1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
84 #include <asm/system.h>
85 #include <asm/div64.h>
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.25"
94 /* S2io Driver name & version. */
95 static char s2io_driver_name
[] = "Neterion";
96 static char s2io_driver_version
[] = DRV_VERSION
;
98 static int rxd_size
[2] = {32, 48};
99 static int rxd_count
[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
105 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
106 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
126 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
140 {"tmac_data_octets"},
144 {"tmac_pause_ctrl_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
217 {"new_rd_req_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
222 {"new_wr_req_rtry_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
235 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
254 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
322 {"prc_pcix_err_cnt"},
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
351 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
352 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
353 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
354 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
355 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
356 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
360 static void s2io_vlan_rx_register(struct net_device
*dev
,
361 struct vlan_group
*grp
)
364 struct s2io_nic
*nic
= netdev_priv(dev
);
365 unsigned long flags
[MAX_TX_FIFOS
];
366 struct config_param
*config
= &nic
->config
;
367 struct mac_info
*mac_control
= &nic
->mac_control
;
369 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
370 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
372 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
377 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
378 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
380 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
388 struct s2io_nic
*nic
= netdev_priv(dev
);
389 unsigned long flags
[MAX_TX_FIFOS
];
390 struct config_param
*config
= &nic
->config
;
391 struct mac_info
*mac_control
= &nic
->mac_control
;
393 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
394 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
396 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
400 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
402 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
403 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
405 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
410 * Constants to be programmed into the Xena's registers, to configure
415 static const u64 herc_act_dtx_cfg
[] = {
417 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
419 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
421 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
423 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
425 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
427 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
429 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
431 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
436 static const u64 xena_dtx_cfg
[] = {
438 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
440 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
442 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
444 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
446 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
448 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
453 * Constants for Fixing the MacAddress problem seen mostly on
456 static const u64 fix_mac
[] = {
457 0x0060000000000000ULL
, 0x0060600000000000ULL
,
458 0x0040600000000000ULL
, 0x0000600000000000ULL
,
459 0x0020600000000000ULL
, 0x0060600000000000ULL
,
460 0x0020600000000000ULL
, 0x0060600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0060600000000000ULL
,
469 0x0020600000000000ULL
, 0x0000600000000000ULL
,
470 0x0040600000000000ULL
, 0x0060600000000000ULL
,
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION
);
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
480 S2IO_PARM_INT(rx_ring_num
, 1);
481 S2IO_PARM_INT(multiq
, 0);
482 S2IO_PARM_INT(rx_ring_mode
, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
484 S2IO_PARM_INT(rmac_pause_time
, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
487 S2IO_PARM_INT(shared_splits
, 0);
488 S2IO_PARM_INT(tmac_util_period
, 5);
489 S2IO_PARM_INT(rmac_util_period
, 5);
490 S2IO_PARM_INT(l3l4hdr_size
, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency
, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type
, 2);
497 /* Large receive offload feature */
498 static unsigned int lro_enable
;
499 module_param_named(lro
, lro_enable
, uint
, 0);
501 /* Max pkts to be aggregated by LRO at one time. If not specified,
502 * aggregation happens until we hit max IP pkt size(64K)
504 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
505 S2IO_PARM_INT(indicate_max_pkts
, 0);
507 S2IO_PARM_INT(napi
, 1);
508 S2IO_PARM_INT(ufo
, 0);
509 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
511 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
512 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
513 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
514 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
515 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
516 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
518 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
519 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
520 module_param_array(rts_frm_len
, uint
, NULL
, 0);
524 * This table lists all the devices that this driver supports.
526 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
527 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
528 PCI_ANY_ID
, PCI_ANY_ID
},
529 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
530 PCI_ANY_ID
, PCI_ANY_ID
},
531 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
532 PCI_ANY_ID
, PCI_ANY_ID
},
533 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
534 PCI_ANY_ID
, PCI_ANY_ID
},
538 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
540 static struct pci_error_handlers s2io_err_handler
= {
541 .error_detected
= s2io_io_error_detected
,
542 .slot_reset
= s2io_io_slot_reset
,
543 .resume
= s2io_io_resume
,
546 static struct pci_driver s2io_driver
= {
548 .id_table
= s2io_tbl
,
549 .probe
= s2io_init_nic
,
550 .remove
= __devexit_p(s2io_rem_nic
),
551 .err_handler
= &s2io_err_handler
,
554 /* A simplifier macro used both by init and free shared_mem Fns(). */
555 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557 /* netqueue manipulation helper functions */
558 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
560 if (!sp
->config
.multiq
) {
563 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
564 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
566 netif_tx_stop_all_queues(sp
->dev
);
569 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
571 if (!sp
->config
.multiq
)
572 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
575 netif_tx_stop_all_queues(sp
->dev
);
578 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
580 if (!sp
->config
.multiq
) {
583 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
584 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
586 netif_tx_start_all_queues(sp
->dev
);
589 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
591 if (!sp
->config
.multiq
)
592 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
595 netif_tx_start_all_queues(sp
->dev
);
598 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
600 if (!sp
->config
.multiq
) {
603 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
604 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
606 netif_tx_wake_all_queues(sp
->dev
);
609 static inline void s2io_wake_tx_queue(
610 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
614 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
615 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
616 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
617 if (netif_queue_stopped(fifo
->dev
)) {
618 fifo
->queue_state
= FIFO_QUEUE_START
;
619 netif_wake_queue(fifo
->dev
);
625 * init_shared_mem - Allocation and Initialization of Memory
626 * @nic: Device private variable.
627 * Description: The function allocates all the memory areas shared
628 * between the NIC and the driver. This includes Tx descriptors,
629 * Rx descriptors and the statistics block.
632 static int init_shared_mem(struct s2io_nic
*nic
)
635 void *tmp_v_addr
, *tmp_v_addr_next
;
636 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
637 struct RxD_block
*pre_rxd_blk
= NULL
;
639 int lst_size
, lst_per_page
;
640 struct net_device
*dev
= nic
->dev
;
643 struct config_param
*config
= &nic
->config
;
644 struct mac_info
*mac_control
= &nic
->mac_control
;
645 unsigned long long mem_allocated
= 0;
647 /* Allocation and initialization of TXDLs in FIFOs */
649 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
650 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
652 size
+= tx_cfg
->fifo_len
;
654 if (size
> MAX_AVAILABLE_TXDS
) {
656 "Too many TxDs requested: %d, max supported: %d\n",
657 size
, MAX_AVAILABLE_TXDS
);
662 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
663 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
665 size
= tx_cfg
->fifo_len
;
667 * Legal values are from 2 to 8192
670 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
671 "Valid lengths are 2 through 8192\n",
677 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
678 lst_per_page
= PAGE_SIZE
/ lst_size
;
680 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
681 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
682 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
683 int fifo_len
= tx_cfg
->fifo_len
;
684 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
686 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
687 if (!fifo
->list_info
) {
688 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
691 mem_allocated
+= list_holder_size
;
693 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
694 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
696 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
697 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
699 fifo
->tx_curr_put_info
.offset
= 0;
700 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
701 fifo
->tx_curr_get_info
.offset
= 0;
702 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
705 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
708 for (j
= 0; j
< page_num
; j
++) {
712 tmp_v
= pci_alloc_consistent(nic
->pdev
,
716 "pci_alloc_consistent failed for TxDL\n");
719 /* If we got a zero DMA address(can happen on
720 * certain platforms like PPC), reallocate.
721 * Store virtual address of page we don't want,
725 mac_control
->zerodma_virt_addr
= tmp_v
;
727 "%s: Zero DMA address for TxDL. "
728 "Virtual address %p\n",
730 tmp_v
= pci_alloc_consistent(nic
->pdev
,
734 "pci_alloc_consistent failed for TxDL\n");
737 mem_allocated
+= PAGE_SIZE
;
739 while (k
< lst_per_page
) {
740 int l
= (j
* lst_per_page
) + k
;
741 if (l
== tx_cfg
->fifo_len
)
743 fifo
->list_info
[l
].list_virt_addr
=
744 tmp_v
+ (k
* lst_size
);
745 fifo
->list_info
[l
].list_phy_addr
=
746 tmp_p
+ (k
* lst_size
);
752 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
753 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
754 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
756 size
= tx_cfg
->fifo_len
;
757 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
758 if (!fifo
->ufo_in_band_v
)
760 mem_allocated
+= (size
* sizeof(u64
));
763 /* Allocation and initialization of RXDs in Rings */
765 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
766 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
767 struct ring_info
*ring
= &mac_control
->rings
[i
];
769 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
770 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
771 "multiple of RxDs per Block\n",
775 size
+= rx_cfg
->num_rxd
;
776 ring
->block_count
= rx_cfg
->num_rxd
/
777 (rxd_count
[nic
->rxd_mode
] + 1);
778 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
780 if (nic
->rxd_mode
== RXD_MODE_1
)
781 size
= (size
* (sizeof(struct RxD1
)));
783 size
= (size
* (sizeof(struct RxD3
)));
785 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
786 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
787 struct ring_info
*ring
= &mac_control
->rings
[i
];
789 ring
->rx_curr_get_info
.block_index
= 0;
790 ring
->rx_curr_get_info
.offset
= 0;
791 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
792 ring
->rx_curr_put_info
.block_index
= 0;
793 ring
->rx_curr_put_info
.offset
= 0;
794 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
797 ring
->lro
= lro_enable
;
799 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
800 /* Allocating all the Rx blocks */
801 for (j
= 0; j
< blk_cnt
; j
++) {
802 struct rx_block_info
*rx_blocks
;
805 rx_blocks
= &ring
->rx_blocks
[j
];
806 size
= SIZE_OF_BLOCK
; /* size is always page size */
807 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
809 if (tmp_v_addr
== NULL
) {
811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
816 rx_blocks
->block_virt_addr
= tmp_v_addr
;
819 mem_allocated
+= size
;
820 memset(tmp_v_addr
, 0, size
);
822 size
= sizeof(struct rxd_info
) *
823 rxd_count
[nic
->rxd_mode
];
824 rx_blocks
->block_virt_addr
= tmp_v_addr
;
825 rx_blocks
->block_dma_addr
= tmp_p_addr
;
826 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
827 if (!rx_blocks
->rxds
)
829 mem_allocated
+= size
;
830 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
831 rx_blocks
->rxds
[l
].virt_addr
=
832 rx_blocks
->block_virt_addr
+
833 (rxd_size
[nic
->rxd_mode
] * l
);
834 rx_blocks
->rxds
[l
].dma_addr
=
835 rx_blocks
->block_dma_addr
+
836 (rxd_size
[nic
->rxd_mode
] * l
);
839 /* Interlinking all Rx Blocks */
840 for (j
= 0; j
< blk_cnt
; j
++) {
841 int next
= (j
+ 1) % blk_cnt
;
842 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
843 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
844 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
845 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
847 pre_rxd_blk
= (struct RxD_block
*)tmp_v_addr
;
848 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
849 (unsigned long)tmp_v_addr_next
;
850 pre_rxd_blk
->pNext_RxD_Blk_physical
=
851 (u64
)tmp_p_addr_next
;
854 if (nic
->rxd_mode
== RXD_MODE_3B
) {
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
859 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
860 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
861 struct ring_info
*ring
= &mac_control
->rings
[i
];
863 blk_cnt
= rx_cfg
->num_rxd
/
864 (rxd_count
[nic
->rxd_mode
] + 1);
865 size
= sizeof(struct buffAdd
*) * blk_cnt
;
866 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
869 mem_allocated
+= size
;
870 for (j
= 0; j
< blk_cnt
; j
++) {
873 size
= sizeof(struct buffAdd
) *
874 (rxd_count
[nic
->rxd_mode
] + 1);
875 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
878 mem_allocated
+= size
;
879 while (k
!= rxd_count
[nic
->rxd_mode
]) {
880 ba
= &ring
->ba
[j
][k
];
881 size
= BUF0_LEN
+ ALIGN_SIZE
;
882 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
885 mem_allocated
+= size
;
886 tmp
= (unsigned long)ba
->ba_0_org
;
888 tmp
&= ~((unsigned long)ALIGN_SIZE
);
889 ba
->ba_0
= (void *)tmp
;
891 size
= BUF1_LEN
+ ALIGN_SIZE
;
892 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
895 mem_allocated
+= size
;
896 tmp
= (unsigned long)ba
->ba_1_org
;
898 tmp
&= ~((unsigned long)ALIGN_SIZE
);
899 ba
->ba_1
= (void *)tmp
;
906 /* Allocation and initialization of Statistics block */
907 size
= sizeof(struct stat_block
);
908 mac_control
->stats_mem
=
909 pci_alloc_consistent(nic
->pdev
, size
,
910 &mac_control
->stats_mem_phy
);
912 if (!mac_control
->stats_mem
) {
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
920 mem_allocated
+= size
;
921 mac_control
->stats_mem_sz
= size
;
923 tmp_v_addr
= mac_control
->stats_mem
;
924 mac_control
->stats_info
= (struct stat_block
*)tmp_v_addr
;
925 memset(tmp_v_addr
, 0, size
);
926 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n", dev
->name
,
927 (unsigned long long)tmp_p_addr
);
928 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
933 * free_shared_mem - Free the allocated Memory
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
939 static void free_shared_mem(struct s2io_nic
*nic
)
941 int i
, j
, blk_cnt
, size
;
943 dma_addr_t tmp_p_addr
;
944 int lst_size
, lst_per_page
;
945 struct net_device
*dev
;
947 struct config_param
*config
;
948 struct mac_info
*mac_control
;
949 struct stat_block
*stats
;
950 struct swStat
*swstats
;
957 config
= &nic
->config
;
958 mac_control
= &nic
->mac_control
;
959 stats
= mac_control
->stats_info
;
960 swstats
= &stats
->sw_stat
;
962 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
963 lst_per_page
= PAGE_SIZE
/ lst_size
;
965 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
966 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
967 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
969 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
970 for (j
= 0; j
< page_num
; j
++) {
971 int mem_blks
= (j
* lst_per_page
);
972 struct list_info_hold
*fli
;
974 if (!fifo
->list_info
)
977 fli
= &fifo
->list_info
[mem_blks
];
978 if (!fli
->list_virt_addr
)
980 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
983 swstats
->mem_freed
+= PAGE_SIZE
;
985 /* If we got a zero DMA address during allocation,
988 if (mac_control
->zerodma_virt_addr
) {
989 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
990 mac_control
->zerodma_virt_addr
,
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev
->name
, mac_control
->zerodma_virt_addr
);
996 swstats
->mem_freed
+= PAGE_SIZE
;
998 kfree(fifo
->list_info
);
999 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1000 sizeof(struct list_info_hold
);
1003 size
= SIZE_OF_BLOCK
;
1004 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1005 struct ring_info
*ring
= &mac_control
->rings
[i
];
1007 blk_cnt
= ring
->block_count
;
1008 for (j
= 0; j
< blk_cnt
; j
++) {
1009 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
1010 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
1011 if (tmp_v_addr
== NULL
)
1013 pci_free_consistent(nic
->pdev
, size
,
1014 tmp_v_addr
, tmp_p_addr
);
1015 swstats
->mem_freed
+= size
;
1016 kfree(ring
->rx_blocks
[j
].rxds
);
1017 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
1018 rxd_count
[nic
->rxd_mode
];
1022 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1025 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1026 struct ring_info
*ring
= &mac_control
->rings
[i
];
1028 blk_cnt
= rx_cfg
->num_rxd
/
1029 (rxd_count
[nic
->rxd_mode
] + 1);
1030 for (j
= 0; j
< blk_cnt
; j
++) {
1034 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1035 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
1036 kfree(ba
->ba_0_org
);
1037 swstats
->mem_freed
+=
1038 BUF0_LEN
+ ALIGN_SIZE
;
1039 kfree(ba
->ba_1_org
);
1040 swstats
->mem_freed
+=
1041 BUF1_LEN
+ ALIGN_SIZE
;
1045 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
1046 (rxd_count
[nic
->rxd_mode
] + 1);
1049 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1054 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1055 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1056 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1058 if (fifo
->ufo_in_band_v
) {
1059 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1061 kfree(fifo
->ufo_in_band_v
);
1065 if (mac_control
->stats_mem
) {
1066 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1067 pci_free_consistent(nic
->pdev
,
1068 mac_control
->stats_mem_sz
,
1069 mac_control
->stats_mem
,
1070 mac_control
->stats_mem_phy
);
1075 * s2io_verify_pci_mode -
1078 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1080 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1081 register u64 val64
= 0;
1084 val64
= readq(&bar0
->pci_mode
);
1085 mode
= (u8
)GET_PCI_MODE(val64
);
1087 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1088 return -1; /* Unknown PCI mode */
1092 #define NEC_VENID 0x1033
1093 #define NEC_DEVID 0x0125
1094 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1096 struct pci_dev
*tdev
= NULL
;
1097 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1098 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1099 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1108 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1110 * s2io_print_pci_mode -
1112 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1114 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1115 register u64 val64
= 0;
1117 struct config_param
*config
= &nic
->config
;
1118 const char *pcimode
;
1120 val64
= readq(&bar0
->pci_mode
);
1121 mode
= (u8
)GET_PCI_MODE(val64
);
1123 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1124 return -1; /* Unknown PCI mode */
1126 config
->bus_speed
= bus_speed
[mode
];
1128 if (s2io_on_nec_bridge(nic
->pdev
)) {
1129 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1135 case PCI_MODE_PCI_33
:
1136 pcimode
= "33MHz PCI bus";
1138 case PCI_MODE_PCI_66
:
1139 pcimode
= "66MHz PCI bus";
1141 case PCI_MODE_PCIX_M1_66
:
1142 pcimode
= "66MHz PCIX(M1) bus";
1144 case PCI_MODE_PCIX_M1_100
:
1145 pcimode
= "100MHz PCIX(M1) bus";
1147 case PCI_MODE_PCIX_M1_133
:
1148 pcimode
= "133MHz PCIX(M1) bus";
1150 case PCI_MODE_PCIX_M2_66
:
1151 pcimode
= "133MHz PCIX(M2) bus";
1153 case PCI_MODE_PCIX_M2_100
:
1154 pcimode
= "200MHz PCIX(M2) bus";
1156 case PCI_MODE_PCIX_M2_133
:
1157 pcimode
= "266MHz PCIX(M2) bus";
1160 pcimode
= "unsupported bus!";
1164 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1165 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1180 static int init_tti(struct s2io_nic
*nic
, int link
)
1182 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1183 register u64 val64
= 0;
1185 struct config_param
*config
= &nic
->config
;
1187 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1193 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1194 int count
= (nic
->config
.bus_speed
* 125)/2;
1195 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1197 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1199 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1204 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1205 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1206 writeq(val64
, &bar0
->tti_data1_mem
);
1208 if (nic
->config
.intr_type
== MSI_X
) {
1209 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1214 if ((nic
->config
.tx_steering_type
==
1215 TX_DEFAULT_STEERING
) &&
1216 (config
->tx_fifo_num
> 1) &&
1217 (i
>= nic
->udp_fifo_idx
) &&
1218 (i
< (nic
->udp_fifo_idx
+
1219 nic
->total_udp_fifos
)))
1220 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1225 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1231 writeq(val64
, &bar0
->tti_data2_mem
);
1233 val64
= TTI_CMD_MEM_WE
|
1234 TTI_CMD_MEM_STROBE_NEW_CMD
|
1235 TTI_CMD_MEM_OFFSET(i
);
1236 writeq(val64
, &bar0
->tti_command_mem
);
1238 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1239 TTI_CMD_MEM_STROBE_NEW_CMD
,
1240 S2IO_BIT_RESET
) != SUCCESS
)
1248 * init_nic - Initialization of hardware
1249 * @nic: device private variable
1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1253 * '-1' on failure (endian settings incorrect).
1256 static int init_nic(struct s2io_nic
*nic
)
1258 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1259 struct net_device
*dev
= nic
->dev
;
1260 register u64 val64
= 0;
1265 unsigned long long mem_share
;
1267 struct config_param
*config
= &nic
->config
;
1268 struct mac_info
*mac_control
= &nic
->mac_control
;
1270 /* to set the swapper controle on the card */
1271 if (s2io_set_swapper(nic
)) {
1272 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1279 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1280 val64
= 0xA500000000ULL
;
1281 writeq(val64
, &bar0
->sw_reset
);
1283 val64
= readq(&bar0
->sw_reset
);
1286 /* Remove XGXS from reset state */
1288 writeq(val64
, &bar0
->sw_reset
);
1290 val64
= readq(&bar0
->sw_reset
);
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1296 for (i
= 0; i
< 50; i
++) {
1297 val64
= readq(&bar0
->adapter_status
);
1298 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1306 /* Enable Receiving broadcasts */
1307 add
= &bar0
->mac_cfg
;
1308 val64
= readq(&bar0
->mac_cfg
);
1309 val64
|= MAC_RMAC_BCAST_ENABLE
;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1311 writel((u32
)val64
, add
);
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1313 writel((u32
) (val64
>> 32), (add
+ 4));
1315 /* Read registers in all blocks */
1316 val64
= readq(&bar0
->mac_int_mask
);
1317 val64
= readq(&bar0
->mc_int_mask
);
1318 val64
= readq(&bar0
->xgxs_int_mask
);
1322 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1324 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1325 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1327 &bar0
->dtx_control
, UF
);
1329 msleep(1); /* Necessary!! */
1333 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1335 &bar0
->dtx_control
, UF
);
1336 val64
= readq(&bar0
->dtx_control
);
1341 /* Tx DMA Initialization */
1343 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1344 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1345 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1346 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1348 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1349 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1351 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1352 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1354 if (i
== (config
->tx_fifo_num
- 1)) {
1361 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1366 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1371 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1376 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1390 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1391 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1393 val64
= readq(&bar0
->tx_fifo_partition_0
);
1394 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1395 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1399 * integrity checking.
1401 val64
= readq(&bar0
->tx_pa_cfg
);
1402 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1403 TX_PA_CFG_IGNORE_SNAP_OUI
|
1404 TX_PA_CFG_IGNORE_LLC_CTRL
|
1405 TX_PA_CFG_IGNORE_L2_ERR
;
1406 writeq(val64
, &bar0
->tx_pa_cfg
);
1408 /* Rx DMA intialization. */
1410 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1411 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1413 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1415 writeq(val64
, &bar0
->rx_queue_priority
);
1418 * Allocating equal share of memory to all the
1422 if (nic
->device_type
& XFRAME_II_DEVICE
)
1427 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1430 mem_share
= (mem_size
/ config
->rx_ring_num
+
1431 mem_size
% config
->rx_ring_num
);
1432 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1435 mem_share
= (mem_size
/ config
->rx_ring_num
);
1436 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1439 mem_share
= (mem_size
/ config
->rx_ring_num
);
1440 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1443 mem_share
= (mem_size
/ config
->rx_ring_num
);
1444 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1447 mem_share
= (mem_size
/ config
->rx_ring_num
);
1448 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1451 mem_share
= (mem_size
/ config
->rx_ring_num
);
1452 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1455 mem_share
= (mem_size
/ config
->rx_ring_num
);
1456 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1459 mem_share
= (mem_size
/ config
->rx_ring_num
);
1460 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1464 writeq(val64
, &bar0
->rx_queue_cfg
);
1467 * Filling Tx round robin registers
1468 * as per the number of FIFOs for equal scheduling priority
1470 switch (config
->tx_fifo_num
) {
1473 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1474 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1475 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1476 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1480 val64
= 0x0001000100010001ULL
;
1481 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1482 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1483 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1484 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1485 val64
= 0x0001000100000000ULL
;
1486 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1489 val64
= 0x0001020001020001ULL
;
1490 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1491 val64
= 0x0200010200010200ULL
;
1492 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1493 val64
= 0x0102000102000102ULL
;
1494 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1495 val64
= 0x0001020001020001ULL
;
1496 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1497 val64
= 0x0200010200000000ULL
;
1498 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1501 val64
= 0x0001020300010203ULL
;
1502 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1503 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1504 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1505 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1506 val64
= 0x0001020300000000ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1510 val64
= 0x0001020304000102ULL
;
1511 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1512 val64
= 0x0304000102030400ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1514 val64
= 0x0102030400010203ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1516 val64
= 0x0400010203040001ULL
;
1517 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1518 val64
= 0x0203040000000000ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1522 val64
= 0x0001020304050001ULL
;
1523 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1524 val64
= 0x0203040500010203ULL
;
1525 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1526 val64
= 0x0405000102030405ULL
;
1527 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1528 val64
= 0x0001020304050001ULL
;
1529 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1530 val64
= 0x0203040500000000ULL
;
1531 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1534 val64
= 0x0001020304050600ULL
;
1535 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1536 val64
= 0x0102030405060001ULL
;
1537 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1538 val64
= 0x0203040506000102ULL
;
1539 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1540 val64
= 0x0304050600010203ULL
;
1541 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1542 val64
= 0x0405060000000000ULL
;
1543 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1546 val64
= 0x0001020304050607ULL
;
1547 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1548 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1549 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1550 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1551 val64
= 0x0001020300000000ULL
;
1552 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1556 /* Enable all configured Tx FIFO partitions */
1557 val64
= readq(&bar0
->tx_fifo_partition_0
);
1558 val64
|= (TX_FIFO_PARTITION_EN
);
1559 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1561 /* Filling the Rx round robin registers as per the
1562 * number of Rings and steering based on QoS with
1565 switch (config
->rx_ring_num
) {
1568 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1569 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1570 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1571 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1572 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1574 val64
= 0x8080808080808080ULL
;
1575 writeq(val64
, &bar0
->rts_qos_steering
);
1578 val64
= 0x0001000100010001ULL
;
1579 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1580 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1581 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1582 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1583 val64
= 0x0001000100000000ULL
;
1584 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1586 val64
= 0x8080808040404040ULL
;
1587 writeq(val64
, &bar0
->rts_qos_steering
);
1590 val64
= 0x0001020001020001ULL
;
1591 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1592 val64
= 0x0200010200010200ULL
;
1593 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1594 val64
= 0x0102000102000102ULL
;
1595 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1596 val64
= 0x0001020001020001ULL
;
1597 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1598 val64
= 0x0200010200000000ULL
;
1599 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1601 val64
= 0x8080804040402020ULL
;
1602 writeq(val64
, &bar0
->rts_qos_steering
);
1605 val64
= 0x0001020300010203ULL
;
1606 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1607 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1608 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1609 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1610 val64
= 0x0001020300000000ULL
;
1611 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1613 val64
= 0x8080404020201010ULL
;
1614 writeq(val64
, &bar0
->rts_qos_steering
);
1617 val64
= 0x0001020304000102ULL
;
1618 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1619 val64
= 0x0304000102030400ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1621 val64
= 0x0102030400010203ULL
;
1622 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1623 val64
= 0x0400010203040001ULL
;
1624 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1625 val64
= 0x0203040000000000ULL
;
1626 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1628 val64
= 0x8080404020201008ULL
;
1629 writeq(val64
, &bar0
->rts_qos_steering
);
1632 val64
= 0x0001020304050001ULL
;
1633 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1634 val64
= 0x0203040500010203ULL
;
1635 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1636 val64
= 0x0405000102030405ULL
;
1637 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1638 val64
= 0x0001020304050001ULL
;
1639 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1640 val64
= 0x0203040500000000ULL
;
1641 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1643 val64
= 0x8080404020100804ULL
;
1644 writeq(val64
, &bar0
->rts_qos_steering
);
1647 val64
= 0x0001020304050600ULL
;
1648 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1649 val64
= 0x0102030405060001ULL
;
1650 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1651 val64
= 0x0203040506000102ULL
;
1652 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1653 val64
= 0x0304050600010203ULL
;
1654 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1655 val64
= 0x0405060000000000ULL
;
1656 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1658 val64
= 0x8080402010080402ULL
;
1659 writeq(val64
, &bar0
->rts_qos_steering
);
1662 val64
= 0x0001020304050607ULL
;
1663 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1664 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1665 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1666 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1667 val64
= 0x0001020300000000ULL
;
1668 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1670 val64
= 0x8040201008040201ULL
;
1671 writeq(val64
, &bar0
->rts_qos_steering
);
1677 for (i
= 0; i
< 8; i
++)
1678 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1680 /* Set the default rts frame length for the rings configured */
1681 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1682 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1683 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1688 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1695 if (rts_frm_len
[i
] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1697 &bar0
->rts_frm_len_n
[i
]);
1701 /* Disable differentiated services steering logic */
1702 for (i
= 0; i
< 64; i
++) {
1703 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1711 /* Program statistics memory */
1712 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1714 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1715 val64
= STAT_BC(0x320);
1716 writeq(val64
, &bar0
->stat_byte_cnt
);
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1723 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1725 writeq(val64
, &bar0
->mac_link_util
);
1728 * Initializing the Transmit and Receive Traffic Interrupt
1732 /* Initialize TTI */
1733 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1736 /* RTI Initialization */
1737 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1739 * Programmed to generate Apprx 500 Intrs per
1742 int count
= (nic
->config
.bus_speed
* 125)/4;
1743 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1745 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1751 writeq(val64
, &bar0
->rti_data1_mem
);
1753 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic
->config
.intr_type
== MSI_X
)
1756 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
1759 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
1761 writeq(val64
, &bar0
->rti_data2_mem
);
1763 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1764 val64
= RTI_CMD_MEM_WE
|
1765 RTI_CMD_MEM_STROBE_NEW_CMD
|
1766 RTI_CMD_MEM_OFFSET(i
);
1767 writeq(val64
, &bar0
->rti_command_mem
);
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1778 val64
= readq(&bar0
->rti_command_mem
);
1779 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1783 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1796 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1797 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1799 /* Disable RMAC PAD STRIPPING */
1800 add
= &bar0
->mac_cfg
;
1801 val64
= readq(&bar0
->mac_cfg
);
1802 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1804 writel((u32
) (val64
), add
);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1806 writel((u32
) (val64
>> 32), (add
+ 4));
1807 val64
= readq(&bar0
->mac_cfg
);
1809 /* Enable FCS stripping by adapter */
1810 add
= &bar0
->mac_cfg
;
1811 val64
= readq(&bar0
->mac_cfg
);
1812 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1813 if (nic
->device_type
== XFRAME_II_DEVICE
)
1814 writeq(val64
, &bar0
->mac_cfg
);
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1817 writel((u32
) (val64
), add
);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1819 writel((u32
) (val64
>> 32), (add
+ 4));
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1826 val64
= readq(&bar0
->rmac_pause_cfg
);
1827 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1829 writeq(val64
, &bar0
->rmac_pause_cfg
);
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1838 for (i
= 0; i
< 4; i
++) {
1839 val64
|= (((u64
)0xFF00 |
1840 nic
->mac_control
.mc_pause_threshold_q0q3
)
1843 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1846 for (i
= 0; i
< 4; i
++) {
1847 val64
|= (((u64
)0xFF00 |
1848 nic
->mac_control
.mc_pause_threshold_q4q7
)
1851 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1854 * TxDMA will stop Read request if the number of read split has
1855 * exceeded the limit pointed by shared_splits
1857 val64
= readq(&bar0
->pic_control
);
1858 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1859 writeq(val64
, &bar0
->pic_control
);
1861 if (nic
->config
.bus_speed
== 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1863 writeq(0x0, &bar0
->read_retry_delay
);
1864 writeq(0x0, &bar0
->write_retry_delay
);
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1871 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1872 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1873 MISC_LINK_STABILITY_PRD(3);
1874 writeq(val64
, &bar0
->misc_control
);
1875 val64
= readq(&bar0
->pic_control2
);
1876 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1877 writeq(val64
, &bar0
->pic_control2
);
1879 if (strstr(nic
->product_name
, "CX4")) {
1880 val64
= TMAC_AVG_IPG(0x17);
1881 writeq(val64
, &bar0
->tmac_avg_ipg
);
1886 #define LINK_UP_DOWN_INTERRUPT 1
1887 #define MAC_RMAC_ERR_TIMER 2
1889 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1891 if (nic
->device_type
== XFRAME_II_DEVICE
)
1892 return LINK_UP_DOWN_INTERRUPT
;
1894 return MAC_RMAC_ERR_TIMER
;
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1906 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1910 temp64
= readq(addr
);
1912 if (flag
== ENABLE_INTRS
)
1913 temp64
&= ~((u64
)value
);
1915 temp64
|= ((u64
)value
);
1916 writeq(temp64
, addr
);
1919 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1921 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1922 register u64 gen_int_mask
= 0;
1925 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1926 if (mask
& TX_DMA_INTR
) {
1927 gen_int_mask
|= TXDMA_INT_M
;
1929 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1930 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1931 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1932 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1934 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1935 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1936 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1937 &bar0
->pfc_err_mask
);
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1940 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1941 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1944 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1945 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1946 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1947 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1949 flag
, &bar0
->pcc_err_mask
);
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1952 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1954 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1955 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1956 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1957 flag
, &bar0
->lso_err_mask
);
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1960 flag
, &bar0
->tpa_err_mask
);
1962 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1965 if (mask
& TX_MAC_INTR
) {
1966 gen_int_mask
|= TXMAC_INT_M
;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1968 &bar0
->mac_int_mask
);
1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1970 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1971 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1972 flag
, &bar0
->mac_tmac_err_mask
);
1975 if (mask
& TX_XGXS_INTR
) {
1976 gen_int_mask
|= TXXGXS_INT_M
;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1978 &bar0
->xgxs_int_mask
);
1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1980 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1981 flag
, &bar0
->xgxs_txgxs_err_mask
);
1984 if (mask
& RX_DMA_INTR
) {
1985 gen_int_mask
|= RXDMA_INT_M
;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1987 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1988 flag
, &bar0
->rxdma_int_mask
);
1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1990 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1991 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1992 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1994 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1995 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1996 &bar0
->prc_pcix_err_mask
);
1997 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1998 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1999 &bar0
->rpa_err_mask
);
2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2001 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2002 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2003 RDA_FRM_ECC_SG_ERR
|
2004 RDA_MISC_ERR
|RDA_PCIX_ERR
,
2005 flag
, &bar0
->rda_err_mask
);
2006 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2007 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2008 flag
, &bar0
->rti_err_mask
);
2011 if (mask
& RX_MAC_INTR
) {
2012 gen_int_mask
|= RXMAC_INT_M
;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2014 &bar0
->mac_int_mask
);
2015 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2016 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2017 RMAC_DOUBLE_ECC_ERR
);
2018 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2019 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2020 do_s2io_write_bits(interruptible
,
2021 flag
, &bar0
->mac_rmac_err_mask
);
2024 if (mask
& RX_XGXS_INTR
) {
2025 gen_int_mask
|= RXXGXS_INT_M
;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2027 &bar0
->xgxs_int_mask
);
2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2029 &bar0
->xgxs_rxgxs_err_mask
);
2032 if (mask
& MC_INTR
) {
2033 gen_int_mask
|= MC_INT_M
;
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
2035 flag
, &bar0
->mc_int_mask
);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2037 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2038 &bar0
->mc_err_mask
);
2040 nic
->general_int_mask
= gen_int_mask
;
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic
->general_int_mask
= 0;
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
2054 * Return Value: NONE.
2057 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2059 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2060 register u64 temp64
= 0, intr_mask
= 0;
2062 intr_mask
= nic
->general_int_mask
;
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
2066 if (mask
& TX_PIC_INTR
) {
2067 /* Enable PIC Intrs in the general intr mask register */
2068 intr_mask
|= TXPIC_INT_M
;
2069 if (flag
== ENABLE_INTRS
) {
2071 * If Hercules adapter enable GPIO otherwise
2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
2073 * interrupts for now.
2076 if (s2io_link_fault_indication(nic
) ==
2077 LINK_UP_DOWN_INTERRUPT
) {
2078 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2079 &bar0
->pic_int_mask
);
2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2081 &bar0
->gpio_int_mask
);
2083 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2084 } else if (flag
== DISABLE_INTRS
) {
2086 * Disable PIC Intrs in the general
2087 * intr mask register
2089 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2093 /* Tx traffic interrupts */
2094 if (mask
& TX_TRAFFIC_INTR
) {
2095 intr_mask
|= TXTRAFFIC_INT_M
;
2096 if (flag
== ENABLE_INTRS
) {
2098 * Enable all the Tx side interrupts
2099 * writing 0 Enables all 64 TX interrupt levels
2101 writeq(0x0, &bar0
->tx_traffic_mask
);
2102 } else if (flag
== DISABLE_INTRS
) {
2104 * Disable Tx Traffic Intrs in the general intr mask
2107 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2111 /* Rx traffic interrupts */
2112 if (mask
& RX_TRAFFIC_INTR
) {
2113 intr_mask
|= RXTRAFFIC_INT_M
;
2114 if (flag
== ENABLE_INTRS
) {
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0
->rx_traffic_mask
);
2117 } else if (flag
== DISABLE_INTRS
) {
2119 * Disable Rx Traffic Intrs in the general intr mask
2122 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2126 temp64
= readq(&bar0
->general_int_mask
);
2127 if (flag
== ENABLE_INTRS
)
2128 temp64
&= ~((u64
)intr_mask
);
2130 temp64
= DISABLE_ALL_INTRS
;
2131 writeq(temp64
, &bar0
->general_int_mask
);
2133 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2141 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2144 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2145 u64 val64
= readq(&bar0
->adapter_status
);
2147 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2149 if (flag
== false) {
2150 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2151 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2154 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2158 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2159 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2160 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2163 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2172 * verify_xena_quiescence - Checks whether the H/W is ready
2173 * Description: Returns whether the H/W is ready to go or not. Depending
2174 * on whether adapter enable bit was written or not the comparison
2175 * differs and the calling function passes the input argument flag to
2177 * Return: 1 If xena is quiescence
2178 * 0 If Xena is not quiescence
2181 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2184 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2185 u64 val64
= readq(&bar0
->adapter_status
);
2186 mode
= s2io_verify_pci_mode(sp
);
2188 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2189 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2192 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2193 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2196 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2197 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2200 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2201 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2204 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2205 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2208 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2209 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2212 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2213 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2216 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2217 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2226 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2227 sp
->device_type
== XFRAME_II_DEVICE
&&
2228 mode
!= PCI_MODE_PCI_33
) {
2229 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2232 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2233 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2234 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
2244 * New procedure to clear mac address reading problems on Alpha platforms
2248 static void fix_mac_address(struct s2io_nic
*sp
)
2250 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2254 while (fix_mac
[i
] != END_SIGN
) {
2255 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2257 val64
= readq(&bar0
->gpio_control
);
2262 * start_nic - Turns the device on
2263 * @nic : device private variable.
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
2271 * SUCCESS on success and -1 on failure.
2274 static int start_nic(struct s2io_nic
*nic
)
2276 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2277 struct net_device
*dev
= nic
->dev
;
2278 register u64 val64
= 0;
2280 struct config_param
*config
= &nic
->config
;
2281 struct mac_info
*mac_control
= &nic
->mac_control
;
2283 /* PRC Initialization and configuration */
2284 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2285 struct ring_info
*ring
= &mac_control
->rings
[i
];
2287 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2288 &bar0
->prc_rxd0_n
[i
]);
2290 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2291 if (nic
->rxd_mode
== RXD_MODE_1
)
2292 val64
|= PRC_CTRL_RC_ENABLED
;
2294 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2295 if (nic
->device_type
== XFRAME_II_DEVICE
)
2296 val64
|= PRC_CTRL_GROUP_READS
;
2297 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2302 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64
= readq(&bar0
->rx_pa_cfg
);
2305 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2306 writeq(val64
, &bar0
->rx_pa_cfg
);
2309 if (vlan_tag_strip
== 0) {
2310 val64
= readq(&bar0
->rx_pa_cfg
);
2311 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2312 writeq(val64
, &bar0
->rx_pa_cfg
);
2313 nic
->vlan_strip_flag
= 0;
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2321 val64
= readq(&bar0
->mc_rldram_mrs
);
2322 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2323 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2324 val64
= readq(&bar0
->mc_rldram_mrs
);
2326 msleep(100); /* Delay by around 100 ms. */
2328 /* Enabling ECC Protection. */
2329 val64
= readq(&bar0
->adapter_control
);
2330 val64
&= ~ADAPTER_ECC_EN
;
2331 writeq(val64
, &bar0
->adapter_control
);
2334 * Verify if the device is ready to be enabled, if so enable
2337 val64
= readq(&bar0
->adapter_status
);
2338 if (!verify_xena_quiescence(nic
)) {
2339 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev
->name
, (unsigned long long)val64
);
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2353 /* Enabling Laser. */
2354 val64
= readq(&bar0
->adapter_control
);
2355 val64
|= ADAPTER_EOI_TX_ON
;
2356 writeq(val64
, &bar0
->adapter_control
);
2358 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2363 schedule_work(&nic
->set_link_task
);
2365 /* SXE-002: Initialize link and activity LED */
2366 subid
= nic
->pdev
->subsystem_device
;
2367 if (((subid
& 0xFF) >= 0x07) &&
2368 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2369 val64
= readq(&bar0
->gpio_control
);
2370 val64
|= 0x0000800000000000ULL
;
2371 writeq(val64
, &bar0
->gpio_control
);
2372 val64
= 0x0411040400000000ULL
;
2373 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2382 struct TxD
*txdlp
, int get_off
)
2384 struct s2io_nic
*nic
= fifo_data
->nic
;
2385 struct sk_buff
*skb
;
2390 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2391 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2392 sizeof(u64
), PCI_DMA_TODEVICE
);
2396 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2398 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2401 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2402 skb
->len
- skb
->data_len
, PCI_DMA_TODEVICE
);
2403 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2406 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2407 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2408 if (!txds
->Buffer_Pointer
)
2410 pci_unmap_page(nic
->pdev
,
2411 (dma_addr_t
)txds
->Buffer_Pointer
,
2412 frag
->size
, PCI_DMA_TODEVICE
);
2415 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2420 * free_tx_buffers - Free all queued Tx buffers
2421 * @nic : device private variable.
2423 * Free all queued Tx buffers.
2424 * Return Value: void
2427 static void free_tx_buffers(struct s2io_nic
*nic
)
2429 struct net_device
*dev
= nic
->dev
;
2430 struct sk_buff
*skb
;
2434 struct config_param
*config
= &nic
->config
;
2435 struct mac_info
*mac_control
= &nic
->mac_control
;
2436 struct stat_block
*stats
= mac_control
->stats_info
;
2437 struct swStat
*swstats
= &stats
->sw_stat
;
2439 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2440 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2441 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2442 unsigned long flags
;
2444 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2445 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2446 txdp
= (struct TxD
*)fifo
->list_info
[j
].list_virt_addr
;
2447 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2449 swstats
->mem_freed
+= skb
->truesize
;
2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
2457 fifo
->tx_curr_get_info
.offset
= 0;
2458 fifo
->tx_curr_put_info
.offset
= 0;
2459 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2464 * stop_nic - To stop the nic
2465 * @nic ; device private variable.
2467 * This function does exactly the opposite of what the start_nic()
2468 * function does. This function is called to stop the device.
2473 static void stop_nic(struct s2io_nic
*nic
)
2475 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2476 register u64 val64
= 0;
2479 /* Disable all interrupts */
2480 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2481 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2482 interruptible
|= TX_PIC_INTR
;
2483 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64
= readq(&bar0
->adapter_control
);
2487 val64
&= ~(ADAPTER_CNTL_EN
);
2488 writeq(val64
, &bar0
->adapter_control
);
2492 * fill_rx_buffers - Allocates the Rx side skbs
2493 * @ring_info: per ring structure
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2511 * SUCCESS on success or an appropriate -ve value on failure.
2513 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2516 struct sk_buff
*skb
;
2518 int off
, size
, block_no
, block_no1
;
2523 struct RxD_t
*first_rxdp
= NULL
;
2524 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2528 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2530 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2532 block_no1
= ring
->rx_curr_get_info
.block_index
;
2533 while (alloc_tab
< alloc_cnt
) {
2534 block_no
= ring
->rx_curr_put_info
.block_index
;
2536 off
= ring
->rx_curr_put_info
.offset
;
2538 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2540 rxd_index
= off
+ 1;
2542 rxd_index
+= (block_no
* ring
->rxd_count
);
2544 if ((block_no
== block_no1
) &&
2545 (off
== ring
->rx_curr_get_info
.offset
) &&
2546 (rxdp
->Host_Control
)) {
2547 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2551 if (off
&& (off
== ring
->rxd_count
)) {
2552 ring
->rx_curr_put_info
.block_index
++;
2553 if (ring
->rx_curr_put_info
.block_index
==
2555 ring
->rx_curr_put_info
.block_index
= 0;
2556 block_no
= ring
->rx_curr_put_info
.block_index
;
2558 ring
->rx_curr_put_info
.offset
= off
;
2559 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2560 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2561 ring
->dev
->name
, rxdp
);
2565 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2566 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2567 (rxdp
->Control_2
& s2BIT(0)))) {
2568 ring
->rx_curr_put_info
.offset
= off
;
2571 /* calculate size of skb based on ring mode */
2573 HEADER_ETHERNET_II_802_3_SIZE
+
2574 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2575 if (ring
->rxd_mode
== RXD_MODE_1
)
2576 size
+= NET_IP_ALIGN
;
2578 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2581 skb
= dev_alloc_skb(size
);
2583 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2587 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2589 swstats
->mem_alloc_fail_cnt
++;
2593 swstats
->mem_allocated
+= skb
->truesize
;
2595 if (ring
->rxd_mode
== RXD_MODE_1
) {
2596 /* 1 buffer mode - normal operation mode */
2597 rxdp1
= (struct RxD1
*)rxdp
;
2598 memset(rxdp
, 0, sizeof(struct RxD1
));
2599 skb_reserve(skb
, NET_IP_ALIGN
);
2600 rxdp1
->Buffer0_ptr
=
2601 pci_map_single(ring
->pdev
, skb
->data
,
2602 size
- NET_IP_ALIGN
,
2603 PCI_DMA_FROMDEVICE
);
2604 if (pci_dma_mapping_error(nic
->pdev
,
2605 rxdp1
->Buffer0_ptr
))
2606 goto pci_map_failed
;
2609 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2610 rxdp
->Host_Control
= (unsigned long)skb
;
2611 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2618 rxdp3
= (struct RxD3
*)rxdp
;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2621 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2622 memset(rxdp
, 0, sizeof(struct RxD3
));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2625 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2627 ba
= &ring
->ba
[block_no
][off
];
2628 skb_reserve(skb
, BUF0_LEN
);
2629 tmp
= (u64
)(unsigned long)skb
->data
;
2632 skb
->data
= (void *) (unsigned long)tmp
;
2633 skb_reset_tail_pointer(skb
);
2636 rxdp3
->Buffer0_ptr
=
2637 pci_map_single(ring
->pdev
, ba
->ba_0
,
2639 PCI_DMA_FROMDEVICE
);
2640 if (pci_dma_mapping_error(nic
->pdev
,
2641 rxdp3
->Buffer0_ptr
))
2642 goto pci_map_failed
;
2644 pci_dma_sync_single_for_device(ring
->pdev
,
2645 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2647 PCI_DMA_FROMDEVICE
);
2649 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2650 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2651 /* Two buffer mode */
2654 * Buffer2 will have L3/L4 header plus
2657 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2660 PCI_DMA_FROMDEVICE
);
2662 if (pci_dma_mapping_error(nic
->pdev
,
2663 rxdp3
->Buffer2_ptr
))
2664 goto pci_map_failed
;
2667 rxdp3
->Buffer1_ptr
=
2668 pci_map_single(ring
->pdev
,
2671 PCI_DMA_FROMDEVICE
);
2673 if (pci_dma_mapping_error(nic
->pdev
,
2674 rxdp3
->Buffer1_ptr
)) {
2675 pci_unmap_single(ring
->pdev
,
2676 (dma_addr_t
)(unsigned long)
2679 PCI_DMA_FROMDEVICE
);
2680 goto pci_map_failed
;
2683 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2684 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2687 rxdp
->Control_2
|= s2BIT(0);
2688 rxdp
->Host_Control
= (unsigned long) (skb
);
2690 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2691 rxdp
->Control_1
|= RXD_OWN_XENA
;
2693 if (off
== (ring
->rxd_count
+ 1))
2695 ring
->rx_curr_put_info
.offset
= off
;
2697 rxdp
->Control_2
|= SET_RXD_MARKER
;
2698 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2701 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2705 ring
->rx_bufs_left
+= 1;
2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2716 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2722 swstats
->pci_map_fail_cnt
++;
2723 swstats
->mem_freed
+= skb
->truesize
;
2724 dev_kfree_skb_irq(skb
);
2728 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2730 struct net_device
*dev
= sp
->dev
;
2732 struct sk_buff
*skb
;
2737 struct mac_info
*mac_control
= &sp
->mac_control
;
2738 struct stat_block
*stats
= mac_control
->stats_info
;
2739 struct swStat
*swstats
= &stats
->sw_stat
;
2741 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2742 rxdp
= mac_control
->rings
[ring_no
].
2743 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2744 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2747 if (sp
->rxd_mode
== RXD_MODE_1
) {
2748 rxdp1
= (struct RxD1
*)rxdp
;
2749 pci_unmap_single(sp
->pdev
,
2750 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2752 HEADER_ETHERNET_II_802_3_SIZE
+
2753 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2754 PCI_DMA_FROMDEVICE
);
2755 memset(rxdp
, 0, sizeof(struct RxD1
));
2756 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2757 rxdp3
= (struct RxD3
*)rxdp
;
2758 ba
= &mac_control
->rings
[ring_no
].ba
[blk
][j
];
2759 pci_unmap_single(sp
->pdev
,
2760 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2762 PCI_DMA_FROMDEVICE
);
2763 pci_unmap_single(sp
->pdev
,
2764 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2766 PCI_DMA_FROMDEVICE
);
2767 pci_unmap_single(sp
->pdev
,
2768 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2770 PCI_DMA_FROMDEVICE
);
2771 memset(rxdp
, 0, sizeof(struct RxD3
));
2773 swstats
->mem_freed
+= skb
->truesize
;
2775 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2780 * free_rx_buffers - Frees all Rx buffers
2781 * @sp: device private variable.
2783 * This function will free all Rx buffers allocated by host.
2788 static void free_rx_buffers(struct s2io_nic
*sp
)
2790 struct net_device
*dev
= sp
->dev
;
2791 int i
, blk
= 0, buf_cnt
= 0;
2792 struct config_param
*config
= &sp
->config
;
2793 struct mac_info
*mac_control
= &sp
->mac_control
;
2795 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2796 struct ring_info
*ring
= &mac_control
->rings
[i
];
2798 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2799 free_rxd_blk(sp
, i
, blk
);
2801 ring
->rx_curr_put_info
.block_index
= 0;
2802 ring
->rx_curr_get_info
.block_index
= 0;
2803 ring
->rx_curr_put_info
.offset
= 0;
2804 ring
->rx_curr_get_info
.offset
= 0;
2805 ring
->rx_bufs_left
= 0;
2806 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2807 dev
->name
, buf_cnt
, i
);
2811 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2813 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2814 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2833 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2835 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2836 struct net_device
*dev
= ring
->dev
;
2837 int pkts_processed
= 0;
2838 u8 __iomem
*addr
= NULL
;
2840 struct s2io_nic
*nic
= netdev_priv(dev
);
2841 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2842 int budget_org
= budget
;
2844 if (unlikely(!is_s2io_card_up(nic
)))
2847 pkts_processed
= rx_intr_handler(ring
, budget
);
2848 s2io_chk_rx_buffers(nic
, ring
);
2850 if (pkts_processed
< budget_org
) {
2851 napi_complete(napi
);
2852 /*Re Enable MSI-Rx Vector*/
2853 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2854 addr
+= 7 - ring
->ring_no
;
2855 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2859 return pkts_processed
;
2862 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2864 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2865 int pkts_processed
= 0;
2866 int ring_pkts_processed
, i
;
2867 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2868 int budget_org
= budget
;
2869 struct config_param
*config
= &nic
->config
;
2870 struct mac_info
*mac_control
= &nic
->mac_control
;
2872 if (unlikely(!is_s2io_card_up(nic
)))
2875 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2876 struct ring_info
*ring
= &mac_control
->rings
[i
];
2877 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2878 s2io_chk_rx_buffers(nic
, ring
);
2879 pkts_processed
+= ring_pkts_processed
;
2880 budget
-= ring_pkts_processed
;
2884 if (pkts_processed
< budget_org
) {
2885 napi_complete(napi
);
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0
->rx_traffic_mask
);
2888 readl(&bar0
->rx_traffic_mask
);
2890 return pkts_processed
;
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2895 * s2io_netpoll - netpoll event handler entry point
2896 * @dev : pointer to the device structure.
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
2903 static void s2io_netpoll(struct net_device
*dev
)
2905 struct s2io_nic
*nic
= netdev_priv(dev
);
2906 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2907 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2909 struct config_param
*config
= &nic
->config
;
2910 struct mac_info
*mac_control
= &nic
->mac_control
;
2912 if (pci_channel_offline(nic
->pdev
))
2915 disable_irq(dev
->irq
);
2917 writeq(val64
, &bar0
->rx_traffic_int
);
2918 writeq(val64
, &bar0
->tx_traffic_int
);
2920 /* we need to free up the transmitted skbufs or else netpoll will
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2924 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2925 tx_intr_handler(&mac_control
->fifos
[i
]);
2927 /* check for received packet and indicate up to network */
2928 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2929 struct ring_info
*ring
= &mac_control
->rings
[i
];
2931 rx_intr_handler(ring
, 0);
2934 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2935 struct ring_info
*ring
= &mac_control
->rings
[i
];
2937 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2939 "%s: Out of memory in Rx Netpoll!!\n",
2944 enable_irq(dev
->irq
);
2950 * rx_intr_handler - Rx interrupt handler
2951 * @ring_info: per ring structure.
2952 * @budget: budget for napi processing.
2954 * If the interrupt is because of a received frame or if the
2955 * receive ring contains fresh as yet un-processed frames,this function is
2956 * called. It picks out the RxD at which place the last Rx processing had
2957 * stopped and sends the skb to the OSM's Rx handler and then increments
2960 * No. of napi packets processed.
2962 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2964 int get_block
, put_block
;
2965 struct rx_curr_get_info get_info
, put_info
;
2967 struct sk_buff
*skb
;
2968 int pkt_cnt
= 0, napi_pkts
= 0;
2973 get_info
= ring_data
->rx_curr_get_info
;
2974 get_block
= get_info
.block_index
;
2975 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2976 put_block
= put_info
.block_index
;
2977 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2979 while (RXD_IS_UP2DT(rxdp
)) {
2981 * If your are next to put index then it's
2982 * FIFO full condition
2984 if ((get_block
== put_block
) &&
2985 (get_info
.offset
+ 1) == put_info
.offset
) {
2986 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2987 ring_data
->dev
->name
);
2990 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2992 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2993 ring_data
->dev
->name
);
2996 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2997 rxdp1
= (struct RxD1
*)rxdp
;
2998 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3001 HEADER_ETHERNET_II_802_3_SIZE
+
3004 PCI_DMA_FROMDEVICE
);
3005 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3006 rxdp3
= (struct RxD3
*)rxdp
;
3007 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
3008 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
3010 PCI_DMA_FROMDEVICE
);
3011 pci_unmap_single(ring_data
->pdev
,
3012 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
3014 PCI_DMA_FROMDEVICE
);
3016 prefetch(skb
->data
);
3017 rx_osm_handler(ring_data
, rxdp
);
3019 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3020 rxdp
= ring_data
->rx_blocks
[get_block
].
3021 rxds
[get_info
.offset
].virt_addr
;
3022 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3023 get_info
.offset
= 0;
3024 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3026 if (get_block
== ring_data
->block_count
)
3028 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3029 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3032 if (ring_data
->nic
->config
.napi
) {
3039 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3042 if (ring_data
->lro
) {
3043 /* Clear all LRO sessions before exiting */
3044 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
3045 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3047 update_L3L4_header(ring_data
->nic
, lro
);
3048 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3049 clear_lro_session(lro
);
3057 * tx_intr_handler - Transmit interrupt handler
3058 * @nic : device private variable
3060 * If an interrupt was raised to indicate DMA complete of the
3061 * Tx packet, this function is called. It identifies the last TxD
3062 * whose buffer was freed and frees all skbs whose data have already
3063 * DMA'ed into the NICs internal memory.
3068 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3070 struct s2io_nic
*nic
= fifo_data
->nic
;
3071 struct tx_curr_get_info get_info
, put_info
;
3072 struct sk_buff
*skb
= NULL
;
3075 unsigned long flags
= 0;
3077 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3078 struct swStat
*swstats
= &stats
->sw_stat
;
3080 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3083 get_info
= fifo_data
->tx_curr_get_info
;
3084 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3085 txdlp
= (struct TxD
*)
3086 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3087 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3088 (get_info
.offset
!= put_info
.offset
) &&
3089 (txdlp
->Host_Control
)) {
3090 /* Check for TxD errors */
3091 if (txdlp
->Control_1
& TXD_T_CODE
) {
3092 unsigned long long err
;
3093 err
= txdlp
->Control_1
& TXD_T_CODE
;
3095 swstats
->parity_err_cnt
++;
3098 /* update t_code statistics */
3099 err_mask
= err
>> 48;
3102 swstats
->tx_buf_abort_cnt
++;
3106 swstats
->tx_desc_abort_cnt
++;
3110 swstats
->tx_parity_err_cnt
++;
3114 swstats
->tx_link_loss_cnt
++;
3118 swstats
->tx_list_proc_err_cnt
++;
3123 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3125 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3126 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3132 /* Updating the statistics block */
3133 nic
->dev
->stats
.tx_bytes
+= skb
->len
;
3134 swstats
->mem_freed
+= skb
->truesize
;
3135 dev_kfree_skb_irq(skb
);
3138 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3139 get_info
.offset
= 0;
3140 txdlp
= (struct TxD
*)
3141 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3142 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3145 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3147 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3151 * s2io_mdio_write - Function to write in to MDIO registers
3152 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3153 * @addr : address value
3154 * @value : data value
3155 * @dev : pointer to net_device structure
3157 * This function is used to write values to the MDIO registers
3160 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3161 struct net_device
*dev
)
3164 struct s2io_nic
*sp
= netdev_priv(dev
);
3165 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3167 /* address transaction */
3168 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3169 MDIO_MMD_DEV_ADDR(mmd_type
) |
3170 MDIO_MMS_PRT_ADDR(0x0);
3171 writeq(val64
, &bar0
->mdio_control
);
3172 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64
, &bar0
->mdio_control
);
3176 /* Data transaction */
3177 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3178 MDIO_MMD_DEV_ADDR(mmd_type
) |
3179 MDIO_MMS_PRT_ADDR(0x0) |
3180 MDIO_MDIO_DATA(value
) |
3181 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3182 writeq(val64
, &bar0
->mdio_control
);
3183 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64
, &bar0
->mdio_control
);
3187 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3188 MDIO_MMD_DEV_ADDR(mmd_type
) |
3189 MDIO_MMS_PRT_ADDR(0x0) |
3190 MDIO_OP(MDIO_OP_READ_TRANS
);
3191 writeq(val64
, &bar0
->mdio_control
);
3192 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3193 writeq(val64
, &bar0
->mdio_control
);
3198 * s2io_mdio_read - Function to write in to MDIO registers
3199 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3200 * @addr : address value
3201 * @dev : pointer to net_device structure
3203 * This function is used to read values to the MDIO registers
3206 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3210 struct s2io_nic
*sp
= netdev_priv(dev
);
3211 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3213 /* address transaction */
3214 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3215 | MDIO_MMD_DEV_ADDR(mmd_type
)
3216 | MDIO_MMS_PRT_ADDR(0x0));
3217 writeq(val64
, &bar0
->mdio_control
);
3218 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64
, &bar0
->mdio_control
);
3222 /* Data transaction */
3223 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3224 MDIO_MMD_DEV_ADDR(mmd_type
) |
3225 MDIO_MMS_PRT_ADDR(0x0) |
3226 MDIO_OP(MDIO_OP_READ_TRANS
);
3227 writeq(val64
, &bar0
->mdio_control
);
3228 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64
, &bar0
->mdio_control
);
3232 /* Read the value from regs */
3233 rval64
= readq(&bar0
->mdio_control
);
3234 rval64
= rval64
& 0xFFFF0000;
3235 rval64
= rval64
>> 16;
3240 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3241 * @counter : counter value to be updated
3242 * @flag : flag to indicate the status
3243 * @type : counter type
3245 * This function is to check the status of the xpak counters value
3249 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3255 for (i
= 0; i
< index
; i
++)
3259 *counter
= *counter
+ 1;
3260 val64
= *regs_stat
& mask
;
3261 val64
= val64
>> (index
* 0x2);
3267 "Take Xframe NIC out of service.\n");
3269 "Excessive temperatures may result in premature transceiver failure.\n");
3273 "Take Xframe NIC out of service.\n");
3275 "Excessive bias currents may indicate imminent laser diode failure.\n");
3279 "Take Xframe NIC out of service.\n");
3281 "Excessive laser output power may saturate far-end receiver.\n");
3285 "Incorrect XPAK Alarm type\n");
3289 val64
= val64
<< (index
* 0x2);
3290 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3293 *regs_stat
= *regs_stat
& (~mask
);
3298 * s2io_updt_xpak_counter - Function to update the xpak counters
3299 * @dev : pointer to net_device struct
3301 * This function is to upate the status of the xpak counters value
3304 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3312 struct s2io_nic
*sp
= netdev_priv(dev
);
3313 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3314 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3316 /* Check the communication with the MDIO slave */
3319 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3320 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3322 "ERR: MDIO slave access failed - Returned %llx\n",
3323 (unsigned long long)val64
);
3327 /* Check for the expected value of control reg 1 */
3328 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3329 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3330 "Returned: %llx- Expected: 0x%x\n",
3331 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3335 /* Loading the DOM register to MDIO register */
3337 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3338 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3340 /* Reading the Alarm flags */
3343 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3345 flag
= CHECKBIT(val64
, 0x7);
3347 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3348 &xstats
->xpak_regs_stat
,
3351 if (CHECKBIT(val64
, 0x6))
3352 xstats
->alarm_transceiver_temp_low
++;
3354 flag
= CHECKBIT(val64
, 0x3);
3356 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3357 &xstats
->xpak_regs_stat
,
3360 if (CHECKBIT(val64
, 0x2))
3361 xstats
->alarm_laser_bias_current_low
++;
3363 flag
= CHECKBIT(val64
, 0x1);
3365 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3366 &xstats
->xpak_regs_stat
,
3369 if (CHECKBIT(val64
, 0x0))
3370 xstats
->alarm_laser_output_power_low
++;
3372 /* Reading the Warning flags */
3375 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3377 if (CHECKBIT(val64
, 0x7))
3378 xstats
->warn_transceiver_temp_high
++;
3380 if (CHECKBIT(val64
, 0x6))
3381 xstats
->warn_transceiver_temp_low
++;
3383 if (CHECKBIT(val64
, 0x3))
3384 xstats
->warn_laser_bias_current_high
++;
3386 if (CHECKBIT(val64
, 0x2))
3387 xstats
->warn_laser_bias_current_low
++;
3389 if (CHECKBIT(val64
, 0x1))
3390 xstats
->warn_laser_output_power_high
++;
3392 if (CHECKBIT(val64
, 0x0))
3393 xstats
->warn_laser_output_power_low
++;
3397 * wait_for_cmd_complete - waits for a command to complete.
3398 * @sp : private member of the device structure, which is a pointer to the
3399 * s2io_nic structure.
3400 * Description: Function that waits for a command to Write into RMAC
3401 * ADDR DATA registers to be completed and returns either success or
3402 * error depending on whether the command was complete or not.
3404 * SUCCESS on success and FAILURE on failure.
3407 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3410 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3413 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3417 val64
= readq(addr
);
3418 if (bit_state
== S2IO_BIT_RESET
) {
3419 if (!(val64
& busy_bit
)) {
3424 if (val64
& busy_bit
) {
3441 * check_pci_device_id - Checks if the device id is supported
3443 * Description: Function to check if the pci device id is supported by driver.
3444 * Return value: Actual device id if supported else PCI_ANY_ID
3446 static u16
check_pci_device_id(u16 id
)
3449 case PCI_DEVICE_ID_HERC_WIN
:
3450 case PCI_DEVICE_ID_HERC_UNI
:
3451 return XFRAME_II_DEVICE
;
3452 case PCI_DEVICE_ID_S2IO_UNI
:
3453 case PCI_DEVICE_ID_S2IO_WIN
:
3454 return XFRAME_I_DEVICE
;
3461 * s2io_reset - Resets the card.
3462 * @sp : private member of the device structure.
3463 * Description: Function to Reset the card. This function then also
3464 * restores the previously saved PCI configuration space registers as
3465 * the card reset also resets the configuration space.
3470 static void s2io_reset(struct s2io_nic
*sp
)
3472 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3477 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3478 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3479 struct stat_block
*stats
;
3480 struct swStat
*swstats
;
3482 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3483 __func__
, sp
->dev
->name
);
3485 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3486 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3488 val64
= SW_RESET_ALL
;
3489 writeq(val64
, &bar0
->sw_reset
);
3490 if (strstr(sp
->product_name
, "CX4"))
3493 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3495 /* Restore the PCI state saved during initialization. */
3496 pci_restore_state(sp
->pdev
);
3497 pci_save_state(sp
->pdev
);
3498 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3499 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3504 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3505 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3507 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3511 /* Set swapper to enable I/O register access */
3512 s2io_set_swapper(sp
);
3514 /* restore mac_addr entries */
3515 do_s2io_restore_unicast_mc(sp
);
3517 /* Restore the MSIX table entries from local variables */
3518 restore_xmsi_data(sp
);
3520 /* Clear certain PCI/PCI-X fields after reset */
3521 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3522 /* Clear "detected parity error" bit */
3523 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3525 /* Clearing PCIX Ecc status register */
3526 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3528 /* Clearing PCI_STATUS error reflected here */
3529 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3532 /* Reset device statistics maintained by OS */
3533 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3535 stats
= sp
->mac_control
.stats_info
;
3536 swstats
= &stats
->sw_stat
;
3538 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3539 up_cnt
= swstats
->link_up_cnt
;
3540 down_cnt
= swstats
->link_down_cnt
;
3541 up_time
= swstats
->link_up_time
;
3542 down_time
= swstats
->link_down_time
;
3543 reset_cnt
= swstats
->soft_reset_cnt
;
3544 mem_alloc_cnt
= swstats
->mem_allocated
;
3545 mem_free_cnt
= swstats
->mem_freed
;
3546 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3548 memset(stats
, 0, sizeof(struct stat_block
));
3550 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3551 swstats
->link_up_cnt
= up_cnt
;
3552 swstats
->link_down_cnt
= down_cnt
;
3553 swstats
->link_up_time
= up_time
;
3554 swstats
->link_down_time
= down_time
;
3555 swstats
->soft_reset_cnt
= reset_cnt
;
3556 swstats
->mem_allocated
= mem_alloc_cnt
;
3557 swstats
->mem_freed
= mem_free_cnt
;
3558 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3560 /* SXE-002: Configure link and activity LED to turn it off */
3561 subid
= sp
->pdev
->subsystem_device
;
3562 if (((subid
& 0xFF) >= 0x07) &&
3563 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3564 val64
= readq(&bar0
->gpio_control
);
3565 val64
|= 0x0000800000000000ULL
;
3566 writeq(val64
, &bar0
->gpio_control
);
3567 val64
= 0x0411040400000000ULL
;
3568 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3572 * Clear spurious ECC interrupts that would have occured on
3573 * XFRAME II cards after reset.
3575 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3576 val64
= readq(&bar0
->pcc_err_reg
);
3577 writeq(val64
, &bar0
->pcc_err_reg
);
3580 sp
->device_enabled_once
= false;
3584 * s2io_set_swapper - to set the swapper controle on the card
3585 * @sp : private member of the device structure,
3586 * pointer to the s2io_nic structure.
3587 * Description: Function to set the swapper control on the card
3588 * correctly depending on the 'endianness' of the system.
3590 * SUCCESS on success and FAILURE on failure.
3593 static int s2io_set_swapper(struct s2io_nic
*sp
)
3595 struct net_device
*dev
= sp
->dev
;
3596 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3597 u64 val64
, valt
, valr
;
3600 * Set proper endian settings and verify the same by reading
3601 * the PIF Feed-back register.
3604 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3605 if (val64
!= 0x0123456789ABCDEFULL
) {
3607 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3608 0x8100008181000081ULL
, /* FE=1, SE=0 */
3609 0x4200004242000042ULL
, /* FE=0, SE=1 */
3610 0}; /* FE=0, SE=0 */
3613 writeq(value
[i
], &bar0
->swapper_ctrl
);
3614 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3615 if (val64
== 0x0123456789ABCDEFULL
)
3620 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3621 "feedback read %llx\n",
3622 dev
->name
, (unsigned long long)val64
);
3627 valr
= readq(&bar0
->swapper_ctrl
);
3630 valt
= 0x0123456789ABCDEFULL
;
3631 writeq(valt
, &bar0
->xmsi_address
);
3632 val64
= readq(&bar0
->xmsi_address
);
3634 if (val64
!= valt
) {
3636 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3637 0x0081810000818100ULL
, /* FE=1, SE=0 */
3638 0x0042420000424200ULL
, /* FE=0, SE=1 */
3639 0}; /* FE=0, SE=0 */
3642 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3643 writeq(valt
, &bar0
->xmsi_address
);
3644 val64
= readq(&bar0
->xmsi_address
);
3650 unsigned long long x
= val64
;
3652 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3656 val64
= readq(&bar0
->swapper_ctrl
);
3657 val64
&= 0xFFFF000000000000ULL
;
3661 * The device by default set to a big endian format, so a
3662 * big endian driver need not set anything.
3664 val64
|= (SWAPPER_CTRL_TXP_FE
|
3665 SWAPPER_CTRL_TXP_SE
|
3666 SWAPPER_CTRL_TXD_R_FE
|
3667 SWAPPER_CTRL_TXD_W_FE
|
3668 SWAPPER_CTRL_TXF_R_FE
|
3669 SWAPPER_CTRL_RXD_R_FE
|
3670 SWAPPER_CTRL_RXD_W_FE
|
3671 SWAPPER_CTRL_RXF_W_FE
|
3672 SWAPPER_CTRL_XMSI_FE
|
3673 SWAPPER_CTRL_STATS_FE
|
3674 SWAPPER_CTRL_STATS_SE
);
3675 if (sp
->config
.intr_type
== INTA
)
3676 val64
|= SWAPPER_CTRL_XMSI_SE
;
3677 writeq(val64
, &bar0
->swapper_ctrl
);
3680 * Initially we enable all bits to make it accessible by the
3681 * driver, then we selectively enable only those bits that
3684 val64
|= (SWAPPER_CTRL_TXP_FE
|
3685 SWAPPER_CTRL_TXP_SE
|
3686 SWAPPER_CTRL_TXD_R_FE
|
3687 SWAPPER_CTRL_TXD_R_SE
|
3688 SWAPPER_CTRL_TXD_W_FE
|
3689 SWAPPER_CTRL_TXD_W_SE
|
3690 SWAPPER_CTRL_TXF_R_FE
|
3691 SWAPPER_CTRL_RXD_R_FE
|
3692 SWAPPER_CTRL_RXD_R_SE
|
3693 SWAPPER_CTRL_RXD_W_FE
|
3694 SWAPPER_CTRL_RXD_W_SE
|
3695 SWAPPER_CTRL_RXF_W_FE
|
3696 SWAPPER_CTRL_XMSI_FE
|
3697 SWAPPER_CTRL_STATS_FE
|
3698 SWAPPER_CTRL_STATS_SE
);
3699 if (sp
->config
.intr_type
== INTA
)
3700 val64
|= SWAPPER_CTRL_XMSI_SE
;
3701 writeq(val64
, &bar0
->swapper_ctrl
);
3703 val64
= readq(&bar0
->swapper_ctrl
);
3706 * Verifying if endian settings are accurate by reading a
3707 * feedback register.
3709 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3710 if (val64
!= 0x0123456789ABCDEFULL
) {
3711 /* Endian settings are incorrect, calls for another dekko. */
3713 "%s: Endian settings are wrong, feedback read %llx\n",
3714 dev
->name
, (unsigned long long)val64
);
3721 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3723 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3725 int ret
= 0, cnt
= 0;
3728 val64
= readq(&bar0
->xmsi_access
);
3729 if (!(val64
& s2BIT(15)))
3735 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3742 static void restore_xmsi_data(struct s2io_nic
*nic
)
3744 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3748 if (nic
->device_type
== XFRAME_I_DEVICE
)
3751 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3752 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3753 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3754 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3755 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3756 writeq(val64
, &bar0
->xmsi_access
);
3757 if (wait_for_msix_trans(nic
, msix_index
)) {
3758 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3759 __func__
, msix_index
);
3765 static void store_xmsi_data(struct s2io_nic
*nic
)
3767 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3768 u64 val64
, addr
, data
;
3771 if (nic
->device_type
== XFRAME_I_DEVICE
)
3774 /* Store and display */
3775 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3776 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3777 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3778 writeq(val64
, &bar0
->xmsi_access
);
3779 if (wait_for_msix_trans(nic
, msix_index
)) {
3780 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3781 __func__
, msix_index
);
3784 addr
= readq(&bar0
->xmsi_address
);
3785 data
= readq(&bar0
->xmsi_data
);
3787 nic
->msix_info
[i
].addr
= addr
;
3788 nic
->msix_info
[i
].data
= data
;
3793 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3795 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3797 u16 msi_control
; /* Temp variable */
3798 int ret
, i
, j
, msix_indx
= 1;
3800 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3801 struct swStat
*swstats
= &stats
->sw_stat
;
3803 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3804 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3805 if (!nic
->entries
) {
3806 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3808 swstats
->mem_alloc_fail_cnt
++;
3811 swstats
->mem_allocated
+= size
;
3813 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3814 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3815 if (!nic
->s2io_entries
) {
3816 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3818 swstats
->mem_alloc_fail_cnt
++;
3819 kfree(nic
->entries
);
3821 += (nic
->num_entries
* sizeof(struct msix_entry
));
3824 swstats
->mem_allocated
+= size
;
3826 nic
->entries
[0].entry
= 0;
3827 nic
->s2io_entries
[0].entry
= 0;
3828 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3829 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3830 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3832 for (i
= 1; i
< nic
->num_entries
; i
++) {
3833 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3834 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3835 nic
->s2io_entries
[i
].arg
= NULL
;
3836 nic
->s2io_entries
[i
].in_use
= 0;
3839 rx_mat
= readq(&bar0
->rx_mat
);
3840 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3841 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3842 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3843 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3844 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3847 writeq(rx_mat
, &bar0
->rx_mat
);
3848 readq(&bar0
->rx_mat
);
3850 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3851 /* We fail init if error or we get less vectors than min required */
3853 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3854 kfree(nic
->entries
);
3855 swstats
->mem_freed
+= nic
->num_entries
*
3856 sizeof(struct msix_entry
);
3857 kfree(nic
->s2io_entries
);
3858 swstats
->mem_freed
+= nic
->num_entries
*
3859 sizeof(struct s2io_msix_entry
);
3860 nic
->entries
= NULL
;
3861 nic
->s2io_entries
= NULL
;
3866 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3867 * in the herc NIC. (Temp change, needs to be removed later)
3869 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3870 msi_control
|= 0x1; /* Enable MSI */
3871 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3876 /* Handle software interrupt used during MSI(X) test */
3877 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3879 struct s2io_nic
*sp
= dev_id
;
3881 sp
->msi_detected
= 1;
3882 wake_up(&sp
->msi_wait
);
3887 /* Test interrupt path by forcing a a software IRQ */
3888 static int s2io_test_msi(struct s2io_nic
*sp
)
3890 struct pci_dev
*pdev
= sp
->pdev
;
3891 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3895 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3898 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3899 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3903 init_waitqueue_head(&sp
->msi_wait
);
3904 sp
->msi_detected
= 0;
3906 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3907 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3908 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3909 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3910 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3912 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3914 if (!sp
->msi_detected
) {
3915 /* MSI(X) test failed, go back to INTx mode */
3916 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3917 "using MSI(X) during test\n",
3918 sp
->dev
->name
, pci_name(pdev
));
3923 free_irq(sp
->entries
[1].vector
, sp
);
3925 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3930 static void remove_msix_isr(struct s2io_nic
*sp
)
3935 for (i
= 0; i
< sp
->num_entries
; i
++) {
3936 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3937 int vector
= sp
->entries
[i
].vector
;
3938 void *arg
= sp
->s2io_entries
[i
].arg
;
3939 free_irq(vector
, arg
);
3944 kfree(sp
->s2io_entries
);
3946 sp
->s2io_entries
= NULL
;
3948 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3949 msi_control
&= 0xFFFE; /* Disable MSI */
3950 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3952 pci_disable_msix(sp
->pdev
);
3955 static void remove_inta_isr(struct s2io_nic
*sp
)
3957 struct net_device
*dev
= sp
->dev
;
3959 free_irq(sp
->pdev
->irq
, dev
);
3962 /* ********************************************************* *
3963 * Functions defined below concern the OS part of the driver *
3964 * ********************************************************* */
3967 * s2io_open - open entry point of the driver
3968 * @dev : pointer to the device structure.
3970 * This function is the open entry point of the driver. It mainly calls a
3971 * function to allocate Rx buffers and inserts them into the buffer
3972 * descriptors and then enables the Rx part of the NIC.
3974 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3978 static int s2io_open(struct net_device
*dev
)
3980 struct s2io_nic
*sp
= netdev_priv(dev
);
3981 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3985 * Make sure you have link off by default every time
3986 * Nic is initialized
3988 netif_carrier_off(dev
);
3989 sp
->last_link_state
= 0;
3991 /* Initialize H/W and enable interrupts */
3992 err
= s2io_card_up(sp
);
3994 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3996 goto hw_init_failed
;
3999 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4000 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4003 goto hw_init_failed
;
4005 s2io_start_all_tx_queue(sp
);
4009 if (sp
->config
.intr_type
== MSI_X
) {
4012 swstats
->mem_freed
+= sp
->num_entries
*
4013 sizeof(struct msix_entry
);
4015 if (sp
->s2io_entries
) {
4016 kfree(sp
->s2io_entries
);
4017 swstats
->mem_freed
+= sp
->num_entries
*
4018 sizeof(struct s2io_msix_entry
);
4025 * s2io_close -close entry point of the driver
4026 * @dev : device pointer.
4028 * This is the stop entry point of the driver. It needs to undo exactly
4029 * whatever was done by the open entry point,thus it's usually referred to
4030 * as the close function.Among other things this function mainly stops the
4031 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4033 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4037 static int s2io_close(struct net_device
*dev
)
4039 struct s2io_nic
*sp
= netdev_priv(dev
);
4040 struct config_param
*config
= &sp
->config
;
4044 /* Return if the device is already closed *
4045 * Can happen when s2io_card_up failed in change_mtu *
4047 if (!is_s2io_card_up(sp
))
4050 s2io_stop_all_tx_queue(sp
);
4051 /* delete all populated mac entries */
4052 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4053 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4054 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4055 do_s2io_delete_unicast_mc(sp
, tmp64
);
4064 * s2io_xmit - Tx entry point of te driver
4065 * @skb : the socket buffer containing the Tx data.
4066 * @dev : device pointer.
4068 * This function is the Tx entry point of the driver. S2IO NIC supports
4069 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4070 * NOTE: when device cant queue the pkt,just the trans_start variable will
4073 * 0 on success & 1 on failure.
4076 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4078 struct s2io_nic
*sp
= netdev_priv(dev
);
4079 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4082 struct TxFIFO_element __iomem
*tx_fifo
;
4083 unsigned long flags
= 0;
4085 struct fifo_info
*fifo
= NULL
;
4086 int do_spin_lock
= 1;
4088 int enable_per_list_interrupt
= 0;
4089 struct config_param
*config
= &sp
->config
;
4090 struct mac_info
*mac_control
= &sp
->mac_control
;
4091 struct stat_block
*stats
= mac_control
->stats_info
;
4092 struct swStat
*swstats
= &stats
->sw_stat
;
4094 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4096 if (unlikely(skb
->len
<= 0)) {
4097 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4098 dev_kfree_skb_any(skb
);
4099 return NETDEV_TX_OK
;
4102 if (!is_s2io_card_up(sp
)) {
4103 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4106 return NETDEV_TX_OK
;
4110 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4111 vlan_tag
= vlan_tx_tag_get(skb
);
4112 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4113 if (skb
->protocol
== htons(ETH_P_IP
)) {
4118 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4119 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4122 if (ip
->protocol
== IPPROTO_TCP
) {
4123 queue_len
= sp
->total_tcp_fifos
;
4124 queue
= (ntohs(th
->source
) +
4126 sp
->fifo_selector
[queue_len
- 1];
4127 if (queue
>= queue_len
)
4128 queue
= queue_len
- 1;
4129 } else if (ip
->protocol
== IPPROTO_UDP
) {
4130 queue_len
= sp
->total_udp_fifos
;
4131 queue
= (ntohs(th
->source
) +
4133 sp
->fifo_selector
[queue_len
- 1];
4134 if (queue
>= queue_len
)
4135 queue
= queue_len
- 1;
4136 queue
+= sp
->udp_fifo_idx
;
4137 if (skb
->len
> 1024)
4138 enable_per_list_interrupt
= 1;
4143 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4144 /* get fifo number based on skb->priority value */
4145 queue
= config
->fifo_mapping
4146 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4147 fifo
= &mac_control
->fifos
[queue
];
4150 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4152 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4153 return NETDEV_TX_LOCKED
;
4156 if (sp
->config
.multiq
) {
4157 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4158 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4159 return NETDEV_TX_BUSY
;
4161 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4162 if (netif_queue_stopped(dev
)) {
4163 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4164 return NETDEV_TX_BUSY
;
4168 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4169 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4170 txdp
= (struct TxD
*)fifo
->list_info
[put_off
].list_virt_addr
;
4172 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4173 /* Avoid "put" pointer going beyond "get" pointer */
4174 if (txdp
->Host_Control
||
4175 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4176 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4177 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4179 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4180 return NETDEV_TX_OK
;
4183 offload_type
= s2io_offload_type(skb
);
4184 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4185 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4186 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4188 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4189 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4193 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4194 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4195 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4196 if (enable_per_list_interrupt
)
4197 if (put_off
& (queue_len
>> 5))
4198 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4200 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4201 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4204 frg_len
= skb
->len
- skb
->data_len
;
4205 if (offload_type
== SKB_GSO_UDP
) {
4208 ufo_size
= s2io_udp_mss(skb
);
4210 txdp
->Control_1
|= TXD_UFO_EN
;
4211 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4212 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4214 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4215 fifo
->ufo_in_band_v
[put_off
] =
4216 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4218 fifo
->ufo_in_band_v
[put_off
] =
4219 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4221 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4222 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4223 fifo
->ufo_in_band_v
,
4226 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4227 goto pci_map_failed
;
4231 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4232 frg_len
, PCI_DMA_TODEVICE
);
4233 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4234 goto pci_map_failed
;
4236 txdp
->Host_Control
= (unsigned long)skb
;
4237 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4238 if (offload_type
== SKB_GSO_UDP
)
4239 txdp
->Control_1
|= TXD_UFO_EN
;
4241 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4242 /* For fragmented SKB. */
4243 for (i
= 0; i
< frg_cnt
; i
++) {
4244 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4245 /* A '0' length fragment will be ignored */
4249 txdp
->Buffer_Pointer
= (u64
)pci_map_page(sp
->pdev
, frag
->page
,
4253 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4254 if (offload_type
== SKB_GSO_UDP
)
4255 txdp
->Control_1
|= TXD_UFO_EN
;
4257 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4259 if (offload_type
== SKB_GSO_UDP
)
4260 frg_cnt
++; /* as Txd0 was used for inband header */
4262 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4263 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4264 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4266 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4269 val64
|= TX_FIFO_SPECIAL_FUNC
;
4271 writeq(val64
, &tx_fifo
->List_Control
);
4276 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4278 fifo
->tx_curr_put_info
.offset
= put_off
;
4280 /* Avoid "put" pointer going beyond "get" pointer */
4281 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4282 swstats
->fifo_full_cnt
++;
4284 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4286 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4288 swstats
->mem_allocated
+= skb
->truesize
;
4289 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4291 if (sp
->config
.intr_type
== MSI_X
)
4292 tx_intr_handler(fifo
);
4294 return NETDEV_TX_OK
;
4297 swstats
->pci_map_fail_cnt
++;
4298 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4299 swstats
->mem_freed
+= skb
->truesize
;
4301 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4302 return NETDEV_TX_OK
;
4306 s2io_alarm_handle(unsigned long data
)
4308 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4309 struct net_device
*dev
= sp
->dev
;
4311 s2io_handle_errors(dev
);
4312 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4315 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4317 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4318 struct s2io_nic
*sp
= ring
->nic
;
4319 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4321 if (unlikely(!is_s2io_card_up(sp
)))
4324 if (sp
->config
.napi
) {
4325 u8 __iomem
*addr
= NULL
;
4328 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4329 addr
+= (7 - ring
->ring_no
);
4330 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4333 napi_schedule(&ring
->napi
);
4335 rx_intr_handler(ring
, 0);
4336 s2io_chk_rx_buffers(sp
, ring
);
4342 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4345 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4346 struct s2io_nic
*sp
= fifos
->nic
;
4347 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4348 struct config_param
*config
= &sp
->config
;
4351 if (unlikely(!is_s2io_card_up(sp
)))
4354 reason
= readq(&bar0
->general_int_status
);
4355 if (unlikely(reason
== S2IO_MINUS_ONE
))
4356 /* Nothing much can be done. Get out */
4359 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4360 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4362 if (reason
& GEN_INTR_TXPIC
)
4363 s2io_txpic_intr_handle(sp
);
4365 if (reason
& GEN_INTR_TXTRAFFIC
)
4366 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4368 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4369 tx_intr_handler(&fifos
[i
]);
4371 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4372 readl(&bar0
->general_int_status
);
4375 /* The interrupt was not raised by us */
4379 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4381 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4384 val64
= readq(&bar0
->pic_int_status
);
4385 if (val64
& PIC_INT_GPIO
) {
4386 val64
= readq(&bar0
->gpio_int_reg
);
4387 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4388 (val64
& GPIO_INT_REG_LINK_UP
)) {
4390 * This is unstable state so clear both up/down
4391 * interrupt and adapter to re-evaluate the link state.
4393 val64
|= GPIO_INT_REG_LINK_DOWN
;
4394 val64
|= GPIO_INT_REG_LINK_UP
;
4395 writeq(val64
, &bar0
->gpio_int_reg
);
4396 val64
= readq(&bar0
->gpio_int_mask
);
4397 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4398 GPIO_INT_MASK_LINK_DOWN
);
4399 writeq(val64
, &bar0
->gpio_int_mask
);
4400 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4401 val64
= readq(&bar0
->adapter_status
);
4402 /* Enable Adapter */
4403 val64
= readq(&bar0
->adapter_control
);
4404 val64
|= ADAPTER_CNTL_EN
;
4405 writeq(val64
, &bar0
->adapter_control
);
4406 val64
|= ADAPTER_LED_ON
;
4407 writeq(val64
, &bar0
->adapter_control
);
4408 if (!sp
->device_enabled_once
)
4409 sp
->device_enabled_once
= 1;
4411 s2io_link(sp
, LINK_UP
);
4413 * unmask link down interrupt and mask link-up
4416 val64
= readq(&bar0
->gpio_int_mask
);
4417 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4418 val64
|= GPIO_INT_MASK_LINK_UP
;
4419 writeq(val64
, &bar0
->gpio_int_mask
);
4421 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4422 val64
= readq(&bar0
->adapter_status
);
4423 s2io_link(sp
, LINK_DOWN
);
4424 /* Link is down so unmaks link up interrupt */
4425 val64
= readq(&bar0
->gpio_int_mask
);
4426 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4427 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4428 writeq(val64
, &bar0
->gpio_int_mask
);
4431 val64
= readq(&bar0
->adapter_control
);
4432 val64
= val64
& (~ADAPTER_LED_ON
);
4433 writeq(val64
, &bar0
->adapter_control
);
4436 val64
= readq(&bar0
->gpio_int_mask
);
4440 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4441 * @value: alarm bits
4442 * @addr: address value
4443 * @cnt: counter variable
4444 * Description: Check for alarm and increment the counter
4446 * 1 - if alarm bit set
4447 * 0 - if alarm bit is not set
4449 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4450 unsigned long long *cnt
)
4453 val64
= readq(addr
);
4454 if (val64
& value
) {
4455 writeq(val64
, addr
);
4464 * s2io_handle_errors - Xframe error indication handler
4465 * @nic: device private variable
4466 * Description: Handle alarms such as loss of link, single or
4467 * double ECC errors, critical and serious errors.
4471 static void s2io_handle_errors(void *dev_id
)
4473 struct net_device
*dev
= (struct net_device
*)dev_id
;
4474 struct s2io_nic
*sp
= netdev_priv(dev
);
4475 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4476 u64 temp64
= 0, val64
= 0;
4479 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4480 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4482 if (!is_s2io_card_up(sp
))
4485 if (pci_channel_offline(sp
->pdev
))
4488 memset(&sw_stat
->ring_full_cnt
, 0,
4489 sizeof(sw_stat
->ring_full_cnt
));
4491 /* Handling the XPAK counters update */
4492 if (stats
->xpak_timer_count
< 72000) {
4493 /* waiting for an hour */
4494 stats
->xpak_timer_count
++;
4496 s2io_updt_xpak_counter(dev
);
4497 /* reset the count to zero */
4498 stats
->xpak_timer_count
= 0;
4501 /* Handling link status change error Intr */
4502 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4503 val64
= readq(&bar0
->mac_rmac_err_reg
);
4504 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4505 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4506 schedule_work(&sp
->set_link_task
);
4509 /* In case of a serious error, the device will be Reset. */
4510 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4511 &sw_stat
->serious_err_cnt
))
4514 /* Check for data parity error */
4515 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4516 &sw_stat
->parity_err_cnt
))
4519 /* Check for ring full counter */
4520 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4521 val64
= readq(&bar0
->ring_bump_counter1
);
4522 for (i
= 0; i
< 4; i
++) {
4523 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4524 temp64
>>= 64 - ((i
+1)*16);
4525 sw_stat
->ring_full_cnt
[i
] += temp64
;
4528 val64
= readq(&bar0
->ring_bump_counter2
);
4529 for (i
= 0; i
< 4; i
++) {
4530 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4531 temp64
>>= 64 - ((i
+1)*16);
4532 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4536 val64
= readq(&bar0
->txdma_int_status
);
4537 /*check for pfc_err*/
4538 if (val64
& TXDMA_PFC_INT
) {
4539 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4540 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4543 &sw_stat
->pfc_err_cnt
))
4545 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4547 &sw_stat
->pfc_err_cnt
);
4550 /*check for tda_err*/
4551 if (val64
& TXDMA_TDA_INT
) {
4552 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4556 &sw_stat
->tda_err_cnt
))
4558 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4560 &sw_stat
->tda_err_cnt
);
4562 /*check for pcc_err*/
4563 if (val64
& TXDMA_PCC_INT
) {
4564 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4565 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4566 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4567 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4570 &sw_stat
->pcc_err_cnt
))
4572 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4574 &sw_stat
->pcc_err_cnt
);
4577 /*check for tti_err*/
4578 if (val64
& TXDMA_TTI_INT
) {
4579 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4581 &sw_stat
->tti_err_cnt
))
4583 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4585 &sw_stat
->tti_err_cnt
);
4588 /*check for lso_err*/
4589 if (val64
& TXDMA_LSO_INT
) {
4590 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4591 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4593 &sw_stat
->lso_err_cnt
))
4595 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4597 &sw_stat
->lso_err_cnt
);
4600 /*check for tpa_err*/
4601 if (val64
& TXDMA_TPA_INT
) {
4602 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4604 &sw_stat
->tpa_err_cnt
))
4606 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4608 &sw_stat
->tpa_err_cnt
);
4611 /*check for sm_err*/
4612 if (val64
& TXDMA_SM_INT
) {
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4615 &sw_stat
->sm_err_cnt
))
4619 val64
= readq(&bar0
->mac_int_status
);
4620 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4622 &bar0
->mac_tmac_err_reg
,
4623 &sw_stat
->mac_tmac_err_cnt
))
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4626 TMAC_DESC_ECC_SG_ERR
|
4627 TMAC_DESC_ECC_DB_ERR
,
4628 &bar0
->mac_tmac_err_reg
,
4629 &sw_stat
->mac_tmac_err_cnt
);
4632 val64
= readq(&bar0
->xgxs_int_status
);
4633 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4634 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4635 &bar0
->xgxs_txgxs_err_reg
,
4636 &sw_stat
->xgxs_txgxs_err_cnt
))
4638 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4639 &bar0
->xgxs_txgxs_err_reg
,
4640 &sw_stat
->xgxs_txgxs_err_cnt
);
4643 val64
= readq(&bar0
->rxdma_int_status
);
4644 if (val64
& RXDMA_INT_RC_INT_M
) {
4645 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4647 RC_PRCn_SM_ERR_ALARM
|
4648 RC_FTC_SM_ERR_ALARM
,
4650 &sw_stat
->rc_err_cnt
))
4652 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4654 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4655 &sw_stat
->rc_err_cnt
);
4656 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4659 &bar0
->prc_pcix_err_reg
,
4660 &sw_stat
->prc_pcix_err_cnt
))
4662 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4665 &bar0
->prc_pcix_err_reg
,
4666 &sw_stat
->prc_pcix_err_cnt
);
4669 if (val64
& RXDMA_INT_RPA_INT_M
) {
4670 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4672 &sw_stat
->rpa_err_cnt
))
4674 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4676 &sw_stat
->rpa_err_cnt
);
4679 if (val64
& RXDMA_INT_RDA_INT_M
) {
4680 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4681 RDA_FRM_ECC_DB_N_AERR
|
4684 RDA_RXD_ECC_DB_SERR
,
4686 &sw_stat
->rda_err_cnt
))
4688 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4689 RDA_FRM_ECC_SG_ERR
|
4693 &sw_stat
->rda_err_cnt
);
4696 if (val64
& RXDMA_INT_RTI_INT_M
) {
4697 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4699 &sw_stat
->rti_err_cnt
))
4701 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4703 &sw_stat
->rti_err_cnt
);
4706 val64
= readq(&bar0
->mac_int_status
);
4707 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4708 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4709 &bar0
->mac_rmac_err_reg
,
4710 &sw_stat
->mac_rmac_err_cnt
))
4712 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4713 RMAC_SINGLE_ECC_ERR
|
4714 RMAC_DOUBLE_ECC_ERR
,
4715 &bar0
->mac_rmac_err_reg
,
4716 &sw_stat
->mac_rmac_err_cnt
);
4719 val64
= readq(&bar0
->xgxs_int_status
);
4720 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4721 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4722 &bar0
->xgxs_rxgxs_err_reg
,
4723 &sw_stat
->xgxs_rxgxs_err_cnt
))
4727 val64
= readq(&bar0
->mc_int_status
);
4728 if (val64
& MC_INT_STATUS_MC_INT
) {
4729 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4731 &sw_stat
->mc_err_cnt
))
4734 /* Handling Ecc errors */
4735 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4736 writeq(val64
, &bar0
->mc_err_reg
);
4737 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4738 sw_stat
->double_ecc_errs
++;
4739 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4741 * Reset XframeI only if critical error
4744 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4745 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4749 sw_stat
->single_ecc_errs
++;
4755 s2io_stop_all_tx_queue(sp
);
4756 schedule_work(&sp
->rst_timer_task
);
4757 sw_stat
->soft_reset_cnt
++;
4762 * s2io_isr - ISR handler of the device .
4763 * @irq: the irq of the device.
4764 * @dev_id: a void pointer to the dev structure of the NIC.
4765 * Description: This function is the ISR handler of the device. It
4766 * identifies the reason for the interrupt and calls the relevant
4767 * service routines. As a contongency measure, this ISR allocates the
4768 * recv buffers, if their numbers are below the panic value which is
4769 * presently set to 25% of the original number of rcv buffers allocated.
4771 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4772 * IRQ_NONE: will be returned if interrupt is not from our device
4774 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4776 struct net_device
*dev
= (struct net_device
*)dev_id
;
4777 struct s2io_nic
*sp
= netdev_priv(dev
);
4778 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4781 struct mac_info
*mac_control
;
4782 struct config_param
*config
;
4784 /* Pretend we handled any irq's from a disconnected card */
4785 if (pci_channel_offline(sp
->pdev
))
4788 if (!is_s2io_card_up(sp
))
4791 config
= &sp
->config
;
4792 mac_control
= &sp
->mac_control
;
4795 * Identify the cause for interrupt and call the appropriate
4796 * interrupt handler. Causes for the interrupt could be;
4801 reason
= readq(&bar0
->general_int_status
);
4803 if (unlikely(reason
== S2IO_MINUS_ONE
))
4804 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4807 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4808 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4811 if (reason
& GEN_INTR_RXTRAFFIC
) {
4812 napi_schedule(&sp
->napi
);
4813 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4814 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4815 readl(&bar0
->rx_traffic_int
);
4819 * rx_traffic_int reg is an R1 register, writing all 1's
4820 * will ensure that the actual interrupt causing bit
4821 * get's cleared and hence a read can be avoided.
4823 if (reason
& GEN_INTR_RXTRAFFIC
)
4824 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4826 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4827 struct ring_info
*ring
= &mac_control
->rings
[i
];
4829 rx_intr_handler(ring
, 0);
4834 * tx_traffic_int reg is an R1 register, writing all 1's
4835 * will ensure that the actual interrupt causing bit get's
4836 * cleared and hence a read can be avoided.
4838 if (reason
& GEN_INTR_TXTRAFFIC
)
4839 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4841 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4842 tx_intr_handler(&mac_control
->fifos
[i
]);
4844 if (reason
& GEN_INTR_TXPIC
)
4845 s2io_txpic_intr_handle(sp
);
4848 * Reallocate the buffers from the interrupt handler itself.
4850 if (!config
->napi
) {
4851 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4852 struct ring_info
*ring
= &mac_control
->rings
[i
];
4854 s2io_chk_rx_buffers(sp
, ring
);
4857 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4858 readl(&bar0
->general_int_status
);
4862 } else if (!reason
) {
4863 /* The interrupt was not raised by us */
4873 static void s2io_updt_stats(struct s2io_nic
*sp
)
4875 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4879 if (is_s2io_card_up(sp
)) {
4880 /* Apprx 30us on a 133 MHz bus */
4881 val64
= SET_UPDT_CLICKS(10) |
4882 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4883 writeq(val64
, &bar0
->stat_cfg
);
4886 val64
= readq(&bar0
->stat_cfg
);
4887 if (!(val64
& s2BIT(0)))
4891 break; /* Updt failed */
4897 * s2io_get_stats - Updates the device statistics structure.
4898 * @dev : pointer to the device structure.
4900 * This function updates the device statistics structure in the s2io_nic
4901 * structure and returns a pointer to the same.
4903 * pointer to the updated net_device_stats structure.
4906 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4908 struct s2io_nic
*sp
= netdev_priv(dev
);
4909 struct config_param
*config
= &sp
->config
;
4910 struct mac_info
*mac_control
= &sp
->mac_control
;
4911 struct stat_block
*stats
= mac_control
->stats_info
;
4914 /* Configure Stats for immediate updt */
4915 s2io_updt_stats(sp
);
4917 /* Using sp->stats as a staging area, because reset (due to mtu
4918 change, for example) will clear some hardware counters */
4919 dev
->stats
.tx_packets
+= le32_to_cpu(stats
->tmac_frms
) -
4920 sp
->stats
.tx_packets
;
4921 sp
->stats
.tx_packets
= le32_to_cpu(stats
->tmac_frms
);
4923 dev
->stats
.tx_errors
+= le32_to_cpu(stats
->tmac_any_err_frms
) -
4924 sp
->stats
.tx_errors
;
4925 sp
->stats
.tx_errors
= le32_to_cpu(stats
->tmac_any_err_frms
);
4927 dev
->stats
.rx_errors
+= le64_to_cpu(stats
->rmac_drop_frms
) -
4928 sp
->stats
.rx_errors
;
4929 sp
->stats
.rx_errors
= le64_to_cpu(stats
->rmac_drop_frms
);
4931 dev
->stats
.multicast
= le32_to_cpu(stats
->rmac_vld_mcst_frms
) -
4932 sp
->stats
.multicast
;
4933 sp
->stats
.multicast
= le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4935 dev
->stats
.rx_length_errors
= le64_to_cpu(stats
->rmac_long_frms
) -
4936 sp
->stats
.rx_length_errors
;
4937 sp
->stats
.rx_length_errors
= le64_to_cpu(stats
->rmac_long_frms
);
4939 /* collect per-ring rx_packets and rx_bytes */
4940 dev
->stats
.rx_packets
= dev
->stats
.rx_bytes
= 0;
4941 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4942 struct ring_info
*ring
= &mac_control
->rings
[i
];
4944 dev
->stats
.rx_packets
+= ring
->rx_packets
;
4945 dev
->stats
.rx_bytes
+= ring
->rx_bytes
;
4952 * s2io_set_multicast - entry point for multicast address enable/disable.
4953 * @dev : pointer to the device structure
4955 * This function is a driver entry point which gets called by the kernel
4956 * whenever multicast addresses must be enabled/disabled. This also gets
4957 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4958 * determine, if multicast address must be enabled or if promiscuous mode
4959 * is to be disabled etc.
4964 static void s2io_set_multicast(struct net_device
*dev
)
4967 struct dev_mc_list
*mclist
;
4968 struct s2io_nic
*sp
= netdev_priv(dev
);
4969 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4970 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4972 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4974 struct config_param
*config
= &sp
->config
;
4976 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4977 /* Enable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4979 &bar0
->rmac_addr_data0_mem
);
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4981 &bar0
->rmac_addr_data1_mem
);
4982 val64
= RMAC_ADDR_CMD_MEM_WE
|
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4984 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4985 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4986 /* Wait till command completes */
4987 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4992 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4993 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4994 /* Disable all Multicast addresses */
4995 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4996 &bar0
->rmac_addr_data0_mem
);
4997 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4998 &bar0
->rmac_addr_data1_mem
);
4999 val64
= RMAC_ADDR_CMD_MEM_WE
|
5000 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5001 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
5002 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5003 /* Wait till command completes */
5004 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5005 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5009 sp
->all_multi_pos
= 0;
5012 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5013 /* Put the NIC into promiscuous mode */
5014 add
= &bar0
->mac_cfg
;
5015 val64
= readq(&bar0
->mac_cfg
);
5016 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5019 writel((u32
)val64
, add
);
5020 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5021 writel((u32
) (val64
>> 32), (add
+ 4));
5023 if (vlan_tag_strip
!= 1) {
5024 val64
= readq(&bar0
->rx_pa_cfg
);
5025 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5026 writeq(val64
, &bar0
->rx_pa_cfg
);
5027 sp
->vlan_strip_flag
= 0;
5030 val64
= readq(&bar0
->mac_cfg
);
5031 sp
->promisc_flg
= 1;
5032 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5034 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5035 /* Remove the NIC from promiscuous mode */
5036 add
= &bar0
->mac_cfg
;
5037 val64
= readq(&bar0
->mac_cfg
);
5038 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5040 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5041 writel((u32
)val64
, add
);
5042 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5043 writel((u32
) (val64
>> 32), (add
+ 4));
5045 if (vlan_tag_strip
!= 0) {
5046 val64
= readq(&bar0
->rx_pa_cfg
);
5047 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5048 writeq(val64
, &bar0
->rx_pa_cfg
);
5049 sp
->vlan_strip_flag
= 1;
5052 val64
= readq(&bar0
->mac_cfg
);
5053 sp
->promisc_flg
= 0;
5054 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5057 /* Update individual M_CAST address list */
5058 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5059 if (netdev_mc_count(dev
) >
5060 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5062 "%s: No more Rx filters can be added - "
5063 "please enable ALL_MULTI instead\n",
5068 prev_cnt
= sp
->mc_addr_count
;
5069 sp
->mc_addr_count
= netdev_mc_count(dev
);
5071 /* Clear out the previous list of Mc in the H/W. */
5072 for (i
= 0; i
< prev_cnt
; i
++) {
5073 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5074 &bar0
->rmac_addr_data0_mem
);
5075 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5076 &bar0
->rmac_addr_data1_mem
);
5077 val64
= RMAC_ADDR_CMD_MEM_WE
|
5078 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5079 RMAC_ADDR_CMD_MEM_OFFSET
5080 (config
->mc_start_offset
+ i
);
5081 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5083 /* Wait for command completes */
5084 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5085 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5088 "%s: Adding Multicasts failed\n",
5094 /* Create the new Rx filter list and update the same in H/W. */
5096 netdev_for_each_mc_addr(mclist
, dev
) {
5097 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5100 for (j
= 0; j
< ETH_ALEN
; j
++) {
5101 mac_addr
|= mclist
->dmi_addr
[j
];
5105 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5106 &bar0
->rmac_addr_data0_mem
);
5107 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5108 &bar0
->rmac_addr_data1_mem
);
5109 val64
= RMAC_ADDR_CMD_MEM_WE
|
5110 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5111 RMAC_ADDR_CMD_MEM_OFFSET
5112 (i
+ config
->mc_start_offset
);
5113 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5115 /* Wait for command completes */
5116 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5117 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5120 "%s: Adding Multicasts failed\n",
5129 /* read from CAM unicast & multicast addresses and store it in
5130 * def_mac_addr structure
5132 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5136 struct config_param
*config
= &sp
->config
;
5138 /* store unicast & multicast mac addresses */
5139 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5140 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5141 /* if read fails disable the entry */
5142 if (mac_addr
== FAILURE
)
5143 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5144 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5148 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5149 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5152 struct config_param
*config
= &sp
->config
;
5153 /* restore unicast mac address */
5154 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5155 do_s2io_prog_unicast(sp
->dev
,
5156 sp
->def_mac_addr
[offset
].mac_addr
);
5158 /* restore multicast mac address */
5159 for (offset
= config
->mc_start_offset
;
5160 offset
< config
->max_mc_addr
; offset
++)
5161 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5164 /* add a multicast MAC address to CAM */
5165 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5169 struct config_param
*config
= &sp
->config
;
5171 for (i
= 0; i
< ETH_ALEN
; i
++) {
5173 mac_addr
|= addr
[i
];
5175 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5178 /* check if the multicast mac already preset in CAM */
5179 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5181 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5182 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5185 if (tmp64
== mac_addr
)
5188 if (i
== config
->max_mc_addr
) {
5190 "CAM full no space left for multicast MAC\n");
5193 /* Update the internal structure with this new mac address */
5194 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5196 return do_s2io_add_mac(sp
, mac_addr
, i
);
5199 /* add MAC address to CAM */
5200 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5203 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5205 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5206 &bar0
->rmac_addr_data0_mem
);
5208 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5209 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5210 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5212 /* Wait till command completes */
5213 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5214 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5216 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5221 /* deletes a specified unicast/multicast mac entry from CAM */
5222 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5225 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5226 struct config_param
*config
= &sp
->config
;
5229 offset
< config
->max_mc_addr
; offset
++) {
5230 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5231 if (tmp64
== addr
) {
5232 /* disable the entry by writing 0xffffffffffffULL */
5233 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5235 /* store the new mac list from CAM */
5236 do_s2io_store_unicast_mc(sp
);
5240 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5241 (unsigned long long)addr
);
5245 /* read mac entries from CAM */
5246 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5248 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5249 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5252 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5253 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5254 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5256 /* Wait till command completes */
5257 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5258 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5260 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5263 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5269 * s2io_set_mac_addr driver entry point
5272 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5274 struct sockaddr
*addr
= p
;
5276 if (!is_valid_ether_addr(addr
->sa_data
))
5279 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5281 /* store the MAC address in CAM */
5282 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5285 * do_s2io_prog_unicast - Programs the Xframe mac address
5286 * @dev : pointer to the device structure.
5287 * @addr: a uchar pointer to the new mac address which is to be set.
5288 * Description : This procedure will program the Xframe to receive
5289 * frames with new Mac Address
5290 * Return value: SUCCESS on success and an appropriate (-)ve integer
5291 * as defined in errno.h file on failure.
5294 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5296 struct s2io_nic
*sp
= netdev_priv(dev
);
5297 register u64 mac_addr
= 0, perm_addr
= 0;
5300 struct config_param
*config
= &sp
->config
;
5303 * Set the new MAC address as the new unicast filter and reflect this
5304 * change on the device address registered with the OS. It will be
5307 for (i
= 0; i
< ETH_ALEN
; i
++) {
5309 mac_addr
|= addr
[i
];
5311 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5314 /* check if the dev_addr is different than perm_addr */
5315 if (mac_addr
== perm_addr
)
5318 /* check if the mac already preset in CAM */
5319 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5320 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5321 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5324 if (tmp64
== mac_addr
) {
5326 "MAC addr:0x%llx already present in CAM\n",
5327 (unsigned long long)mac_addr
);
5331 if (i
== config
->max_mac_addr
) {
5332 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5335 /* Update the internal structure with this new mac address */
5336 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5338 return do_s2io_add_mac(sp
, mac_addr
, i
);
5342 * s2io_ethtool_sset - Sets different link parameters.
5343 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5344 * @info: pointer to the structure with parameters given by ethtool to set
5347 * The function sets different link parameters provided by the user onto
5353 static int s2io_ethtool_sset(struct net_device
*dev
,
5354 struct ethtool_cmd
*info
)
5356 struct s2io_nic
*sp
= netdev_priv(dev
);
5357 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5358 (info
->speed
!= SPEED_10000
) ||
5359 (info
->duplex
!= DUPLEX_FULL
))
5362 s2io_close(sp
->dev
);
5370 * s2io_ethtol_gset - Return link specific information.
5371 * @sp : private member of the device structure, pointer to the
5372 * s2io_nic structure.
5373 * @info : pointer to the structure with parameters given by ethtool
5374 * to return link information.
5376 * Returns link specific information like speed, duplex etc.. to ethtool.
5378 * return 0 on success.
5381 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5383 struct s2io_nic
*sp
= netdev_priv(dev
);
5384 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5385 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5386 info
->port
= PORT_FIBRE
;
5388 /* info->transceiver */
5389 info
->transceiver
= XCVR_EXTERNAL
;
5391 if (netif_carrier_ok(sp
->dev
)) {
5392 info
->speed
= 10000;
5393 info
->duplex
= DUPLEX_FULL
;
5399 info
->autoneg
= AUTONEG_DISABLE
;
5404 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5405 * @sp : private member of the device structure, which is a pointer to the
5406 * s2io_nic structure.
5407 * @info : pointer to the structure with parameters given by ethtool to
5408 * return driver information.
5410 * Returns driver specefic information like name, version etc.. to ethtool.
5415 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5416 struct ethtool_drvinfo
*info
)
5418 struct s2io_nic
*sp
= netdev_priv(dev
);
5420 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5421 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5422 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5423 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5424 info
->regdump_len
= XENA_REG_SPACE
;
5425 info
->eedump_len
= XENA_EEPROM_SPACE
;
5429 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5430 * @sp: private member of the device structure, which is a pointer to the
5431 * s2io_nic structure.
5432 * @regs : pointer to the structure with parameters given by ethtool for
5433 * dumping the registers.
5434 * @reg_space: The input argumnet into which all the registers are dumped.
5436 * Dumps the entire register space of xFrame NIC into the user given
5442 static void s2io_ethtool_gregs(struct net_device
*dev
,
5443 struct ethtool_regs
*regs
, void *space
)
5447 u8
*reg_space
= (u8
*)space
;
5448 struct s2io_nic
*sp
= netdev_priv(dev
);
5450 regs
->len
= XENA_REG_SPACE
;
5451 regs
->version
= sp
->pdev
->subsystem_device
;
5453 for (i
= 0; i
< regs
->len
; i
+= 8) {
5454 reg
= readq(sp
->bar0
+ i
);
5455 memcpy((reg_space
+ i
), ®
, 8);
5460 * s2io_phy_id - timer function that alternates adapter LED.
5461 * @data : address of the private member of the device structure, which
5462 * is a pointer to the s2io_nic structure, provided as an u32.
5463 * Description: This is actually the timer function that alternates the
5464 * adapter LED bit of the adapter control bit to set/reset every time on
5465 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5466 * once every second.
5468 static void s2io_phy_id(unsigned long data
)
5470 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
5471 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5475 subid
= sp
->pdev
->subsystem_device
;
5476 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5477 ((subid
& 0xFF) >= 0x07)) {
5478 val64
= readq(&bar0
->gpio_control
);
5479 val64
^= GPIO_CTRL_GPIO_0
;
5480 writeq(val64
, &bar0
->gpio_control
);
5482 val64
= readq(&bar0
->adapter_control
);
5483 val64
^= ADAPTER_LED_ON
;
5484 writeq(val64
, &bar0
->adapter_control
);
5487 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5491 * s2io_ethtool_idnic - To physically identify the nic on the system.
5492 * @sp : private member of the device structure, which is a pointer to the
5493 * s2io_nic structure.
5494 * @id : pointer to the structure with identification parameters given by
5496 * Description: Used to physically identify the NIC on the system.
5497 * The Link LED will blink for a time specified by the user for
5499 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5500 * identification is possible only if it's link is up.
5502 * int , returns 0 on success
5505 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5507 u64 val64
= 0, last_gpio_ctrl_val
;
5508 struct s2io_nic
*sp
= netdev_priv(dev
);
5509 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5512 subid
= sp
->pdev
->subsystem_device
;
5513 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5514 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5515 val64
= readq(&bar0
->adapter_control
);
5516 if (!(val64
& ADAPTER_CNTL_EN
)) {
5517 pr_err("Adapter Link down, cannot blink LED\n");
5521 if (sp
->id_timer
.function
== NULL
) {
5522 init_timer(&sp
->id_timer
);
5523 sp
->id_timer
.function
= s2io_phy_id
;
5524 sp
->id_timer
.data
= (unsigned long)sp
;
5526 mod_timer(&sp
->id_timer
, jiffies
);
5528 msleep_interruptible(data
* HZ
);
5530 msleep_interruptible(MAX_FLICKER_TIME
);
5531 del_timer_sync(&sp
->id_timer
);
5533 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5534 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5535 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5541 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5542 struct ethtool_ringparam
*ering
)
5544 struct s2io_nic
*sp
= netdev_priv(dev
);
5545 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5547 if (sp
->rxd_mode
== RXD_MODE_1
)
5548 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5549 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5550 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5552 ering
->tx_max_pending
= MAX_TX_DESC
;
5553 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5554 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5556 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5557 ering
->tx_pending
= tx_desc_count
;
5559 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5560 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5562 ering
->rx_pending
= rx_desc_count
;
5564 ering
->rx_mini_max_pending
= 0;
5565 ering
->rx_mini_pending
= 0;
5566 if (sp
->rxd_mode
== RXD_MODE_1
)
5567 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5568 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5569 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5570 ering
->rx_jumbo_pending
= rx_desc_count
;
5574 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5575 * @sp : private member of the device structure, which is a pointer to the
5576 * s2io_nic structure.
5577 * @ep : pointer to the structure with pause parameters given by ethtool.
5579 * Returns the Pause frame generation and reception capability of the NIC.
5583 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5584 struct ethtool_pauseparam
*ep
)
5587 struct s2io_nic
*sp
= netdev_priv(dev
);
5588 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5590 val64
= readq(&bar0
->rmac_pause_cfg
);
5591 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5592 ep
->tx_pause
= true;
5593 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5594 ep
->rx_pause
= true;
5595 ep
->autoneg
= false;
5599 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5600 * @sp : private member of the device structure, which is a pointer to the
5601 * s2io_nic structure.
5602 * @ep : pointer to the structure with pause parameters given by ethtool.
5604 * It can be used to set or reset Pause frame generation or reception
5605 * support of the NIC.
5607 * int, returns 0 on Success
5610 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5611 struct ethtool_pauseparam
*ep
)
5614 struct s2io_nic
*sp
= netdev_priv(dev
);
5615 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5617 val64
= readq(&bar0
->rmac_pause_cfg
);
5619 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5621 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5623 val64
|= RMAC_PAUSE_RX_ENABLE
;
5625 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5626 writeq(val64
, &bar0
->rmac_pause_cfg
);
5631 * read_eeprom - reads 4 bytes of data from user given offset.
5632 * @sp : private member of the device structure, which is a pointer to the
5633 * s2io_nic structure.
5634 * @off : offset at which the data must be written
5635 * @data : Its an output parameter where the data read at the given
5638 * Will read 4 bytes of data from the user given offset and return the
5640 * NOTE: Will allow to read only part of the EEPROM visible through the
5643 * -1 on failure and 0 on success.
5646 #define S2IO_DEV_ID 5
5647 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5652 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5654 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5655 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5656 I2C_CONTROL_ADDR(off
) |
5657 I2C_CONTROL_BYTE_CNT(0x3) |
5659 I2C_CONTROL_CNTL_START
;
5660 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5662 while (exit_cnt
< 5) {
5663 val64
= readq(&bar0
->i2c_control
);
5664 if (I2C_CONTROL_CNTL_END(val64
)) {
5665 *data
= I2C_CONTROL_GET_DATA(val64
);
5674 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5675 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5676 SPI_CONTROL_BYTECNT(0x3) |
5677 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5678 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5679 val64
|= SPI_CONTROL_REQ
;
5680 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5681 while (exit_cnt
< 5) {
5682 val64
= readq(&bar0
->spi_control
);
5683 if (val64
& SPI_CONTROL_NACK
) {
5686 } else if (val64
& SPI_CONTROL_DONE
) {
5687 *data
= readq(&bar0
->spi_data
);
5700 * write_eeprom - actually writes the relevant part of the data value.
5701 * @sp : private member of the device structure, which is a pointer to the
5702 * s2io_nic structure.
5703 * @off : offset at which the data must be written
5704 * @data : The data that is to be written
5705 * @cnt : Number of bytes of the data that are actually to be written into
5706 * the Eeprom. (max of 3)
5708 * Actually writes the relevant part of the data value into the Eeprom
5709 * through the I2C bus.
5711 * 0 on success, -1 on failure.
5714 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5716 int exit_cnt
= 0, ret
= -1;
5718 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5720 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5721 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5722 I2C_CONTROL_ADDR(off
) |
5723 I2C_CONTROL_BYTE_CNT(cnt
) |
5724 I2C_CONTROL_SET_DATA((u32
)data
) |
5725 I2C_CONTROL_CNTL_START
;
5726 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5728 while (exit_cnt
< 5) {
5729 val64
= readq(&bar0
->i2c_control
);
5730 if (I2C_CONTROL_CNTL_END(val64
)) {
5731 if (!(val64
& I2C_CONTROL_NACK
))
5740 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5741 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5742 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5744 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5745 SPI_CONTROL_BYTECNT(write_cnt
) |
5746 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5747 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5748 val64
|= SPI_CONTROL_REQ
;
5749 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5750 while (exit_cnt
< 5) {
5751 val64
= readq(&bar0
->spi_control
);
5752 if (val64
& SPI_CONTROL_NACK
) {
5755 } else if (val64
& SPI_CONTROL_DONE
) {
5765 static void s2io_vpd_read(struct s2io_nic
*nic
)
5769 int i
= 0, cnt
, fail
= 0;
5770 int vpd_addr
= 0x80;
5771 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5773 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5774 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5777 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5780 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5782 vpd_data
= kmalloc(256, GFP_KERNEL
);
5784 swstats
->mem_alloc_fail_cnt
++;
5787 swstats
->mem_allocated
+= 256;
5789 for (i
= 0; i
< 256; i
+= 4) {
5790 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5791 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5792 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5793 for (cnt
= 0; cnt
< 5; cnt
++) {
5795 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5800 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5804 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5805 (u32
*)&vpd_data
[i
]);
5809 /* read serial number of adapter */
5810 for (cnt
= 0; cnt
< 256; cnt
++) {
5811 if ((vpd_data
[cnt
] == 'S') &&
5812 (vpd_data
[cnt
+1] == 'N') &&
5813 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5814 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5815 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5822 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5823 memset(nic
->product_name
, 0, vpd_data
[1]);
5824 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5827 swstats
->mem_freed
+= 256;
5831 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5832 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5833 * @eeprom : pointer to the user level structure provided by ethtool,
5834 * containing all relevant information.
5835 * @data_buf : user defined value to be written into Eeprom.
5836 * Description: Reads the values stored in the Eeprom at given offset
5837 * for a given length. Stores these values int the input argument data
5838 * buffer 'data_buf' and returns these to the caller (ethtool.)
5843 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5844 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5848 struct s2io_nic
*sp
= netdev_priv(dev
);
5850 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5852 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5853 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5855 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5856 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5857 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5861 memcpy((data_buf
+ i
), &valid
, 4);
5867 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5868 * @sp : private member of the device structure, which is a pointer to the
5869 * s2io_nic structure.
5870 * @eeprom : pointer to the user level structure provided by ethtool,
5871 * containing all relevant information.
5872 * @data_buf ; user defined value to be written into Eeprom.
5874 * Tries to write the user provided value in the Eeprom, at the offset
5875 * given by the user.
5877 * 0 on success, -EFAULT on failure.
5880 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5881 struct ethtool_eeprom
*eeprom
,
5884 int len
= eeprom
->len
, cnt
= 0;
5885 u64 valid
= 0, data
;
5886 struct s2io_nic
*sp
= netdev_priv(dev
);
5888 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5890 "ETHTOOL_WRITE_EEPROM Err: "
5891 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5892 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5898 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5900 valid
= (u32
)(data
<< 24);
5904 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5906 "ETHTOOL_WRITE_EEPROM Err: "
5907 "Cannot write into the specified offset\n");
5918 * s2io_register_test - reads and writes into all clock domains.
5919 * @sp : private member of the device structure, which is a pointer to the
5920 * s2io_nic structure.
5921 * @data : variable that returns the result of each of the test conducted b
5924 * Read and write into all clock domains. The NIC has 3 clock domains,
5925 * see that registers in all the three regions are accessible.
5930 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5932 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5933 u64 val64
= 0, exp_val
;
5936 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5937 if (val64
!= 0x123456789abcdefULL
) {
5939 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5942 val64
= readq(&bar0
->rmac_pause_cfg
);
5943 if (val64
!= 0xc000ffff00000000ULL
) {
5945 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5948 val64
= readq(&bar0
->rx_queue_cfg
);
5949 if (sp
->device_type
== XFRAME_II_DEVICE
)
5950 exp_val
= 0x0404040404040404ULL
;
5952 exp_val
= 0x0808080808080808ULL
;
5953 if (val64
!= exp_val
) {
5955 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5958 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5959 if (val64
!= 0x000000001923141EULL
) {
5961 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5964 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5965 writeq(val64
, &bar0
->xmsi_data
);
5966 val64
= readq(&bar0
->xmsi_data
);
5967 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5969 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5972 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5973 writeq(val64
, &bar0
->xmsi_data
);
5974 val64
= readq(&bar0
->xmsi_data
);
5975 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5977 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5985 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5986 * @sp : private member of the device structure, which is a pointer to the
5987 * s2io_nic structure.
5988 * @data:variable that returns the result of each of the test conducted by
5991 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5997 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
6000 u64 ret_data
, org_4F0
, org_7F0
;
6001 u8 saved_4F0
= 0, saved_7F0
= 0;
6002 struct net_device
*dev
= sp
->dev
;
6004 /* Test Write Error at offset 0 */
6005 /* Note that SPI interface allows write access to all areas
6006 * of EEPROM. Hence doing all negative testing only for Xframe I.
6008 if (sp
->device_type
== XFRAME_I_DEVICE
)
6009 if (!write_eeprom(sp
, 0, 0, 3))
6012 /* Save current values at offsets 0x4F0 and 0x7F0 */
6013 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6015 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6018 /* Test Write at offset 4f0 */
6019 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6021 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6024 if (ret_data
!= 0x012345) {
6025 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6026 "Data written %llx Data read %llx\n",
6027 dev
->name
, (unsigned long long)0x12345,
6028 (unsigned long long)ret_data
);
6032 /* Reset the EEPROM data go FFFF */
6033 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6035 /* Test Write Request Error at offset 0x7c */
6036 if (sp
->device_type
== XFRAME_I_DEVICE
)
6037 if (!write_eeprom(sp
, 0x07C, 0, 3))
6040 /* Test Write Request at offset 0x7f0 */
6041 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6043 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6046 if (ret_data
!= 0x012345) {
6047 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6048 "Data written %llx Data read %llx\n",
6049 dev
->name
, (unsigned long long)0x12345,
6050 (unsigned long long)ret_data
);
6054 /* Reset the EEPROM data go FFFF */
6055 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6057 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6058 /* Test Write Error at offset 0x80 */
6059 if (!write_eeprom(sp
, 0x080, 0, 3))
6062 /* Test Write Error at offset 0xfc */
6063 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6066 /* Test Write Error at offset 0x100 */
6067 if (!write_eeprom(sp
, 0x100, 0, 3))
6070 /* Test Write Error at offset 4ec */
6071 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6075 /* Restore values at offsets 0x4F0 and 0x7F0 */
6077 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6079 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6086 * s2io_bist_test - invokes the MemBist test of the card .
6087 * @sp : private member of the device structure, which is a pointer to the
6088 * s2io_nic structure.
6089 * @data:variable that returns the result of each of the test conducted by
6092 * This invokes the MemBist test of the card. We give around
6093 * 2 secs time for the Test to complete. If it's still not complete
6094 * within this peiod, we consider that the test failed.
6096 * 0 on success and -1 on failure.
6099 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6102 int cnt
= 0, ret
= -1;
6104 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6105 bist
|= PCI_BIST_START
;
6106 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6109 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6110 if (!(bist
& PCI_BIST_START
)) {
6111 *data
= (bist
& PCI_BIST_CODE_MASK
);
6123 * s2io-link_test - verifies the link state of the nic
6124 * @sp ; private member of the device structure, which is a pointer to the
6125 * s2io_nic structure.
6126 * @data: variable that returns the result of each of the test conducted by
6129 * The function verifies the link state of the NIC and updates the input
6130 * argument 'data' appropriately.
6135 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6137 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6140 val64
= readq(&bar0
->adapter_status
);
6141 if (!(LINK_IS_UP(val64
)))
6150 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6151 * @sp - private member of the device structure, which is a pointer to the
6152 * s2io_nic structure.
6153 * @data - variable that returns the result of each of the test
6154 * conducted by the driver.
6156 * This is one of the offline test that tests the read and write
6157 * access to the RldRam chip on the NIC.
6162 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6164 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6166 int cnt
, iteration
= 0, test_fail
= 0;
6168 val64
= readq(&bar0
->adapter_control
);
6169 val64
&= ~ADAPTER_ECC_EN
;
6170 writeq(val64
, &bar0
->adapter_control
);
6172 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6173 val64
|= MC_RLDRAM_TEST_MODE
;
6174 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6176 val64
= readq(&bar0
->mc_rldram_mrs
);
6177 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6178 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6180 val64
|= MC_RLDRAM_MRS_ENABLE
;
6181 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6183 while (iteration
< 2) {
6184 val64
= 0x55555555aaaa0000ULL
;
6186 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6187 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6189 val64
= 0xaaaa5a5555550000ULL
;
6191 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6192 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6194 val64
= 0x55aaaaaaaa5a0000ULL
;
6196 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6197 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6199 val64
= (u64
) (0x0000003ffffe0100ULL
);
6200 writeq(val64
, &bar0
->mc_rldram_test_add
);
6202 val64
= MC_RLDRAM_TEST_MODE
|
6203 MC_RLDRAM_TEST_WRITE
|
6205 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6207 for (cnt
= 0; cnt
< 5; cnt
++) {
6208 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6209 if (val64
& MC_RLDRAM_TEST_DONE
)
6217 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6218 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6220 for (cnt
= 0; cnt
< 5; cnt
++) {
6221 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6222 if (val64
& MC_RLDRAM_TEST_DONE
)
6230 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6231 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6239 /* Bring the adapter out of test mode */
6240 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6246 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6247 * @sp : private member of the device structure, which is a pointer to the
6248 * s2io_nic structure.
6249 * @ethtest : pointer to a ethtool command specific structure that will be
6250 * returned to the user.
6251 * @data : variable that returns the result of each of the test
6252 * conducted by the driver.
6254 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6255 * the health of the card.
6260 static void s2io_ethtool_test(struct net_device
*dev
,
6261 struct ethtool_test
*ethtest
,
6264 struct s2io_nic
*sp
= netdev_priv(dev
);
6265 int orig_state
= netif_running(sp
->dev
);
6267 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6268 /* Offline Tests. */
6270 s2io_close(sp
->dev
);
6272 if (s2io_register_test(sp
, &data
[0]))
6273 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6277 if (s2io_rldram_test(sp
, &data
[3]))
6278 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6282 if (s2io_eeprom_test(sp
, &data
[1]))
6283 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6285 if (s2io_bist_test(sp
, &data
[4]))
6286 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6295 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6304 if (s2io_link_test(sp
, &data
[2]))
6305 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6314 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6315 struct ethtool_stats
*estats
,
6319 struct s2io_nic
*sp
= netdev_priv(dev
);
6320 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6321 struct swStat
*swstats
= &stats
->sw_stat
;
6322 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6324 s2io_updt_stats(sp
);
6326 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6327 le32_to_cpu(stats
->tmac_frms
);
6329 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6330 le32_to_cpu(stats
->tmac_data_octets
);
6331 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6333 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6334 le32_to_cpu(stats
->tmac_mcst_frms
);
6336 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6337 le32_to_cpu(stats
->tmac_bcst_frms
);
6338 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6340 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6341 le32_to_cpu(stats
->tmac_ttl_octets
);
6343 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6344 le32_to_cpu(stats
->tmac_ucst_frms
);
6346 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6347 le32_to_cpu(stats
->tmac_nucst_frms
);
6349 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6350 le32_to_cpu(stats
->tmac_any_err_frms
);
6351 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6352 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6354 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6355 le32_to_cpu(stats
->tmac_vld_ip
);
6357 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6358 le32_to_cpu(stats
->tmac_drop_ip
);
6360 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6361 le32_to_cpu(stats
->tmac_icmp
);
6363 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6364 le32_to_cpu(stats
->tmac_rst_tcp
);
6365 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6366 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6367 le32_to_cpu(stats
->tmac_udp
);
6369 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6370 le32_to_cpu(stats
->rmac_vld_frms
);
6372 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6373 le32_to_cpu(stats
->rmac_data_octets
);
6374 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6375 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6377 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6378 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6380 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6381 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6382 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6383 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6384 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6385 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6386 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6388 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6389 le32_to_cpu(stats
->rmac_ttl_octets
);
6391 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6392 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6394 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6395 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6397 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6398 le32_to_cpu(stats
->rmac_discarded_frms
);
6400 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6401 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6402 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6403 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6405 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6406 le32_to_cpu(stats
->rmac_usized_frms
);
6408 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6409 le32_to_cpu(stats
->rmac_osized_frms
);
6411 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6412 le32_to_cpu(stats
->rmac_frag_frms
);
6414 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6415 le32_to_cpu(stats
->rmac_jabber_frms
);
6416 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6417 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6418 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6419 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6420 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6421 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6423 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6424 le32_to_cpu(stats
->rmac_ip
);
6425 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6426 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6428 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6429 le32_to_cpu(stats
->rmac_drop_ip
);
6431 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6432 le32_to_cpu(stats
->rmac_icmp
);
6433 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6435 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6436 le32_to_cpu(stats
->rmac_udp
);
6438 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6439 le32_to_cpu(stats
->rmac_err_drp_udp
);
6440 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6441 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6442 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6443 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6444 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6445 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6446 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6447 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6448 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6449 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6450 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6451 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6452 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6453 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6454 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6455 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6456 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6458 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6459 le32_to_cpu(stats
->rmac_pause_cnt
);
6460 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6461 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6463 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6464 le32_to_cpu(stats
->rmac_accepted_ip
);
6465 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6466 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6467 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6468 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6469 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6470 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6471 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6472 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6473 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6474 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6475 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6476 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6477 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6478 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6479 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6480 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6481 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6482 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6483 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6485 /* Enhanced statistics exist only for Hercules */
6486 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6488 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6490 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6492 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6493 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6494 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6495 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6496 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6497 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6498 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6499 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6500 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6501 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6502 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6503 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6504 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6505 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6509 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6510 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6511 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6512 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6513 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6514 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6515 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6516 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6517 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6518 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6519 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6520 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6521 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6522 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6523 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6524 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6525 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6526 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6527 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6528 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6529 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6530 tmp_stats
[i
++] = swstats
->sending_both
;
6531 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6532 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6533 if (swstats
->num_aggregations
) {
6534 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6537 * Since 64-bit divide does not work on all platforms,
6538 * do repeated subtraction.
6540 while (tmp
>= swstats
->num_aggregations
) {
6541 tmp
-= swstats
->num_aggregations
;
6544 tmp_stats
[i
++] = count
;
6547 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6548 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6549 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6550 tmp_stats
[i
++] = swstats
->mem_allocated
;
6551 tmp_stats
[i
++] = swstats
->mem_freed
;
6552 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6553 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6554 tmp_stats
[i
++] = swstats
->link_up_time
;
6555 tmp_stats
[i
++] = swstats
->link_down_time
;
6557 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6558 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6559 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6560 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6561 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6563 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6564 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6565 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6566 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6567 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6568 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6569 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6570 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6571 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6572 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6573 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6574 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6575 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6576 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6577 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6578 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6579 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6580 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6581 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6582 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6583 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6584 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6585 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6586 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6587 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6588 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6591 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6593 return XENA_REG_SPACE
;
6597 static u32
s2io_ethtool_get_rx_csum(struct net_device
*dev
)
6599 struct s2io_nic
*sp
= netdev_priv(dev
);
6604 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6606 struct s2io_nic
*sp
= netdev_priv(dev
);
6616 static int s2io_get_eeprom_len(struct net_device
*dev
)
6618 return XENA_EEPROM_SPACE
;
6621 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6623 struct s2io_nic
*sp
= netdev_priv(dev
);
6627 return S2IO_TEST_LEN
;
6629 switch (sp
->device_type
) {
6630 case XFRAME_I_DEVICE
:
6631 return XFRAME_I_STAT_LEN
;
6632 case XFRAME_II_DEVICE
:
6633 return XFRAME_II_STAT_LEN
;
6642 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6643 u32 stringset
, u8
*data
)
6646 struct s2io_nic
*sp
= netdev_priv(dev
);
6648 switch (stringset
) {
6650 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6653 stat_size
= sizeof(ethtool_xena_stats_keys
);
6654 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6655 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6656 memcpy(data
+ stat_size
,
6657 ðtool_enhanced_stats_keys
,
6658 sizeof(ethtool_enhanced_stats_keys
));
6659 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6662 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6663 sizeof(ethtool_driver_stats_keys
));
6667 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6670 dev
->features
|= NETIF_F_IP_CSUM
;
6672 dev
->features
&= ~NETIF_F_IP_CSUM
;
6677 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6679 return (dev
->features
& NETIF_F_TSO
) != 0;
6681 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6684 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6686 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6691 static const struct ethtool_ops netdev_ethtool_ops
= {
6692 .get_settings
= s2io_ethtool_gset
,
6693 .set_settings
= s2io_ethtool_sset
,
6694 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6695 .get_regs_len
= s2io_ethtool_get_regs_len
,
6696 .get_regs
= s2io_ethtool_gregs
,
6697 .get_link
= ethtool_op_get_link
,
6698 .get_eeprom_len
= s2io_get_eeprom_len
,
6699 .get_eeprom
= s2io_ethtool_geeprom
,
6700 .set_eeprom
= s2io_ethtool_seeprom
,
6701 .get_ringparam
= s2io_ethtool_gringparam
,
6702 .get_pauseparam
= s2io_ethtool_getpause_data
,
6703 .set_pauseparam
= s2io_ethtool_setpause_data
,
6704 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6705 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6706 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6707 .set_sg
= ethtool_op_set_sg
,
6708 .get_tso
= s2io_ethtool_op_get_tso
,
6709 .set_tso
= s2io_ethtool_op_set_tso
,
6710 .set_ufo
= ethtool_op_set_ufo
,
6711 .self_test
= s2io_ethtool_test
,
6712 .get_strings
= s2io_ethtool_get_strings
,
6713 .phys_id
= s2io_ethtool_idnic
,
6714 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6715 .get_sset_count
= s2io_get_sset_count
,
6719 * s2io_ioctl - Entry point for the Ioctl
6720 * @dev : Device pointer.
6721 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6722 * a proprietary structure used to pass information to the driver.
6723 * @cmd : This is used to distinguish between the different commands that
6724 * can be passed to the IOCTL functions.
6726 * Currently there are no special functionality supported in IOCTL, hence
6727 * function always return EOPNOTSUPPORTED
6730 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6736 * s2io_change_mtu - entry point to change MTU size for the device.
6737 * @dev : device pointer.
6738 * @new_mtu : the new MTU size for the device.
6739 * Description: A driver entry point to change MTU size for the device.
6740 * Before changing the MTU the device must be stopped.
6742 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6746 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6748 struct s2io_nic
*sp
= netdev_priv(dev
);
6751 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6752 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6757 if (netif_running(dev
)) {
6758 s2io_stop_all_tx_queue(sp
);
6760 ret
= s2io_card_up(sp
);
6762 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6766 s2io_wake_all_tx_queue(sp
);
6767 } else { /* Device is down */
6768 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6769 u64 val64
= new_mtu
;
6771 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6778 * s2io_set_link - Set the LInk status
6779 * @data: long pointer to device private structue
6780 * Description: Sets the link status for the adapter
6783 static void s2io_set_link(struct work_struct
*work
)
6785 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6787 struct net_device
*dev
= nic
->dev
;
6788 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6794 if (!netif_running(dev
))
6797 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6798 /* The card is being reset, no point doing anything */
6802 subid
= nic
->pdev
->subsystem_device
;
6803 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6805 * Allow a small delay for the NICs self initiated
6806 * cleanup to complete.
6811 val64
= readq(&bar0
->adapter_status
);
6812 if (LINK_IS_UP(val64
)) {
6813 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6814 if (verify_xena_quiescence(nic
)) {
6815 val64
= readq(&bar0
->adapter_control
);
6816 val64
|= ADAPTER_CNTL_EN
;
6817 writeq(val64
, &bar0
->adapter_control
);
6818 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6819 nic
->device_type
, subid
)) {
6820 val64
= readq(&bar0
->gpio_control
);
6821 val64
|= GPIO_CTRL_GPIO_0
;
6822 writeq(val64
, &bar0
->gpio_control
);
6823 val64
= readq(&bar0
->gpio_control
);
6825 val64
|= ADAPTER_LED_ON
;
6826 writeq(val64
, &bar0
->adapter_control
);
6828 nic
->device_enabled_once
= true;
6831 "%s: Error: device is not Quiescent\n",
6833 s2io_stop_all_tx_queue(nic
);
6836 val64
= readq(&bar0
->adapter_control
);
6837 val64
|= ADAPTER_LED_ON
;
6838 writeq(val64
, &bar0
->adapter_control
);
6839 s2io_link(nic
, LINK_UP
);
6841 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6843 val64
= readq(&bar0
->gpio_control
);
6844 val64
&= ~GPIO_CTRL_GPIO_0
;
6845 writeq(val64
, &bar0
->gpio_control
);
6846 val64
= readq(&bar0
->gpio_control
);
6849 val64
= readq(&bar0
->adapter_control
);
6850 val64
= val64
& (~ADAPTER_LED_ON
);
6851 writeq(val64
, &bar0
->adapter_control
);
6852 s2io_link(nic
, LINK_DOWN
);
6854 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6860 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6862 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6863 u64
*temp2
, int size
)
6865 struct net_device
*dev
= sp
->dev
;
6866 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6868 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6869 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6872 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6874 * As Rx frame are not going to be processed,
6875 * using same mapped address for the Rxd
6878 rxdp1
->Buffer0_ptr
= *temp0
;
6880 *skb
= dev_alloc_skb(size
);
6883 "%s: Out of memory to allocate %s\n",
6884 dev
->name
, "1 buf mode SKBs");
6885 stats
->mem_alloc_fail_cnt
++;
6888 stats
->mem_allocated
+= (*skb
)->truesize
;
6889 /* storing the mapped addr in a temp variable
6890 * such it will be used for next rxd whose
6891 * Host Control is NULL
6893 rxdp1
->Buffer0_ptr
= *temp0
=
6894 pci_map_single(sp
->pdev
, (*skb
)->data
,
6895 size
- NET_IP_ALIGN
,
6896 PCI_DMA_FROMDEVICE
);
6897 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6898 goto memalloc_failed
;
6899 rxdp
->Host_Control
= (unsigned long) (*skb
);
6901 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6902 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6903 /* Two buffer Mode */
6905 rxdp3
->Buffer2_ptr
= *temp2
;
6906 rxdp3
->Buffer0_ptr
= *temp0
;
6907 rxdp3
->Buffer1_ptr
= *temp1
;
6909 *skb
= dev_alloc_skb(size
);
6912 "%s: Out of memory to allocate %s\n",
6915 stats
->mem_alloc_fail_cnt
++;
6918 stats
->mem_allocated
+= (*skb
)->truesize
;
6919 rxdp3
->Buffer2_ptr
= *temp2
=
6920 pci_map_single(sp
->pdev
, (*skb
)->data
,
6922 PCI_DMA_FROMDEVICE
);
6923 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6924 goto memalloc_failed
;
6925 rxdp3
->Buffer0_ptr
= *temp0
=
6926 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6927 PCI_DMA_FROMDEVICE
);
6928 if (pci_dma_mapping_error(sp
->pdev
,
6929 rxdp3
->Buffer0_ptr
)) {
6930 pci_unmap_single(sp
->pdev
,
6931 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6933 PCI_DMA_FROMDEVICE
);
6934 goto memalloc_failed
;
6936 rxdp
->Host_Control
= (unsigned long) (*skb
);
6938 /* Buffer-1 will be dummy buffer not used */
6939 rxdp3
->Buffer1_ptr
= *temp1
=
6940 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6941 PCI_DMA_FROMDEVICE
);
6942 if (pci_dma_mapping_error(sp
->pdev
,
6943 rxdp3
->Buffer1_ptr
)) {
6944 pci_unmap_single(sp
->pdev
,
6945 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6946 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6947 pci_unmap_single(sp
->pdev
,
6948 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6950 PCI_DMA_FROMDEVICE
);
6951 goto memalloc_failed
;
6958 stats
->pci_map_fail_cnt
++;
6959 stats
->mem_freed
+= (*skb
)->truesize
;
6960 dev_kfree_skb(*skb
);
6964 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6967 struct net_device
*dev
= sp
->dev
;
6968 if (sp
->rxd_mode
== RXD_MODE_1
) {
6969 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6970 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6971 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6972 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6973 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6977 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6979 int i
, j
, k
, blk_cnt
= 0, size
;
6980 struct config_param
*config
= &sp
->config
;
6981 struct mac_info
*mac_control
= &sp
->mac_control
;
6982 struct net_device
*dev
= sp
->dev
;
6983 struct RxD_t
*rxdp
= NULL
;
6984 struct sk_buff
*skb
= NULL
;
6985 struct buffAdd
*ba
= NULL
;
6986 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6988 /* Calculate the size based on ring mode */
6989 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6990 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6991 if (sp
->rxd_mode
== RXD_MODE_1
)
6992 size
+= NET_IP_ALIGN
;
6993 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6994 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6996 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6997 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6998 struct ring_info
*ring
= &mac_control
->rings
[i
];
7000 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
7002 for (j
= 0; j
< blk_cnt
; j
++) {
7003 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7004 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
7005 if (sp
->rxd_mode
== RXD_MODE_3B
)
7006 ba
= &ring
->ba
[j
][k
];
7007 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
7015 set_rxd_buffer_size(sp
, rxdp
, size
);
7017 /* flip the Ownership bit to Hardware */
7018 rxdp
->Control_1
|= RXD_OWN_XENA
;
7026 static int s2io_add_isr(struct s2io_nic
*sp
)
7029 struct net_device
*dev
= sp
->dev
;
7032 if (sp
->config
.intr_type
== MSI_X
)
7033 ret
= s2io_enable_msi_x(sp
);
7035 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7036 sp
->config
.intr_type
= INTA
;
7040 * Store the values of the MSIX table in
7041 * the struct s2io_nic structure
7043 store_xmsi_data(sp
);
7045 /* After proper initialization of H/W, register ISR */
7046 if (sp
->config
.intr_type
== MSI_X
) {
7047 int i
, msix_rx_cnt
= 0;
7049 for (i
= 0; i
< sp
->num_entries
; i
++) {
7050 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7051 if (sp
->s2io_entries
[i
].type
==
7053 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7055 err
= request_irq(sp
->entries
[i
].vector
,
7056 s2io_msix_ring_handle
,
7059 sp
->s2io_entries
[i
].arg
);
7060 } else if (sp
->s2io_entries
[i
].type
==
7062 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7064 err
= request_irq(sp
->entries
[i
].vector
,
7065 s2io_msix_fifo_handle
,
7068 sp
->s2io_entries
[i
].arg
);
7071 /* if either data or addr is zero print it. */
7072 if (!(sp
->msix_info
[i
].addr
&&
7073 sp
->msix_info
[i
].data
)) {
7075 "%s @Addr:0x%llx Data:0x%llx\n",
7077 (unsigned long long)
7078 sp
->msix_info
[i
].addr
,
7079 (unsigned long long)
7080 ntohl(sp
->msix_info
[i
].data
));
7084 remove_msix_isr(sp
);
7087 "%s:MSI-X-%d registration "
7088 "failed\n", dev
->name
, i
);
7091 "%s: Defaulting to INTA\n",
7093 sp
->config
.intr_type
= INTA
;
7096 sp
->s2io_entries
[i
].in_use
=
7097 MSIX_REGISTERED_SUCCESS
;
7101 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7103 "MSI-X-TX entries enabled through alarm vector\n");
7106 if (sp
->config
.intr_type
== INTA
) {
7107 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7110 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7118 static void s2io_rem_isr(struct s2io_nic
*sp
)
7120 if (sp
->config
.intr_type
== MSI_X
)
7121 remove_msix_isr(sp
);
7123 remove_inta_isr(sp
);
7126 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7129 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7130 register u64 val64
= 0;
7131 struct config_param
*config
;
7132 config
= &sp
->config
;
7134 if (!is_s2io_card_up(sp
))
7137 del_timer_sync(&sp
->alarm_timer
);
7138 /* If s2io_set_link task is executing, wait till it completes. */
7139 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7141 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7144 if (sp
->config
.napi
) {
7146 if (config
->intr_type
== MSI_X
) {
7147 for (; off
< sp
->config
.rx_ring_num
; off
++)
7148 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7151 napi_disable(&sp
->napi
);
7154 /* disable Tx and Rx traffic on the NIC */
7160 /* stop the tx queue, indicate link down */
7161 s2io_link(sp
, LINK_DOWN
);
7163 /* Check if the device is Quiescent and then Reset the NIC */
7165 /* As per the HW requirement we need to replenish the
7166 * receive buffer to avoid the ring bump. Since there is
7167 * no intention of processing the Rx frame at this pointwe are
7168 * just settting the ownership bit of rxd in Each Rx
7169 * ring to HW and set the appropriate buffer size
7170 * based on the ring mode
7172 rxd_owner_bit_reset(sp
);
7174 val64
= readq(&bar0
->adapter_status
);
7175 if (verify_xena_quiescence(sp
)) {
7176 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7183 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7184 "adapter status reads 0x%llx\n",
7185 (unsigned long long)val64
);
7192 /* Free all Tx buffers */
7193 free_tx_buffers(sp
);
7195 /* Free all Rx buffers */
7196 free_rx_buffers(sp
);
7198 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7201 static void s2io_card_down(struct s2io_nic
*sp
)
7203 do_s2io_card_down(sp
, 1);
7206 static int s2io_card_up(struct s2io_nic
*sp
)
7209 struct config_param
*config
;
7210 struct mac_info
*mac_control
;
7211 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7214 /* Initialize the H/W I/O registers */
7217 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7225 * Initializing the Rx buffers. For now we are considering only 1
7226 * Rx ring and initializing buffers into 30 Rx blocks
7228 config
= &sp
->config
;
7229 mac_control
= &sp
->mac_control
;
7231 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7232 struct ring_info
*ring
= &mac_control
->rings
[i
];
7234 ring
->mtu
= dev
->mtu
;
7235 ret
= fill_rx_buffers(sp
, ring
, 1);
7237 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7240 free_rx_buffers(sp
);
7243 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7244 ring
->rx_bufs_left
);
7247 /* Initialise napi */
7249 if (config
->intr_type
== MSI_X
) {
7250 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7251 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7253 napi_enable(&sp
->napi
);
7257 /* Maintain the state prior to the open */
7258 if (sp
->promisc_flg
)
7259 sp
->promisc_flg
= 0;
7260 if (sp
->m_cast_flg
) {
7262 sp
->all_multi_pos
= 0;
7265 /* Setting its receive mode */
7266 s2io_set_multicast(dev
);
7269 /* Initialize max aggregatable pkts per session based on MTU */
7270 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7271 /* Check if we can use (if specified) user provided value */
7272 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7273 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7276 /* Enable Rx Traffic and interrupts on the NIC */
7277 if (start_nic(sp
)) {
7278 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7280 free_rx_buffers(sp
);
7284 /* Add interrupt service routine */
7285 if (s2io_add_isr(sp
) != 0) {
7286 if (sp
->config
.intr_type
== MSI_X
)
7289 free_rx_buffers(sp
);
7293 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7295 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7297 /* Enable select interrupts */
7298 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7299 if (sp
->config
.intr_type
!= INTA
) {
7300 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7301 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7303 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7304 interruptible
|= TX_PIC_INTR
;
7305 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7312 * s2io_restart_nic - Resets the NIC.
7313 * @data : long pointer to the device private structure
7315 * This function is scheduled to be run by the s2io_tx_watchdog
7316 * function after 0.5 secs to reset the NIC. The idea is to reduce
7317 * the run time of the watch dog routine which is run holding a
7321 static void s2io_restart_nic(struct work_struct
*work
)
7323 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7324 struct net_device
*dev
= sp
->dev
;
7328 if (!netif_running(dev
))
7332 if (s2io_card_up(sp
)) {
7333 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7335 s2io_wake_all_tx_queue(sp
);
7336 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7342 * s2io_tx_watchdog - Watchdog for transmit side.
7343 * @dev : Pointer to net device structure
7345 * This function is triggered if the Tx Queue is stopped
7346 * for a pre-defined amount of time when the Interface is still up.
7347 * If the Interface is jammed in such a situation, the hardware is
7348 * reset (by s2io_close) and restarted again (by s2io_open) to
7349 * overcome any problem that might have been caused in the hardware.
7354 static void s2io_tx_watchdog(struct net_device
*dev
)
7356 struct s2io_nic
*sp
= netdev_priv(dev
);
7357 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7359 if (netif_carrier_ok(dev
)) {
7360 swstats
->watchdog_timer_cnt
++;
7361 schedule_work(&sp
->rst_timer_task
);
7362 swstats
->soft_reset_cnt
++;
7367 * rx_osm_handler - To perform some OS related operations on SKB.
7368 * @sp: private member of the device structure,pointer to s2io_nic structure.
7369 * @skb : the socket buffer pointer.
7370 * @len : length of the packet
7371 * @cksum : FCS checksum of the frame.
7372 * @ring_no : the ring from which this RxD was extracted.
7374 * This function is called by the Rx interrupt serivce routine to perform
7375 * some OS related operations on the SKB before passing it to the upper
7376 * layers. It mainly checks if the checksum is OK, if so adds it to the
7377 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7378 * to the upper layer. If the checksum is wrong, it increments the Rx
7379 * packet error count, frees the SKB and returns error.
7381 * SUCCESS on success and -1 on failure.
7383 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7385 struct s2io_nic
*sp
= ring_data
->nic
;
7386 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7387 struct sk_buff
*skb
= (struct sk_buff
*)
7388 ((unsigned long)rxdp
->Host_Control
);
7389 int ring_no
= ring_data
->ring_no
;
7390 u16 l3_csum
, l4_csum
;
7391 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7392 struct lro
*uninitialized_var(lro
);
7394 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7399 /* Check for parity error */
7401 swstats
->parity_err_cnt
++;
7403 err_mask
= err
>> 48;
7406 swstats
->rx_parity_err_cnt
++;
7410 swstats
->rx_abort_cnt
++;
7414 swstats
->rx_parity_abort_cnt
++;
7418 swstats
->rx_rda_fail_cnt
++;
7422 swstats
->rx_unkn_prot_cnt
++;
7426 swstats
->rx_fcs_err_cnt
++;
7430 swstats
->rx_buf_size_err_cnt
++;
7434 swstats
->rx_rxd_corrupt_cnt
++;
7438 swstats
->rx_unkn_err_cnt
++;
7442 * Drop the packet if bad transfer code. Exception being
7443 * 0x5, which could be due to unsupported IPv6 extension header.
7444 * In this case, we let stack handle the packet.
7445 * Note that in this case, since checksum will be incorrect,
7446 * stack will validate the same.
7448 if (err_mask
!= 0x5) {
7449 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7450 dev
->name
, err_mask
);
7451 dev
->stats
.rx_crc_errors
++;
7455 ring_data
->rx_bufs_left
-= 1;
7456 rxdp
->Host_Control
= 0;
7461 /* Updating statistics */
7462 ring_data
->rx_packets
++;
7463 rxdp
->Host_Control
= 0;
7464 if (sp
->rxd_mode
== RXD_MODE_1
) {
7465 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7467 ring_data
->rx_bytes
+= len
;
7470 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7471 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7472 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7473 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7474 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7475 unsigned char *buff
= skb_push(skb
, buf0_len
);
7477 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7478 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7479 memcpy(buff
, ba
->ba_0
, buf0_len
);
7480 skb_put(skb
, buf2_len
);
7483 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7484 ((!ring_data
->lro
) ||
7485 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7487 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7488 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7489 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7491 * NIC verifies if the Checksum of the received
7492 * frame is Ok or not and accordingly returns
7493 * a flag in the RxD.
7495 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7496 if (ring_data
->lro
) {
7501 ret
= s2io_club_tcp_session(ring_data
,
7506 case 3: /* Begin anew */
7509 case 1: /* Aggregate */
7510 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7512 case 4: /* Flush session */
7513 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7514 queue_rx_frame(lro
->parent
,
7516 clear_lro_session(lro
);
7517 swstats
->flush_max_pkts
++;
7519 case 2: /* Flush both */
7520 lro
->parent
->data_len
= lro
->frags_len
;
7521 swstats
->sending_both
++;
7522 queue_rx_frame(lro
->parent
,
7524 clear_lro_session(lro
);
7526 case 0: /* sessions exceeded */
7527 case -1: /* non-TCP or not L2 aggregatable */
7529 * First pkt in session not
7530 * L3/L4 aggregatable
7535 "%s: Samadhana!!\n",
7542 * Packet with erroneous checksum, let the
7543 * upper layers deal with it.
7545 skb
->ip_summed
= CHECKSUM_NONE
;
7548 skb
->ip_summed
= CHECKSUM_NONE
;
7550 swstats
->mem_freed
+= skb
->truesize
;
7552 skb_record_rx_queue(skb
, ring_no
);
7553 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7555 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7560 * s2io_link - stops/starts the Tx queue.
7561 * @sp : private member of the device structure, which is a pointer to the
7562 * s2io_nic structure.
7563 * @link : inidicates whether link is UP/DOWN.
7565 * This function stops/starts the Tx queue depending on whether the link
7566 * status of the NIC is is down or up. This is called by the Alarm
7567 * interrupt handler whenever a link change interrupt comes up.
7572 static void s2io_link(struct s2io_nic
*sp
, int link
)
7574 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7575 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7577 if (link
!= sp
->last_link_state
) {
7579 if (link
== LINK_DOWN
) {
7580 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7581 s2io_stop_all_tx_queue(sp
);
7582 netif_carrier_off(dev
);
7583 if (swstats
->link_up_cnt
)
7584 swstats
->link_up_time
=
7585 jiffies
- sp
->start_time
;
7586 swstats
->link_down_cnt
++;
7588 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7589 if (swstats
->link_down_cnt
)
7590 swstats
->link_down_time
=
7591 jiffies
- sp
->start_time
;
7592 swstats
->link_up_cnt
++;
7593 netif_carrier_on(dev
);
7594 s2io_wake_all_tx_queue(sp
);
7597 sp
->last_link_state
= link
;
7598 sp
->start_time
= jiffies
;
7602 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7603 * @sp : private member of the device structure, which is a pointer to the
7604 * s2io_nic structure.
7606 * This function initializes a few of the PCI and PCI-X configuration registers
7607 * with recommended values.
7612 static void s2io_init_pci(struct s2io_nic
*sp
)
7614 u16 pci_cmd
= 0, pcix_cmd
= 0;
7616 /* Enable Data Parity Error Recovery in PCI-X command register. */
7617 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7619 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7621 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7624 /* Set the PErr Response bit in PCI command register. */
7625 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7626 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7627 (pci_cmd
| PCI_COMMAND_PARITY
));
7628 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7631 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7634 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7635 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7636 "(%d) not supported\n", tx_fifo_num
);
7638 if (tx_fifo_num
< 1)
7641 tx_fifo_num
= MAX_TX_FIFOS
;
7643 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7647 *dev_multiq
= multiq
;
7649 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7650 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7652 "Tx steering is not supported with "
7653 "one fifo. Disabling Tx steering.\n");
7654 tx_steering_type
= NO_STEERING
;
7657 if ((tx_steering_type
< NO_STEERING
) ||
7658 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7660 "Requested transmit steering not supported\n");
7661 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7662 tx_steering_type
= NO_STEERING
;
7665 if (rx_ring_num
> MAX_RX_RINGS
) {
7667 "Requested number of rx rings not supported\n");
7668 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7670 rx_ring_num
= MAX_RX_RINGS
;
7673 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7674 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7675 "Defaulting to INTA\n");
7676 *dev_intr_type
= INTA
;
7679 if ((*dev_intr_type
== MSI_X
) &&
7680 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7681 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7682 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7683 "Defaulting to INTA\n");
7684 *dev_intr_type
= INTA
;
7687 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7688 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7689 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7696 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7697 * or Traffic class respectively.
7698 * @nic: device private variable
7699 * Description: The function configures the receive steering to
7700 * desired receive ring.
7701 * Return Value: SUCCESS on success and
7702 * '-1' on failure (endian settings incorrect).
7704 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7706 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7707 register u64 val64
= 0;
7709 if (ds_codepoint
> 63)
7712 val64
= RTS_DS_MEM_DATA(ring
);
7713 writeq(val64
, &bar0
->rts_ds_mem_data
);
7715 val64
= RTS_DS_MEM_CTRL_WE
|
7716 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7717 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7719 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7721 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7722 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7726 static const struct net_device_ops s2io_netdev_ops
= {
7727 .ndo_open
= s2io_open
,
7728 .ndo_stop
= s2io_close
,
7729 .ndo_get_stats
= s2io_get_stats
,
7730 .ndo_start_xmit
= s2io_xmit
,
7731 .ndo_validate_addr
= eth_validate_addr
,
7732 .ndo_set_multicast_list
= s2io_set_multicast
,
7733 .ndo_do_ioctl
= s2io_ioctl
,
7734 .ndo_set_mac_address
= s2io_set_mac_addr
,
7735 .ndo_change_mtu
= s2io_change_mtu
,
7736 .ndo_vlan_rx_register
= s2io_vlan_rx_register
,
7737 .ndo_vlan_rx_kill_vid
= s2io_vlan_rx_kill_vid
,
7738 .ndo_tx_timeout
= s2io_tx_watchdog
,
7739 #ifdef CONFIG_NET_POLL_CONTROLLER
7740 .ndo_poll_controller
= s2io_netpoll
,
7745 * s2io_init_nic - Initialization of the adapter .
7746 * @pdev : structure containing the PCI related information of the device.
7747 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7749 * The function initializes an adapter identified by the pci_dec structure.
7750 * All OS related initialization including memory and device structure and
7751 * initlaization of the device private variable is done. Also the swapper
7752 * control register is initialized to enable read and write into the I/O
7753 * registers of the device.
7755 * returns 0 on success and negative on failure.
7758 static int __devinit
7759 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7761 struct s2io_nic
*sp
;
7762 struct net_device
*dev
;
7764 int dma_flag
= false;
7765 u32 mac_up
, mac_down
;
7766 u64 val64
= 0, tmp64
= 0;
7767 struct XENA_dev_config __iomem
*bar0
= NULL
;
7769 struct config_param
*config
;
7770 struct mac_info
*mac_control
;
7772 u8 dev_intr_type
= intr_type
;
7775 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7779 ret
= pci_enable_device(pdev
);
7782 "%s: pci_enable_device failed\n", __func__
);
7786 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7787 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7789 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7791 "Unable to obtain 64bit DMA "
7792 "for consistent allocations\n");
7793 pci_disable_device(pdev
);
7796 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7797 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7799 pci_disable_device(pdev
);
7802 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7804 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7806 pci_disable_device(pdev
);
7810 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7812 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7814 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7815 pci_disable_device(pdev
);
7816 pci_release_regions(pdev
);
7820 pci_set_master(pdev
);
7821 pci_set_drvdata(pdev
, dev
);
7822 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7824 /* Private member variable initialized to s2io NIC structure */
7825 sp
= netdev_priv(dev
);
7826 memset(sp
, 0, sizeof(struct s2io_nic
));
7829 sp
->high_dma_flag
= dma_flag
;
7830 sp
->device_enabled_once
= false;
7831 if (rx_ring_mode
== 1)
7832 sp
->rxd_mode
= RXD_MODE_1
;
7833 if (rx_ring_mode
== 2)
7834 sp
->rxd_mode
= RXD_MODE_3B
;
7836 sp
->config
.intr_type
= dev_intr_type
;
7838 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7839 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7840 sp
->device_type
= XFRAME_II_DEVICE
;
7842 sp
->device_type
= XFRAME_I_DEVICE
;
7844 sp
->lro
= lro_enable
;
7846 /* Initialize some PCI/PCI-X fields of the NIC. */
7850 * Setting the device configuration parameters.
7851 * Most of these parameters can be specified by the user during
7852 * module insertion as they are module loadable parameters. If
7853 * these parameters are not not specified during load time, they
7854 * are initialized with default values.
7856 config
= &sp
->config
;
7857 mac_control
= &sp
->mac_control
;
7859 config
->napi
= napi
;
7860 config
->tx_steering_type
= tx_steering_type
;
7862 /* Tx side parameters. */
7863 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7864 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7866 config
->tx_fifo_num
= tx_fifo_num
;
7868 /* Initialize the fifos used for tx steering */
7869 if (config
->tx_fifo_num
< 5) {
7870 if (config
->tx_fifo_num
== 1)
7871 sp
->total_tcp_fifos
= 1;
7873 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7874 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7875 sp
->total_udp_fifos
= 1;
7876 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7878 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7879 FIFO_OTHER_MAX_NUM
);
7880 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7881 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7882 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7885 config
->multiq
= dev_multiq
;
7886 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7887 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7889 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7890 tx_cfg
->fifo_priority
= i
;
7893 /* mapping the QoS priority to the configured fifos */
7894 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7895 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7897 /* map the hashing selector table to the configured fifos */
7898 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7899 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7902 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7903 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7904 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7906 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7907 if (tx_cfg
->fifo_len
< 65) {
7908 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7912 /* + 2 because one Txd for skb->data and one Txd for UFO */
7913 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7915 /* Rx side parameters. */
7916 config
->rx_ring_num
= rx_ring_num
;
7917 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7918 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7919 struct ring_info
*ring
= &mac_control
->rings
[i
];
7921 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7922 rx_cfg
->ring_priority
= i
;
7923 ring
->rx_bufs_left
= 0;
7924 ring
->rxd_mode
= sp
->rxd_mode
;
7925 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7926 ring
->pdev
= sp
->pdev
;
7927 ring
->dev
= sp
->dev
;
7930 for (i
= 0; i
< rx_ring_num
; i
++) {
7931 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7933 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7934 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7937 /* Setting Mac Control parameters */
7938 mac_control
->rmac_pause_time
= rmac_pause_time
;
7939 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7940 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7943 /* initialize the shared memory used by the NIC and the host */
7944 if (init_shared_mem(sp
)) {
7945 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7947 goto mem_alloc_failed
;
7950 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7952 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7955 goto bar0_remap_failed
;
7958 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7960 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7963 goto bar1_remap_failed
;
7966 dev
->irq
= pdev
->irq
;
7967 dev
->base_addr
= (unsigned long)sp
->bar0
;
7969 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7970 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7971 mac_control
->tx_FIFO_start
[j
] =
7972 (struct TxFIFO_element __iomem
*)
7973 (sp
->bar1
+ (j
* 0x00020000));
7976 /* Driver entry points */
7977 dev
->netdev_ops
= &s2io_netdev_ops
;
7978 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7979 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7981 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7982 if (sp
->high_dma_flag
== true)
7983 dev
->features
|= NETIF_F_HIGHDMA
;
7984 dev
->features
|= NETIF_F_TSO
;
7985 dev
->features
|= NETIF_F_TSO6
;
7986 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7987 dev
->features
|= NETIF_F_UFO
;
7988 dev
->features
|= NETIF_F_HW_CSUM
;
7990 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7991 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7992 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7994 pci_save_state(sp
->pdev
);
7996 /* Setting swapper control on the NIC, for proper reset operation */
7997 if (s2io_set_swapper(sp
)) {
7998 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
8001 goto set_swap_failed
;
8004 /* Verify if the Herc works on the slot its placed into */
8005 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8006 mode
= s2io_verify_pci_mode(sp
);
8008 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
8011 goto set_swap_failed
;
8015 if (sp
->config
.intr_type
== MSI_X
) {
8016 sp
->num_entries
= config
->rx_ring_num
+ 1;
8017 ret
= s2io_enable_msi_x(sp
);
8020 ret
= s2io_test_msi(sp
);
8021 /* rollback MSI-X, will re-enable during add_isr() */
8022 remove_msix_isr(sp
);
8027 "MSI-X requested but failed to enable\n");
8028 sp
->config
.intr_type
= INTA
;
8032 if (config
->intr_type
== MSI_X
) {
8033 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
8034 struct ring_info
*ring
= &mac_control
->rings
[i
];
8036 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
8039 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8042 /* Not needed for Herc */
8043 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8045 * Fix for all "FFs" MAC address problems observed on
8048 fix_mac_address(sp
);
8053 * MAC address initialization.
8054 * For now only one mac address will be read and used.
8057 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8058 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8059 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8060 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8061 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8063 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8064 mac_down
= (u32
)tmp64
;
8065 mac_up
= (u32
) (tmp64
>> 32);
8067 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8068 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8069 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8070 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8071 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8072 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8074 /* Set the factory defined MAC address initially */
8075 dev
->addr_len
= ETH_ALEN
;
8076 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8077 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8079 /* initialize number of multicast & unicast MAC entries variables */
8080 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8081 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8082 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8083 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8084 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8085 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8086 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8087 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8090 /* store mac addresses from CAM to s2io_nic structure */
8091 do_s2io_store_unicast_mc(sp
);
8093 /* Configure MSIX vector for number of rings configured plus one */
8094 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8095 (config
->intr_type
== MSI_X
))
8096 sp
->num_entries
= config
->rx_ring_num
+ 1;
8098 /* Store the values of the MSIX table in the s2io_nic structure */
8099 store_xmsi_data(sp
);
8100 /* reset Nic and bring it to known state */
8104 * Initialize link state flags
8105 * and the card state parameter
8109 /* Initialize spinlocks */
8110 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8111 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8113 spin_lock_init(&fifo
->tx_lock
);
8117 * SXE-002: Configure link and activity LED to init state
8120 subid
= sp
->pdev
->subsystem_device
;
8121 if ((subid
& 0xFF) >= 0x07) {
8122 val64
= readq(&bar0
->gpio_control
);
8123 val64
|= 0x0000800000000000ULL
;
8124 writeq(val64
, &bar0
->gpio_control
);
8125 val64
= 0x0411040400000000ULL
;
8126 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8127 val64
= readq(&bar0
->gpio_control
);
8130 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8132 if (register_netdev(dev
)) {
8133 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8135 goto register_failed
;
8138 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8139 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8140 sp
->product_name
, pdev
->revision
);
8141 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8142 s2io_driver_version
);
8143 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8144 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8145 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8146 mode
= s2io_print_pci_mode(sp
);
8149 unregister_netdev(dev
);
8150 goto set_swap_failed
;
8153 switch (sp
->rxd_mode
) {
8155 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8159 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8164 switch (sp
->config
.napi
) {
8166 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8169 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8173 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8174 sp
->config
.tx_fifo_num
);
8176 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8177 sp
->config
.rx_ring_num
);
8179 switch (sp
->config
.intr_type
) {
8181 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8184 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8187 if (sp
->config
.multiq
) {
8188 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8189 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8191 fifo
->multiq
= config
->multiq
;
8193 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8196 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8199 switch (sp
->config
.tx_steering_type
) {
8201 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8204 case TX_PRIORITY_STEERING
:
8206 "%s: Priority steering enabled for transmit\n",
8209 case TX_DEFAULT_STEERING
:
8211 "%s: Default steering enabled for transmit\n",
8216 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8220 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8222 /* Initialize device name */
8223 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8226 sp
->vlan_strip_flag
= 1;
8228 sp
->vlan_strip_flag
= 0;
8231 * Make Link state as off at this point, when the Link change
8232 * interrupt comes the state will be automatically changed to
8235 netif_carrier_off(dev
);
8246 free_shared_mem(sp
);
8247 pci_disable_device(pdev
);
8248 pci_release_regions(pdev
);
8249 pci_set_drvdata(pdev
, NULL
);
8256 * s2io_rem_nic - Free the PCI device
8257 * @pdev: structure containing the PCI related information of the device.
8258 * Description: This function is called by the Pci subsystem to release a
8259 * PCI device and free up all resource held up by the device. This could
8260 * be in response to a Hot plug event or when the driver is to be removed
8264 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8266 struct net_device
*dev
=
8267 (struct net_device
*)pci_get_drvdata(pdev
);
8268 struct s2io_nic
*sp
;
8271 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8275 flush_scheduled_work();
8277 sp
= netdev_priv(dev
);
8278 unregister_netdev(dev
);
8280 free_shared_mem(sp
);
8283 pci_release_regions(pdev
);
8284 pci_set_drvdata(pdev
, NULL
);
8286 pci_disable_device(pdev
);
8290 * s2io_starter - Entry point for the driver
8291 * Description: This function is the entry point for the driver. It verifies
8292 * the module loadable parameters and initializes PCI configuration space.
8295 static int __init
s2io_starter(void)
8297 return pci_register_driver(&s2io_driver
);
8301 * s2io_closer - Cleanup routine for the driver
8302 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8305 static __exit
void s2io_closer(void)
8307 pci_unregister_driver(&s2io_driver
);
8308 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8311 module_init(s2io_starter
);
8312 module_exit(s2io_closer
);
8314 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8315 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8316 struct s2io_nic
*sp
)
8319 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8321 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8323 "%s: Non-TCP frames not supported for LRO\n",
8328 /* Checking for DIX type or DIX type with VLAN */
8329 if ((l2_type
== 0) || (l2_type
== 4)) {
8330 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8332 * If vlan stripping is disabled and the frame is VLAN tagged,
8333 * shift the offset by the VLAN header size bytes.
8335 if ((!sp
->vlan_strip_flag
) &&
8336 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8337 ip_off
+= HEADER_VLAN_SIZE
;
8339 /* LLC, SNAP etc are considered non-mergeable */
8343 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8344 ip_len
= (u8
)((*ip
)->ihl
);
8346 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8351 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8354 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8355 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8356 (lro
->iph
->daddr
!= ip
->daddr
) ||
8357 (lro
->tcph
->source
!= tcp
->source
) ||
8358 (lro
->tcph
->dest
!= tcp
->dest
))
8363 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8365 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8368 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8369 struct iphdr
*ip
, struct tcphdr
*tcp
,
8370 u32 tcp_pyld_len
, u16 vlan_tag
)
8372 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8376 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8377 lro
->tcp_ack
= tcp
->ack_seq
;
8379 lro
->total_len
= ntohs(ip
->tot_len
);
8381 lro
->vlan_tag
= vlan_tag
;
8383 * Check if we saw TCP timestamp.
8384 * Other consistency checks have already been done.
8386 if (tcp
->doff
== 8) {
8388 ptr
= (__be32
*)(tcp
+1);
8390 lro
->cur_tsval
= ntohl(*(ptr
+1));
8391 lro
->cur_tsecr
= *(ptr
+2);
8396 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8398 struct iphdr
*ip
= lro
->iph
;
8399 struct tcphdr
*tcp
= lro
->tcph
;
8401 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8403 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8405 /* Update L3 header */
8406 ip
->tot_len
= htons(lro
->total_len
);
8408 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8411 /* Update L4 header */
8412 tcp
->ack_seq
= lro
->tcp_ack
;
8413 tcp
->window
= lro
->window
;
8415 /* Update tsecr field if this session has timestamps enabled */
8417 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8418 *(ptr
+2) = lro
->cur_tsecr
;
8421 /* Update counters required for calculation of
8422 * average no. of packets aggregated.
8424 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8425 swstats
->num_aggregations
++;
8428 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8429 struct tcphdr
*tcp
, u32 l4_pyld
)
8431 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8432 lro
->total_len
+= l4_pyld
;
8433 lro
->frags_len
+= l4_pyld
;
8434 lro
->tcp_next_seq
+= l4_pyld
;
8437 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8438 lro
->tcp_ack
= tcp
->ack_seq
;
8439 lro
->window
= tcp
->window
;
8443 /* Update tsecr and tsval from this packet */
8444 ptr
= (__be32
*)(tcp
+1);
8445 lro
->cur_tsval
= ntohl(*(ptr
+1));
8446 lro
->cur_tsecr
= *(ptr
+ 2);
8450 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8451 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8455 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8457 if (!tcp_pyld_len
) {
8458 /* Runt frame or a pure ack */
8462 if (ip
->ihl
!= 5) /* IP has options */
8465 /* If we see CE codepoint in IP header, packet is not mergeable */
8466 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8469 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8470 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8471 tcp
->syn
|| tcp
->fin
||
8472 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8474 * Currently recognize only the ack control word and
8475 * any other control field being set would result in
8476 * flushing the LRO session
8482 * Allow only one TCP timestamp option. Don't aggregate if
8483 * any other options are detected.
8485 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8488 if (tcp
->doff
== 8) {
8489 ptr
= (u8
*)(tcp
+ 1);
8490 while (*ptr
== TCPOPT_NOP
)
8492 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8495 /* Ensure timestamp value increases monotonically */
8497 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8500 /* timestamp echo reply should be non-zero */
8501 if (*((__be32
*)(ptr
+6)) == 0)
8508 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8509 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8510 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8513 struct tcphdr
*tcph
;
8516 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8518 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8523 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8525 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8526 tcph
= (struct tcphdr
*)*tcp
;
8527 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8528 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8529 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8530 if (l_lro
->in_use
) {
8531 if (check_for_socket_match(l_lro
, ip
, tcph
))
8533 /* Sock pair matched */
8536 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8537 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8538 "expected 0x%x, actual 0x%x\n",
8540 (*lro
)->tcp_next_seq
,
8543 swstats
->outof_sequence_pkts
++;
8548 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8550 ret
= 1; /* Aggregate */
8552 ret
= 2; /* Flush both */
8558 /* Before searching for available LRO objects,
8559 * check if the pkt is L3/L4 aggregatable. If not
8560 * don't create new LRO session. Just send this
8563 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8566 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8567 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8568 if (!(l_lro
->in_use
)) {
8570 ret
= 3; /* Begin anew */
8576 if (ret
== 0) { /* sessions exceeded */
8577 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8585 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8589 update_L3L4_header(sp
, *lro
);
8592 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8593 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8594 update_L3L4_header(sp
, *lro
);
8595 ret
= 4; /* Flush the LRO */
8599 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8606 static void clear_lro_session(struct lro
*lro
)
8608 static u16 lro_struct_size
= sizeof(struct lro
);
8610 memset(lro
, 0, lro_struct_size
);
8613 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8615 struct net_device
*dev
= skb
->dev
;
8616 struct s2io_nic
*sp
= netdev_priv(dev
);
8618 skb
->protocol
= eth_type_trans(skb
, dev
);
8619 if (sp
->vlgrp
&& vlan_tag
&& (sp
->vlan_strip_flag
)) {
8620 /* Queueing the vlan frame to the upper layer */
8621 if (sp
->config
.napi
)
8622 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8624 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8626 if (sp
->config
.napi
)
8627 netif_receive_skb(skb
);
8633 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8634 struct sk_buff
*skb
, u32 tcp_len
)
8636 struct sk_buff
*first
= lro
->parent
;
8637 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8639 first
->len
+= tcp_len
;
8640 first
->data_len
= lro
->frags_len
;
8641 skb_pull(skb
, (skb
->len
- tcp_len
));
8642 if (skb_shinfo(first
)->frag_list
)
8643 lro
->last_frag
->next
= skb
;
8645 skb_shinfo(first
)->frag_list
= skb
;
8646 first
->truesize
+= skb
->truesize
;
8647 lro
->last_frag
= skb
;
8648 swstats
->clubbed_frms_cnt
++;
8653 * s2io_io_error_detected - called when PCI error is detected
8654 * @pdev: Pointer to PCI device
8655 * @state: The current pci connection state
8657 * This function is called after a PCI bus error affecting
8658 * this device has been detected.
8660 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8661 pci_channel_state_t state
)
8663 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8664 struct s2io_nic
*sp
= netdev_priv(netdev
);
8666 netif_device_detach(netdev
);
8668 if (state
== pci_channel_io_perm_failure
)
8669 return PCI_ERS_RESULT_DISCONNECT
;
8671 if (netif_running(netdev
)) {
8672 /* Bring down the card, while avoiding PCI I/O */
8673 do_s2io_card_down(sp
, 0);
8675 pci_disable_device(pdev
);
8677 return PCI_ERS_RESULT_NEED_RESET
;
8681 * s2io_io_slot_reset - called after the pci bus has been reset.
8682 * @pdev: Pointer to PCI device
8684 * Restart the card from scratch, as if from a cold-boot.
8685 * At this point, the card has exprienced a hard reset,
8686 * followed by fixups by BIOS, and has its config space
8687 * set up identically to what it was at cold boot.
8689 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8691 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8692 struct s2io_nic
*sp
= netdev_priv(netdev
);
8694 if (pci_enable_device(pdev
)) {
8695 pr_err("Cannot re-enable PCI device after reset.\n");
8696 return PCI_ERS_RESULT_DISCONNECT
;
8699 pci_set_master(pdev
);
8702 return PCI_ERS_RESULT_RECOVERED
;
8706 * s2io_io_resume - called when traffic can start flowing again.
8707 * @pdev: Pointer to PCI device
8709 * This callback is called when the error recovery driver tells
8710 * us that its OK to resume normal operation.
8712 static void s2io_io_resume(struct pci_dev
*pdev
)
8714 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8715 struct s2io_nic
*sp
= netdev_priv(netdev
);
8717 if (netif_running(netdev
)) {
8718 if (s2io_card_up(sp
)) {
8719 pr_err("Can't bring device back up after reset.\n");
8723 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8725 pr_err("Can't restore mac addr after reset.\n");
8730 netif_device_attach(netdev
);
8731 netif_tx_wake_all_queues(netdev
);