3926 txdp->Control_2 |= TXD_VLAN_ENABLE;
3927 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3928 }
3929
3930 frg_len = skb->len - skb->data_len;
3931 if (offload_type == SKB_GSO_UDP) {
3932 int ufo_size;
3933
3934 ufo_size = s2io_udp_mss(skb);
3935 ufo_size &= ~7;
3936 txdp->Control_1 |= TXD_UFO_EN;
3937 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3938 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3939 #ifdef __BIG_ENDIAN
3940 sp->ufo_in_band_v[put_off] =
3941 (u64)skb_shinfo(skb)->ip6_frag_id;
3942 #else
3943 sp->ufo_in_band_v[put_off] =
3944 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3945 #endif
3946 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3947 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3948 sp->ufo_in_band_v,
3949 sizeof(u64), PCI_DMA_TODEVICE);
3950 txdp++;
3951 }
3952
3953 txdp->Buffer_Pointer = pci_map_single
3954 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3955 txdp->Host_Control = (unsigned long) skb;
3956 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3957 if (offload_type == SKB_GSO_UDP)
3958 txdp->Control_1 |= TXD_UFO_EN;
3959
3960 frg_cnt = skb_shinfo(skb)->nr_frags;
3961 /* For fragmented SKB. */
3962 for (i = 0; i < frg_cnt; i++) {
3963 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3964 /* A '0' length fragment will be ignored */
3965 if (!frag->size)
3966 continue;
3967 txdp++;
3968 txdp->Buffer_Pointer = (u64) pci_map_page
3969 (sp->pdev, frag->page, frag->page_offset,
3970 frag->size, PCI_DMA_TODEVICE);
3971 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3972 if (offload_type == SKB_GSO_UDP)
3973 txdp->Control_1 |= TXD_UFO_EN;
3974 }
3975 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3976
3977 if (offload_type == SKB_GSO_UDP)
3978 frg_cnt++; /* as Txd0 was used for inband header */
3979
3980 tx_fifo = mac_control->tx_FIFO_start[queue];
3981 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3982 writeq(val64, &tx_fifo->TxDL_Pointer);
3983
3984 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3985 TX_FIFO_LAST_LIST);
3986 if (offload_type)
3987 val64 |= TX_FIFO_SPECIAL_FUNC;
3988
3989 writeq(val64, &tx_fifo->List_Control);
3990
3991 mmiowb();
3992
3993 put_off++;
3994 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3995 put_off = 0;
3996 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3997
3998 /* Avoid "put" pointer going beyond "get" pointer */
3999 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4000 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4001 DBG_PRINT(TX_DBG,
4002 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4003 put_off, get_off);
4004 netif_stop_queue(dev);
4005 }
4006
4007 dev->trans_start = jiffies;
4008 spin_unlock_irqrestore(&sp->tx_lock, flags);
4009
4010 return 0;
4011 }
4012
4013 static void
4014 s2io_alarm_handle(unsigned long data)
4015 {
4016 struct s2io_nic *sp = (struct s2io_nic *)data;
4017
4018 alarm_intr_handler(sp);
4019 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4020 }
4021
4022 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4023 {
4024 int rxb_size, level;
4025
4026 if (!sp->lro) {
4027 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4028 level = rx_buffer_level(sp, rxb_size, rng_n);
4029
4030 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4031 int ret;
4032 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4033 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4034 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4035 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4036 __FUNCTION__);
4037 clear_bit(0, (&sp->tasklet_status));
4038 return -1;
4039 }
4040 clear_bit(0, (&sp->tasklet_status));
4041 } else if (level == LOW)
4042 tasklet_schedule(&sp->task);
4043
4044 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4045 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4046 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4047 }
4048 return 0;
4049 }
4050
4051 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4052 {
4053 struct net_device *dev = (struct net_device *) dev_id;
4054 struct s2io_nic *sp = dev->priv;
4055 int i;
4056 struct mac_info *mac_control;
4057 struct config_param *config;
4058
4059 atomic_inc(&sp->isr_cnt);
4060 mac_control = &sp->mac_control;
4061 config = &sp->config;
4062 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4063
4064 /* If Intr is because of Rx Traffic */
4065 for (i = 0; i < config->rx_ring_num; i++)
4066 rx_intr_handler(&mac_control->rings[i]);
4067
4068 /* If Intr is because of Tx Traffic */
4069 for (i = 0; i < config->tx_fifo_num; i++)
4070 tx_intr_handler(&mac_control->fifos[i]);
4071
4072 /*
4073 * If the Rx buffer count is below the panic threshold then
4074 * reallocate the buffers from the interrupt handler itself,
4075 * else schedule a tasklet to reallocate the buffers.
4076 */
4077 for (i = 0; i < config->rx_ring_num; i++)
4078 s2io_chk_rx_buffers(sp, i);
4079
4080 atomic_dec(&sp->isr_cnt);
4081 return IRQ_HANDLED;
4082 }
4083
4084 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4085 {
4086 struct ring_info *ring = (struct ring_info *)dev_id;
4087 struct s2io_nic *sp = ring->nic;
4088
4089 atomic_inc(&sp->isr_cnt);
4090
4091 rx_intr_handler(ring);
4092 s2io_chk_rx_buffers(sp, ring->ring_no);
4093
4094 atomic_dec(&sp->isr_cnt);
4095 return IRQ_HANDLED;
4096 }
4097
4098 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4099 {
4100 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4101 struct s2io_nic *sp = fifo->nic;
4102
4103 atomic_inc(&sp->isr_cnt);
4104 tx_intr_handler(fifo);
4105 atomic_dec(&sp->isr_cnt);
4106 return IRQ_HANDLED;
4107 }
4108 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4109 {
4110 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4111 u64 val64;
4112
4113 val64 = readq(&bar0->pic_int_status);
4114 if (val64 & PIC_INT_GPIO) {
4115 val64 = readq(&bar0->gpio_int_reg);
4116 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4117 (val64 & GPIO_INT_REG_LINK_UP)) {
4118 /*
4119 * This is unstable state so clear both up/down
4120 * interrupt and adapter to re-evaluate the link state.
4121 */
4122 val64 |= GPIO_INT_REG_LINK_DOWN;
4123 val64 |= GPIO_INT_REG_LINK_UP;
4124 writeq(val64, &bar0->gpio_int_reg);
4125 val64 = readq(&bar0->gpio_int_mask);
4126 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4127 GPIO_INT_MASK_LINK_DOWN);
4128 writeq(val64, &bar0->gpio_int_mask);
4129 }
4130 else if (val64 & GPIO_INT_REG_LINK_UP) {
4131 val64 = readq(&bar0->adapter_status);
4132 /* Enable Adapter */
4133 val64 = readq(&bar0->adapter_control);
4134 val64 |= ADAPTER_CNTL_EN;
4135 writeq(val64, &bar0->adapter_control);
4136 val64 |= ADAPTER_LED_ON;
4137 writeq(val64, &bar0->adapter_control);
4138 if (!sp->device_enabled_once)
4139 sp->device_enabled_once = 1;
4140
4141 s2io_link(sp, LINK_UP);
4142 /*
4143 * unmask link down interrupt and mask link-up
4144 * intr
4145 */
4146 val64 = readq(&bar0->gpio_int_mask);
4147 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4148 val64 |= GPIO_INT_MASK_LINK_UP;
4149 writeq(val64, &bar0->gpio_int_mask);
4150
4151 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4152 val64 = readq(&bar0->adapter_status);
4153 s2io_link(sp, LINK_DOWN);
4154 /* Link is down so unmaks link up interrupt */
4155 val64 = readq(&bar0->gpio_int_mask);
4156 val64 &= ~GPIO_INT_MASK_LINK_UP;
4157 val64 |= GPIO_INT_MASK_LINK_DOWN;
4158 writeq(val64, &bar0->gpio_int_mask);
4159
4160 /* turn off LED */
4161 val64 = readq(&bar0->adapter_control);
4162 val64 = val64 &(~ADAPTER_LED_ON);
4163 writeq(val64, &bar0->adapter_control);
4164 }
4165 }
4166 val64 = readq(&bar0->gpio_int_mask);
4167 }
4168
4169 /**
4170 * s2io_isr - ISR handler of the device .
4171 * @irq: the irq of the device.
4172 * @dev_id: a void pointer to the dev structure of the NIC.
4173 * Description: This function is the ISR handler of the device. It
4174 * identifies the reason for the interrupt and calls the relevant
4175 * service routines. As a contongency measure, this ISR allocates the
4176 * recv buffers, if their numbers are below the panic value which is
4177 * presently set to 25% of the original number of rcv buffers allocated.
4178 * Return value:
4179 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4180 * IRQ_NONE: will be returned if interrupt is not from our device
4181 */
4182 static irqreturn_t s2io_isr(int irq, void *dev_id)
4183 {
4184 struct net_device *dev = (struct net_device *) dev_id;
4185 struct s2io_nic *sp = dev->priv;
4186 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4187 int i;
4188 u64 reason = 0;
4189 struct mac_info *mac_control;
4190 struct config_param *config;
4191
4192 atomic_inc(&sp->isr_cnt);
4193 mac_control = &sp->mac_control;
4194 config = &sp->config;
4195
4196 /*
4197 * Identify the cause for interrupt and call the appropriate
4198 * interrupt handler. Causes for the interrupt could be;
4199 * 1. Rx of packet.
4200 * 2. Tx complete.
4201 * 3. Link down.
4202 * 4. Error in any functional blocks of the NIC.
4203 */
4204 reason = readq(&bar0->general_int_status);
4205
4206 if (!reason) {
4207 /* The interrupt was not raised by us. */
4208 atomic_dec(&sp->isr_cnt);
4209 return IRQ_NONE;
4210 }
4211 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4212 /* Disable device and get out */
4213 atomic_dec(&sp->isr_cnt);
4214 return IRQ_NONE;
4215 }
4216
4217 if (napi) {
4218 if (reason & GEN_INTR_RXTRAFFIC) {
4219 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4220 __netif_rx_schedule(dev);
4221 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4222 }
4223 else
4224 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4225 }
4226 } else {
4227 /*
4228 * Rx handler is called by default, without checking for the
4229 * cause of interrupt.
4230 * rx_traffic_int reg is an R1 register, writing all 1's
4231 * will ensure that the actual interrupt causing bit get's
4232 * cleared and hence a read can be avoided.
4233 */
4234 if (reason & GEN_INTR_RXTRAFFIC)
4235 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4236
4237 for (i = 0; i < config->rx_ring_num; i++) {
4238 rx_intr_handler(&mac_control->rings[i]);
4239 }
4240 }
4241
4242 /*
4243 * tx_traffic_int reg is an R1 register, writing all 1's
4244 * will ensure that the actual interrupt causing bit get's
4245 * cleared and hence a read can be avoided.
4246 */
4247 if (reason & GEN_INTR_TXTRAFFIC)
4248 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4249
4250 for (i = 0; i < config->tx_fifo_num; i++)
4251 tx_intr_handler(&mac_control->fifos[i]);
4252
4253 if (reason & GEN_INTR_TXPIC)
4254 s2io_txpic_intr_handle(sp);
4255 /*
4256 * If the Rx buffer count is below the panic threshold then
4257 * reallocate the buffers from the interrupt handler itself,
4258 * else schedule a tasklet to reallocate the buffers.
4259 */
4260 if (!napi) {
4261 for (i = 0; i < config->rx_ring_num; i++)
4262 s2io_chk_rx_buffers(sp, i);
4263 }
4264
4265 writeq(0, &bar0->general_int_mask);
4266 readl(&bar0->general_int_status);
4267
4268 atomic_dec(&sp->isr_cnt);
4269 return IRQ_HANDLED;
4270 }
4271
4272 /**
4273 * s2io_updt_stats -
4274 */
4275 static void s2io_updt_stats(struct s2io_nic *sp)
4276 {
4277 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4278 u64 val64;
4279 int cnt = 0;
4280
4281 if (atomic_read(&sp->card_state) == CARD_UP) {
4282 /* Apprx 30us on a 133 MHz bus */
4283 val64 = SET_UPDT_CLICKS(10) |
4284 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4285 writeq(val64, &bar0->stat_cfg);
4286 do {
4287 udelay(100);
4288 val64 = readq(&bar0->stat_cfg);
4289 if (!(val64 & BIT(0)))
4290 break;
4291 cnt++;
4292 if (cnt == 5)
4293 break; /* Updt failed */
4294 } while(1);
4295 }
4296 }
4297
4298 /**
4299 * s2io_get_stats - Updates the device statistics structure.
4300 * @dev : pointer to the device structure.
4301 * Description:
4302 * This function updates the device statistics structure in the s2io_nic
4303 * structure and returns a pointer to the same.
4304 * Return value:
4305 * pointer to the updated net_device_stats structure.
4306 */
4307
4308 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4309 {
4310 struct s2io_nic *sp = dev->priv;
4311 struct mac_info *mac_control;
4312 struct config_param *config;
4313
4314
4315 mac_control = &sp->mac_control;
4316 config = &sp->config;
4317
4318 /* Configure Stats for immediate updt */
4319 s2io_updt_stats(sp);
4320
4321 sp->stats.tx_packets =
4322 le32_to_cpu(mac_control->stats_info->tmac_frms);
4323 sp->stats.tx_errors =
4324 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4325 sp->stats.rx_errors =
4326 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4327 sp->stats.multicast =
4328 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4329 sp->stats.rx_length_errors =
4330 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4331
4332 return (&sp->stats);
4333 }
4334
4335 /**
4336 * s2io_set_multicast - entry point for multicast address enable/disable.
4337 * @dev : pointer to the device structure
4338 * Description:
4339 * This function is a driver entry point which gets called by the kernel
4340 * whenever multicast addresses must be enabled/disabled. This also gets
4341 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4342 * determine, if multicast address must be enabled or if promiscuous mode
4343 * is to be disabled etc.
4344 * Return value:
4345 * void.
4346 */
4347
4348 static void s2io_set_multicast(struct net_device *dev)
4349 {
4350 int i, j, prev_cnt;
4351 struct dev_mc_list *mclist;
4352 struct s2io_nic *sp = dev->priv;
4353 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4354 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4355 0xfeffffffffffULL;
4356 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4357 void __iomem *add;
4358
4359 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4360 /* Enable all Multicast addresses */
4361 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4362 &bar0->rmac_addr_data0_mem);
4363 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4364 &bar0->rmac_addr_data1_mem);
4365 val64 = RMAC_ADDR_CMD_MEM_WE |
4366 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4367 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4368 writeq(val64, &bar0->rmac_addr_cmd_mem);
4369 /* Wait till command completes */
4370 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4371 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4372 S2IO_BIT_RESET);
4373
4374 sp->m_cast_flg = 1;
4375 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4376 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4377 /* Disable all Multicast addresses */
4378 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4379 &bar0->rmac_addr_data0_mem);
4380 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4381 &bar0->rmac_addr_data1_mem);
4382 val64 = RMAC_ADDR_CMD_MEM_WE |
4383 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4384 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4385 writeq(val64, &bar0->rmac_addr_cmd_mem);
4386 /* Wait till command completes */
4387 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4388 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4389 S2IO_BIT_RESET);
4390
4391 sp->m_cast_flg = 0;
4392 sp->all_multi_pos = 0;
4393 }
4394
4395 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4396 /* Put the NIC into promiscuous mode */
4397 add = &bar0->mac_cfg;
4398 val64 = readq(&bar0->mac_cfg);
4399 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4400
4401 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4402 writel((u32) val64, add);
4403 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4404 writel((u32) (val64 >> 32), (add + 4));
4405
4406 if (vlan_tag_strip != 1) {
4407 val64 = readq(&bar0->rx_pa_cfg);
4408 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4409 writeq(val64, &bar0->rx_pa_cfg);
4410 vlan_strip_flag = 0;
4411 }
4412
4413 val64 = readq(&bar0->mac_cfg);
4414 sp->promisc_flg = 1;
4415 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4416 dev->name);
4417 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4418 /* Remove the NIC from promiscuous mode */
4419 add = &bar0->mac_cfg;
4420 val64 = readq(&bar0->mac_cfg);
4421 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4422
4423 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4424 writel((u32) val64, add);
4425 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4426 writel((u32) (val64 >> 32), (add + 4));
4427
4428 if (vlan_tag_strip != 0) {
4429 val64 = readq(&bar0->rx_pa_cfg);
4430 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4431 writeq(val64, &bar0->rx_pa_cfg);
4432 vlan_strip_flag = 1;
4433 }
4434
4435 val64 = readq(&bar0->mac_cfg);
4436 sp->promisc_flg = 0;
4437 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4438 dev->name);
4439 }
4440
4441 /* Update individual M_CAST address list */
4442 if ((!sp->m_cast_flg) && dev->mc_count) {
4443 if (dev->mc_count >
4444 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4445 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4446 dev->name);
4447 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4448 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4449 return;
4450 }
4451
4452 prev_cnt = sp->mc_addr_count;
4453 sp->mc_addr_count = dev->mc_count;
4454
4455 /* Clear out the previous list of Mc in the H/W. */
4456 for (i = 0; i < prev_cnt; i++) {
4457 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4458 &bar0->rmac_addr_data0_mem);
4459 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4460 &bar0->rmac_addr_data1_mem);
4461 val64 = RMAC_ADDR_CMD_MEM_WE |
4462 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4463 RMAC_ADDR_CMD_MEM_OFFSET
4464 (MAC_MC_ADDR_START_OFFSET + i);
4465 writeq(val64, &bar0->rmac_addr_cmd_mem);
4466
4467 /* Wait for command completes */
4468 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4469 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4470 S2IO_BIT_RESET)) {
4471 DBG_PRINT(ERR_DBG, "%s: Adding ",
4472 dev->name);
4473 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4474 return;
4475 }
4476 }
4477
4478 /* Create the new Rx filter list and update the same in H/W. */
4479 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4480 i++, mclist = mclist->next) {
4481 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4482 ETH_ALEN);
4483 mac_addr = 0;
4484 for (j = 0; j < ETH_ALEN; j++) {
4485 mac_addr |= mclist->dmi_addr[j];
4486 mac_addr <<= 8;
4487 }
4488 mac_addr >>= 8;
4489 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4490 &bar0->rmac_addr_data0_mem);
4491 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4492 &bar0->rmac_addr_data1_mem);
4493 val64 = RMAC_ADDR_CMD_MEM_WE |
4494 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4495 RMAC_ADDR_CMD_MEM_OFFSET
4496 (i + MAC_MC_ADDR_START_OFFSET);
4497 writeq(val64, &bar0->rmac_addr_cmd_mem);
4498
4499 /* Wait for command completes */
4500 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4501 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4502 S2IO_BIT_RESET)) {
4503 DBG_PRINT(ERR_DBG, "%s: Adding ",
4504 dev->name);
4505 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4506 return;
4507 }
4508 }
4509 }
4510 }
4511
4512 /**
4513 * s2io_set_mac_addr - Programs the Xframe mac address
4514 * @dev : pointer to the device structure.
4515 * @addr: a uchar pointer to the new mac address which is to be set.
4516 * Description : This procedure will program the Xframe to receive
4517 * frames with new Mac Address
4518 * Return value: SUCCESS on success and an appropriate (-)ve integer
4519 * as defined in errno.h file on failure.
4520 */
4521
4522 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4523 {
4524 struct s2io_nic *sp = dev->priv;
4525 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4526 register u64 val64, mac_addr = 0;
4527 int i;
4528 u64 old_mac_addr = 0;
4529
4530 /*
4531 * Set the new MAC address as the new unicast filter and reflect this
4532 * change on the device address registered with the OS. It will be
4533 * at offset 0.
4534 */
4535 for (i = 0; i < ETH_ALEN; i++) {
4536 mac_addr <<= 8;
4537 mac_addr |= addr[i];
4538 old_mac_addr <<= 8;
4539 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4540 }
4541
4542 if(0 == mac_addr)
4543 return SUCCESS;
4544
4545 /* Update the internal structure with this new mac address */
4546 if(mac_addr != old_mac_addr) {
4547 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4548 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4549 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4550 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4551 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4552 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4553 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4554 }
4555
4556 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4557 &bar0->rmac_addr_data0_mem);
4558
4559 val64 =
4560 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4561 RMAC_ADDR_CMD_MEM_OFFSET(0);
4562 writeq(val64, &bar0->rmac_addr_cmd_mem);
4563 /* Wait till command completes */
4564 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4565 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4566 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4567 return FAILURE;
4568 }
4569
4570 return SUCCESS;
4571 }
4572
4573 /**
4574 * s2io_ethtool_sset - Sets different link parameters.
4575 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4576 * @info: pointer to the structure with parameters given by ethtool to set
4577 * link information.
4578 * Description:
4579 * The function sets different link parameters provided by the user onto
4580 * the NIC.
4581 * Return value:
4582 * 0 on success.
4583 */
4584
4585 static int s2io_ethtool_sset(struct net_device *dev,
4586 struct ethtool_cmd *info)
4587 {
4588 struct s2io_nic *sp = dev->priv;
4589 if ((info->autoneg == AUTONEG_ENABLE) ||
4590 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4591 return -EINVAL;
4592 else {
4593 s2io_close(sp->dev);
4594 s2io_open(sp->dev);
4595 }
4596
4597 return 0;
4598 }
4599
4600 /**
4601 * s2io_ethtol_gset - Return link specific information.
4602 * @sp : private member of the device structure, pointer to the
4603 * s2io_nic structure.
4604 * @info : pointer to the structure with parameters given by ethtool
4605 * to return link information.
4606 * Description:
4607 * Returns link specific information like speed, duplex etc.. to ethtool.
4608 * Return value :
4609 * return 0 on success.
4610 */
4611
4612 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4613 {
4614 struct s2io_nic *sp = dev->priv;
4615 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4616 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4617 info->port = PORT_FIBRE;
4618 /* info->transceiver?? TODO */
4619
4620 if (netif_carrier_ok(sp->dev)) {
4621 info->speed = 10000;
4622 info->duplex = DUPLEX_FULL;
4623 } else {
4624 info->speed = -1;
4625 info->duplex = -1;
4626 }
4627
4628 info->autoneg = AUTONEG_DISABLE;
4629 return 0;
4630 }
4631
4632 /**
4633 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4634 * @sp : private member of the device structure, which is a pointer to the
4635 * s2io_nic structure.
4636 * @info : pointer to the structure with parameters given by ethtool to
4637 * return driver information.
4638 * Description:
4639 * Returns driver specefic information like name, version etc.. to ethtool.
4640 * Return value:
4641 * void
4642 */
4643
4644 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4645 struct ethtool_drvinfo *info)
4646 {
4647 struct s2io_nic *sp = dev->priv;
4648
4649 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4650 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4651 strncpy(info->fw_version, "", sizeof(info->fw_version));
4652 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4653 info->regdump_len = XENA_REG_SPACE;
4654 info->eedump_len = XENA_EEPROM_SPACE;
4655 info->testinfo_len = S2IO_TEST_LEN;
4656
4657 if (sp->device_type == XFRAME_I_DEVICE)
4658 info->n_stats = XFRAME_I_STAT_LEN;
4659 else
4660 info->n_stats = XFRAME_II_STAT_LEN;
4661 }
4662
4663 /**
4664 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4665 * @sp: private member of the device structure, which is a pointer to the
4666 * s2io_nic structure.
4667 * @regs : pointer to the structure with parameters given by ethtool for
4668 * dumping the registers.
4669 * @reg_space: The input argumnet into which all the registers are dumped.
4670 * Description:
4671 * Dumps the entire register space of xFrame NIC into the user given
4672 * buffer area.
4673 * Return value :
4674 * void .
4675 */
4676
4677 static void s2io_ethtool_gregs(struct net_device *dev,
4678 struct ethtool_regs *regs, void *space)
4679 {
4680 int i;
4681 u64 reg;
4682 u8 *reg_space = (u8 *) space;
4683 struct s2io_nic *sp = dev->priv;
4684
4685 regs->len = XENA_REG_SPACE;
4686 regs->version = sp->pdev->subsystem_device;
4687
4688 for (i = 0; i < regs->len; i += 8) {
4689 reg = readq(sp->bar0 + i);
4690 memcpy((reg_space + i), &reg, 8);
4691 }
4692 }
4693
4694 /**
4695 * s2io_phy_id - timer function that alternates adapter LED.
4696 * @data : address of the private member of the device structure, which
4697 * is a pointer to the s2io_nic structure, provided as an u32.
4698 * Description: This is actually the timer function that alternates the
4699 * adapter LED bit of the adapter control bit to set/reset every time on
4700 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4701 * once every second.
4702 */
4703 static void s2io_phy_id(unsigned long data)
4704 {
4705 struct s2io_nic *sp = (struct s2io_nic *) data;
4706 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4707 u64 val64 = 0;
4708 u16 subid;
4709
4710 subid = sp->pdev->subsystem_device;
4711 if ((sp->device_type == XFRAME_II_DEVICE) ||
4712 ((subid & 0xFF) >= 0x07)) {
4713 val64 = readq(&bar0->gpio_control);
4714 val64 ^= GPIO_CTRL_GPIO_0;
4715 writeq(val64, &bar0->gpio_control);
4716 } else {
4717 val64 = readq(&bar0->adapter_control);
4718 val64 ^= ADAPTER_LED_ON;
4719 writeq(val64, &bar0->adapter_control);
4720 }
4721
4722 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4723 }
4724
4725 /**
4726 * s2io_ethtool_idnic - To physically identify the nic on the system.
4727 * @sp : private member of the device structure, which is a pointer to the
4728 * s2io_nic structure.
4729 * @id : pointer to the structure with identification parameters given by
4730 * ethtool.
4731 * Description: Used to physically identify the NIC on the system.
4732 * The Link LED will blink for a time specified by the user for
4733 * identification.
4734 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4735 * identification is possible only if it's link is up.
4736 * Return value:
4737 * int , returns 0 on success
4738 */
4739
4740 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4741 {
4742 u64 val64 = 0, last_gpio_ctrl_val;
4743 struct s2io_nic *sp = dev->priv;
4744 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4745 u16 subid;
4746
4747 subid = sp->pdev->subsystem_device;
4748 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4749 if ((sp->device_type == XFRAME_I_DEVICE) &&
4750 ((subid & 0xFF) < 0x07)) {
4751 val64 = readq(&bar0->adapter_control);
4752 if (!(val64 & ADAPTER_CNTL_EN)) {
4753 printk(KERN_ERR
4754 "Adapter Link down, cannot blink LED\n");
4755 return -EFAULT;
4756 }
4757 }
4758 if (sp->id_timer.function == NULL) {
4759 init_timer(&sp->id_timer);
4760 sp->id_timer.function = s2io_phy_id;
4761 sp->id_timer.data = (unsigned long) sp;
4762 }
4763 mod_timer(&sp->id_timer, jiffies);
4764 if (data)
4765 msleep_interruptible(data * HZ);
4766 else
4767 msleep_interruptible(MAX_FLICKER_TIME);
4768 del_timer_sync(&sp->id_timer);
4769
4770 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4771 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4772 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4773 }
4774
4775 return 0;
4776 }
4777
4778 /**
4779 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4780 * @sp : private member of the device structure, which is a pointer to the
4781 * s2io_nic structure.
4782 * @ep : pointer to the structure with pause parameters given by ethtool.
4783 * Description:
4784 * Returns the Pause frame generation and reception capability of the NIC.
4785 * Return value:
4786 * void
4787 */
4788 static void s2io_ethtool_getpause_data(struct net_device *dev,
4789 struct ethtool_pauseparam *ep)
4790 {
4791 u64 val64;
4792 struct s2io_nic *sp = dev->priv;
4793 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4794
4795 val64 = readq(&bar0->rmac_pause_cfg);
4796 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4797 ep->tx_pause = TRUE;
4798 if (val64 & RMAC_PAUSE_RX_ENABLE)
4799 ep->rx_pause = TRUE;
4800 ep->autoneg = FALSE;
4801 }
4802
4803 /**
4804 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4805 * @sp : private member of the device structure, which is a pointer to the
4806 * s2io_nic structure.
4807 * @ep : pointer to the structure with pause parameters given by ethtool.
4808 * Description:
4809 * It can be used to set or reset Pause frame generation or reception
4810 * support of the NIC.
4811 * Return value:
4812 * int, returns 0 on Success
4813 */
4814
4815 static int s2io_ethtool_setpause_data(struct net_device *dev,
4816 struct ethtool_pauseparam *ep)
4817 {
4818 u64 val64;
4819 struct s2io_nic *sp = dev->priv;
4820 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4821
4822 val64 = readq(&bar0->rmac_pause_cfg);
4823 if (ep->tx_pause)
4824 val64 |= RMAC_PAUSE_GEN_ENABLE;
4825 else
4826 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4827 if (ep->rx_pause)
4828 val64 |= RMAC_PAUSE_RX_ENABLE;
4829 else
4830 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4831 writeq(val64, &bar0->rmac_pause_cfg);
4832 return 0;
4833 }
4834
4835 /**
4836 * read_eeprom - reads 4 bytes of data from user given offset.
4837 * @sp : private member of the device structure, which is a pointer to the
4838 * s2io_nic structure.
4839 * @off : offset at which the data must be written
4840 * @data : Its an output parameter where the data read at the given
4841 * offset is stored.
4842 * Description:
4843 * Will read 4 bytes of data from the user given offset and return the
4844 * read data.
4845 * NOTE: Will allow to read only part of the EEPROM visible through the
4846 * I2C bus.
4847 * Return value:
4848 * -1 on failure and 0 on success.
4849 */
4850
4851 #define S2IO_DEV_ID 5
4852 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4853 {
4854 int ret = -1;
4855 u32 exit_cnt = 0;
4856 u64 val64;
4857 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4858
4859 if (sp->device_type == XFRAME_I_DEVICE) {
4860 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4861 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4862 I2C_CONTROL_CNTL_START;
4863 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4864
4865 while (exit_cnt < 5) {
4866 val64 = readq(&bar0->i2c_control);
4867 if (I2C_CONTROL_CNTL_END(val64)) {
4868 *data = I2C_CONTROL_GET_DATA(val64);
4869 ret = 0;
4870 break;
4871 }
4872 msleep(50);
4873 exit_cnt++;
4874 }
4875 }
4876
4877 if (sp->device_type == XFRAME_II_DEVICE) {
4878 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4879 SPI_CONTROL_BYTECNT(0x3) |
4880 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4881 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4882 val64 |= SPI_CONTROL_REQ;
4883 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4884 while (exit_cnt < 5) {
4885 val64 = readq(&bar0->spi_control);
4886 if (val64 & SPI_CONTROL_NACK) {
4887 ret = 1;
4888 break;
4889 } else if (val64 & SPI_CONTROL_DONE) {
4890 *data = readq(&bar0->spi_data);
4891 *data &= 0xffffff;
4892 ret = 0;
4893 break;
4894 }
4895 msleep(50);
4896 exit_cnt++;
4897 }
4898 }
4899 return ret;
4900 }
4901
4902 /**
4903 * write_eeprom - actually writes the relevant part of the data value.
4904 * @sp : private member of the device structure, which is a pointer to the
4905 * s2io_nic structure.
4906 * @off : offset at which the data must be written
4907 * @data : The data that is to be written
4908 * @cnt : Number of bytes of the data that are actually to be written into
4909 * the Eeprom. (max of 3)
4910 * Description:
4911 * Actually writes the relevant part of the data value into the Eeprom
4912 * through the I2C bus.
4913 * Return value:
4914 * 0 on success, -1 on failure.
4915 */
4916
4917 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4918 {
4919 int exit_cnt = 0, ret = -1;
4920 u64 val64;
4921 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4922
4923 if (sp->device_type == XFRAME_I_DEVICE) {
4924 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4925 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4926 I2C_CONTROL_CNTL_START;
4927 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4928
4929 while (exit_cnt < 5) {
4930 val64 = readq(&bar0->i2c_control);
4931 if (I2C_CONTROL_CNTL_END(val64)) {
4932 if (!(val64 & I2C_CONTROL_NACK))
4933 ret = 0;
4934 break;
4935 }
4936 msleep(50);
4937 exit_cnt++;
4938 }
4939 }
4940
4941 if (sp->device_type == XFRAME_II_DEVICE) {
4942 int write_cnt = (cnt == 8) ? 0 : cnt;
4943 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4944
4945 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4946 SPI_CONTROL_BYTECNT(write_cnt) |
4947 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4948 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4949 val64 |= SPI_CONTROL_REQ;
4950 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4951 while (exit_cnt < 5) {
4952 val64 = readq(&bar0->spi_control);
4953 if (val64 & SPI_CONTROL_NACK) {
4954 ret = 1;
4955 break;
4956 } else if (val64 & SPI_CONTROL_DONE) {
4957 ret = 0;
4958 break;
4959 }
4960 msleep(50);
4961 exit_cnt++;
4962 }
4963 }
4964 return ret;
4965 }
4966 static void s2io_vpd_read(struct s2io_nic *nic)
4967 {
4968 u8 *vpd_data;
4969 u8 data;
4970 int i=0, cnt, fail = 0;
4971 int vpd_addr = 0x80;
4972
4973 if (nic->device_type == XFRAME_II_DEVICE) {
4974 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4975 vpd_addr = 0x80;
4976 }
4977 else {
4978 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4979 vpd_addr = 0x50;
4980 }
4981 strcpy(nic->serial_num, "NOT AVAILABLE");
4982
4983 vpd_data = kmalloc(256, GFP_KERNEL);
4984 if (!vpd_data)
4985 return;
4986
4987 for (i = 0; i < 256; i +=4 ) {
4988 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4989 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4990 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4991 for (cnt = 0; cnt <5; cnt++) {
4992 msleep(2);
4993 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4994 if (data == 0x80)
4995 break;
4996 }
4997 if (cnt >= 5) {
4998 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4999 fail = 1;
5000 break;
5001 }
5002 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5003 (u32 *)&vpd_data[i]);
5004 }
5005
5006 if(!fail) {
5007 /* read serial number of adapter */
5008 for (cnt = 0; cnt < 256; cnt++) {
5009 if ((vpd_data[cnt] == 'S') &&
5010 (vpd_data[cnt+1] == 'N') &&
5011 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5012 memset(nic->serial_num, 0, VPD_STRING_LEN);
5013 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5014 vpd_data[cnt+2]);
5015 break;
5016 }
5017 }
5018 }
5019
5020 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5021 memset(nic->product_name, 0, vpd_data[1]);
5022 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5023 }
5024 kfree(vpd_data);
5025 }
5026
5027 /**
5028 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5029 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5030 * @eeprom : pointer to the user level structure provided by ethtool,
5031 * containing all relevant information.
5032 * @data_buf : user defined value to be written into Eeprom.
5033 * Description: Reads the values stored in the Eeprom at given offset
5034 * for a given length. Stores these values int the input argument data
5035 * buffer 'data_buf' and returns these to the caller (ethtool.)
5036 * Return value:
5037 * int 0 on success
5038 */
5039
5040 static int s2io_ethtool_geeprom(struct net_device *dev,
5041 struct ethtool_eeprom *eeprom, u8 * data_buf)
5042 {
5043 u32 i, valid;
5044 u64 data;
5045 struct s2io_nic *sp = dev->priv;
5046
5047 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5048
5049 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5050 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5051
5052 for (i = 0; i < eeprom->len; i += 4) {
5053 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5054 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5055 return -EFAULT;
5056 }
5057 valid = INV(data);
5058 memcpy((data_buf + i), &valid, 4);
5059 }
5060 return 0;
5061 }
5062
5063 /**
5064 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5065 * @sp : private member of the device structure, which is a pointer to the
5066 * s2io_nic structure.
5067 * @eeprom : pointer to the user level structure provided by ethtool,
5068 * containing all relevant information.
5069 * @data_buf ; user defined value to be written into Eeprom.
5070 * Description:
5071 * Tries to write the user provided value in the Eeprom, at the offset
5072 * given by the user.
5073 * Return value:
5074 * 0 on success, -EFAULT on failure.
5075 */
5076
5077 static int s2io_ethtool_seeprom(struct net_device *dev,
5078 struct ethtool_eeprom *eeprom,
5079 u8 * data_buf)
5080 {
5081 int len = eeprom->len, cnt = 0;
5082 u64 valid = 0, data;
5083 struct s2io_nic *sp = dev->priv;
5084
5085 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5086 DBG_PRINT(ERR_DBG,
5087 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5088 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5089 eeprom->magic);
5090 return -EFAULT;
5091 }
5092
5093 while (len) {
5094 data = (u32) data_buf[cnt] & 0x000000FF;
5095 if (data) {
5096 valid = (u32) (data << 24);
5097 } else
5098 valid = data;
5099
5100 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5101 DBG_PRINT(ERR_DBG,
5102 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5103 DBG_PRINT(ERR_DBG,
5104 "write into the specified offset\n");
5105 return -EFAULT;
5106 }
5107 cnt++;
5108 len--;
5109 }
5110
5111 return 0;
5112 }
5113
5114 /**
5115 * s2io_register_test - reads and writes into all clock domains.
5116 * @sp : private member of the device structure, which is a pointer to the
5117 * s2io_nic structure.
5118 * @data : variable that returns the result of each of the test conducted b
5119 * by the driver.
5120 * Description:
5121 * Read and write into all clock domains. The NIC has 3 clock domains,
5122 * see that registers in all the three regions are accessible.
5123 * Return value:
5124 * 0 on success.
5125 */
5126
5127 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5128 {
5129 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5130 u64 val64 = 0, exp_val;
5131 int fail = 0;
5132
5133 val64 = readq(&bar0->pif_rd_swapper_fb);
5134 if (val64 != 0x123456789abcdefULL) {
5135 fail = 1;
5136 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5137 }
5138
5139 val64 = readq(&bar0->rmac_pause_cfg);
5140 if (val64 != 0xc000ffff00000000ULL) {
5141 fail = 1;
5142 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5143 }
5144
5145 val64 = readq(&bar0->rx_queue_cfg);
5146 if (sp->device_type == XFRAME_II_DEVICE)
5147 exp_val = 0x0404040404040404ULL;
5148 else
5149 exp_val = 0x0808080808080808ULL;
5150 if (val64 != exp_val) {
5151 fail = 1;
5152 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5153 }
5154
5155 val64 = readq(&bar0->xgxs_efifo_cfg);
5156 if (val64 != 0x000000001923141EULL) {
5157 fail = 1;
5158 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5159 }
5160
5161 val64 = 0x5A5A5A5A5A5A5A5AULL;
5162 writeq(val64, &bar0->xmsi_data);
5163 val64 = readq(&bar0->xmsi_data);
5164 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5165 fail = 1;
5166 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5167 }
5168
5169 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5170 writeq(val64, &bar0->xmsi_data);
5171 val64 = readq(&bar0->xmsi_data);
5172 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5173 fail = 1;
5174 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5175 }
5176
5177 *data = fail;
5178 return fail;
5179 }
5180
5181 /**
5182 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5183 * @sp : private member of the device structure, which is a pointer to the
5184 * s2io_nic structure.
5185 * @data:variable that returns the result of each of the test conducted by
5186 * the driver.
5187 * Description:
5188 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5189 * register.
5190 * Return value:
5191 * 0 on success.
5192 */
5193
5194 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5195 {
5196 int fail = 0;
5197 u64 ret_data, org_4F0, org_7F0;
5198 u8 saved_4F0 = 0, saved_7F0 = 0;
5199 struct net_device *dev = sp->dev;
5200
5201 /* Test Write Error at offset 0 */
5202 /* Note that SPI interface allows write access to all areas
5203 * of EEPROM. Hence doing all negative testing only for Xframe I.
5204 */
5205 if (sp->device_type == XFRAME_I_DEVICE)
5206 if (!write_eeprom(sp, 0, 0, 3))
5207 fail = 1;
5208
5209 /* Save current values at offsets 0x4F0 and 0x7F0 */
5210 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5211 saved_4F0 = 1;
5212 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5213 saved_7F0 = 1;
5214
5215 /* Test Write at offset 4f0 */
5216 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5217 fail = 1;
5218 if (read_eeprom(sp, 0x4F0, &ret_data))
5219 fail = 1;
5220
5221 if (ret_data != 0x012345) {
5222 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5223 "Data written %llx Data read %llx\n",
5224 dev->name, (unsigned long long)0x12345,
5225 (unsigned long long)ret_data);
5226 fail = 1;
5227 }
5228
5229 /* Reset the EEPROM data go FFFF */
5230 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5231
5232 /* Test Write Request Error at offset 0x7c */
5233 if (sp->device_type == XFRAME_I_DEVICE)
5234 if (!write_eeprom(sp, 0x07C, 0, 3))
5235 fail = 1;
5236
5237 /* Test Write Request at offset 0x7f0 */
5238 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5239 fail = 1;
5240 if (read_eeprom(sp, 0x7F0, &ret_data))
5241 fail = 1;
5242
5243 if (ret_data != 0x012345) {
5244 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5245 "Data written %llx Data read %llx\n",
5246 dev->name, (unsigned long long)0x12345,
5247 (unsigned long long)ret_data);
5248 fail = 1;
5249 }
5250
5251 /* Reset the EEPROM data go FFFF */
5252 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5253
5254 if (sp->device_type == XFRAME_I_DEVICE) {
5255 /* Test Write Error at offset 0x80 */
5256 if (!write_eeprom(sp, 0x080, 0, 3))
5257 fail = 1;
5258
5259 /* Test Write Error at offset 0xfc */
5260 if (!write_eeprom(sp, 0x0FC, 0, 3))
5261 fail = 1;
5262
5263 /* Test Write Error at offset 0x100 */
5264 if (!write_eeprom(sp, 0x100, 0, 3))
5265 fail = 1;
5266
5267 /* Test Write Error at offset 4ec */
5268 if (!write_eeprom(sp, 0x4EC, 0, 3))
5269 fail = 1;
5270 }
5271
5272 /* Restore values at offsets 0x4F0 and 0x7F0 */
5273 if (saved_4F0)
5274 write_eeprom(sp, 0x4F0, org_4F0, 3);
5275 if (saved_7F0)
5276 write_eeprom(sp, 0x7F0, org_7F0, 3);
5277
5278 *data = fail;
5279 return fail;
5280 }
5281
5282 /**
5283 * s2io_bist_test - invokes the MemBist test of the card .
5284 * @sp : private member of the device structure, which is a pointer to the
5285 * s2io_nic structure.
5286 * @data:variable that returns the result of each of the test conducted by
5287 * the driver.
5288 * Description:
5289 * This invokes the MemBist test of the card. We give around
5290 * 2 secs time for the Test to complete. If it's still not complete
5291 * within this peiod, we consider that the test failed.
5292 * Return value:
5293 * 0 on success and -1 on failure.
5294 */
5295
5296 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5297 {
5298 u8 bist = 0;
5299 int cnt = 0, ret = -1;
5300
5301 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5302 bist |= PCI_BIST_START;
5303 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5304
5305 while (cnt < 20) {
5306 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5307 if (!(bist & PCI_BIST_START)) {
5308 *data = (bist & PCI_BIST_CODE_MASK);
5309 ret = 0;
5310 break;
5311 }
5312 msleep(100);
5313 cnt++;
5314 }
5315
5316 return ret;
5317 }
5318
5319 /**
5320 * s2io-link_test - verifies the link state of the nic
5321 * @sp ; private member of the device structure, which is a pointer to the
5322 * s2io_nic structure.
5323 * @data: variable that returns the result of each of the test conducted by
5324 * the driver.
5325 * Description:
5326 * The function verifies the link state of the NIC and updates the input
5327 * argument 'data' appropriately.
5328 * Return value:
5329 * 0 on success.
5330 */
5331
5332 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5333 {
5334 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5335 u64 val64;
5336
5337 val64 = readq(&bar0->adapter_status);
5338 if(!(LINK_IS_UP(val64)))
5339 *data = 1;
5340 else
5341 *data = 0;
5342
5343 return *data;
5344 }
5345
5346 /**
5347 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5348 * @sp - private member of the device structure, which is a pointer to the
5349 * s2io_nic structure.
5350 * @data - variable that returns the result of each of the test
5351 * conducted by the driver.
5352 * Description:
5353 * This is one of the offline test that tests the read and write
5354 * access to the RldRam chip on the NIC.
5355 * Return value:
5356 * 0 on success.
5357 */
5358
5359 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5360 {
5361 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5362 u64 val64;
5363 int cnt, iteration = 0, test_fail = 0;
5364
5365 val64 = readq(&bar0->adapter_control);
5366 val64 &= ~ADAPTER_ECC_EN;
5367 writeq(val64, &bar0->adapter_control);
5368
5369 val64 = readq(&bar0->mc_rldram_test_ctrl);
5370 val64 |= MC_RLDRAM_TEST_MODE;
5371 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5372
5373 val64 = readq(&bar0->mc_rldram_mrs);
5374 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5375 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5376
5377 val64 |= MC_RLDRAM_MRS_ENABLE;
5378 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5379
5380 while (iteration < 2) {
5381 val64 = 0x55555555aaaa0000ULL;
5382 if (iteration == 1) {
5383 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5384 }
5385 writeq(val64, &bar0->mc_rldram_test_d0);
5386
5387 val64 = 0xaaaa5a5555550000ULL;
5388 if (iteration == 1) {
5389 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5390 }
5391 writeq(val64, &bar0->mc_rldram_test_d1);
5392
5393 val64 = 0x55aaaaaaaa5a0000ULL;
5394 if (iteration == 1) {
5395 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5396 }
5397 writeq(val64, &bar0->mc_rldram_test_d2);
5398
5399 val64 = (u64) (0x0000003ffffe0100ULL);
5400 writeq(val64, &bar0->mc_rldram_test_add);
5401
5402 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5403 MC_RLDRAM_TEST_GO;
5404 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5405
5406 for (cnt = 0; cnt < 5; cnt++) {
5407 val64 = readq(&bar0->mc_rldram_test_ctrl);
5408 if (val64 & MC_RLDRAM_TEST_DONE)
5409 break;
5410 msleep(200);
5411 }
5412
5413 if (cnt == 5)
5414 break;
5415
5416 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5417 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5418
5419 for (cnt = 0; cnt < 5; cnt++) {
5420 val64 = readq(&bar0->mc_rldram_test_ctrl);
5421 if (val64 & MC_RLDRAM_TEST_DONE)
5422 break;
5423 msleep(500);
5424 }
5425
5426 if (cnt == 5)
5427 break;
5428
5429 val64 = readq(&bar0->mc_rldram_test_ctrl);
5430 if (!(val64 & MC_RLDRAM_TEST_PASS))
5431 test_fail = 1;
5432
5433 iteration++;
5434 }
5435
5436 *data = test_fail;
5437
5438 /* Bring the adapter out of test mode */
5439 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5440
5441 return test_fail;
5442 }
5443
5444 /**
5445 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5446 * @sp : private member of the device structure, which is a pointer to the
5447 * s2io_nic structure.
5448 * @ethtest : pointer to a ethtool command specific structure that will be
5449 * returned to the user.
5450 * @data : variable that returns the result of each of the test
5451 * conducted by the driver.
5452 * Description:
5453 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5454 * the health of the card.
5455 * Return value:
5456 * void
5457 */
5458
5459 static void s2io_ethtool_test(struct net_device *dev,
5460 struct ethtool_test *ethtest,
5461 uint64_t * data)
5462 {
5463 struct s2io_nic *sp = dev->priv;
5464 int orig_state = netif_running(sp->dev);
5465
5466 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5467 /* Offline Tests. */
5468 if (orig_state)
5469 s2io_close(sp->dev);
5470
5471 if (s2io_register_test(sp, &data[0]))
5472 ethtest->flags |= ETH_TEST_FL_FAILED;
5473
5474 s2io_reset(sp);
5475
5476 if (s2io_rldram_test(sp, &data[3]))
5477 ethtest->flags |= ETH_TEST_FL_FAILED;
5478
5479 s2io_reset(sp);
5480
5481 if (s2io_eeprom_test(sp, &data[1]))
5482 ethtest->flags |= ETH_TEST_FL_FAILED;
5483
5484 if (s2io_bist_test(sp, &data[4]))
5485 ethtest->flags |= ETH_TEST_FL_FAILED;
5486
5487 if (orig_state)
5488 s2io_open(sp->dev);
5489
5490 data[2] = 0;
5491 } else {
5492 /* Online Tests. */
5493 if (!orig_state) {
5494 DBG_PRINT(ERR_DBG,
5495 "%s: is not up, cannot run test\n",
5496 dev->name);
5497 data[0] = -1;
5498 data[1] = -1;
5499 data[2] = -1;
5500 data[3] = -1;
5501 data[4] = -1;
5502 }
5503
5504 if (s2io_link_test(sp, &data[2]))
5505 ethtest->flags |= ETH_TEST_FL_FAILED;
5506
5507 data[0] = 0;
5508 data[1] = 0;
5509 data[3] = 0;
5510 data[4] = 0;
5511 }
5512 }
5513
5514 static void s2io_get_ethtool_stats(struct net_device *dev,
5515 struct ethtool_stats *estats,
5516 u64 * tmp_stats)
5517 {
5518 int i = 0;
5519 struct s2io_nic *sp = dev->priv;
5520 struct stat_block *stat_info = sp->mac_control.stats_info;
5521
5522 s2io_updt_stats(sp);
5523 tmp_stats[i++] =
5524 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5525 le32_to_cpu(stat_info->tmac_frms);
5526 tmp_stats[i++] =
5527 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5528 le32_to_cpu(stat_info->tmac_data_octets);
5529 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5530 tmp_stats[i++] =
5531 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5532 le32_to_cpu(stat_info->tmac_mcst_frms);
5533 tmp_stats[i++] =
5534 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5535 le32_to_cpu(stat_info->tmac_bcst_frms);
5536 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5537 tmp_stats[i++] =
5538 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5539 le32_to_cpu(stat_info->tmac_ttl_octets);
5540 tmp_stats[i++] =
5541 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5542 le32_to_cpu(stat_info->tmac_ucst_frms);
5543 tmp_stats[i++] =
5544 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5545 le32_to_cpu(stat_info->tmac_nucst_frms);
5546 tmp_stats[i++] =
5547 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5548 le32_to_cpu(stat_info->tmac_any_err_frms);
5549 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5550 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5551 tmp_stats[i++] =
5552 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5553 le32_to_cpu(stat_info->tmac_vld_ip);
5554 tmp_stats[i++] =
5555 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5556 le32_to_cpu(stat_info->tmac_drop_ip);
5557 tmp_stats[i++] =
5558 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5559 le32_to_cpu(stat_info->tmac_icmp);
5560 tmp_stats[i++] =
5561 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5562 le32_to_cpu(stat_info->tmac_rst_tcp);
5563 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5564 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5565 le32_to_cpu(stat_info->tmac_udp);
5566 tmp_stats[i++] =
5567 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5568 le32_to_cpu(stat_info->rmac_vld_frms);
5569 tmp_stats[i++] =
5570 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5571 le32_to_cpu(stat_info->rmac_data_octets);
5572 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5574 tmp_stats[i++] =
5575 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5576 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5577 tmp_stats[i++] =
5578 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5579 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5580 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5581 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5582 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5583 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5584 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5585 tmp_stats[i++] =
5586 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5587 le32_to_cpu(stat_info->rmac_ttl_octets);
5588 tmp_stats[i++] =
5589 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5590 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5591 tmp_stats[i++] =
5592 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5593 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5594 tmp_stats[i++] =
5595 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5596 le32_to_cpu(stat_info->rmac_discarded_frms);
5597 tmp_stats[i++] =
5598 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5599 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5600 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5601 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5602 tmp_stats[i++] =
5603 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5604 le32_to_cpu(stat_info->rmac_usized_frms);
5605 tmp_stats[i++] =
5606 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5607 le32_to_cpu(stat_info->rmac_osized_frms);
5608 tmp_stats[i++] =
5609 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5610 le32_to_cpu(stat_info->rmac_frag_frms);
5611 tmp_stats[i++] =
5612 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5613 le32_to_cpu(stat_info->rmac_jabber_frms);
5614 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5615 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5616 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5617 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5618 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5619 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5620 tmp_stats[i++] =
5621 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5622 le32_to_cpu(stat_info->rmac_ip);
5623 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5624 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5625 tmp_stats[i++] =
5626 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5627 le32_to_cpu(stat_info->rmac_drop_ip);
5628 tmp_stats[i++] =
5629 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5630 le32_to_cpu(stat_info->rmac_icmp);
5631 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5632 tmp_stats[i++] =
5633 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5634 le32_to_cpu(stat_info->rmac_udp);
5635 tmp_stats[i++] =
5636 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5637 le32_to_cpu(stat_info->rmac_err_drp_udp);
5638 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5639 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5640 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5641 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5642 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5643 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5644 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5645 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5646 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5647 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5648 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5649 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5650 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5651 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5652 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5653 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5654 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5655 tmp_stats[i++] =
5656 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5657 le32_to_cpu(stat_info->rmac_pause_cnt);
5658 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5659 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5660 tmp_stats[i++] =
5661 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5662 le32_to_cpu(stat_info->rmac_accepted_ip);
5663 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5664 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5665 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5666 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5667 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5668 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5669 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5670 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5671 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5673 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5674 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5675 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5676 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5677 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5678 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5679 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5680 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5681 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5682
5683 /* Enhanced statistics exist only for Hercules */
5684 if(sp->device_type == XFRAME_II_DEVICE) {
5685 tmp_stats[i++] =
5686 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5687 tmp_stats[i++] =
5688 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5689 tmp_stats[i++] =
5690 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5695 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5696 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5697 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5698 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5699 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5700 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5701 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5702 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5703 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5704 }
5705
5706 tmp_stats[i++] = 0;
5707 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5708 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5709 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5710 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5711 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5712 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5713 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5714 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5715 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5716 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5717 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5718 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5719 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5720 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5721 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5722 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5723 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5724 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5725 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5726 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5727 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5728 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5729 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5730 if (stat_info->sw_stat.num_aggregations) {
5731 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5732 int count = 0;
5733 /*
5734 * Since 64-bit divide does not work on all platforms,
5735 * do repeated subtraction.
5736 */
5737 while (tmp >= stat_info->sw_stat.num_aggregations) {
5738 tmp -= stat_info->sw_stat.num_aggregations;
5739 count++;
5740 }
5741 tmp_stats[i++] = count;
5742 }
5743 else
5744 tmp_stats[i++] = 0;
5745 }
5746
5747 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5748 {
5749 return (XENA_REG_SPACE);
5750 }
5751
5752
5753 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5754 {
5755 struct s2io_nic *sp = dev->priv;
5756
5757 return (sp->rx_csum);
5758 }
5759
5760 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5761 {
5762 struct s2io_nic *sp = dev->priv;
5763
5764 if (data)
5765 sp->rx_csum = 1;
5766 else
5767 sp->rx_csum = 0;
5768
5769 return 0;
5770 }
5771
5772 static int s2io_get_eeprom_len(struct net_device *dev)
5773 {
5774 return (XENA_EEPROM_SPACE);
5775 }
5776
5777 static int s2io_ethtool_self_test_count(struct net_device *dev)
5778 {
5779 return (S2IO_TEST_LEN);
5780 }
5781
5782 static void s2io_ethtool_get_strings(struct net_device *dev,
5783 u32 stringset, u8 * data)
5784 {
5785 int stat_size = 0;
5786 struct s2io_nic *sp = dev->priv;
5787
5788 switch (stringset) {
5789 case ETH_SS_TEST:
5790 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5791 break;
5792 case ETH_SS_STATS:
5793 stat_size = sizeof(ethtool_xena_stats_keys);
5794 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5795 if(sp->device_type == XFRAME_II_DEVICE) {
5796 memcpy(data + stat_size,
5797 &ethtool_enhanced_stats_keys,
5798 sizeof(ethtool_enhanced_stats_keys));
5799 stat_size += sizeof(ethtool_enhanced_stats_keys);
5800 }
5801
5802 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5803 sizeof(ethtool_driver_stats_keys));
5804 }
5805 }
5806 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5807 {
5808 struct s2io_nic *sp = dev->priv;
5809 int stat_count = 0;
5810 switch(sp->device_type) {
5811 case XFRAME_I_DEVICE:
5812 stat_count = XFRAME_I_STAT_LEN;
5813 break;
5814
5815 case XFRAME_II_DEVICE:
5816 stat_count = XFRAME_II_STAT_LEN;
5817 break;
5818 }
5819
5820 return stat_count;
5821 }
5822
5823 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5824 {
5825 if (data)
5826 dev->features |= NETIF_F_IP_CSUM;
5827 else
5828 dev->features &= ~NETIF_F_IP_CSUM;
5829
5830 return 0;
5831 }
5832
5833 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5834 {
5835 return (dev->features & NETIF_F_TSO) != 0;
5836 }
5837 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5838 {
5839 if (data)
5840 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5841 else
5842 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5843
5844 return 0;
5845 }
5846
5847 static const struct ethtool_ops netdev_ethtool_ops = {
5848 .get_settings = s2io_ethtool_gset,
5849 .set_settings = s2io_ethtool_sset,
5850 .get_drvinfo = s2io_ethtool_gdrvinfo,
5851 .get_regs_len = s2io_ethtool_get_regs_len,
5852 .get_regs = s2io_ethtool_gregs,
5853 .get_link = ethtool_op_get_link,
5854 .get_eeprom_len = s2io_get_eeprom_len,
5855 .get_eeprom = s2io_ethtool_geeprom,
5856 .set_eeprom = s2io_ethtool_seeprom,
5857 .get_pauseparam = s2io_ethtool_getpause_data,
5858 .set_pauseparam = s2io_ethtool_setpause_data,
5859 .get_rx_csum = s2io_ethtool_get_rx_csum,
5860 .set_rx_csum = s2io_ethtool_set_rx_csum,
5861 .get_tx_csum = ethtool_op_get_tx_csum,
5862 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5863 .get_sg = ethtool_op_get_sg,
5864 .set_sg = ethtool_op_set_sg,
5865 .get_tso = s2io_ethtool_op_get_tso,
5866 .set_tso = s2io_ethtool_op_set_tso,
5867 .get_ufo = ethtool_op_get_ufo,
5868 .set_ufo = ethtool_op_set_ufo,
5869 .self_test_count = s2io_ethtool_self_test_count,
5870 .self_test = s2io_ethtool_test,
5871 .get_strings = s2io_ethtool_get_strings,
5872 .phys_id = s2io_ethtool_idnic,
5873 .get_stats_count = s2io_ethtool_get_stats_count,
5874 .get_ethtool_stats = s2io_get_ethtool_stats
5875 };
5876
5877 /**
5878 * s2io_ioctl - Entry point for the Ioctl
5879 * @dev : Device pointer.
5880 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5881 * a proprietary structure used to pass information to the driver.
5882 * @cmd : This is used to distinguish between the different commands that
5883 * can be passed to the IOCTL functions.
5884 * Description:
5885 * Currently there are no special functionality supported in IOCTL, hence
5886 * function always return EOPNOTSUPPORTED
5887 */
5888
5889 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5890 {
5891 return -EOPNOTSUPP;
5892 }
5893
5894 /**
5895 * s2io_change_mtu - entry point to change MTU size for the device.
5896 * @dev : device pointer.
5897 * @new_mtu : the new MTU size for the device.
5898 * Description: A driver entry point to change MTU size for the device.
5899 * Before changing the MTU the device must be stopped.
5900 * Return value:
5901 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5902 * file on failure.
5903 */
5904
5905 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5906 {
5907 struct s2io_nic *sp = dev->priv;
5908
5909 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5910 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5911 dev->name);
5912 return -EPERM;
5913 }
5914
5915 dev->mtu = new_mtu;
5916 if (netif_running(dev)) {
5917 s2io_card_down(sp);
5918 netif_stop_queue(dev);
5919 if (s2io_card_up(sp)) {
5920 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5921 __FUNCTION__);
5922 }
5923 if (netif_queue_stopped(dev))
5924 netif_wake_queue(dev);
5925 } else { /* Device is down */
5926 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5927 u64 val64 = new_mtu;
5928
5929 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5930 }
5931
5932 return 0;
5933 }
5934
5935 /**
5936 * s2io_tasklet - Bottom half of the ISR.
5937 * @dev_adr : address of the device structure in dma_addr_t format.
5938 * Description:
5939 * This is the tasklet or the bottom half of the ISR. This is
5940 * an extension of the ISR which is scheduled by the scheduler to be run
5941 * when the load on the CPU is low. All low priority tasks of the ISR can
5942 * be pushed into the tasklet. For now the tasklet is used only to
5943 * replenish the Rx buffers in the Rx buffer descriptors.
5944 * Return value:
5945 * void.
5946 */
5947
5948 static void s2io_tasklet(unsigned long dev_addr)
5949 {
5950 struct net_device *dev = (struct net_device *) dev_addr;
5951 struct s2io_nic *sp = dev->priv;
5952 int i, ret;
5953 struct mac_info *mac_control;
5954 struct config_param *config;
5955
5956 mac_control = &sp->mac_control;
5957 config = &sp->config;
5958
5959 if (!TASKLET_IN_USE) {
5960 for (i = 0; i < config->rx_ring_num; i++) {
5961 ret = fill_rx_buffers(sp, i);
5962 if (ret == -ENOMEM) {
5963 DBG_PRINT(INFO_DBG, "%s: Out of ",
5964 dev->name);
5965 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5966 break;
5967 } else if (ret == -EFILL) {
5968 DBG_PRINT(INFO_DBG,
5969 "%s: Rx Ring %d is full\n",
5970 dev->name, i);
5971 break;
5972 }
5973 }
5974 clear_bit(0, (&sp->tasklet_status));
5975 }
5976 }
5977
5978 /**
5979 * s2io_set_link - Set the LInk status
5980 * @data: long pointer to device private structue
5981 * Description: Sets the link status for the adapter
5982 */
5983
5984 static void s2io_set_link(struct work_struct *work)
5985 {
5986 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
5987 struct net_device *dev = nic->dev;
5988 struct XENA_dev_config __iomem *bar0 = nic->bar0;
5989 register u64 val64;
5990 u16 subid;
5991
5992 rtnl_lock();
5993
5994 if (!netif_running(dev))
5995 goto out_unlock;
5996
5997 if (test_and_set_bit(0, &(nic->link_state))) {
5998 /* The card is being reset, no point doing anything */
5999 goto out_unlock;
6000 }
6001
6002 subid = nic->pdev->subsystem_device;
6003 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6004 /*
6005 * Allow a small delay for the NICs self initiated
6006 * cleanup to complete.
6007 */
6008 msleep(100);
6009 }
6010
6011 val64 = readq(&bar0->adapter_status);
6012 if (LINK_IS_UP(val64)) {
6013 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6014 if (verify_xena_quiescence(nic)) {
6015 val64 = readq(&bar0->adapter_control);
6016 val64 |= ADAPTER_CNTL_EN;
6017 writeq(val64, &bar0->adapter_control);
6018 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6019 nic->device_type, subid)) {
6020 val64 = readq(&bar0->gpio_control);
6021 val64 |= GPIO_CTRL_GPIO_0;
6022 writeq(val64, &bar0->gpio_control);
6023 val64 = readq(&bar0->gpio_control);
6024 } else {
6025 val64 |= ADAPTER_LED_ON;
6026 writeq(val64, &bar0->adapter_control);
6027 }
6028 nic->device_enabled_once = TRUE;
6029 } else {
6030 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6031 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6032 netif_stop_queue(dev);
6033 }
6034 }
6035 val64 = readq(&bar0->adapter_status);
6036 if (!LINK_IS_UP(val64)) {
6037 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6038 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6039 DBG_PRINT(ERR_DBG, "device \n");
6040 } else
6041 s2io_link(nic, LINK_UP);
6042 } else {
6043 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6044 subid)) {
6045 val64 = readq(&bar0->gpio_control);
6046 val64 &= ~GPIO_CTRL_GPIO_0;
6047 writeq(val64, &bar0->gpio_control);
6048 val64 = readq(&bar0->gpio_control);
6049 }
6050 s2io_link(nic, LINK_DOWN);
6051 }
6052 clear_bit(0, &(nic->link_state));
6053
6054 out_unlock:
6055 rtnl_unlock();
6056 }
6057
6058 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6059 struct buffAdd *ba,
6060 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6061 u64 *temp2, int size)
6062 {
6063 struct net_device *dev = sp->dev;
6064 struct sk_buff *frag_list;
6065
6066 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6067 /* allocate skb */
6068 if (*skb) {
6069 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6070 /*
6071 * As Rx frame are not going to be processed,
6072 * using same mapped address for the Rxd
6073 * buffer pointer
6074 */
6075 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
6076 } else {
6077 *skb = dev_alloc_skb(size);
6078 if (!(*skb)) {
6079 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6080 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
6081 return -ENOMEM ;
6082 }
6083 /* storing the mapped addr in a temp variable
6084 * such it will be used for next rxd whose
6085 * Host Control is NULL
6086 */
6087 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
6088 pci_map_single( sp->pdev, (*skb)->data,
6089 size - NET_IP_ALIGN,
6090 PCI_DMA_FROMDEVICE);
6091 rxdp->Host_Control = (unsigned long) (*skb);
6092 }
6093 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6094 /* Two buffer Mode */
6095 if (*skb) {
6096 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6097 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6098 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6099 } else {
6100 *skb = dev_alloc_skb(size);
6101 if (!(*skb)) {
6102 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n",
6103 dev->name);
6104 return -ENOMEM;
6105 }
6106 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6107 pci_map_single(sp->pdev, (*skb)->data,
6108 dev->mtu + 4,
6109 PCI_DMA_FROMDEVICE);
6110 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6111 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6112 PCI_DMA_FROMDEVICE);
6113 rxdp->Host_Control = (unsigned long) (*skb);
6114
6115 /* Buffer-1 will be dummy buffer not used */
6116 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6117 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6118 PCI_DMA_FROMDEVICE);
6119 }
6120 } else if ((rxdp->Host_Control == 0)) {
6121 /* Three buffer mode */
6122 if (*skb) {
6123 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6124 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6125 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6126 } else {
6127 *skb = dev_alloc_skb(size);
6128 if (!(*skb)) {
6129 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n",
6130 dev->name);
6131 return -ENOMEM;
6132 }
6133 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6134 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6135 PCI_DMA_FROMDEVICE);
6136 /* Buffer-1 receives L3/L4 headers */
6137 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6138 pci_map_single( sp->pdev, (*skb)->data,
6139 l3l4hdr_size + 4,
6140 PCI_DMA_FROMDEVICE);
6141 /*
6142 * skb_shinfo(skb)->frag_list will have L4
6143 * data payload
6144 */
6145 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6146 ALIGN_SIZE);
6147 if (skb_shinfo(*skb)->frag_list == NULL) {
6148 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6149 failed\n ", dev->name);
6150 return -ENOMEM ;
6151 }
6152 frag_list = skb_shinfo(*skb)->frag_list;
6153 frag_list->next = NULL;
6154 /*
6155 * Buffer-2 receives L4 data payload
6156 */
6157 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6158 pci_map_single( sp->pdev, frag_list->data,
6159 dev->mtu, PCI_DMA_FROMDEVICE);
6160 }
6161 }
6162 return 0;
6163 }
6164 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6165 int size)
6166 {
6167 struct net_device *dev = sp->dev;
6168 if (sp->rxd_mode == RXD_MODE_1) {
6169 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6170 } else if (sp->rxd_mode == RXD_MODE_3B) {
6171 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6172 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6173 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6174 } else {
6175 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6176 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6177 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6178 }
6179 }
6180
6181 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6182 {
6183 int i, j, k, blk_cnt = 0, size;
6184 struct mac_info * mac_control = &sp->mac_control;
6185 struct config_param *config = &sp->config;
6186 struct net_device *dev = sp->dev;
6187 struct RxD_t *rxdp = NULL;
6188 struct sk_buff *skb = NULL;
6189 struct buffAdd *ba = NULL;
6190 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6191
6192 /* Calculate the size based on ring mode */
6193 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6194 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6195 if (sp->rxd_mode == RXD_MODE_1)
6196 size += NET_IP_ALIGN;
6197 else if (sp->rxd_mode == RXD_MODE_3B)
6198 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6199 else
6200 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6201
6202 for (i = 0; i < config->rx_ring_num; i++) {
6203 blk_cnt = config->rx_cfg[i].num_rxd /
6204 (rxd_count[sp->rxd_mode] +1);
6205
6206 for (j = 0; j < blk_cnt; j++) {
6207 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6208 rxdp = mac_control->rings[i].
6209 rx_blocks[j].rxds[k].virt_addr;
6210 if(sp->rxd_mode >= RXD_MODE_3A)
6211 ba = &mac_control->rings[i].ba[j][k];
6212 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6213 &skb,(u64 *)&temp0_64,
6214 (u64 *)&temp1_64,
6215 (u64 *)&temp2_64,
6216 size) == ENOMEM) {
6217 return 0;
6218 }
6219
6220 set_rxd_buffer_size(sp, rxdp, size);
6221 wmb();
6222 /* flip the Ownership bit to Hardware */
6223 rxdp->Control_1 |= RXD_OWN_XENA;
6224 }
6225 }
6226 }
6227 return 0;
6228
6229 }
6230
6231 static int s2io_add_isr(struct s2io_nic * sp)
6232 {
6233 int ret = 0;
6234 struct net_device *dev = sp->dev;
6235 int err = 0;
6236
6237 if (sp->intr_type == MSI)
6238 ret = s2io_enable_msi(sp);
6239 else if (sp->intr_type == MSI_X)
6240 ret = s2io_enable_msi_x(sp);
6241 if (ret) {
6242 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6243 sp->intr_type = INTA;
6244 }
6245
6246 /* Store the values of the MSIX table in the struct s2io_nic structure */
6247 store_xmsi_data(sp);
6248
6249 /* After proper initialization of H/W, register ISR */
6250 if (sp->intr_type == MSI) {
6251 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6252 IRQF_SHARED, sp->name, dev);
6253 if (err) {
6254 pci_disable_msi(sp->pdev);
6255 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6256 dev->name);
6257 return -1;
6258 }
6259 }
6260 if (sp->intr_type == MSI_X) {
6261 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6262
6263 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6264 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6265 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6266 dev->name, i);
6267 err = request_irq(sp->entries[i].vector,
6268 s2io_msix_fifo_handle, 0, sp->desc[i],
6269 sp->s2io_entries[i].arg);
6270 /* If either data or addr is zero print it */
6271 if(!(sp->msix_info[i].addr &&
6272 sp->msix_info[i].data)) {
6273 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6274 "Data:0x%lx\n",sp->desc[i],
6275 (unsigned long long)
6276 sp->msix_info[i].addr,
6277 (unsigned long)
6278 ntohl(sp->msix_info[i].data));
6279 } else {
6280 msix_tx_cnt++;
6281 }
6282 } else {
6283 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6284 dev->name, i);
6285 err = request_irq(sp->entries[i].vector,
6286 s2io_msix_ring_handle, 0, sp->desc[i],
6287 sp->s2io_entries[i].arg);
6288 /* If either data or addr is zero print it */
6289 if(!(sp->msix_info[i].addr &&
6290 sp->msix_info[i].data)) {
6291 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6292 "Data:0x%lx\n",sp->desc[i],
6293 (unsigned long long)
6294 sp->msix_info[i].addr,
6295 (unsigned long)
6296 ntohl(sp->msix_info[i].data));
6297 } else {
6298 msix_rx_cnt++;
6299 }
6300 }
6301 if (err) {
6302 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6303 "failed\n", dev->name, i);
6304 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6305 return -1;
6306 }
6307 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6308 }
6309 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6310 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6311 }
6312 if (sp->intr_type == INTA) {
6313 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6314 sp->name, dev);
6315 if (err) {
6316 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6317 dev->name);
6318 return -1;
6319 }
6320 }
6321 return 0;
6322 }
6323 static void s2io_rem_isr(struct s2io_nic * sp)
6324 {
6325 int cnt = 0;
6326 struct net_device *dev = sp->dev;
6327
6328 if (sp->intr_type == MSI_X) {
6329 int i;
6330 u16 msi_control;
6331
6332 for (i=1; (sp->s2io_entries[i].in_use ==
6333 MSIX_REGISTERED_SUCCESS); i++) {
6334 int vector = sp->entries[i].vector;
6335 void *arg = sp->s2io_entries[i].arg;
6336
6337 free_irq(vector, arg);
6338 }
6339 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6340 msi_control &= 0xFFFE; /* Disable MSI */
6341 pci_write_config_word(sp->pdev, 0x42, msi_control);
6342
6343 pci_disable_msix(sp->pdev);
6344 } else {
6345 free_irq(sp->pdev->irq, dev);
6346 if (sp->intr_type == MSI) {
6347 u16 val;
6348
6349 pci_disable_msi(sp->pdev);
6350 pci_read_config_word(sp->pdev, 0x4c, &val);
6351 val ^= 0x1;
6352 pci_write_config_word(sp->pdev, 0x4c, val);
6353 }
6354 }
6355 /* Waiting till all Interrupt handlers are complete */
6356 cnt = 0;
6357 do {
6358 msleep(10);
6359 if (!atomic_read(&sp->isr_cnt))
6360 break;
6361 cnt++;
6362 } while(cnt < 5);
6363 }
6364
6365 static void s2io_card_down(struct s2io_nic * sp)
6366 {
6367 int cnt = 0;
6368 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6369 unsigned long flags;
6370 register u64 val64 = 0;
6371
6372 del_timer_sync(&sp->alarm_timer);
6373 /* If s2io_set_link task is executing, wait till it completes. */
6374 while (test_and_set_bit(0, &(sp->link_state))) {
6375 msleep(50);
6376 }
6377 atomic_set(&sp->card_state, CARD_DOWN);
6378
6379 /* disable Tx and Rx traffic on the NIC */
6380 stop_nic(sp);
6381
6382 s2io_rem_isr(sp);
6383
6384 /* Kill tasklet. */
6385 tasklet_kill(&sp->task);
6386
6387 /* Check if the device is Quiescent and then Reset the NIC */
6388 do {
6389 /* As per the HW requirement we need to replenish the
6390 * receive buffer to avoid the ring bump. Since there is
6391 * no intention of processing the Rx frame at this pointwe are
6392 * just settting the ownership bit of rxd in Each Rx
6393 * ring to HW and set the appropriate buffer size
6394 * based on the ring mode
6395 */
6396 rxd_owner_bit_reset(sp);
6397
6398 val64 = readq(&bar0->adapter_status);
6399 if (verify_xena_quiescence(sp)) {
6400 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6401 break;
6402 }
6403
6404 msleep(50);
6405 cnt++;
6406 if (cnt == 10) {
6407 DBG_PRINT(ERR_DBG,
6408 "s2io_close:Device not Quiescent ");
6409 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6410 (unsigned long long) val64);
6411 break;
6412 }
6413 } while (1);
6414 s2io_reset(sp);
6415
6416 spin_lock_irqsave(&sp->tx_lock, flags);
6417 /* Free all Tx buffers */
6418 free_tx_buffers(sp);
6419 spin_unlock_irqrestore(&sp->tx_lock, flags);
6420
6421 /* Free all Rx buffers */
6422 spin_lock_irqsave(&sp->rx_lock, flags);
6423 free_rx_buffers(sp);
6424 spin_unlock_irqrestore(&sp->rx_lock, flags);
6425
6426 clear_bit(0, &(sp->link_state));
6427 }
6428
6429 static int s2io_card_up(struct s2io_nic * sp)
6430 {
6431 int i, ret = 0;
6432 struct mac_info *mac_control;
6433 struct config_param *config;
6434 struct net_device *dev = (struct net_device *) sp->dev;
6435 u16 interruptible;
6436
6437 /* Initialize the H/W I/O registers */
6438 if (init_nic(sp) != 0) {
6439 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6440 dev->name);
6441 s2io_reset(sp);
6442 return -ENODEV;
6443 }
6444
6445 /*
6446 * Initializing the Rx buffers. For now we are considering only 1
6447 * Rx ring and initializing buffers into 30 Rx blocks
6448 */
6449 mac_control = &sp->mac_control;
6450 config = &sp->config;
6451
6452 for (i = 0; i < config->rx_ring_num; i++) {
6453 if ((ret = fill_rx_buffers(sp, i))) {
6454 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6455 dev->name);
6456 s2io_reset(sp);
6457 free_rx_buffers(sp);
6458 return -ENOMEM;
6459 }
6460 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6461 atomic_read(&sp->rx_bufs_left[i]));
6462 }
6463 /* Maintain the state prior to the open */
6464 if (sp->promisc_flg)
6465 sp->promisc_flg = 0;
6466 if (sp->m_cast_flg) {
6467 sp->m_cast_flg = 0;
6468 sp->all_multi_pos= 0;
6469 }
6470
6471 /* Setting its receive mode */
6472 s2io_set_multicast(dev);
6473
6474 if (sp->lro) {
6475 /* Initialize max aggregatable pkts per session based on MTU */
6476 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6477 /* Check if we can use(if specified) user provided value */
6478 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6479 sp->lro_max_aggr_per_sess = lro_max_pkts;
6480 }
6481
6482 /* Enable Rx Traffic and interrupts on the NIC */
6483 if (start_nic(sp)) {
6484 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6485 s2io_reset(sp);
6486 free_rx_buffers(sp);
6487 return -ENODEV;
6488 }
6489
6490 /* Add interrupt service routine */
6491 if (s2io_add_isr(sp) != 0) {
6492 if (sp->intr_type == MSI_X)
6493 s2io_rem_isr(sp);
6494 s2io_reset(sp);
6495 free_rx_buffers(sp);
6496 return -ENODEV;
6497 }
6498
6499 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6500
6501 /* Enable tasklet for the device */
6502 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6503
6504 /* Enable select interrupts */
6505 if (sp->intr_type != INTA)
6506 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6507 else {
6508 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6509 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6510 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6511 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6512 }
6513
6514
6515 atomic_set(&sp->card_state, CARD_UP);
6516 return 0;
6517 }
6518
6519 /**
6520 * s2io_restart_nic - Resets the NIC.
6521 * @data : long pointer to the device private structure
6522 * Description:
6523 * This function is scheduled to be run by the s2io_tx_watchdog
6524 * function after 0.5 secs to reset the NIC. The idea is to reduce
6525 * the run time of the watch dog routine which is run holding a
6526 * spin lock.
6527 */
6528
6529 static void s2io_restart_nic(struct work_struct *work)
6530 {
6531 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6532 struct net_device *dev = sp->dev;
6533
6534 rtnl_lock();
6535
6536 if (!netif_running(dev))
6537 goto out_unlock;
6538
6539 s2io_card_down(sp);
6540 if (s2io_card_up(sp)) {
6541 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6542 dev->name);
6543 }
6544 netif_wake_queue(dev);
6545 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6546 dev->name);
6547 out_unlock:
6548 rtnl_unlock();
6549 }
6550
6551 /**
6552 * s2io_tx_watchdog - Watchdog for transmit side.
6553 * @dev : Pointer to net device structure
6554 * Description:
6555 * This function is triggered if the Tx Queue is stopped
6556 * for a pre-defined amount of time when the Interface is still up.
6557 * If the Interface is jammed in such a situation, the hardware is
6558 * reset (by s2io_close) and restarted again (by s2io_open) to
6559 * overcome any problem that might have been caused in the hardware.
6560 * Return value:
6561 * void
6562 */
6563
6564 static void s2io_tx_watchdog(struct net_device *dev)
6565 {
6566 struct s2io_nic *sp = dev->priv;
6567
6568 if (netif_carrier_ok(dev)) {
6569 schedule_work(&sp->rst_timer_task);
6570 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6571 }
6572 }
6573
6574 /**
6575 * rx_osm_handler - To perform some OS related operations on SKB.
6576 * @sp: private member of the device structure,pointer to s2io_nic structure.
6577 * @skb : the socket buffer pointer.
6578 * @len : length of the packet
6579 * @cksum : FCS checksum of the frame.
6580 * @ring_no : the ring from which this RxD was extracted.
6581 * Description:
6582 * This function is called by the Rx interrupt serivce routine to perform
6583 * some OS related operations on the SKB before passing it to the upper
6584 * layers. It mainly checks if the checksum is OK, if so adds it to the
6585 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6586 * to the upper layer. If the checksum is wrong, it increments the Rx
6587 * packet error count, frees the SKB and returns error.
6588 * Return value:
6589 * SUCCESS on success and -1 on failure.
6590 */
6591 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6592 {
6593 struct s2io_nic *sp = ring_data->nic;
6594 struct net_device *dev = (struct net_device *) sp->dev;
6595 struct sk_buff *skb = (struct sk_buff *)
6596 ((unsigned long) rxdp->Host_Control);
6597 int ring_no = ring_data->ring_no;
6598 u16 l3_csum, l4_csum;
6599 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6600 struct lro *lro;
6601
6602 skb->dev = dev;
6603
6604 if (err) {
6605 /* Check for parity error */
6606 if (err & 0x1) {
6607 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6608 }
6609
6610 /*
6611 * Drop the packet if bad transfer code. Exception being
6612 * 0x5, which could be due to unsupported IPv6 extension header.
6613 * In this case, we let stack handle the packet.
6614 * Note that in this case, since checksum will be incorrect,
6615 * stack will validate the same.
6616 */
6617 if (err && ((err >> 48) != 0x5)) {
6618 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6619 dev->name, err);
6620 sp->stats.rx_crc_errors++;
6621 dev_kfree_skb(skb);
6622 atomic_dec(&sp->rx_bufs_left[ring_no]);
6623 rxdp->Host_Control = 0;
6624 return 0;
6625 }
6626 }
6627
6628 /* Updating statistics */
6629 rxdp->Host_Control = 0;
6630 sp->stats.rx_packets++;
6631 if (sp->rxd_mode == RXD_MODE_1) {
6632 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6633
6634 sp->stats.rx_bytes += len;
6635 skb_put(skb, len);
6636
6637 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6638 int get_block = ring_data->rx_curr_get_info.block_index;
6639 int get_off = ring_data->rx_curr_get_info.offset;
6640 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6641 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6642 unsigned char *buff = skb_push(skb, buf0_len);
6643
6644 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6645 sp->stats.rx_bytes += buf0_len + buf2_len;
6646 memcpy(buff, ba->ba_0, buf0_len);
6647
6648 if (sp->rxd_mode == RXD_MODE_3A) {
6649 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6650
6651 skb_put(skb, buf1_len);
6652 skb->len += buf2_len;
6653 skb->data_len += buf2_len;
6654 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6655 sp->stats.rx_bytes += buf1_len;
6656
6657 } else
6658 skb_put(skb, buf2_len);
6659 }
6660
6661 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6662 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6663 (sp->rx_csum)) {
6664 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6665 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6666 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6667 /*
6668 * NIC verifies if the Checksum of the received
6669 * frame is Ok or not and accordingly returns
6670 * a flag in the RxD.
6671 */
6672 skb->ip_summed = CHECKSUM_UNNECESSARY;
6673 if (sp->lro) {
6674 u32 tcp_len;
6675 u8 *tcp;
6676 int ret = 0;
6677
6678 ret = s2io_club_tcp_session(skb->data, &tcp,
6679 &tcp_len, &lro, rxdp, sp);
6680 switch (ret) {
6681 case 3: /* Begin anew */
6682 lro->parent = skb;
6683 goto aggregate;
6684 case 1: /* Aggregate */
6685 {
6686 lro_append_pkt(sp, lro,
6687 skb, tcp_len);
6688 goto aggregate;
6689 }
6690 case 4: /* Flush session */
6691 {
6692 lro_append_pkt(sp, lro,
6693 skb, tcp_len);
6694 queue_rx_frame(lro->parent);
6695 clear_lro_session(lro);
6696 sp->mac_control.stats_info->
6697 sw_stat.flush_max_pkts++;
6698 goto aggregate;
6699 }
6700 case 2: /* Flush both */
6701 lro->parent->data_len =
6702 lro->frags_len;
6703 sp->mac_control.stats_info->
6704 sw_stat.sending_both++;
6705 queue_rx_frame(lro->parent);
6706 clear_lro_session(lro);
6707 goto send_up;
6708 case 0: /* sessions exceeded */
6709 case -1: /* non-TCP or not
6710 * L2 aggregatable
6711 */
6712 case 5: /*
6713 * First pkt in session not
6714 * L3/L4 aggregatable
6715 */
6716 break;
6717 default:
6718 DBG_PRINT(ERR_DBG,
6719 "%s: Samadhana!!\n",
6720 __FUNCTION__);
6721 BUG();
6722 }
6723 }
6724 } else {
6725 /*
6726 * Packet with erroneous checksum, let the
6727 * upper layers deal with it.
6728 */
6729 skb->ip_summed = CHECKSUM_NONE;
6730 }
6731 } else {
6732 skb->ip_summed = CHECKSUM_NONE;
6733 }
6734
6735 if (!sp->lro) {
6736 skb->protocol = eth_type_trans(skb, dev);
6737 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6738 vlan_strip_flag)) {
6739 /* Queueing the vlan frame to the upper layer */
6740 if (napi)
6741 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6742 RXD_GET_VLAN_TAG(rxdp->Control_2));
6743 else
6744 vlan_hwaccel_rx(skb, sp->vlgrp,
6745 RXD_GET_VLAN_TAG(rxdp->Control_2));
6746 } else {
6747 if (napi)
6748 netif_receive_skb(skb);
6749 else
6750 netif_rx(skb);
6751 }
6752 } else {
6753 send_up:
6754 queue_rx_frame(skb);
6755 }
6756 dev->last_rx = jiffies;
6757 aggregate:
6758 atomic_dec(&sp->rx_bufs_left[ring_no]);
6759 return SUCCESS;
6760 }
6761
6762 /**
6763 * s2io_link - stops/starts the Tx queue.
6764 * @sp : private member of the device structure, which is a pointer to the
6765 * s2io_nic structure.
6766 * @link : inidicates whether link is UP/DOWN.
6767 * Description:
6768 * This function stops/starts the Tx queue depending on whether the link
6769 * status of the NIC is is down or up. This is called by the Alarm
6770 * interrupt handler whenever a link change interrupt comes up.
6771 * Return value:
6772 * void.
6773 */
6774
6775 static void s2io_link(struct s2io_nic * sp, int link)
6776 {
6777 struct net_device *dev = (struct net_device *) sp->dev;
6778
6779 if (link != sp->last_link_state) {
6780 if (link == LINK_DOWN) {
6781 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6782 netif_carrier_off(dev);
6783 } else {
6784 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6785 netif_carrier_on(dev);
6786 }
6787 }
6788 sp->last_link_state = link;
6789 }
6790
6791 /**
6792 * get_xena_rev_id - to identify revision ID of xena.
6793 * @pdev : PCI Dev structure
6794 * Description:
6795 * Function to identify the Revision ID of xena.
6796 * Return value:
6797 * returns the revision ID of the device.
6798 */
6799
6800 static int get_xena_rev_id(struct pci_dev *pdev)
6801 {
6802 u8 id = 0;
6803 int ret;
6804 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6805 return id;
6806 }
6807
6808 /**
6809 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6810 * @sp : private member of the device structure, which is a pointer to the
6811 * s2io_nic structure.
6812 * Description:
6813 * This function initializes a few of the PCI and PCI-X configuration registers
6814 * with recommended values.
6815 * Return value:
6816 * void
6817 */
6818
6819 static void s2io_init_pci(struct s2io_nic * sp)
6820 {
6821 u16 pci_cmd = 0, pcix_cmd = 0;
6822
6823 /* Enable Data Parity Error Recovery in PCI-X command register. */
6824 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6825 &(pcix_cmd));
6826 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6827 (pcix_cmd | 1));
6828 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6829 &(pcix_cmd));
6830
6831 /* Set the PErr Response bit in PCI command register. */
6832 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6833 pci_write_config_word(sp->pdev, PCI_COMMAND,
6834 (pci_cmd | PCI_COMMAND_PARITY));
6835 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6836 }
6837
6838 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6839 {
6840 if ( tx_fifo_num > 8) {
6841 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6842 "supported\n");
6843 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6844 tx_fifo_num = 8;
6845 }
6846 if ( rx_ring_num > 8) {
6847 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6848 "supported\n");
6849 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6850 rx_ring_num = 8;
6851 }
6852 if (*dev_intr_type != INTA)
6853 napi = 0;
6854
6855 #ifndef CONFIG_PCI_MSI
6856 if (*dev_intr_type != INTA) {
6857 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6858 "MSI/MSI-X. Defaulting to INTA\n");
6859 *dev_intr_type = INTA;
6860 }
6861 #else
6862 if (*dev_intr_type > MSI_X) {
6863 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6864 "Defaulting to INTA\n");
6865 *dev_intr_type = INTA;
6866 }
6867 #endif
6868 if ((*dev_intr_type == MSI_X) &&
6869 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6870 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6871 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6872 "Defaulting to INTA\n");
6873 *dev_intr_type = INTA;
6874 }
6875
6876 if (rx_ring_mode > 3) {
6877 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6878 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6879 rx_ring_mode = 3;
6880 }
6881 return SUCCESS;
6882 }
6883
6884 /**
6885 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6886 * or Traffic class respectively.
6887 * @nic: device peivate variable
6888 * Description: The function configures the receive steering to
6889 * desired receive ring.
6890 * Return Value: SUCCESS on success and
6891 * '-1' on failure (endian settings incorrect).
6892 */
6893 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6894 {
6895 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6896 register u64 val64 = 0;
6897
6898 if (ds_codepoint > 63)
6899 return FAILURE;
6900
6901 val64 = RTS_DS_MEM_DATA(ring);
6902 writeq(val64, &bar0->rts_ds_mem_data);
6903
6904 val64 = RTS_DS_MEM_CTRL_WE |
6905 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6906 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6907
6908 writeq(val64, &bar0->rts_ds_mem_ctrl);
6909
6910 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
6911 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
6912 S2IO_BIT_RESET);
6913 }
6914
6915 /**
6916 * s2io_init_nic - Initialization of the adapter .
6917 * @pdev : structure containing the PCI related information of the device.
6918 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6919 * Description:
6920 * The function initializes an adapter identified by the pci_dec structure.
6921 * All OS related initialization including memory and device structure and
6922 * initlaization of the device private variable is done. Also the swapper
6923 * control register is initialized to enable read and write into the I/O
6924 * registers of the device.
6925 * Return value:
6926 * returns 0 on success and negative on failure.
6927 */
6928
6929 static int __devinit
6930 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6931 {
6932 struct s2io_nic *sp;
6933 struct net_device *dev;
6934 int i, j, ret;
6935 int dma_flag = FALSE;
6936 u32 mac_up, mac_down;
6937 u64 val64 = 0, tmp64 = 0;
6938 struct XENA_dev_config __iomem *bar0 = NULL;
6939 u16 subid;
6940 struct mac_info *mac_control;
6941 struct config_param *config;
6942 int mode;
6943 u8 dev_intr_type = intr_type;
6944
6945 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6946 return ret;
6947
6948 if ((ret = pci_enable_device(pdev))) {
6949 DBG_PRINT(ERR_DBG,
6950 "s2io_init_nic: pci_enable_device failed\n");
6951 return ret;
6952 }
6953
6954 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6955 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6956 dma_flag = TRUE;
6957 if (pci_set_consistent_dma_mask
6958 (pdev, DMA_64BIT_MASK)) {
6959 DBG_PRINT(ERR_DBG,
6960 "Unable to obtain 64bit DMA for \
6961 consistent allocations\n");
6962 pci_disable_device(pdev);
6963 return -ENOMEM;
6964 }
6965 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6966 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6967 } else {
6968 pci_disable_device(pdev);
6969 return -ENOMEM;
6970 }
6971 if (dev_intr_type != MSI_X) {
6972 if (pci_request_regions(pdev, s2io_driver_name)) {
6973 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6974 pci_disable_device(pdev);
6975 return -ENODEV;
6976 }
6977 }
6978 else {
6979 if (!(request_mem_region(pci_resource_start(pdev, 0),
6980 pci_resource_len(pdev, 0), s2io_driver_name))) {
6981 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6982 pci_disable_device(pdev);
6983 return -ENODEV;
6984 }
6985 if (!(request_mem_region(pci_resource_start(pdev, 2),
6986 pci_resource_len(pdev, 2), s2io_driver_name))) {
6987 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6988 release_mem_region(pci_resource_start(pdev, 0),
6989 pci_resource_len(pdev, 0));
6990 pci_disable_device(pdev);
6991 return -ENODEV;
6992 }
6993 }
6994
6995 dev = alloc_etherdev(sizeof(struct s2io_nic));
6996 if (dev == NULL) {
6997 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6998 pci_disable_device(pdev);
6999 pci_release_regions(pdev);
7000 return -ENODEV;
7001 }
7002
7003 pci_set_master(pdev);
7004 pci_set_drvdata(pdev, dev);
7005 SET_MODULE_OWNER(dev);
7006 SET_NETDEV_DEV(dev, &pdev->dev);
7007
7008 /* Private member variable initialized to s2io NIC structure */
7009 sp = dev->priv;
7010 memset(sp, 0, sizeof(struct s2io_nic));
7011 sp->dev = dev;
7012 sp->pdev = pdev;
7013 sp->high_dma_flag = dma_flag;
7014 sp->device_enabled_once = FALSE;
7015 if (rx_ring_mode == 1)
7016 sp->rxd_mode = RXD_MODE_1;
7017 if (rx_ring_mode == 2)
7018 sp->rxd_mode = RXD_MODE_3B;
7019 if (rx_ring_mode == 3)
7020 sp->rxd_mode = RXD_MODE_3A;
7021
7022 sp->intr_type = dev_intr_type;
7023
7024 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7025 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7026 sp->device_type = XFRAME_II_DEVICE;
7027 else
7028 sp->device_type = XFRAME_I_DEVICE;
7029
7030 sp->lro = lro;
7031
7032 /* Initialize some PCI/PCI-X fields of the NIC. */
7033 s2io_init_pci(sp);
7034
7035 /*
7036 * Setting the device configuration parameters.
7037 * Most of these parameters can be specified by the user during
7038 * module insertion as they are module loadable parameters. If
7039 * these parameters are not not specified during load time, they
7040 * are initialized with default values.
7041 */
7042 mac_control = &sp->mac_control;
7043 config = &sp->config;
7044
7045 /* Tx side parameters. */
7046 config->tx_fifo_num = tx_fifo_num;
7047 for (i = 0; i < MAX_TX_FIFOS; i++) {
7048 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7049 config->tx_cfg[i].fifo_priority = i;
7050 }
7051
7052 /* mapping the QoS priority to the configured fifos */
7053 for (i = 0; i < MAX_TX_FIFOS; i++)
7054 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7055
7056 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7057 for (i = 0; i < config->tx_fifo_num; i++) {
7058 config->tx_cfg[i].f_no_snoop =
7059 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7060 if (config->tx_cfg[i].fifo_len < 65) {
7061 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7062 break;
7063 }
7064 }
7065 /* + 2 because one Txd for skb->data and one Txd for UFO */
7066 config->max_txds = MAX_SKB_FRAGS + 2;
7067
7068 /* Rx side parameters. */
7069 config->rx_ring_num = rx_ring_num;
7070 for (i = 0; i < MAX_RX_RINGS; i++) {
7071 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7072 (rxd_count[sp->rxd_mode] + 1);
7073 config->rx_cfg[i].ring_priority = i;
7074 }
7075
7076 for (i = 0; i < rx_ring_num; i++) {
7077 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7078 config->rx_cfg[i].f_no_snoop =
7079 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7080 }
7081
7082 /* Setting Mac Control parameters */
7083 mac_control->rmac_pause_time = rmac_pause_time;
7084 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7085 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7086
7087
7088 /* Initialize Ring buffer parameters. */
7089 for (i = 0; i < config->rx_ring_num; i++)
7090 atomic_set(&sp->rx_bufs_left[i], 0);
7091
7092 /* Initialize the number of ISRs currently running */
7093 atomic_set(&sp->isr_cnt, 0);
7094
7095 /* initialize the shared memory used by the NIC and the host */
7096 if (init_shared_mem(sp)) {
7097 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7098 dev->name);
7099 ret = -ENOMEM;
7100 goto mem_alloc_failed;
7101 }
7102
7103 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7104 pci_resource_len(pdev, 0));
7105 if (!sp->bar0) {
7106 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7107 dev->name);
7108 ret = -ENOMEM;
7109 goto bar0_remap_failed;
7110 }
7111
7112 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7113 pci_resource_len(pdev, 2));
7114 if (!sp->bar1) {
7115 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7116 dev->name);
7117 ret = -ENOMEM;
7118 goto bar1_remap_failed;
7119 }
7120
7121 dev->irq = pdev->irq;
7122 dev->base_addr = (unsigned long) sp->bar0;
7123
7124 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7125 for (j = 0; j < MAX_TX_FIFOS; j++) {
7126 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7127 (sp->bar1 + (j * 0x00020000));
7128 }
7129
7130 /* Driver entry points */
7131 dev->open = &s2io_open;
7132 dev->stop = &s2io_close;
7133 dev->hard_start_xmit = &s2io_xmit;
7134 dev->get_stats = &s2io_get_stats;
7135 dev->set_multicast_list = &s2io_set_multicast;
7136 dev->do_ioctl = &s2io_ioctl;
7137 dev->change_mtu = &s2io_change_mtu;
7138 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7139 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7140 dev->vlan_rx_register = s2io_vlan_rx_register;
7141 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7142
7143 /*
7144 * will use eth_mac_addr() for dev->set_mac_address
7145 * mac address will be set every time dev->open() is called
7146 */
7147 dev->poll = s2io_poll;
7148 dev->weight = 32;
7149
7150 #ifdef CONFIG_NET_POLL_CONTROLLER
7151 dev->poll_controller = s2io_netpoll;
7152 #endif
7153
7154 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7155 if (sp->high_dma_flag == TRUE)
7156 dev->features |= NETIF_F_HIGHDMA;
7157 dev->features |= NETIF_F_TSO;
7158 dev->features |= NETIF_F_TSO6;
7159 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7160 dev->features |= NETIF_F_UFO;
7161 dev->features |= NETIF_F_HW_CSUM;
7162 }
7163
7164 dev->tx_timeout = &s2io_tx_watchdog;
7165 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7166 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7167 INIT_WORK(&sp->set_link_task, s2io_set_link);
7168
7169 pci_save_state(sp->pdev);
7170
7171 /* Setting swapper control on the NIC, for proper reset operation */
7172 if (s2io_set_swapper(sp)) {
7173 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7174 dev->name);
7175 ret = -EAGAIN;
7176 goto set_swap_failed;
7177 }
7178
7179 /* Verify if the Herc works on the slot its placed into */
7180 if (sp->device_type & XFRAME_II_DEVICE) {
7181 mode = s2io_verify_pci_mode(sp);
7182 if (mode < 0) {
7183 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7184 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7185 ret = -EBADSLT;
7186 goto set_swap_failed;
7187 }
7188 }
7189
7190 /* Not needed for Herc */
7191 if (sp->device_type & XFRAME_I_DEVICE) {
7192 /*
7193 * Fix for all "FFs" MAC address problems observed on
7194 * Alpha platforms
7195 */
7196 fix_mac_address(sp);
7197 s2io_reset(sp);
7198 }
7199
7200 /*
7201 * MAC address initialization.
7202 * For now only one mac address will be read and used.
7203 */
7204 bar0 = sp->bar0;
7205 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7206 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7207 writeq(val64, &bar0->rmac_addr_cmd_mem);
7208 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7209 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7210 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7211 mac_down = (u32) tmp64;
7212 mac_up = (u32) (tmp64 >> 32);
7213
7214 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7215 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7216 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7217 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7218 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7219 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7220
7221 /* Set the factory defined MAC address initially */
7222 dev->addr_len = ETH_ALEN;
7223 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7224
7225 /* reset Nic and bring it to known state */
7226 s2io_reset(sp);
7227
7228 /*
7229 * Initialize the tasklet status and link state flags
7230 * and the card state parameter
7231 */
7232 atomic_set(&(sp->card_state), 0);
7233 sp->tasklet_status = 0;
7234 sp->link_state = 0;
7235
7236 /* Initialize spinlocks */
7237 spin_lock_init(&sp->tx_lock);
7238
7239 if (!napi)
7240 spin_lock_init(&sp->put_lock);
7241 spin_lock_init(&sp->rx_lock);
7242
7243 /*
7244 * SXE-002: Configure link and activity LED to init state
7245 * on driver load.
7246 */
7247 subid = sp->pdev->subsystem_device;
7248 if ((subid & 0xFF) >= 0x07) {
7249 val64 = readq(&bar0->gpio_control);
7250 val64 |= 0x0000800000000000ULL;
7251 writeq(val64, &bar0->gpio_control);
7252 val64 = 0x0411040400000000ULL;
7253 writeq(val64, (void __iomem *) bar0 + 0x2700);
7254 val64 = readq(&bar0->gpio_control);
7255 }
7256
7257 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7258
7259 if (register_netdev(dev)) {
7260 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7261 ret = -ENODEV;
7262 goto register_failed;
7263 }
7264 s2io_vpd_read(sp);
7265 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7266 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7267 sp->product_name, get_xena_rev_id(sp->pdev));
7268 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7269 s2io_driver_version);
7270 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7271 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7272 sp->def_mac_addr[0].mac_addr[0],
7273 sp->def_mac_addr[0].mac_addr[1],
7274 sp->def_mac_addr[0].mac_addr[2],
7275 sp->def_mac_addr[0].mac_addr[3],
7276 sp->def_mac_addr[0].mac_addr[4],
7277 sp->def_mac_addr[0].mac_addr[5]);
7278 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7279 if (sp->device_type & XFRAME_II_DEVICE) {
7280 mode = s2io_print_pci_mode(sp);
7281 if (mode < 0) {
7282 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7283 ret = -EBADSLT;
7284 unregister_netdev(dev);
7285 goto set_swap_failed;
7286 }
7287 }
7288 switch(sp->rxd_mode) {
7289 case RXD_MODE_1:
7290 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7291 dev->name);
7292 break;
7293 case RXD_MODE_3B:
7294 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7295 dev->name);
7296 break;
7297 case RXD_MODE_3A:
7298 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7299 dev->name);
7300 break;
7301 }
7302
7303 if (napi)
7304 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7305 switch(sp->intr_type) {
7306 case INTA:
7307 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7308 break;
7309 case MSI:
7310 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7311 break;
7312 case MSI_X:
7313 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7314 break;
7315 }
7316 if (sp->lro)
7317 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7318 dev->name);
7319 if (ufo)
7320 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7321 " enabled\n", dev->name);
7322 /* Initialize device name */
7323 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7324
7325 /* Initialize bimodal Interrupts */
7326 sp->config.bimodal = bimodal;
7327 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7328 sp->config.bimodal = 0;
7329 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7330 dev->name);
7331 }
7332
7333 /*
7334 * Make Link state as off at this point, when the Link change
7335 * interrupt comes the state will be automatically changed to
7336 * the right state.
7337 */
7338 netif_carrier_off(dev);
7339
7340 return 0;
7341
7342 register_failed:
7343 set_swap_failed:
7344 iounmap(sp->bar1);
7345 bar1_remap_failed:
7346 iounmap(sp->bar0);
7347 bar0_remap_failed:
7348 mem_alloc_failed:
7349 free_shared_mem(sp);
7350 pci_disable_device(pdev);
7351 if (dev_intr_type != MSI_X)
7352 pci_release_regions(pdev);
7353 else {
7354 release_mem_region(pci_resource_start(pdev, 0),
7355 pci_resource_len(pdev, 0));
7356 release_mem_region(pci_resource_start(pdev, 2),
7357 pci_resource_len(pdev, 2));
7358 }
7359 pci_set_drvdata(pdev, NULL);
7360 free_netdev(dev);
7361
7362 return ret;
7363 }
7364
7365 /**
7366 * s2io_rem_nic - Free the PCI device
7367 * @pdev: structure containing the PCI related information of the device.
7368 * Description: This function is called by the Pci subsystem to release a
7369 * PCI device and free up all resource held up by the device. This could
7370 * be in response to a Hot plug event or when the driver is to be removed
7371 * from memory.
7372 */
7373
7374 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7375 {
7376 struct net_device *dev =
7377 (struct net_device *) pci_get_drvdata(pdev);
7378 struct s2io_nic *sp;
7379
7380 if (dev == NULL) {
7381 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7382 return;
7383 }
7384
7385 flush_scheduled_work();
7386
7387 sp = dev->priv;
7388 unregister_netdev(dev);
7389
7390 free_shared_mem(sp);
7391 iounmap(sp->bar0);
7392 iounmap(sp->bar1);
7393 if (sp->intr_type != MSI_X)
7394 pci_release_regions(pdev);
7395 else {
7396 release_mem_region(pci_resource_start(pdev, 0),
7397 pci_resource_len(pdev, 0));
7398 release_mem_region(pci_resource_start(pdev, 2),
7399 pci_resource_len(pdev, 2));
7400 }
7401 pci_set_drvdata(pdev, NULL);
7402 free_netdev(dev);
7403 pci_disable_device(pdev);
7404 }
7405
7406 /**
7407 * s2io_starter - Entry point for the driver
7408 * Description: This function is the entry point for the driver. It verifies
7409 * the module loadable parameters and initializes PCI configuration space.
7410 */
7411
7412 int __init s2io_starter(void)
7413 {
7414 return pci_register_driver(&s2io_driver);
7415 }
7416
7417 /**
7418 * s2io_closer - Cleanup routine for the driver
7419 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7420 */
7421
7422 static __exit void s2io_closer(void)
7423 {
7424 pci_unregister_driver(&s2io_driver);
7425 DBG_PRINT(INIT_DBG, "cleanup done\n");
7426 }
7427
7428 module_init(s2io_starter);
7429 module_exit(s2io_closer);
7430
7431 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7432 struct tcphdr **tcp, struct RxD_t *rxdp)
7433 {
7434 int ip_off;
7435 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7436
7437 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7438 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7439 __FUNCTION__);
7440 return -1;
7441 }
7442
7443 /* TODO:
7444 * By default the VLAN field in the MAC is stripped by the card, if this
7445 * feature is turned off in rx_pa_cfg register, then the ip_off field
7446 * has to be shifted by a further 2 bytes
7447 */
7448 switch (l2_type) {
7449 case 0: /* DIX type */
7450 case 4: /* DIX type with VLAN */
7451 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7452 break;
7453 /* LLC, SNAP etc are considered non-mergeable */
7454 default:
7455 return -1;
7456 }
7457
7458 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7459 ip_len = (u8)((*ip)->ihl);
7460 ip_len <<= 2;
7461 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7462
7463 return 0;
7464 }
7465
7466 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7467 struct tcphdr *tcp)
7468 {
7469 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7470 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7471 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7472 return -1;
7473 return 0;
7474 }
7475
7476 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7477 {
7478 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7479 }
7480
7481 static void initiate_new_session(struct lro *lro, u8 *l2h,
7482 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7483 {
7484 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7485 lro->l2h = l2h;
7486 lro->iph = ip;
7487 lro->tcph = tcp;
7488 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7489 lro->tcp_ack = ntohl(tcp->ack_seq);
7490 lro->sg_num = 1;
7491 lro->total_len = ntohs(ip->tot_len);
7492 lro->frags_len = 0;
7493 /*
7494 * check if we saw TCP timestamp. Other consistency checks have
7495 * already been done.
7496 */
7497 if (tcp->doff == 8) {
7498 u32 *ptr;
7499 ptr = (u32 *)(tcp+1);
7500 lro->saw_ts = 1;
7501 lro->cur_tsval = *(ptr+1);
7502 lro->cur_tsecr = *(ptr+2);
7503 }
7504 lro->in_use = 1;
7505 }
7506
7507 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7508 {
7509 struct iphdr *ip = lro->iph;
7510 struct tcphdr *tcp = lro->tcph;
7511 __sum16 nchk;
7512 struct stat_block *statinfo = sp->mac_control.stats_info;
7513 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7514
7515 /* Update L3 header */
7516 ip->tot_len = htons(lro->total_len);
7517 ip->check = 0;
7518 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7519 ip->check = nchk;
7520
7521 /* Update L4 header */
7522 tcp->ack_seq = lro->tcp_ack;
7523 tcp->window = lro->window;
7524
7525 /* Update tsecr field if this session has timestamps enabled */
7526 if (lro->saw_ts) {
7527 u32 *ptr = (u32 *)(tcp + 1);
7528 *(ptr+2) = lro->cur_tsecr;
7529 }
7530
7531 /* Update counters required for calculation of
7532 * average no. of packets aggregated.
7533 */
7534 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7535 statinfo->sw_stat.num_aggregations++;
7536 }
7537
7538 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7539 struct tcphdr *tcp, u32 l4_pyld)
7540 {
7541 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7542 lro->total_len += l4_pyld;
7543 lro->frags_len += l4_pyld;
7544 lro->tcp_next_seq += l4_pyld;
7545 lro->sg_num++;
7546
7547 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7548 lro->tcp_ack = tcp->ack_seq;
7549 lro->window = tcp->window;
7550
7551 if (lro->saw_ts) {
7552 u32 *ptr;
7553 /* Update tsecr and tsval from this packet */
7554 ptr = (u32 *) (tcp + 1);
7555 lro->cur_tsval = *(ptr + 1);
7556 lro->cur_tsecr = *(ptr + 2);
7557 }
7558 }
7559
7560 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7561 struct tcphdr *tcp, u32 tcp_pyld_len)
7562 {
7563 u8 *ptr;
7564
7565 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7566
7567 if (!tcp_pyld_len) {
7568 /* Runt frame or a pure ack */
7569 return -1;
7570 }
7571
7572 if (ip->ihl != 5) /* IP has options */
7573 return -1;
7574
7575 /* If we see CE codepoint in IP header, packet is not mergeable */
7576 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7577 return -1;
7578
7579 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7580 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7581 tcp->ece || tcp->cwr || !tcp->ack) {
7582 /*
7583 * Currently recognize only the ack control word and
7584 * any other control field being set would result in
7585 * flushing the LRO session
7586 */
7587 return -1;
7588 }
7589
7590 /*
7591 * Allow only one TCP timestamp option. Don't aggregate if
7592 * any other options are detected.
7593 */
7594 if (tcp->doff != 5 && tcp->doff != 8)
7595 return -1;
7596
7597 if (tcp->doff == 8) {
7598 ptr = (u8 *)(tcp + 1);
7599 while (*ptr == TCPOPT_NOP)
7600 ptr++;
7601 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7602 return -1;
7603
7604 /* Ensure timestamp value increases monotonically */
7605 if (l_lro)
7606 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7607 return -1;
7608
7609 /* timestamp echo reply should be non-zero */
7610 if (*((u32 *)(ptr+6)) == 0)
7611 return -1;
7612 }
7613
7614 return 0;
7615 }
7616
7617 static int
7618 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7619 struct RxD_t *rxdp, struct s2io_nic *sp)
7620 {
7621 struct iphdr *ip;
7622 struct tcphdr *tcph;
7623 int ret = 0, i;
7624
7625 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7626 rxdp))) {
7627 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7628 ip->saddr, ip->daddr);
7629 } else {
7630 return ret;
7631 }
7632
7633 tcph = (struct tcphdr *)*tcp;
7634 *tcp_len = get_l4_pyld_length(ip, tcph);
7635 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7636 struct lro *l_lro = &sp->lro0_n[i];
7637 if (l_lro->in_use) {
7638 if (check_for_socket_match(l_lro, ip, tcph))
7639 continue;
7640 /* Sock pair matched */
7641 *lro = l_lro;
7642
7643 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7644 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7645 "0x%x, actual 0x%x\n", __FUNCTION__,
7646 (*lro)->tcp_next_seq,
7647 ntohl(tcph->seq));
7648
7649 sp->mac_control.stats_info->
7650 sw_stat.outof_sequence_pkts++;
7651 ret = 2;
7652 break;
7653 }
7654
7655 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7656 ret = 1; /* Aggregate */
7657 else
7658 ret = 2; /* Flush both */
7659 break;
7660 }
7661 }
7662
7663 if (ret == 0) {
7664 /* Before searching for available LRO objects,
7665 * check if the pkt is L3/L4 aggregatable. If not
7666 * don't create new LRO session. Just send this
7667 * packet up.
7668 */
7669 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7670 return 5;
7671 }
7672
7673 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7674 struct lro *l_lro = &sp->lro0_n[i];
7675 if (!(l_lro->in_use)) {
7676 *lro = l_lro;
7677 ret = 3; /* Begin anew */
7678 break;
7679 }
7680 }
7681 }
7682
7683 if (ret == 0) { /* sessions exceeded */
7684 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7685 __FUNCTION__);
7686 *lro = NULL;
7687 return ret;
7688 }
7689
7690 switch (ret) {
7691 case 3:
7692 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7693 break;
7694 case 2:
7695 update_L3L4_header(sp, *lro);
7696 break;
7697 case 1:
7698 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7699 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7700 update_L3L4_header(sp, *lro);
7701 ret = 4; /* Flush the LRO */
7702 }
7703 break;
7704 default:
7705 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7706 __FUNCTION__);
7707 break;
7708 }
7709
7710 return ret;
7711 }
7712
7713 static void clear_lro_session(struct lro *lro)
7714 {
7715 static u16 lro_struct_size = sizeof(struct lro);
7716
7717 memset(lro, 0, lro_struct_size);
7718 }
7719
7720 static void queue_rx_frame(struct sk_buff *skb)
7721 {
7722 struct net_device *dev = skb->dev;
7723
7724 skb->protocol = eth_type_trans(skb, dev);
7725 if (napi)
7726 netif_receive_skb(skb);
7727 else
7728 netif_rx(skb);
7729 }
7730
7731 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7732 struct sk_buff *skb,
7733 u32 tcp_len)
7734 {
7735 struct sk_buff *first = lro->parent;
7736
7737 first->len += tcp_len;
7738 first->data_len = lro->frags_len;
7739 skb_pull(skb, (skb->len - tcp_len));
7740 if (skb_shinfo(first)->frag_list)
7741 lro->last_frag->next = skb;
7742 else
7743 skb_shinfo(first)->frag_list = skb;
7744 first->truesize += skb->truesize;
7745 lro->last_frag = skb;
7746 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7747 return;
7748 }