]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/s2io.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[mirror_ubuntu-bionic-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <net/tcp.h>
83
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.25"
93
94 /* S2io Driver name & version. */
95 static char s2io_driver_name[] = "Neterion";
96 static char s2io_driver_version[] = DRV_VERSION;
97
98 static int rxd_size[2] = {32, 48};
99 static int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108 return ret;
109 }
110
111 /*
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /* Add the vlan */
360 static void s2io_vlan_rx_register(struct net_device *dev,
361 struct vlan_group *grp)
362 {
363 int i;
364 struct s2io_nic *nic = netdev_priv(dev);
365 unsigned long flags[MAX_TX_FIFOS];
366 struct config_param *config = &nic->config;
367 struct mac_info *mac_control = &nic->mac_control;
368
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
371
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
373 }
374
375 nic->vlgrp = grp;
376
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
379
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
381 }
382 }
383
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
386 {
387 int i;
388 struct s2io_nic *nic = netdev_priv(dev);
389 unsigned long flags[MAX_TX_FIFOS];
390 struct config_param *config = &nic->config;
391 struct mac_info *mac_control = &nic->mac_control;
392
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
395
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
397 }
398
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
401
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
404
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
406 }
407 }
408
409 /*
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
412 */
413
414 #define END_SIGN 0x0
415 static const u64 herc_act_dtx_cfg[] = {
416 /* Set address */
417 0x8000051536750000ULL, 0x80000515367500E0ULL,
418 /* Write data */
419 0x8000051536750004ULL, 0x80000515367500E4ULL,
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
434 };
435
436 static const u64 xena_dtx_cfg[] = {
437 /* Set address */
438 0x8000051500000000ULL, 0x80000515000000E0ULL,
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
446 0x8002051500000000ULL, 0x80020515000000E0ULL,
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
449 END_SIGN
450 };
451
452 /*
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
455 */
456 static const u64 fix_mac[] = {
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
472 };
473
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION);
476
477
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
480 S2IO_PARM_INT(rx_ring_num, 1);
481 S2IO_PARM_INT(multiq, 0);
482 S2IO_PARM_INT(rx_ring_mode, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484 S2IO_PARM_INT(rmac_pause_time, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487 S2IO_PARM_INT(shared_splits, 0);
488 S2IO_PARM_INT(tmac_util_period, 5);
489 S2IO_PARM_INT(rmac_util_period, 5);
490 S2IO_PARM_INT(l3l4hdr_size, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type, 2);
497 /* Large receive offload feature */
498 static unsigned int lro_enable;
499 module_param_named(lro, lro_enable, uint, 0);
500
501 /* Max pkts to be aggregated by LRO at one time. If not specified,
502 * aggregation happens until we hit max IP pkt size(64K)
503 */
504 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
505 S2IO_PARM_INT(indicate_max_pkts, 0);
506
507 S2IO_PARM_INT(napi, 1);
508 S2IO_PARM_INT(ufo, 0);
509 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
510
511 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
512 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
513 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
514 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
515 static unsigned int rts_frm_len[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
517
518 module_param_array(tx_fifo_len, uint, NULL, 0);
519 module_param_array(rx_ring_sz, uint, NULL, 0);
520 module_param_array(rts_frm_len, uint, NULL, 0);
521
522 /*
523 * S2IO device table.
524 * This table lists all the devices that this driver supports.
525 */
526 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
534 PCI_ANY_ID, PCI_ANY_ID},
535 {0,}
536 };
537
538 MODULE_DEVICE_TABLE(pci, s2io_tbl);
539
540 static struct pci_error_handlers s2io_err_handler = {
541 .error_detected = s2io_io_error_detected,
542 .slot_reset = s2io_io_slot_reset,
543 .resume = s2io_io_resume,
544 };
545
546 static struct pci_driver s2io_driver = {
547 .name = "S2IO",
548 .id_table = s2io_tbl,
549 .probe = s2io_init_nic,
550 .remove = __devexit_p(s2io_rem_nic),
551 .err_handler = &s2io_err_handler,
552 };
553
554 /* A simplifier macro used both by init and free shared_mem Fns(). */
555 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
556
557 /* netqueue manipulation helper functions */
558 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
559 {
560 if (!sp->config.multiq) {
561 int i;
562
563 for (i = 0; i < sp->config.tx_fifo_num; i++)
564 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
565 }
566 netif_tx_stop_all_queues(sp->dev);
567 }
568
569 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
570 {
571 if (!sp->config.multiq)
572 sp->mac_control.fifos[fifo_no].queue_state =
573 FIFO_QUEUE_STOP;
574
575 netif_tx_stop_all_queues(sp->dev);
576 }
577
578 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579 {
580 if (!sp->config.multiq) {
581 int i;
582
583 for (i = 0; i < sp->config.tx_fifo_num; i++)
584 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
585 }
586 netif_tx_start_all_queues(sp->dev);
587 }
588
589 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
590 {
591 if (!sp->config.multiq)
592 sp->mac_control.fifos[fifo_no].queue_state =
593 FIFO_QUEUE_START;
594
595 netif_tx_start_all_queues(sp->dev);
596 }
597
598 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
599 {
600 if (!sp->config.multiq) {
601 int i;
602
603 for (i = 0; i < sp->config.tx_fifo_num; i++)
604 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
605 }
606 netif_tx_wake_all_queues(sp->dev);
607 }
608
609 static inline void s2io_wake_tx_queue(
610 struct fifo_info *fifo, int cnt, u8 multiq)
611 {
612
613 if (multiq) {
614 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
615 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
616 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
617 if (netif_queue_stopped(fifo->dev)) {
618 fifo->queue_state = FIFO_QUEUE_START;
619 netif_wake_queue(fifo->dev);
620 }
621 }
622 }
623
624 /**
625 * init_shared_mem - Allocation and Initialization of Memory
626 * @nic: Device private variable.
627 * Description: The function allocates all the memory areas shared
628 * between the NIC and the driver. This includes Tx descriptors,
629 * Rx descriptors and the statistics block.
630 */
631
632 static int init_shared_mem(struct s2io_nic *nic)
633 {
634 u32 size;
635 void *tmp_v_addr, *tmp_v_addr_next;
636 dma_addr_t tmp_p_addr, tmp_p_addr_next;
637 struct RxD_block *pre_rxd_blk = NULL;
638 int i, j, blk_cnt;
639 int lst_size, lst_per_page;
640 struct net_device *dev = nic->dev;
641 unsigned long tmp;
642 struct buffAdd *ba;
643 struct config_param *config = &nic->config;
644 struct mac_info *mac_control = &nic->mac_control;
645 unsigned long long mem_allocated = 0;
646
647 /* Allocation and initialization of TXDLs in FIFOs */
648 size = 0;
649 for (i = 0; i < config->tx_fifo_num; i++) {
650 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
651
652 size += tx_cfg->fifo_len;
653 }
654 if (size > MAX_AVAILABLE_TXDS) {
655 DBG_PRINT(ERR_DBG,
656 "Too many TxDs requested: %d, max supported: %d\n",
657 size, MAX_AVAILABLE_TXDS);
658 return -EINVAL;
659 }
660
661 size = 0;
662 for (i = 0; i < config->tx_fifo_num; i++) {
663 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
664
665 size = tx_cfg->fifo_len;
666 /*
667 * Legal values are from 2 to 8192
668 */
669 if (size < 2) {
670 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
671 "Valid lengths are 2 through 8192\n",
672 i, size);
673 return -EINVAL;
674 }
675 }
676
677 lst_size = (sizeof(struct TxD) * config->max_txds);
678 lst_per_page = PAGE_SIZE / lst_size;
679
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 struct fifo_info *fifo = &mac_control->fifos[i];
682 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
683 int fifo_len = tx_cfg->fifo_len;
684 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
685
686 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
687 if (!fifo->list_info) {
688 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
689 return -ENOMEM;
690 }
691 mem_allocated += list_holder_size;
692 }
693 for (i = 0; i < config->tx_fifo_num; i++) {
694 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
695 lst_per_page);
696 struct fifo_info *fifo = &mac_control->fifos[i];
697 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
698
699 fifo->tx_curr_put_info.offset = 0;
700 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
701 fifo->tx_curr_get_info.offset = 0;
702 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
703 fifo->fifo_no = i;
704 fifo->nic = nic;
705 fifo->max_txds = MAX_SKB_FRAGS + 2;
706 fifo->dev = dev;
707
708 for (j = 0; j < page_num; j++) {
709 int k = 0;
710 dma_addr_t tmp_p;
711 void *tmp_v;
712 tmp_v = pci_alloc_consistent(nic->pdev,
713 PAGE_SIZE, &tmp_p);
714 if (!tmp_v) {
715 DBG_PRINT(INFO_DBG,
716 "pci_alloc_consistent failed for TxDL\n");
717 return -ENOMEM;
718 }
719 /* If we got a zero DMA address(can happen on
720 * certain platforms like PPC), reallocate.
721 * Store virtual address of page we don't want,
722 * to be freed later.
723 */
724 if (!tmp_p) {
725 mac_control->zerodma_virt_addr = tmp_v;
726 DBG_PRINT(INIT_DBG,
727 "%s: Zero DMA address for TxDL. "
728 "Virtual address %p\n",
729 dev->name, tmp_v);
730 tmp_v = pci_alloc_consistent(nic->pdev,
731 PAGE_SIZE, &tmp_p);
732 if (!tmp_v) {
733 DBG_PRINT(INFO_DBG,
734 "pci_alloc_consistent failed for TxDL\n");
735 return -ENOMEM;
736 }
737 mem_allocated += PAGE_SIZE;
738 }
739 while (k < lst_per_page) {
740 int l = (j * lst_per_page) + k;
741 if (l == tx_cfg->fifo_len)
742 break;
743 fifo->list_info[l].list_virt_addr =
744 tmp_v + (k * lst_size);
745 fifo->list_info[l].list_phy_addr =
746 tmp_p + (k * lst_size);
747 k++;
748 }
749 }
750 }
751
752 for (i = 0; i < config->tx_fifo_num; i++) {
753 struct fifo_info *fifo = &mac_control->fifos[i];
754 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
755
756 size = tx_cfg->fifo_len;
757 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
758 if (!fifo->ufo_in_band_v)
759 return -ENOMEM;
760 mem_allocated += (size * sizeof(u64));
761 }
762
763 /* Allocation and initialization of RXDs in Rings */
764 size = 0;
765 for (i = 0; i < config->rx_ring_num; i++) {
766 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
767 struct ring_info *ring = &mac_control->rings[i];
768
769 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
770 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
771 "multiple of RxDs per Block\n",
772 dev->name, i);
773 return FAILURE;
774 }
775 size += rx_cfg->num_rxd;
776 ring->block_count = rx_cfg->num_rxd /
777 (rxd_count[nic->rxd_mode] + 1);
778 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
779 }
780 if (nic->rxd_mode == RXD_MODE_1)
781 size = (size * (sizeof(struct RxD1)));
782 else
783 size = (size * (sizeof(struct RxD3)));
784
785 for (i = 0; i < config->rx_ring_num; i++) {
786 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
787 struct ring_info *ring = &mac_control->rings[i];
788
789 ring->rx_curr_get_info.block_index = 0;
790 ring->rx_curr_get_info.offset = 0;
791 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
792 ring->rx_curr_put_info.block_index = 0;
793 ring->rx_curr_put_info.offset = 0;
794 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
795 ring->nic = nic;
796 ring->ring_no = i;
797 ring->lro = lro_enable;
798
799 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
800 /* Allocating all the Rx blocks */
801 for (j = 0; j < blk_cnt; j++) {
802 struct rx_block_info *rx_blocks;
803 int l;
804
805 rx_blocks = &ring->rx_blocks[j];
806 size = SIZE_OF_BLOCK; /* size is always page size */
807 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808 &tmp_p_addr);
809 if (tmp_v_addr == NULL) {
810 /*
811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
814 * failure happened.
815 */
816 rx_blocks->block_virt_addr = tmp_v_addr;
817 return -ENOMEM;
818 }
819 mem_allocated += size;
820 memset(tmp_v_addr, 0, size);
821
822 size = sizeof(struct rxd_info) *
823 rxd_count[nic->rxd_mode];
824 rx_blocks->block_virt_addr = tmp_v_addr;
825 rx_blocks->block_dma_addr = tmp_p_addr;
826 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
827 if (!rx_blocks->rxds)
828 return -ENOMEM;
829 mem_allocated += size;
830 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
831 rx_blocks->rxds[l].virt_addr =
832 rx_blocks->block_virt_addr +
833 (rxd_size[nic->rxd_mode] * l);
834 rx_blocks->rxds[l].dma_addr =
835 rx_blocks->block_dma_addr +
836 (rxd_size[nic->rxd_mode] * l);
837 }
838 }
839 /* Interlinking all Rx Blocks */
840 for (j = 0; j < blk_cnt; j++) {
841 int next = (j + 1) % blk_cnt;
842 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
846
847 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
848 pre_rxd_blk->reserved_2_pNext_RxD_block =
849 (unsigned long)tmp_v_addr_next;
850 pre_rxd_blk->pNext_RxD_Blk_physical =
851 (u64)tmp_p_addr_next;
852 }
853 }
854 if (nic->rxd_mode == RXD_MODE_3B) {
855 /*
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
858 */
859 for (i = 0; i < config->rx_ring_num; i++) {
860 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861 struct ring_info *ring = &mac_control->rings[i];
862
863 blk_cnt = rx_cfg->num_rxd /
864 (rxd_count[nic->rxd_mode] + 1);
865 size = sizeof(struct buffAdd *) * blk_cnt;
866 ring->ba = kmalloc(size, GFP_KERNEL);
867 if (!ring->ba)
868 return -ENOMEM;
869 mem_allocated += size;
870 for (j = 0; j < blk_cnt; j++) {
871 int k = 0;
872
873 size = sizeof(struct buffAdd) *
874 (rxd_count[nic->rxd_mode] + 1);
875 ring->ba[j] = kmalloc(size, GFP_KERNEL);
876 if (!ring->ba[j])
877 return -ENOMEM;
878 mem_allocated += size;
879 while (k != rxd_count[nic->rxd_mode]) {
880 ba = &ring->ba[j][k];
881 size = BUF0_LEN + ALIGN_SIZE;
882 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
883 if (!ba->ba_0_org)
884 return -ENOMEM;
885 mem_allocated += size;
886 tmp = (unsigned long)ba->ba_0_org;
887 tmp += ALIGN_SIZE;
888 tmp &= ~((unsigned long)ALIGN_SIZE);
889 ba->ba_0 = (void *)tmp;
890
891 size = BUF1_LEN + ALIGN_SIZE;
892 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
893 if (!ba->ba_1_org)
894 return -ENOMEM;
895 mem_allocated += size;
896 tmp = (unsigned long)ba->ba_1_org;
897 tmp += ALIGN_SIZE;
898 tmp &= ~((unsigned long)ALIGN_SIZE);
899 ba->ba_1 = (void *)tmp;
900 k++;
901 }
902 }
903 }
904 }
905
906 /* Allocation and initialization of Statistics block */
907 size = sizeof(struct stat_block);
908 mac_control->stats_mem =
909 pci_alloc_consistent(nic->pdev, size,
910 &mac_control->stats_mem_phy);
911
912 if (!mac_control->stats_mem) {
913 /*
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
916 * failure happened.
917 */
918 return -ENOMEM;
919 }
920 mem_allocated += size;
921 mac_control->stats_mem_sz = size;
922
923 tmp_v_addr = mac_control->stats_mem;
924 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
925 memset(tmp_v_addr, 0, size);
926 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", dev->name,
927 (unsigned long long)tmp_p_addr);
928 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
929 return SUCCESS;
930 }
931
932 /**
933 * free_shared_mem - Free the allocated Memory
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
937 */
938
939 static void free_shared_mem(struct s2io_nic *nic)
940 {
941 int i, j, blk_cnt, size;
942 void *tmp_v_addr;
943 dma_addr_t tmp_p_addr;
944 int lst_size, lst_per_page;
945 struct net_device *dev;
946 int page_num = 0;
947 struct config_param *config;
948 struct mac_info *mac_control;
949 struct stat_block *stats;
950 struct swStat *swstats;
951
952 if (!nic)
953 return;
954
955 dev = nic->dev;
956
957 config = &nic->config;
958 mac_control = &nic->mac_control;
959 stats = mac_control->stats_info;
960 swstats = &stats->sw_stat;
961
962 lst_size = sizeof(struct TxD) * config->max_txds;
963 lst_per_page = PAGE_SIZE / lst_size;
964
965 for (i = 0; i < config->tx_fifo_num; i++) {
966 struct fifo_info *fifo = &mac_control->fifos[i];
967 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
970 for (j = 0; j < page_num; j++) {
971 int mem_blks = (j * lst_per_page);
972 struct list_info_hold *fli;
973
974 if (!fifo->list_info)
975 return;
976
977 fli = &fifo->list_info[mem_blks];
978 if (!fli->list_virt_addr)
979 break;
980 pci_free_consistent(nic->pdev, PAGE_SIZE,
981 fli->list_virt_addr,
982 fli->list_phy_addr);
983 swstats->mem_freed += PAGE_SIZE;
984 }
985 /* If we got a zero DMA address during allocation,
986 * free the page now
987 */
988 if (mac_control->zerodma_virt_addr) {
989 pci_free_consistent(nic->pdev, PAGE_SIZE,
990 mac_control->zerodma_virt_addr,
991 (dma_addr_t)0);
992 DBG_PRINT(INIT_DBG,
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev->name, mac_control->zerodma_virt_addr);
996 swstats->mem_freed += PAGE_SIZE;
997 }
998 kfree(fifo->list_info);
999 swstats->mem_freed += tx_cfg->fifo_len *
1000 sizeof(struct list_info_hold);
1001 }
1002
1003 size = SIZE_OF_BLOCK;
1004 for (i = 0; i < config->rx_ring_num; i++) {
1005 struct ring_info *ring = &mac_control->rings[i];
1006
1007 blk_cnt = ring->block_count;
1008 for (j = 0; j < blk_cnt; j++) {
1009 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1011 if (tmp_v_addr == NULL)
1012 break;
1013 pci_free_consistent(nic->pdev, size,
1014 tmp_v_addr, tmp_p_addr);
1015 swstats->mem_freed += size;
1016 kfree(ring->rx_blocks[j].rxds);
1017 swstats->mem_freed += sizeof(struct rxd_info) *
1018 rxd_count[nic->rxd_mode];
1019 }
1020 }
1021
1022 if (nic->rxd_mode == RXD_MODE_3B) {
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i = 0; i < config->rx_ring_num; i++) {
1025 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026 struct ring_info *ring = &mac_control->rings[i];
1027
1028 blk_cnt = rx_cfg->num_rxd /
1029 (rxd_count[nic->rxd_mode] + 1);
1030 for (j = 0; j < blk_cnt; j++) {
1031 int k = 0;
1032 if (!ring->ba[j])
1033 continue;
1034 while (k != rxd_count[nic->rxd_mode]) {
1035 struct buffAdd *ba = &ring->ba[j][k];
1036 kfree(ba->ba_0_org);
1037 swstats->mem_freed +=
1038 BUF0_LEN + ALIGN_SIZE;
1039 kfree(ba->ba_1_org);
1040 swstats->mem_freed +=
1041 BUF1_LEN + ALIGN_SIZE;
1042 k++;
1043 }
1044 kfree(ring->ba[j]);
1045 swstats->mem_freed += sizeof(struct buffAdd) *
1046 (rxd_count[nic->rxd_mode] + 1);
1047 }
1048 kfree(ring->ba);
1049 swstats->mem_freed += sizeof(struct buffAdd *) *
1050 blk_cnt;
1051 }
1052 }
1053
1054 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1055 struct fifo_info *fifo = &mac_control->fifos[i];
1056 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058 if (fifo->ufo_in_band_v) {
1059 swstats->mem_freed += tx_cfg->fifo_len *
1060 sizeof(u64);
1061 kfree(fifo->ufo_in_band_v);
1062 }
1063 }
1064
1065 if (mac_control->stats_mem) {
1066 swstats->mem_freed += mac_control->stats_mem_sz;
1067 pci_free_consistent(nic->pdev,
1068 mac_control->stats_mem_sz,
1069 mac_control->stats_mem,
1070 mac_control->stats_mem_phy);
1071 }
1072 }
1073
1074 /**
1075 * s2io_verify_pci_mode -
1076 */
1077
1078 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1079 {
1080 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1081 register u64 val64 = 0;
1082 int mode;
1083
1084 val64 = readq(&bar0->pci_mode);
1085 mode = (u8)GET_PCI_MODE(val64);
1086
1087 if (val64 & PCI_MODE_UNKNOWN_MODE)
1088 return -1; /* Unknown PCI mode */
1089 return mode;
1090 }
1091
1092 #define NEC_VENID 0x1033
1093 #define NEC_DEVID 0x0125
1094 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095 {
1096 struct pci_dev *tdev = NULL;
1097 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1099 if (tdev->bus == s2io_pdev->bus->parent) {
1100 pci_dev_put(tdev);
1101 return 1;
1102 }
1103 }
1104 }
1105 return 0;
1106 }
1107
1108 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1109 /**
1110 * s2io_print_pci_mode -
1111 */
1112 static int s2io_print_pci_mode(struct s2io_nic *nic)
1113 {
1114 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1115 register u64 val64 = 0;
1116 int mode;
1117 struct config_param *config = &nic->config;
1118 const char *pcimode;
1119
1120 val64 = readq(&bar0->pci_mode);
1121 mode = (u8)GET_PCI_MODE(val64);
1122
1123 if (val64 & PCI_MODE_UNKNOWN_MODE)
1124 return -1; /* Unknown PCI mode */
1125
1126 config->bus_speed = bus_speed[mode];
1127
1128 if (s2io_on_nec_bridge(nic->pdev)) {
1129 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1130 nic->dev->name);
1131 return mode;
1132 }
1133
1134 switch (mode) {
1135 case PCI_MODE_PCI_33:
1136 pcimode = "33MHz PCI bus";
1137 break;
1138 case PCI_MODE_PCI_66:
1139 pcimode = "66MHz PCI bus";
1140 break;
1141 case PCI_MODE_PCIX_M1_66:
1142 pcimode = "66MHz PCIX(M1) bus";
1143 break;
1144 case PCI_MODE_PCIX_M1_100:
1145 pcimode = "100MHz PCIX(M1) bus";
1146 break;
1147 case PCI_MODE_PCIX_M1_133:
1148 pcimode = "133MHz PCIX(M1) bus";
1149 break;
1150 case PCI_MODE_PCIX_M2_66:
1151 pcimode = "133MHz PCIX(M2) bus";
1152 break;
1153 case PCI_MODE_PCIX_M2_100:
1154 pcimode = "200MHz PCIX(M2) bus";
1155 break;
1156 case PCI_MODE_PCIX_M2_133:
1157 pcimode = "266MHz PCIX(M2) bus";
1158 break;
1159 default:
1160 pcimode = "unsupported bus!";
1161 mode = -1;
1162 }
1163
1164 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
1167 return mode;
1168 }
1169
1170 /**
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1177 * '-1' on failure
1178 */
1179
1180 static int init_tti(struct s2io_nic *nic, int link)
1181 {
1182 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183 register u64 val64 = 0;
1184 int i;
1185 struct config_param *config = &nic->config;
1186
1187 for (i = 0; i < config->tx_fifo_num; i++) {
1188 /*
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1191 * by default.
1192 */
1193 if (nic->device_type == XFRAME_II_DEVICE) {
1194 int count = (nic->config.bus_speed * 125)/2;
1195 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196 } else
1197 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1203 if (i == 0)
1204 if (use_continuous_tx_intrs && (link == LINK_UP))
1205 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1206 writeq(val64, &bar0->tti_data1_mem);
1207
1208 if (nic->config.intr_type == MSI_X) {
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213 } else {
1214 if ((nic->config.tx_steering_type ==
1215 TX_DEFAULT_STEERING) &&
1216 (config->tx_fifo_num > 1) &&
1217 (i >= nic->udp_fifo_idx) &&
1218 (i < (nic->udp_fifo_idx +
1219 nic->total_udp_fifos)))
1220 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1224 else
1225 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1229 }
1230
1231 writeq(val64, &bar0->tti_data2_mem);
1232
1233 val64 = TTI_CMD_MEM_WE |
1234 TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
1236 writeq(val64, &bar0->tti_command_mem);
1237
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1239 TTI_CMD_MEM_STROBE_NEW_CMD,
1240 S2IO_BIT_RESET) != SUCCESS)
1241 return FAILURE;
1242 }
1243
1244 return SUCCESS;
1245 }
1246
1247 /**
1248 * init_nic - Initialization of hardware
1249 * @nic: device private variable
1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1253 * '-1' on failure (endian settings incorrect).
1254 */
1255
1256 static int init_nic(struct s2io_nic *nic)
1257 {
1258 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1259 struct net_device *dev = nic->dev;
1260 register u64 val64 = 0;
1261 void __iomem *add;
1262 u32 time;
1263 int i, j;
1264 int dtx_cnt = 0;
1265 unsigned long long mem_share;
1266 int mem_size;
1267 struct config_param *config = &nic->config;
1268 struct mac_info *mac_control = &nic->mac_control;
1269
1270 /* to set the swapper controle on the card */
1271 if (s2io_set_swapper(nic)) {
1272 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1273 return -EIO;
1274 }
1275
1276 /*
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1278 */
1279 if (nic->device_type & XFRAME_II_DEVICE) {
1280 val64 = 0xA500000000ULL;
1281 writeq(val64, &bar0->sw_reset);
1282 msleep(500);
1283 val64 = readq(&bar0->sw_reset);
1284 }
1285
1286 /* Remove XGXS from reset state */
1287 val64 = 0;
1288 writeq(val64, &bar0->sw_reset);
1289 msleep(500);
1290 val64 = readq(&bar0->sw_reset);
1291
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294 */
1295 if (nic->device_type == XFRAME_II_DEVICE) {
1296 for (i = 0; i < 50; i++) {
1297 val64 = readq(&bar0->adapter_status);
1298 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299 break;
1300 msleep(10);
1301 }
1302 if (i == 50)
1303 return -ENODEV;
1304 }
1305
1306 /* Enable Receiving broadcasts */
1307 add = &bar0->mac_cfg;
1308 val64 = readq(&bar0->mac_cfg);
1309 val64 |= MAC_RMAC_BCAST_ENABLE;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1311 writel((u32)val64, add);
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) (val64 >> 32), (add + 4));
1314
1315 /* Read registers in all blocks */
1316 val64 = readq(&bar0->mac_int_mask);
1317 val64 = readq(&bar0->mc_int_mask);
1318 val64 = readq(&bar0->xgxs_int_mask);
1319
1320 /* Set MTU */
1321 val64 = dev->mtu;
1322 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
1324 if (nic->device_type & XFRAME_II_DEVICE) {
1325 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1327 &bar0->dtx_control, UF);
1328 if (dtx_cnt & 0x1)
1329 msleep(1); /* Necessary!! */
1330 dtx_cnt++;
1331 }
1332 } else {
1333 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335 &bar0->dtx_control, UF);
1336 val64 = readq(&bar0->dtx_control);
1337 dtx_cnt++;
1338 }
1339 }
1340
1341 /* Tx DMA Initialization */
1342 val64 = 0;
1343 writeq(val64, &bar0->tx_fifo_partition_0);
1344 writeq(val64, &bar0->tx_fifo_partition_1);
1345 writeq(val64, &bar0->tx_fifo_partition_2);
1346 writeq(val64, &bar0->tx_fifo_partition_3);
1347
1348 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1349 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1353
1354 if (i == (config->tx_fifo_num - 1)) {
1355 if (i % 2 == 0)
1356 i++;
1357 }
1358
1359 switch (i) {
1360 case 1:
1361 writeq(val64, &bar0->tx_fifo_partition_0);
1362 val64 = 0;
1363 j = 0;
1364 break;
1365 case 3:
1366 writeq(val64, &bar0->tx_fifo_partition_1);
1367 val64 = 0;
1368 j = 0;
1369 break;
1370 case 5:
1371 writeq(val64, &bar0->tx_fifo_partition_2);
1372 val64 = 0;
1373 j = 0;
1374 break;
1375 case 7:
1376 writeq(val64, &bar0->tx_fifo_partition_3);
1377 val64 = 0;
1378 j = 0;
1379 break;
1380 default:
1381 j++;
1382 break;
1383 }
1384 }
1385
1386 /*
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389 */
1390 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1391 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1393 val64 = readq(&bar0->tx_fifo_partition_0);
1394 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1395 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1396
1397 /*
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1399 * integrity checking.
1400 */
1401 val64 = readq(&bar0->tx_pa_cfg);
1402 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403 TX_PA_CFG_IGNORE_SNAP_OUI |
1404 TX_PA_CFG_IGNORE_LLC_CTRL |
1405 TX_PA_CFG_IGNORE_L2_ERR;
1406 writeq(val64, &bar0->tx_pa_cfg);
1407
1408 /* Rx DMA intialization. */
1409 val64 = 0;
1410 for (i = 0; i < config->rx_ring_num; i++) {
1411 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1414 }
1415 writeq(val64, &bar0->rx_queue_priority);
1416
1417 /*
1418 * Allocating equal share of memory to all the
1419 * configured Rings.
1420 */
1421 val64 = 0;
1422 if (nic->device_type & XFRAME_II_DEVICE)
1423 mem_size = 32;
1424 else
1425 mem_size = 64;
1426
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 switch (i) {
1429 case 0:
1430 mem_share = (mem_size / config->rx_ring_num +
1431 mem_size % config->rx_ring_num);
1432 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433 continue;
1434 case 1:
1435 mem_share = (mem_size / config->rx_ring_num);
1436 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437 continue;
1438 case 2:
1439 mem_share = (mem_size / config->rx_ring_num);
1440 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441 continue;
1442 case 3:
1443 mem_share = (mem_size / config->rx_ring_num);
1444 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445 continue;
1446 case 4:
1447 mem_share = (mem_size / config->rx_ring_num);
1448 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449 continue;
1450 case 5:
1451 mem_share = (mem_size / config->rx_ring_num);
1452 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453 continue;
1454 case 6:
1455 mem_share = (mem_size / config->rx_ring_num);
1456 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457 continue;
1458 case 7:
1459 mem_share = (mem_size / config->rx_ring_num);
1460 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461 continue;
1462 }
1463 }
1464 writeq(val64, &bar0->rx_queue_cfg);
1465
1466 /*
1467 * Filling Tx round robin registers
1468 * as per the number of FIFOs for equal scheduling priority
1469 */
1470 switch (config->tx_fifo_num) {
1471 case 1:
1472 val64 = 0x0;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 2:
1480 val64 = 0x0001000100010001ULL;
1481 writeq(val64, &bar0->tx_w_round_robin_0);
1482 writeq(val64, &bar0->tx_w_round_robin_1);
1483 writeq(val64, &bar0->tx_w_round_robin_2);
1484 writeq(val64, &bar0->tx_w_round_robin_3);
1485 val64 = 0x0001000100000000ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_4);
1487 break;
1488 case 3:
1489 val64 = 0x0001020001020001ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_0);
1491 val64 = 0x0200010200010200ULL;
1492 writeq(val64, &bar0->tx_w_round_robin_1);
1493 val64 = 0x0102000102000102ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_2);
1495 val64 = 0x0001020001020001ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_3);
1497 val64 = 0x0200010200000000ULL;
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 4:
1501 val64 = 0x0001020300010203ULL;
1502 writeq(val64, &bar0->tx_w_round_robin_0);
1503 writeq(val64, &bar0->tx_w_round_robin_1);
1504 writeq(val64, &bar0->tx_w_round_robin_2);
1505 writeq(val64, &bar0->tx_w_round_robin_3);
1506 val64 = 0x0001020300000000ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 5:
1510 val64 = 0x0001020304000102ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_0);
1512 val64 = 0x0304000102030400ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_1);
1514 val64 = 0x0102030400010203ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_2);
1516 val64 = 0x0400010203040001ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_3);
1518 val64 = 0x0203040000000000ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 6:
1522 val64 = 0x0001020304050001ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_0);
1524 val64 = 0x0203040500010203ULL;
1525 writeq(val64, &bar0->tx_w_round_robin_1);
1526 val64 = 0x0405000102030405ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_2);
1528 val64 = 0x0001020304050001ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_3);
1530 val64 = 0x0203040500000000ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_4);
1532 break;
1533 case 7:
1534 val64 = 0x0001020304050600ULL;
1535 writeq(val64, &bar0->tx_w_round_robin_0);
1536 val64 = 0x0102030405060001ULL;
1537 writeq(val64, &bar0->tx_w_round_robin_1);
1538 val64 = 0x0203040506000102ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_2);
1540 val64 = 0x0304050600010203ULL;
1541 writeq(val64, &bar0->tx_w_round_robin_3);
1542 val64 = 0x0405060000000000ULL;
1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 case 8:
1546 val64 = 0x0001020304050607ULL;
1547 writeq(val64, &bar0->tx_w_round_robin_0);
1548 writeq(val64, &bar0->tx_w_round_robin_1);
1549 writeq(val64, &bar0->tx_w_round_robin_2);
1550 writeq(val64, &bar0->tx_w_round_robin_3);
1551 val64 = 0x0001020300000000ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 }
1555
1556 /* Enable all configured Tx FIFO partitions */
1557 val64 = readq(&bar0->tx_fifo_partition_0);
1558 val64 |= (TX_FIFO_PARTITION_EN);
1559 writeq(val64, &bar0->tx_fifo_partition_0);
1560
1561 /* Filling the Rx round robin registers as per the
1562 * number of Rings and steering based on QoS with
1563 * equal priority.
1564 */
1565 switch (config->rx_ring_num) {
1566 case 1:
1567 val64 = 0x0;
1568 writeq(val64, &bar0->rx_w_round_robin_0);
1569 writeq(val64, &bar0->rx_w_round_robin_1);
1570 writeq(val64, &bar0->rx_w_round_robin_2);
1571 writeq(val64, &bar0->rx_w_round_robin_3);
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574 val64 = 0x8080808080808080ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 2:
1578 val64 = 0x0001000100010001ULL;
1579 writeq(val64, &bar0->rx_w_round_robin_0);
1580 writeq(val64, &bar0->rx_w_round_robin_1);
1581 writeq(val64, &bar0->rx_w_round_robin_2);
1582 writeq(val64, &bar0->rx_w_round_robin_3);
1583 val64 = 0x0001000100000000ULL;
1584 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586 val64 = 0x8080808040404040ULL;
1587 writeq(val64, &bar0->rts_qos_steering);
1588 break;
1589 case 3:
1590 val64 = 0x0001020001020001ULL;
1591 writeq(val64, &bar0->rx_w_round_robin_0);
1592 val64 = 0x0200010200010200ULL;
1593 writeq(val64, &bar0->rx_w_round_robin_1);
1594 val64 = 0x0102000102000102ULL;
1595 writeq(val64, &bar0->rx_w_round_robin_2);
1596 val64 = 0x0001020001020001ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_3);
1598 val64 = 0x0200010200000000ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601 val64 = 0x8080804040402020ULL;
1602 writeq(val64, &bar0->rts_qos_steering);
1603 break;
1604 case 4:
1605 val64 = 0x0001020300010203ULL;
1606 writeq(val64, &bar0->rx_w_round_robin_0);
1607 writeq(val64, &bar0->rx_w_round_robin_1);
1608 writeq(val64, &bar0->rx_w_round_robin_2);
1609 writeq(val64, &bar0->rx_w_round_robin_3);
1610 val64 = 0x0001020300000000ULL;
1611 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613 val64 = 0x8080404020201010ULL;
1614 writeq(val64, &bar0->rts_qos_steering);
1615 break;
1616 case 5:
1617 val64 = 0x0001020304000102ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_0);
1619 val64 = 0x0304000102030400ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_1);
1621 val64 = 0x0102030400010203ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_2);
1623 val64 = 0x0400010203040001ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_3);
1625 val64 = 0x0203040000000000ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628 val64 = 0x8080404020201008ULL;
1629 writeq(val64, &bar0->rts_qos_steering);
1630 break;
1631 case 6:
1632 val64 = 0x0001020304050001ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_0);
1634 val64 = 0x0203040500010203ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_1);
1636 val64 = 0x0405000102030405ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_2);
1638 val64 = 0x0001020304050001ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_3);
1640 val64 = 0x0203040500000000ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643 val64 = 0x8080404020100804ULL;
1644 writeq(val64, &bar0->rts_qos_steering);
1645 break;
1646 case 7:
1647 val64 = 0x0001020304050600ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_0);
1649 val64 = 0x0102030405060001ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_1);
1651 val64 = 0x0203040506000102ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_2);
1653 val64 = 0x0304050600010203ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_3);
1655 val64 = 0x0405060000000000ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658 val64 = 0x8080402010080402ULL;
1659 writeq(val64, &bar0->rts_qos_steering);
1660 break;
1661 case 8:
1662 val64 = 0x0001020304050607ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_0);
1664 writeq(val64, &bar0->rx_w_round_robin_1);
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 writeq(val64, &bar0->rx_w_round_robin_3);
1667 val64 = 0x0001020300000000ULL;
1668 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670 val64 = 0x8040201008040201ULL;
1671 writeq(val64, &bar0->rts_qos_steering);
1672 break;
1673 }
1674
1675 /* UDP Fix */
1676 val64 = 0;
1677 for (i = 0; i < 8; i++)
1678 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
1680 /* Set the default rts frame length for the rings configured */
1681 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682 for (i = 0 ; i < config->rx_ring_num ; i++)
1683 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1687 */
1688 for (i = 0; i < config->rx_ring_num; i++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1694 */
1695 if (rts_frm_len[i] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1697 &bar0->rts_frm_len_n[i]);
1698 }
1699 }
1700
1701 /* Disable differentiated services steering logic */
1702 for (i = 0; i < 64; i++) {
1703 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1704 DBG_PRINT(ERR_DBG,
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1706 dev->name, i);
1707 return -ENODEV;
1708 }
1709 }
1710
1711 /* Program statistics memory */
1712 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1713
1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = STAT_BC(0x320);
1716 writeq(val64, &bar0->stat_byte_cnt);
1717 }
1718
1719 /*
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1722 */
1723 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1725 writeq(val64, &bar0->mac_link_util);
1726
1727 /*
1728 * Initializing the Transmit and Receive Traffic Interrupt
1729 * Scheme.
1730 */
1731
1732 /* Initialize TTI */
1733 if (SUCCESS != init_tti(nic, nic->last_link_state))
1734 return -ENODEV;
1735
1736 /* RTI Initialization */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
1738 /*
1739 * Programmed to generate Apprx 500 Intrs per
1740 * second
1741 */
1742 int count = (nic->config.bus_speed * 125)/4;
1743 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744 } else
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1750
1751 writeq(val64, &bar0->rti_data1_mem);
1752
1753 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic->config.intr_type == MSI_X)
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
1758 else
1759 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
1761 writeq(val64, &bar0->rti_data2_mem);
1762
1763 for (i = 0; i < config->rx_ring_num; i++) {
1764 val64 = RTI_CMD_MEM_WE |
1765 RTI_CMD_MEM_STROBE_NEW_CMD |
1766 RTI_CMD_MEM_OFFSET(i);
1767 writeq(val64, &bar0->rti_command_mem);
1768
1769 /*
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1775 */
1776 time = 0;
1777 while (true) {
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780 break;
1781
1782 if (time > 10) {
1783 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1784 dev->name);
1785 return -ENODEV;
1786 }
1787 time++;
1788 msleep(50);
1789 }
1790 }
1791
1792 /*
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1795 */
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799 /* Disable RMAC PAD STRIPPING */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1808
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1815 else {
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 }
1821
1822 /*
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1825 */
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1830
1831 /*
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1836 */
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
1839 val64 |= (((u64)0xFF00 |
1840 nic->mac_control.mc_pause_threshold_q0q3)
1841 << (i * 2 * 8));
1842 }
1843 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845 val64 = 0;
1846 for (i = 0; i < 4; i++) {
1847 val64 |= (((u64)0xFF00 |
1848 nic->mac_control.mc_pause_threshold_q4q7)
1849 << (i * 2 * 8));
1850 }
1851 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
1853 /*
1854 * TxDMA will stop Read request if the number of read split has
1855 * exceeded the limit pointed by shared_splits
1856 */
1857 val64 = readq(&bar0->pic_control);
1858 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859 writeq(val64, &bar0->pic_control);
1860
1861 if (nic->config.bus_speed == 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863 writeq(0x0, &bar0->read_retry_delay);
1864 writeq(0x0, &bar0->write_retry_delay);
1865 }
1866
1867 /*
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1870 */
1871 if (nic->device_type == XFRAME_II_DEVICE) {
1872 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873 MISC_LINK_STABILITY_PRD(3);
1874 writeq(val64, &bar0->misc_control);
1875 val64 = readq(&bar0->pic_control2);
1876 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1877 writeq(val64, &bar0->pic_control2);
1878 }
1879 if (strstr(nic->product_name, "CX4")) {
1880 val64 = TMAC_AVG_IPG(0x17);
1881 writeq(val64, &bar0->tmac_avg_ipg);
1882 }
1883
1884 return SUCCESS;
1885 }
1886 #define LINK_UP_DOWN_INTERRUPT 1
1887 #define MAC_RMAC_ERR_TIMER 2
1888
1889 static int s2io_link_fault_indication(struct s2io_nic *nic)
1890 {
1891 if (nic->device_type == XFRAME_II_DEVICE)
1892 return LINK_UP_DOWN_INTERRUPT;
1893 else
1894 return MAC_RMAC_ERR_TIMER;
1895 }
1896
1897 /**
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1903 * Return Value:
1904 * NONE.
1905 */
1906 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907 {
1908 u64 temp64;
1909
1910 temp64 = readq(addr);
1911
1912 if (flag == ENABLE_INTRS)
1913 temp64 &= ~((u64)value);
1914 else
1915 temp64 |= ((u64)value);
1916 writeq(temp64, addr);
1917 }
1918
1919 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1920 {
1921 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922 register u64 gen_int_mask = 0;
1923 u64 interruptible;
1924
1925 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1926 if (mask & TX_DMA_INTR) {
1927 gen_int_mask |= TXDMA_INT_M;
1928
1929 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1930 TXDMA_PCC_INT | TXDMA_TTI_INT |
1931 TXDMA_LSO_INT | TXDMA_TPA_INT |
1932 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1933
1934 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1935 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937 &bar0->pfc_err_mask);
1938
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1940 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1942
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1944 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945 PCC_N_SERR | PCC_6_COF_OV_ERR |
1946 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948 PCC_TXB_ECC_SG_ERR,
1949 flag, &bar0->pcc_err_mask);
1950
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1952 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1953
1954 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1955 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957 flag, &bar0->lso_err_mask);
1958
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1960 flag, &bar0->tpa_err_mask);
1961
1962 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1963 }
1964
1965 if (mask & TX_MAC_INTR) {
1966 gen_int_mask |= TXMAC_INT_M;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1968 &bar0->mac_int_mask);
1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1970 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972 flag, &bar0->mac_tmac_err_mask);
1973 }
1974
1975 if (mask & TX_XGXS_INTR) {
1976 gen_int_mask |= TXXGXS_INT_M;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1978 &bar0->xgxs_int_mask);
1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1980 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981 flag, &bar0->xgxs_txgxs_err_mask);
1982 }
1983
1984 if (mask & RX_DMA_INTR) {
1985 gen_int_mask |= RXDMA_INT_M;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1987 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988 flag, &bar0->rxdma_int_mask);
1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1990 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1994 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996 &bar0->prc_pcix_err_mask);
1997 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1998 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999 &bar0->rpa_err_mask);
2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2001 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003 RDA_FRM_ECC_SG_ERR |
2004 RDA_MISC_ERR|RDA_PCIX_ERR,
2005 flag, &bar0->rda_err_mask);
2006 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2007 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008 flag, &bar0->rti_err_mask);
2009 }
2010
2011 if (mask & RX_MAC_INTR) {
2012 gen_int_mask |= RXMAC_INT_M;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2014 &bar0->mac_int_mask);
2015 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017 RMAC_DOUBLE_ECC_ERR);
2018 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020 do_s2io_write_bits(interruptible,
2021 flag, &bar0->mac_rmac_err_mask);
2022 }
2023
2024 if (mask & RX_XGXS_INTR) {
2025 gen_int_mask |= RXXGXS_INT_M;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2027 &bar0->xgxs_int_mask);
2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2029 &bar0->xgxs_rxgxs_err_mask);
2030 }
2031
2032 if (mask & MC_INTR) {
2033 gen_int_mask |= MC_INT_M;
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035 flag, &bar0->mc_int_mask);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
2039 }
2040 nic->general_int_mask = gen_int_mask;
2041
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2044 }
2045
2046 /**
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
2054 * Return Value: NONE.
2055 */
2056
2057 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 {
2059 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2060 register u64 temp64 = 0, intr_mask = 0;
2061
2062 intr_mask = nic->general_int_mask;
2063
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
2066 if (mask & TX_PIC_INTR) {
2067 /* Enable PIC Intrs in the general intr mask register */
2068 intr_mask |= TXPIC_INT_M;
2069 if (flag == ENABLE_INTRS) {
2070 /*
2071 * If Hercules adapter enable GPIO otherwise
2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
2073 * interrupts for now.
2074 * TODO
2075 */
2076 if (s2io_link_fault_indication(nic) ==
2077 LINK_UP_DOWN_INTERRUPT) {
2078 do_s2io_write_bits(PIC_INT_GPIO, flag,
2079 &bar0->pic_int_mask);
2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2081 &bar0->gpio_int_mask);
2082 } else
2083 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2084 } else if (flag == DISABLE_INTRS) {
2085 /*
2086 * Disable PIC Intrs in the general
2087 * intr mask register
2088 */
2089 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2090 }
2091 }
2092
2093 /* Tx traffic interrupts */
2094 if (mask & TX_TRAFFIC_INTR) {
2095 intr_mask |= TXTRAFFIC_INT_M;
2096 if (flag == ENABLE_INTRS) {
2097 /*
2098 * Enable all the Tx side interrupts
2099 * writing 0 Enables all 64 TX interrupt levels
2100 */
2101 writeq(0x0, &bar0->tx_traffic_mask);
2102 } else if (flag == DISABLE_INTRS) {
2103 /*
2104 * Disable Tx Traffic Intrs in the general intr mask
2105 * register.
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2108 }
2109 }
2110
2111 /* Rx traffic interrupts */
2112 if (mask & RX_TRAFFIC_INTR) {
2113 intr_mask |= RXTRAFFIC_INT_M;
2114 if (flag == ENABLE_INTRS) {
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0->rx_traffic_mask);
2117 } else if (flag == DISABLE_INTRS) {
2118 /*
2119 * Disable Rx Traffic Intrs in the general intr mask
2120 * register.
2121 */
2122 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2123 }
2124 }
2125
2126 temp64 = readq(&bar0->general_int_mask);
2127 if (flag == ENABLE_INTRS)
2128 temp64 &= ~((u64)intr_mask);
2129 else
2130 temp64 = DISABLE_ALL_INTRS;
2131 writeq(temp64, &bar0->general_int_mask);
2132
2133 nic->general_int_mask = readq(&bar0->general_int_mask);
2134 }
2135
2136 /**
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2140 */
2141 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2142 {
2143 int ret = 0, herc;
2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145 u64 val64 = readq(&bar0->adapter_status);
2146
2147 herc = (sp->device_type == XFRAME_II_DEVICE);
2148
2149 if (flag == false) {
2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2152 ret = 1;
2153 } else {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155 ret = 1;
2156 }
2157 } else {
2158 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2160 ADAPTER_STATUS_RMAC_PCC_IDLE))
2161 ret = 1;
2162 } else {
2163 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2165 ret = 1;
2166 }
2167 }
2168
2169 return ret;
2170 }
2171 /**
2172 * verify_xena_quiescence - Checks whether the H/W is ready
2173 * Description: Returns whether the H/W is ready to go or not. Depending
2174 * on whether adapter enable bit was written or not the comparison
2175 * differs and the calling function passes the input argument flag to
2176 * indicate this.
2177 * Return: 1 If xena is quiescence
2178 * 0 If Xena is not quiescence
2179 */
2180
2181 static int verify_xena_quiescence(struct s2io_nic *sp)
2182 {
2183 int mode;
2184 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2185 u64 val64 = readq(&bar0->adapter_status);
2186 mode = s2io_verify_pci_mode(sp);
2187
2188 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2189 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2193 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2197 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2201 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2205 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2209 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2213 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2214 return 0;
2215 }
2216 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2217 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2218 return 0;
2219 }
2220
2221 /*
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2224 * not be asserted.
2225 */
2226 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2227 sp->device_type == XFRAME_II_DEVICE &&
2228 mode != PCI_MODE_PCI_33) {
2229 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2230 return 0;
2231 }
2232 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2233 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2234 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2235 return 0;
2236 }
2237 return 1;
2238 }
2239
2240 /**
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
2243 * Description :
2244 * New procedure to clear mac address reading problems on Alpha platforms
2245 *
2246 */
2247
2248 static void fix_mac_address(struct s2io_nic *sp)
2249 {
2250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2251 u64 val64;
2252 int i = 0;
2253
2254 while (fix_mac[i] != END_SIGN) {
2255 writeq(fix_mac[i++], &bar0->gpio_control);
2256 udelay(10);
2257 val64 = readq(&bar0->gpio_control);
2258 }
2259 }
2260
2261 /**
2262 * start_nic - Turns the device on
2263 * @nic : device private variable.
2264 * Description:
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
2270 * Return Value:
2271 * SUCCESS on success and -1 on failure.
2272 */
2273
2274 static int start_nic(struct s2io_nic *nic)
2275 {
2276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2277 struct net_device *dev = nic->dev;
2278 register u64 val64 = 0;
2279 u16 subid, i;
2280 struct config_param *config = &nic->config;
2281 struct mac_info *mac_control = &nic->mac_control;
2282
2283 /* PRC Initialization and configuration */
2284 for (i = 0; i < config->rx_ring_num; i++) {
2285 struct ring_info *ring = &mac_control->rings[i];
2286
2287 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2288 &bar0->prc_rxd0_n[i]);
2289
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2293 else
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2300 }
2301
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2307 }
2308
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
2313 nic->vlan_strip_flag = 0;
2314 }
2315
2316 /*
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2320 */
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2325
2326 msleep(100); /* Delay by around 100 ms. */
2327
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2332
2333 /*
2334 * Verify if the device is ready to be enabled, if so enable
2335 * it.
2336 */
2337 val64 = readq(&bar0->adapter_status);
2338 if (!verify_xena_quiescence(nic)) {
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev->name, (unsigned long long)val64);
2342 return FAILURE;
2343 }
2344
2345 /*
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2351 */
2352
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2357
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359 /*
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2362 */
2363 schedule_work(&nic->set_link_task);
2364 }
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
2374 }
2375
2376 return SUCCESS;
2377 }
2378 /**
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380 */
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382 struct TxD *txdlp, int get_off)
2383 {
2384 struct s2io_nic *nic = fifo_data->nic;
2385 struct sk_buff *skb;
2386 struct TxD *txds;
2387 u16 j, frg_cnt;
2388
2389 txds = txdlp;
2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392 sizeof(u64), PCI_DMA_TODEVICE);
2393 txds++;
2394 }
2395
2396 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2397 if (!skb) {
2398 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2399 return NULL;
2400 }
2401 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2402 skb->len - skb->data_len, PCI_DMA_TODEVICE);
2403 frg_cnt = skb_shinfo(skb)->nr_frags;
2404 if (frg_cnt) {
2405 txds++;
2406 for (j = 0; j < frg_cnt; j++, txds++) {
2407 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408 if (!txds->Buffer_Pointer)
2409 break;
2410 pci_unmap_page(nic->pdev,
2411 (dma_addr_t)txds->Buffer_Pointer,
2412 frag->size, PCI_DMA_TODEVICE);
2413 }
2414 }
2415 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416 return skb;
2417 }
2418
2419 /**
2420 * free_tx_buffers - Free all queued Tx buffers
2421 * @nic : device private variable.
2422 * Description:
2423 * Free all queued Tx buffers.
2424 * Return Value: void
2425 */
2426
2427 static void free_tx_buffers(struct s2io_nic *nic)
2428 {
2429 struct net_device *dev = nic->dev;
2430 struct sk_buff *skb;
2431 struct TxD *txdp;
2432 int i, j;
2433 int cnt = 0;
2434 struct config_param *config = &nic->config;
2435 struct mac_info *mac_control = &nic->mac_control;
2436 struct stat_block *stats = mac_control->stats_info;
2437 struct swStat *swstats = &stats->sw_stat;
2438
2439 for (i = 0; i < config->tx_fifo_num; i++) {
2440 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441 struct fifo_info *fifo = &mac_control->fifos[i];
2442 unsigned long flags;
2443
2444 spin_lock_irqsave(&fifo->tx_lock, flags);
2445 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2447 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448 if (skb) {
2449 swstats->mem_freed += skb->truesize;
2450 dev_kfree_skb(skb);
2451 cnt++;
2452 }
2453 }
2454 DBG_PRINT(INTR_DBG,
2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
2456 dev->name, cnt, i);
2457 fifo->tx_curr_get_info.offset = 0;
2458 fifo->tx_curr_put_info.offset = 0;
2459 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2460 }
2461 }
2462
2463 /**
2464 * stop_nic - To stop the nic
2465 * @nic ; device private variable.
2466 * Description:
2467 * This function does exactly the opposite of what the start_nic()
2468 * function does. This function is called to stop the device.
2469 * Return Value:
2470 * void.
2471 */
2472
2473 static void stop_nic(struct s2io_nic *nic)
2474 {
2475 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2476 register u64 val64 = 0;
2477 u16 interruptible;
2478
2479 /* Disable all interrupts */
2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482 interruptible |= TX_PIC_INTR;
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492 * fill_rx_buffers - Allocates the Rx side skbs
2493 * @ring_info: per ring structure
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
2497 * Description:
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514 int from_card_up)
2515 {
2516 struct sk_buff *skb;
2517 struct RxD_t *rxdp;
2518 int off, size, block_no, block_no1;
2519 u32 alloc_tab = 0;
2520 u32 alloc_cnt;
2521 u64 tmp;
2522 struct buffAdd *ba;
2523 struct RxD_t *first_rxdp = NULL;
2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525 int rxd_index = 0;
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
2528 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532 block_no1 = ring->rx_curr_get_info.block_index;
2533 while (alloc_tab < alloc_cnt) {
2534 block_no = ring->rx_curr_put_info.block_index;
2535
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
2543
2544 if ((block_no == block_no1) &&
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
2547 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548 ring->dev->name);
2549 goto end;
2550 }
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
2554 ring->block_count)
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2561 ring->dev->name, rxdp);
2562
2563 }
2564
2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2566 ((ring->rxd_mode == RXD_MODE_3B) &&
2567 (rxdp->Control_2 & s2BIT(0)))) {
2568 ring->rx_curr_put_info.offset = off;
2569 goto end;
2570 }
2571 /* calculate size of skb based on ring mode */
2572 size = ring->mtu +
2573 HEADER_ETHERNET_II_802_3_SIZE +
2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575 if (ring->rxd_mode == RXD_MODE_1)
2576 size += NET_IP_ALIGN;
2577 else
2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
2582 if (!skb) {
2583 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584 ring->dev->name);
2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
2589 swstats->mem_alloc_fail_cnt++;
2590
2591 return -ENOMEM ;
2592 }
2593 swstats->mem_allocated += skb->truesize;
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
2596 /* 1 buffer mode - normal operation mode */
2597 rxdp1 = (struct RxD1 *)rxdp;
2598 memset(rxdp, 0, sizeof(struct RxD1));
2599 skb_reserve(skb, NET_IP_ALIGN);
2600 rxdp1->Buffer0_ptr =
2601 pci_map_single(ring->pdev, skb->data,
2602 size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
2604 if (pci_dma_mapping_error(nic->pdev,
2605 rxdp1->Buffer0_ptr))
2606 goto pci_map_failed;
2607
2608 rxdp->Control_2 =
2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610 rxdp->Host_Control = (unsigned long)skb;
2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612 /*
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2616 */
2617
2618 rxdp3 = (struct RxD3 *)rxdp;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
2622 memset(rxdp, 0, sizeof(struct RxD3));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627 ba = &ring->ba[block_no][off];
2628 skb_reserve(skb, BUF0_LEN);
2629 tmp = (u64)(unsigned long)skb->data;
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
2633 skb_reset_tail_pointer(skb);
2634
2635 if (from_card_up) {
2636 rxdp3->Buffer0_ptr =
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN,
2639 PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
2642 goto pci_map_failed;
2643 } else
2644 pci_dma_sync_single_for_device(ring->pdev,
2645 (dma_addr_t)rxdp3->Buffer0_ptr,
2646 BUF0_LEN,
2647 PCI_DMA_FROMDEVICE);
2648
2649 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2650 if (ring->rxd_mode == RXD_MODE_3B) {
2651 /* Two buffer mode */
2652
2653 /*
2654 * Buffer2 will have L3/L4 header plus
2655 * L4 payload
2656 */
2657 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658 skb->data,
2659 ring->mtu + 4,
2660 PCI_DMA_FROMDEVICE);
2661
2662 if (pci_dma_mapping_error(nic->pdev,
2663 rxdp3->Buffer2_ptr))
2664 goto pci_map_failed;
2665
2666 if (from_card_up) {
2667 rxdp3->Buffer1_ptr =
2668 pci_map_single(ring->pdev,
2669 ba->ba_1,
2670 BUF1_LEN,
2671 PCI_DMA_FROMDEVICE);
2672
2673 if (pci_dma_mapping_error(nic->pdev,
2674 rxdp3->Buffer1_ptr)) {
2675 pci_unmap_single(ring->pdev,
2676 (dma_addr_t)(unsigned long)
2677 skb->data,
2678 ring->mtu + 4,
2679 PCI_DMA_FROMDEVICE);
2680 goto pci_map_failed;
2681 }
2682 }
2683 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2685 (ring->mtu + 4);
2686 }
2687 rxdp->Control_2 |= s2BIT(0);
2688 rxdp->Host_Control = (unsigned long) (skb);
2689 }
2690 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691 rxdp->Control_1 |= RXD_OWN_XENA;
2692 off++;
2693 if (off == (ring->rxd_count + 1))
2694 off = 0;
2695 ring->rx_curr_put_info.offset = off;
2696
2697 rxdp->Control_2 |= SET_RXD_MARKER;
2698 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699 if (first_rxdp) {
2700 wmb();
2701 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702 }
2703 first_rxdp = rxdp;
2704 }
2705 ring->rx_bufs_left += 1;
2706 alloc_tab++;
2707 }
2708
2709 end:
2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2713 */
2714 if (first_rxdp) {
2715 wmb();
2716 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717 }
2718
2719 return SUCCESS;
2720
2721 pci_map_failed:
2722 swstats->pci_map_fail_cnt++;
2723 swstats->mem_freed += skb->truesize;
2724 dev_kfree_skb_irq(skb);
2725 return -ENOMEM;
2726 }
2727
2728 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729 {
2730 struct net_device *dev = sp->dev;
2731 int j;
2732 struct sk_buff *skb;
2733 struct RxD_t *rxdp;
2734 struct buffAdd *ba;
2735 struct RxD1 *rxdp1;
2736 struct RxD3 *rxdp3;
2737 struct mac_info *mac_control = &sp->mac_control;
2738 struct stat_block *stats = mac_control->stats_info;
2739 struct swStat *swstats = &stats->sw_stat;
2740
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745 if (!skb)
2746 continue;
2747 if (sp->rxd_mode == RXD_MODE_1) {
2748 rxdp1 = (struct RxD1 *)rxdp;
2749 pci_unmap_single(sp->pdev,
2750 (dma_addr_t)rxdp1->Buffer0_ptr,
2751 dev->mtu +
2752 HEADER_ETHERNET_II_802_3_SIZE +
2753 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754 PCI_DMA_FROMDEVICE);
2755 memset(rxdp, 0, sizeof(struct RxD1));
2756 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757 rxdp3 = (struct RxD3 *)rxdp;
2758 ba = &mac_control->rings[ring_no].ba[blk][j];
2759 pci_unmap_single(sp->pdev,
2760 (dma_addr_t)rxdp3->Buffer0_ptr,
2761 BUF0_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev,
2764 (dma_addr_t)rxdp3->Buffer1_ptr,
2765 BUF1_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev,
2768 (dma_addr_t)rxdp3->Buffer2_ptr,
2769 dev->mtu + 4,
2770 PCI_DMA_FROMDEVICE);
2771 memset(rxdp, 0, sizeof(struct RxD3));
2772 }
2773 swstats->mem_freed += skb->truesize;
2774 dev_kfree_skb(skb);
2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
2776 }
2777 }
2778
2779 /**
2780 * free_rx_buffers - Frees all Rx buffers
2781 * @sp: device private variable.
2782 * Description:
2783 * This function will free all Rx buffers allocated by host.
2784 * Return Value:
2785 * NONE.
2786 */
2787
2788 static void free_rx_buffers(struct s2io_nic *sp)
2789 {
2790 struct net_device *dev = sp->dev;
2791 int i, blk = 0, buf_cnt = 0;
2792 struct config_param *config = &sp->config;
2793 struct mac_info *mac_control = &sp->mac_control;
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
2796 struct ring_info *ring = &mac_control->rings[i];
2797
2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799 free_rxd_blk(sp, i, blk);
2800
2801 ring->rx_curr_put_info.block_index = 0;
2802 ring->rx_curr_get_info.block_index = 0;
2803 ring->rx_curr_put_info.offset = 0;
2804 ring->rx_curr_get_info.offset = 0;
2805 ring->rx_bufs_left = 0;
2806 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2807 dev->name, buf_cnt, i);
2808 }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815 ring->dev->name);
2816 }
2817 return 0;
2818 }
2819
2820 /**
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2831 */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
2837 int pkts_processed = 0;
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
2840 struct s2io_nic *nic = netdev_priv(dev);
2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2842 int budget_org = budget;
2843
2844 if (unlikely(!is_s2io_card_up(nic)))
2845 return 0;
2846
2847 pkts_processed = rx_intr_handler(ring, budget);
2848 s2io_chk_rx_buffers(nic, ring);
2849
2850 if (pkts_processed < budget_org) {
2851 napi_complete(napi);
2852 /*Re Enable MSI-Rx Vector*/
2853 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2854 addr += 7 - ring->ring_no;
2855 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856 writeb(val8, addr);
2857 val8 = readb(addr);
2858 }
2859 return pkts_processed;
2860 }
2861
2862 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863 {
2864 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2865 int pkts_processed = 0;
2866 int ring_pkts_processed, i;
2867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868 int budget_org = budget;
2869 struct config_param *config = &nic->config;
2870 struct mac_info *mac_control = &nic->mac_control;
2871
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
2874
2875 for (i = 0; i < config->rx_ring_num; i++) {
2876 struct ring_info *ring = &mac_control->rings[i];
2877 ring_pkts_processed = rx_intr_handler(ring, budget);
2878 s2io_chk_rx_buffers(nic, ring);
2879 pkts_processed += ring_pkts_processed;
2880 budget -= ring_pkts_processed;
2881 if (budget <= 0)
2882 break;
2883 }
2884 if (pkts_processed < budget_org) {
2885 napi_complete(napi);
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0->rx_traffic_mask);
2888 readl(&bar0->rx_traffic_mask);
2889 }
2890 return pkts_processed;
2891 }
2892
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2894 /**
2895 * s2io_netpoll - netpoll event handler entry point
2896 * @dev : pointer to the device structure.
2897 * Description:
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
2902 */
2903 static void s2io_netpoll(struct net_device *dev)
2904 {
2905 struct s2io_nic *nic = netdev_priv(dev);
2906 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2907 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2908 int i;
2909 struct config_param *config = &nic->config;
2910 struct mac_info *mac_control = &nic->mac_control;
2911
2912 if (pci_channel_offline(nic->pdev))
2913 return;
2914
2915 disable_irq(dev->irq);
2916
2917 writeq(val64, &bar0->rx_traffic_int);
2918 writeq(val64, &bar0->tx_traffic_int);
2919
2920 /* we need to free up the transmitted skbufs or else netpoll will
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2923 */
2924 for (i = 0; i < config->tx_fifo_num; i++)
2925 tx_intr_handler(&mac_control->fifos[i]);
2926
2927 /* check for received packet and indicate up to network */
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2930
2931 rx_intr_handler(ring, 0);
2932 }
2933
2934 for (i = 0; i < config->rx_ring_num; i++) {
2935 struct ring_info *ring = &mac_control->rings[i];
2936
2937 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2938 DBG_PRINT(INFO_DBG,
2939 "%s: Out of memory in Rx Netpoll!!\n",
2940 dev->name);
2941 break;
2942 }
2943 }
2944 enable_irq(dev->irq);
2945 return;
2946 }
2947 #endif
2948
2949 /**
2950 * rx_intr_handler - Rx interrupt handler
2951 * @ring_info: per ring structure.
2952 * @budget: budget for napi processing.
2953 * Description:
2954 * If the interrupt is because of a received frame or if the
2955 * receive ring contains fresh as yet un-processed frames,this function is
2956 * called. It picks out the RxD at which place the last Rx processing had
2957 * stopped and sends the skb to the OSM's Rx handler and then increments
2958 * the offset.
2959 * Return Value:
2960 * No. of napi packets processed.
2961 */
2962 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2963 {
2964 int get_block, put_block;
2965 struct rx_curr_get_info get_info, put_info;
2966 struct RxD_t *rxdp;
2967 struct sk_buff *skb;
2968 int pkt_cnt = 0, napi_pkts = 0;
2969 int i;
2970 struct RxD1 *rxdp1;
2971 struct RxD3 *rxdp3;
2972
2973 get_info = ring_data->rx_curr_get_info;
2974 get_block = get_info.block_index;
2975 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2976 put_block = put_info.block_index;
2977 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2978
2979 while (RXD_IS_UP2DT(rxdp)) {
2980 /*
2981 * If your are next to put index then it's
2982 * FIFO full condition
2983 */
2984 if ((get_block == put_block) &&
2985 (get_info.offset + 1) == put_info.offset) {
2986 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2987 ring_data->dev->name);
2988 break;
2989 }
2990 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2991 if (skb == NULL) {
2992 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2993 ring_data->dev->name);
2994 return 0;
2995 }
2996 if (ring_data->rxd_mode == RXD_MODE_1) {
2997 rxdp1 = (struct RxD1 *)rxdp;
2998 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2999 rxdp1->Buffer0_ptr,
3000 ring_data->mtu +
3001 HEADER_ETHERNET_II_802_3_SIZE +
3002 HEADER_802_2_SIZE +
3003 HEADER_SNAP_SIZE,
3004 PCI_DMA_FROMDEVICE);
3005 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3006 rxdp3 = (struct RxD3 *)rxdp;
3007 pci_dma_sync_single_for_cpu(ring_data->pdev,
3008 (dma_addr_t)rxdp3->Buffer0_ptr,
3009 BUF0_LEN,
3010 PCI_DMA_FROMDEVICE);
3011 pci_unmap_single(ring_data->pdev,
3012 (dma_addr_t)rxdp3->Buffer2_ptr,
3013 ring_data->mtu + 4,
3014 PCI_DMA_FROMDEVICE);
3015 }
3016 prefetch(skb->data);
3017 rx_osm_handler(ring_data, rxdp);
3018 get_info.offset++;
3019 ring_data->rx_curr_get_info.offset = get_info.offset;
3020 rxdp = ring_data->rx_blocks[get_block].
3021 rxds[get_info.offset].virt_addr;
3022 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3023 get_info.offset = 0;
3024 ring_data->rx_curr_get_info.offset = get_info.offset;
3025 get_block++;
3026 if (get_block == ring_data->block_count)
3027 get_block = 0;
3028 ring_data->rx_curr_get_info.block_index = get_block;
3029 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3030 }
3031
3032 if (ring_data->nic->config.napi) {
3033 budget--;
3034 napi_pkts++;
3035 if (!budget)
3036 break;
3037 }
3038 pkt_cnt++;
3039 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3040 break;
3041 }
3042 if (ring_data->lro) {
3043 /* Clear all LRO sessions before exiting */
3044 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3045 struct lro *lro = &ring_data->lro0_n[i];
3046 if (lro->in_use) {
3047 update_L3L4_header(ring_data->nic, lro);
3048 queue_rx_frame(lro->parent, lro->vlan_tag);
3049 clear_lro_session(lro);
3050 }
3051 }
3052 }
3053 return napi_pkts;
3054 }
3055
3056 /**
3057 * tx_intr_handler - Transmit interrupt handler
3058 * @nic : device private variable
3059 * Description:
3060 * If an interrupt was raised to indicate DMA complete of the
3061 * Tx packet, this function is called. It identifies the last TxD
3062 * whose buffer was freed and frees all skbs whose data have already
3063 * DMA'ed into the NICs internal memory.
3064 * Return Value:
3065 * NONE
3066 */
3067
3068 static void tx_intr_handler(struct fifo_info *fifo_data)
3069 {
3070 struct s2io_nic *nic = fifo_data->nic;
3071 struct tx_curr_get_info get_info, put_info;
3072 struct sk_buff *skb = NULL;
3073 struct TxD *txdlp;
3074 int pkt_cnt = 0;
3075 unsigned long flags = 0;
3076 u8 err_mask;
3077 struct stat_block *stats = nic->mac_control.stats_info;
3078 struct swStat *swstats = &stats->sw_stat;
3079
3080 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3081 return;
3082
3083 get_info = fifo_data->tx_curr_get_info;
3084 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3085 txdlp = (struct TxD *)
3086 fifo_data->list_info[get_info.offset].list_virt_addr;
3087 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088 (get_info.offset != put_info.offset) &&
3089 (txdlp->Host_Control)) {
3090 /* Check for TxD errors */
3091 if (txdlp->Control_1 & TXD_T_CODE) {
3092 unsigned long long err;
3093 err = txdlp->Control_1 & TXD_T_CODE;
3094 if (err & 0x1) {
3095 swstats->parity_err_cnt++;
3096 }
3097
3098 /* update t_code statistics */
3099 err_mask = err >> 48;
3100 switch (err_mask) {
3101 case 2:
3102 swstats->tx_buf_abort_cnt++;
3103 break;
3104
3105 case 3:
3106 swstats->tx_desc_abort_cnt++;
3107 break;
3108
3109 case 7:
3110 swstats->tx_parity_err_cnt++;
3111 break;
3112
3113 case 10:
3114 swstats->tx_link_loss_cnt++;
3115 break;
3116
3117 case 15:
3118 swstats->tx_list_proc_err_cnt++;
3119 break;
3120 }
3121 }
3122
3123 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3124 if (skb == NULL) {
3125 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3126 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3127 __func__);
3128 return;
3129 }
3130 pkt_cnt++;
3131
3132 /* Updating the statistics block */
3133 nic->dev->stats.tx_bytes += skb->len;
3134 swstats->mem_freed += skb->truesize;
3135 dev_kfree_skb_irq(skb);
3136
3137 get_info.offset++;
3138 if (get_info.offset == get_info.fifo_len + 1)
3139 get_info.offset = 0;
3140 txdlp = (struct TxD *)
3141 fifo_data->list_info[get_info.offset].list_virt_addr;
3142 fifo_data->tx_curr_get_info.offset = get_info.offset;
3143 }
3144
3145 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3146
3147 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3148 }
3149
3150 /**
3151 * s2io_mdio_write - Function to write in to MDIO registers
3152 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3153 * @addr : address value
3154 * @value : data value
3155 * @dev : pointer to net_device structure
3156 * Description:
3157 * This function is used to write values to the MDIO registers
3158 * NONE
3159 */
3160 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3161 struct net_device *dev)
3162 {
3163 u64 val64;
3164 struct s2io_nic *sp = netdev_priv(dev);
3165 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3166
3167 /* address transaction */
3168 val64 = MDIO_MMD_INDX_ADDR(addr) |
3169 MDIO_MMD_DEV_ADDR(mmd_type) |
3170 MDIO_MMS_PRT_ADDR(0x0);
3171 writeq(val64, &bar0->mdio_control);
3172 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64, &bar0->mdio_control);
3174 udelay(100);
3175
3176 /* Data transaction */
3177 val64 = MDIO_MMD_INDX_ADDR(addr) |
3178 MDIO_MMD_DEV_ADDR(mmd_type) |
3179 MDIO_MMS_PRT_ADDR(0x0) |
3180 MDIO_MDIO_DATA(value) |
3181 MDIO_OP(MDIO_OP_WRITE_TRANS);
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3185 udelay(100);
3186
3187 val64 = MDIO_MMD_INDX_ADDR(addr) |
3188 MDIO_MMD_DEV_ADDR(mmd_type) |
3189 MDIO_MMS_PRT_ADDR(0x0) |
3190 MDIO_OP(MDIO_OP_READ_TRANS);
3191 writeq(val64, &bar0->mdio_control);
3192 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3193 writeq(val64, &bar0->mdio_control);
3194 udelay(100);
3195 }
3196
3197 /**
3198 * s2io_mdio_read - Function to write in to MDIO registers
3199 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3200 * @addr : address value
3201 * @dev : pointer to net_device structure
3202 * Description:
3203 * This function is used to read values to the MDIO registers
3204 * NONE
3205 */
3206 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3207 {
3208 u64 val64 = 0x0;
3209 u64 rval64 = 0x0;
3210 struct s2io_nic *sp = netdev_priv(dev);
3211 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3212
3213 /* address transaction */
3214 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3215 | MDIO_MMD_DEV_ADDR(mmd_type)
3216 | MDIO_MMS_PRT_ADDR(0x0));
3217 writeq(val64, &bar0->mdio_control);
3218 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64, &bar0->mdio_control);
3220 udelay(100);
3221
3222 /* Data transaction */
3223 val64 = MDIO_MMD_INDX_ADDR(addr) |
3224 MDIO_MMD_DEV_ADDR(mmd_type) |
3225 MDIO_MMS_PRT_ADDR(0x0) |
3226 MDIO_OP(MDIO_OP_READ_TRANS);
3227 writeq(val64, &bar0->mdio_control);
3228 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64, &bar0->mdio_control);
3230 udelay(100);
3231
3232 /* Read the value from regs */
3233 rval64 = readq(&bar0->mdio_control);
3234 rval64 = rval64 & 0xFFFF0000;
3235 rval64 = rval64 >> 16;
3236 return rval64;
3237 }
3238
3239 /**
3240 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3241 * @counter : counter value to be updated
3242 * @flag : flag to indicate the status
3243 * @type : counter type
3244 * Description:
3245 * This function is to check the status of the xpak counters value
3246 * NONE
3247 */
3248
3249 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3250 u16 flag, u16 type)
3251 {
3252 u64 mask = 0x3;
3253 u64 val64;
3254 int i;
3255 for (i = 0; i < index; i++)
3256 mask = mask << 0x2;
3257
3258 if (flag > 0) {
3259 *counter = *counter + 1;
3260 val64 = *regs_stat & mask;
3261 val64 = val64 >> (index * 0x2);
3262 val64 = val64 + 1;
3263 if (val64 == 3) {
3264 switch (type) {
3265 case 1:
3266 DBG_PRINT(ERR_DBG,
3267 "Take Xframe NIC out of service.\n");
3268 DBG_PRINT(ERR_DBG,
3269 "Excessive temperatures may result in premature transceiver failure.\n");
3270 break;
3271 case 2:
3272 DBG_PRINT(ERR_DBG,
3273 "Take Xframe NIC out of service.\n");
3274 DBG_PRINT(ERR_DBG,
3275 "Excessive bias currents may indicate imminent laser diode failure.\n");
3276 break;
3277 case 3:
3278 DBG_PRINT(ERR_DBG,
3279 "Take Xframe NIC out of service.\n");
3280 DBG_PRINT(ERR_DBG,
3281 "Excessive laser output power may saturate far-end receiver.\n");
3282 break;
3283 default:
3284 DBG_PRINT(ERR_DBG,
3285 "Incorrect XPAK Alarm type\n");
3286 }
3287 val64 = 0x0;
3288 }
3289 val64 = val64 << (index * 0x2);
3290 *regs_stat = (*regs_stat & (~mask)) | (val64);
3291
3292 } else {
3293 *regs_stat = *regs_stat & (~mask);
3294 }
3295 }
3296
3297 /**
3298 * s2io_updt_xpak_counter - Function to update the xpak counters
3299 * @dev : pointer to net_device struct
3300 * Description:
3301 * This function is to upate the status of the xpak counters value
3302 * NONE
3303 */
3304 static void s2io_updt_xpak_counter(struct net_device *dev)
3305 {
3306 u16 flag = 0x0;
3307 u16 type = 0x0;
3308 u16 val16 = 0x0;
3309 u64 val64 = 0x0;
3310 u64 addr = 0x0;
3311
3312 struct s2io_nic *sp = netdev_priv(dev);
3313 struct stat_block *stats = sp->mac_control.stats_info;
3314 struct xpakStat *xstats = &stats->xpak_stat;
3315
3316 /* Check the communication with the MDIO slave */
3317 addr = MDIO_CTRL1;
3318 val64 = 0x0;
3319 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3320 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3321 DBG_PRINT(ERR_DBG,
3322 "ERR: MDIO slave access failed - Returned %llx\n",
3323 (unsigned long long)val64);
3324 return;
3325 }
3326
3327 /* Check for the expected value of control reg 1 */
3328 if (val64 != MDIO_CTRL1_SPEED10G) {
3329 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3330 "Returned: %llx- Expected: 0x%x\n",
3331 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3332 return;
3333 }
3334
3335 /* Loading the DOM register to MDIO register */
3336 addr = 0xA100;
3337 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3338 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3339
3340 /* Reading the Alarm flags */
3341 addr = 0xA070;
3342 val64 = 0x0;
3343 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3344
3345 flag = CHECKBIT(val64, 0x7);
3346 type = 1;
3347 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3348 &xstats->xpak_regs_stat,
3349 0x0, flag, type);
3350
3351 if (CHECKBIT(val64, 0x6))
3352 xstats->alarm_transceiver_temp_low++;
3353
3354 flag = CHECKBIT(val64, 0x3);
3355 type = 2;
3356 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3357 &xstats->xpak_regs_stat,
3358 0x2, flag, type);
3359
3360 if (CHECKBIT(val64, 0x2))
3361 xstats->alarm_laser_bias_current_low++;
3362
3363 flag = CHECKBIT(val64, 0x1);
3364 type = 3;
3365 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3366 &xstats->xpak_regs_stat,
3367 0x4, flag, type);
3368
3369 if (CHECKBIT(val64, 0x0))
3370 xstats->alarm_laser_output_power_low++;
3371
3372 /* Reading the Warning flags */
3373 addr = 0xA074;
3374 val64 = 0x0;
3375 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3376
3377 if (CHECKBIT(val64, 0x7))
3378 xstats->warn_transceiver_temp_high++;
3379
3380 if (CHECKBIT(val64, 0x6))
3381 xstats->warn_transceiver_temp_low++;
3382
3383 if (CHECKBIT(val64, 0x3))
3384 xstats->warn_laser_bias_current_high++;
3385
3386 if (CHECKBIT(val64, 0x2))
3387 xstats->warn_laser_bias_current_low++;
3388
3389 if (CHECKBIT(val64, 0x1))
3390 xstats->warn_laser_output_power_high++;
3391
3392 if (CHECKBIT(val64, 0x0))
3393 xstats->warn_laser_output_power_low++;
3394 }
3395
3396 /**
3397 * wait_for_cmd_complete - waits for a command to complete.
3398 * @sp : private member of the device structure, which is a pointer to the
3399 * s2io_nic structure.
3400 * Description: Function that waits for a command to Write into RMAC
3401 * ADDR DATA registers to be completed and returns either success or
3402 * error depending on whether the command was complete or not.
3403 * Return value:
3404 * SUCCESS on success and FAILURE on failure.
3405 */
3406
3407 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3408 int bit_state)
3409 {
3410 int ret = FAILURE, cnt = 0, delay = 1;
3411 u64 val64;
3412
3413 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3414 return FAILURE;
3415
3416 do {
3417 val64 = readq(addr);
3418 if (bit_state == S2IO_BIT_RESET) {
3419 if (!(val64 & busy_bit)) {
3420 ret = SUCCESS;
3421 break;
3422 }
3423 } else {
3424 if (val64 & busy_bit) {
3425 ret = SUCCESS;
3426 break;
3427 }
3428 }
3429
3430 if (in_interrupt())
3431 mdelay(delay);
3432 else
3433 msleep(delay);
3434
3435 if (++cnt >= 10)
3436 delay = 50;
3437 } while (cnt < 20);
3438 return ret;
3439 }
3440 /*
3441 * check_pci_device_id - Checks if the device id is supported
3442 * @id : device id
3443 * Description: Function to check if the pci device id is supported by driver.
3444 * Return value: Actual device id if supported else PCI_ANY_ID
3445 */
3446 static u16 check_pci_device_id(u16 id)
3447 {
3448 switch (id) {
3449 case PCI_DEVICE_ID_HERC_WIN:
3450 case PCI_DEVICE_ID_HERC_UNI:
3451 return XFRAME_II_DEVICE;
3452 case PCI_DEVICE_ID_S2IO_UNI:
3453 case PCI_DEVICE_ID_S2IO_WIN:
3454 return XFRAME_I_DEVICE;
3455 default:
3456 return PCI_ANY_ID;
3457 }
3458 }
3459
3460 /**
3461 * s2io_reset - Resets the card.
3462 * @sp : private member of the device structure.
3463 * Description: Function to Reset the card. This function then also
3464 * restores the previously saved PCI configuration space registers as
3465 * the card reset also resets the configuration space.
3466 * Return value:
3467 * void.
3468 */
3469
3470 static void s2io_reset(struct s2io_nic *sp)
3471 {
3472 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3473 u64 val64;
3474 u16 subid, pci_cmd;
3475 int i;
3476 u16 val16;
3477 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3478 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3479 struct stat_block *stats;
3480 struct swStat *swstats;
3481
3482 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3483 __func__, sp->dev->name);
3484
3485 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3486 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3487
3488 val64 = SW_RESET_ALL;
3489 writeq(val64, &bar0->sw_reset);
3490 if (strstr(sp->product_name, "CX4"))
3491 msleep(750);
3492 msleep(250);
3493 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3494
3495 /* Restore the PCI state saved during initialization. */
3496 pci_restore_state(sp->pdev);
3497 pci_save_state(sp->pdev);
3498 pci_read_config_word(sp->pdev, 0x2, &val16);
3499 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3500 break;
3501 msleep(200);
3502 }
3503
3504 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3505 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3506
3507 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3508
3509 s2io_init_pci(sp);
3510
3511 /* Set swapper to enable I/O register access */
3512 s2io_set_swapper(sp);
3513
3514 /* restore mac_addr entries */
3515 do_s2io_restore_unicast_mc(sp);
3516
3517 /* Restore the MSIX table entries from local variables */
3518 restore_xmsi_data(sp);
3519
3520 /* Clear certain PCI/PCI-X fields after reset */
3521 if (sp->device_type == XFRAME_II_DEVICE) {
3522 /* Clear "detected parity error" bit */
3523 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3524
3525 /* Clearing PCIX Ecc status register */
3526 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3527
3528 /* Clearing PCI_STATUS error reflected here */
3529 writeq(s2BIT(62), &bar0->txpic_int_reg);
3530 }
3531
3532 /* Reset device statistics maintained by OS */
3533 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3534
3535 stats = sp->mac_control.stats_info;
3536 swstats = &stats->sw_stat;
3537
3538 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3539 up_cnt = swstats->link_up_cnt;
3540 down_cnt = swstats->link_down_cnt;
3541 up_time = swstats->link_up_time;
3542 down_time = swstats->link_down_time;
3543 reset_cnt = swstats->soft_reset_cnt;
3544 mem_alloc_cnt = swstats->mem_allocated;
3545 mem_free_cnt = swstats->mem_freed;
3546 watchdog_cnt = swstats->watchdog_timer_cnt;
3547
3548 memset(stats, 0, sizeof(struct stat_block));
3549
3550 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3551 swstats->link_up_cnt = up_cnt;
3552 swstats->link_down_cnt = down_cnt;
3553 swstats->link_up_time = up_time;
3554 swstats->link_down_time = down_time;
3555 swstats->soft_reset_cnt = reset_cnt;
3556 swstats->mem_allocated = mem_alloc_cnt;
3557 swstats->mem_freed = mem_free_cnt;
3558 swstats->watchdog_timer_cnt = watchdog_cnt;
3559
3560 /* SXE-002: Configure link and activity LED to turn it off */
3561 subid = sp->pdev->subsystem_device;
3562 if (((subid & 0xFF) >= 0x07) &&
3563 (sp->device_type == XFRAME_I_DEVICE)) {
3564 val64 = readq(&bar0->gpio_control);
3565 val64 |= 0x0000800000000000ULL;
3566 writeq(val64, &bar0->gpio_control);
3567 val64 = 0x0411040400000000ULL;
3568 writeq(val64, (void __iomem *)bar0 + 0x2700);
3569 }
3570
3571 /*
3572 * Clear spurious ECC interrupts that would have occured on
3573 * XFRAME II cards after reset.
3574 */
3575 if (sp->device_type == XFRAME_II_DEVICE) {
3576 val64 = readq(&bar0->pcc_err_reg);
3577 writeq(val64, &bar0->pcc_err_reg);
3578 }
3579
3580 sp->device_enabled_once = false;
3581 }
3582
3583 /**
3584 * s2io_set_swapper - to set the swapper controle on the card
3585 * @sp : private member of the device structure,
3586 * pointer to the s2io_nic structure.
3587 * Description: Function to set the swapper control on the card
3588 * correctly depending on the 'endianness' of the system.
3589 * Return value:
3590 * SUCCESS on success and FAILURE on failure.
3591 */
3592
3593 static int s2io_set_swapper(struct s2io_nic *sp)
3594 {
3595 struct net_device *dev = sp->dev;
3596 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3597 u64 val64, valt, valr;
3598
3599 /*
3600 * Set proper endian settings and verify the same by reading
3601 * the PIF Feed-back register.
3602 */
3603
3604 val64 = readq(&bar0->pif_rd_swapper_fb);
3605 if (val64 != 0x0123456789ABCDEFULL) {
3606 int i = 0;
3607 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3608 0x8100008181000081ULL, /* FE=1, SE=0 */
3609 0x4200004242000042ULL, /* FE=0, SE=1 */
3610 0}; /* FE=0, SE=0 */
3611
3612 while (i < 4) {
3613 writeq(value[i], &bar0->swapper_ctrl);
3614 val64 = readq(&bar0->pif_rd_swapper_fb);
3615 if (val64 == 0x0123456789ABCDEFULL)
3616 break;
3617 i++;
3618 }
3619 if (i == 4) {
3620 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3621 "feedback read %llx\n",
3622 dev->name, (unsigned long long)val64);
3623 return FAILURE;
3624 }
3625 valr = value[i];
3626 } else {
3627 valr = readq(&bar0->swapper_ctrl);
3628 }
3629
3630 valt = 0x0123456789ABCDEFULL;
3631 writeq(valt, &bar0->xmsi_address);
3632 val64 = readq(&bar0->xmsi_address);
3633
3634 if (val64 != valt) {
3635 int i = 0;
3636 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3637 0x0081810000818100ULL, /* FE=1, SE=0 */
3638 0x0042420000424200ULL, /* FE=0, SE=1 */
3639 0}; /* FE=0, SE=0 */
3640
3641 while (i < 4) {
3642 writeq((value[i] | valr), &bar0->swapper_ctrl);
3643 writeq(valt, &bar0->xmsi_address);
3644 val64 = readq(&bar0->xmsi_address);
3645 if (val64 == valt)
3646 break;
3647 i++;
3648 }
3649 if (i == 4) {
3650 unsigned long long x = val64;
3651 DBG_PRINT(ERR_DBG,
3652 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3653 return FAILURE;
3654 }
3655 }
3656 val64 = readq(&bar0->swapper_ctrl);
3657 val64 &= 0xFFFF000000000000ULL;
3658
3659 #ifdef __BIG_ENDIAN
3660 /*
3661 * The device by default set to a big endian format, so a
3662 * big endian driver need not set anything.
3663 */
3664 val64 |= (SWAPPER_CTRL_TXP_FE |
3665 SWAPPER_CTRL_TXP_SE |
3666 SWAPPER_CTRL_TXD_R_FE |
3667 SWAPPER_CTRL_TXD_W_FE |
3668 SWAPPER_CTRL_TXF_R_FE |
3669 SWAPPER_CTRL_RXD_R_FE |
3670 SWAPPER_CTRL_RXD_W_FE |
3671 SWAPPER_CTRL_RXF_W_FE |
3672 SWAPPER_CTRL_XMSI_FE |
3673 SWAPPER_CTRL_STATS_FE |
3674 SWAPPER_CTRL_STATS_SE);
3675 if (sp->config.intr_type == INTA)
3676 val64 |= SWAPPER_CTRL_XMSI_SE;
3677 writeq(val64, &bar0->swapper_ctrl);
3678 #else
3679 /*
3680 * Initially we enable all bits to make it accessible by the
3681 * driver, then we selectively enable only those bits that
3682 * we want to set.
3683 */
3684 val64 |= (SWAPPER_CTRL_TXP_FE |
3685 SWAPPER_CTRL_TXP_SE |
3686 SWAPPER_CTRL_TXD_R_FE |
3687 SWAPPER_CTRL_TXD_R_SE |
3688 SWAPPER_CTRL_TXD_W_FE |
3689 SWAPPER_CTRL_TXD_W_SE |
3690 SWAPPER_CTRL_TXF_R_FE |
3691 SWAPPER_CTRL_RXD_R_FE |
3692 SWAPPER_CTRL_RXD_R_SE |
3693 SWAPPER_CTRL_RXD_W_FE |
3694 SWAPPER_CTRL_RXD_W_SE |
3695 SWAPPER_CTRL_RXF_W_FE |
3696 SWAPPER_CTRL_XMSI_FE |
3697 SWAPPER_CTRL_STATS_FE |
3698 SWAPPER_CTRL_STATS_SE);
3699 if (sp->config.intr_type == INTA)
3700 val64 |= SWAPPER_CTRL_XMSI_SE;
3701 writeq(val64, &bar0->swapper_ctrl);
3702 #endif
3703 val64 = readq(&bar0->swapper_ctrl);
3704
3705 /*
3706 * Verifying if endian settings are accurate by reading a
3707 * feedback register.
3708 */
3709 val64 = readq(&bar0->pif_rd_swapper_fb);
3710 if (val64 != 0x0123456789ABCDEFULL) {
3711 /* Endian settings are incorrect, calls for another dekko. */
3712 DBG_PRINT(ERR_DBG,
3713 "%s: Endian settings are wrong, feedback read %llx\n",
3714 dev->name, (unsigned long long)val64);
3715 return FAILURE;
3716 }
3717
3718 return SUCCESS;
3719 }
3720
3721 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3722 {
3723 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3724 u64 val64;
3725 int ret = 0, cnt = 0;
3726
3727 do {
3728 val64 = readq(&bar0->xmsi_access);
3729 if (!(val64 & s2BIT(15)))
3730 break;
3731 mdelay(1);
3732 cnt++;
3733 } while (cnt < 5);
3734 if (cnt == 5) {
3735 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3736 ret = 1;
3737 }
3738
3739 return ret;
3740 }
3741
3742 static void restore_xmsi_data(struct s2io_nic *nic)
3743 {
3744 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3745 u64 val64;
3746 int i, msix_index;
3747
3748 if (nic->device_type == XFRAME_I_DEVICE)
3749 return;
3750
3751 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3752 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3753 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3754 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3755 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3756 writeq(val64, &bar0->xmsi_access);
3757 if (wait_for_msix_trans(nic, msix_index)) {
3758 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3759 __func__, msix_index);
3760 continue;
3761 }
3762 }
3763 }
3764
3765 static void store_xmsi_data(struct s2io_nic *nic)
3766 {
3767 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3768 u64 val64, addr, data;
3769 int i, msix_index;
3770
3771 if (nic->device_type == XFRAME_I_DEVICE)
3772 return;
3773
3774 /* Store and display */
3775 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3776 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3777 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3778 writeq(val64, &bar0->xmsi_access);
3779 if (wait_for_msix_trans(nic, msix_index)) {
3780 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3781 __func__, msix_index);
3782 continue;
3783 }
3784 addr = readq(&bar0->xmsi_address);
3785 data = readq(&bar0->xmsi_data);
3786 if (addr && data) {
3787 nic->msix_info[i].addr = addr;
3788 nic->msix_info[i].data = data;
3789 }
3790 }
3791 }
3792
3793 static int s2io_enable_msi_x(struct s2io_nic *nic)
3794 {
3795 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3796 u64 rx_mat;
3797 u16 msi_control; /* Temp variable */
3798 int ret, i, j, msix_indx = 1;
3799 int size;
3800 struct stat_block *stats = nic->mac_control.stats_info;
3801 struct swStat *swstats = &stats->sw_stat;
3802
3803 size = nic->num_entries * sizeof(struct msix_entry);
3804 nic->entries = kzalloc(size, GFP_KERNEL);
3805 if (!nic->entries) {
3806 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3807 __func__);
3808 swstats->mem_alloc_fail_cnt++;
3809 return -ENOMEM;
3810 }
3811 swstats->mem_allocated += size;
3812
3813 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3814 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3815 if (!nic->s2io_entries) {
3816 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3817 __func__);
3818 swstats->mem_alloc_fail_cnt++;
3819 kfree(nic->entries);
3820 swstats->mem_freed
3821 += (nic->num_entries * sizeof(struct msix_entry));
3822 return -ENOMEM;
3823 }
3824 swstats->mem_allocated += size;
3825
3826 nic->entries[0].entry = 0;
3827 nic->s2io_entries[0].entry = 0;
3828 nic->s2io_entries[0].in_use = MSIX_FLG;
3829 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3830 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3831
3832 for (i = 1; i < nic->num_entries; i++) {
3833 nic->entries[i].entry = ((i - 1) * 8) + 1;
3834 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3835 nic->s2io_entries[i].arg = NULL;
3836 nic->s2io_entries[i].in_use = 0;
3837 }
3838
3839 rx_mat = readq(&bar0->rx_mat);
3840 for (j = 0; j < nic->config.rx_ring_num; j++) {
3841 rx_mat |= RX_MAT_SET(j, msix_indx);
3842 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3843 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3844 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3845 msix_indx += 8;
3846 }
3847 writeq(rx_mat, &bar0->rx_mat);
3848 readq(&bar0->rx_mat);
3849
3850 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3851 /* We fail init if error or we get less vectors than min required */
3852 if (ret) {
3853 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3854 kfree(nic->entries);
3855 swstats->mem_freed += nic->num_entries *
3856 sizeof(struct msix_entry);
3857 kfree(nic->s2io_entries);
3858 swstats->mem_freed += nic->num_entries *
3859 sizeof(struct s2io_msix_entry);
3860 nic->entries = NULL;
3861 nic->s2io_entries = NULL;
3862 return -ENOMEM;
3863 }
3864
3865 /*
3866 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3867 * in the herc NIC. (Temp change, needs to be removed later)
3868 */
3869 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3870 msi_control |= 0x1; /* Enable MSI */
3871 pci_write_config_word(nic->pdev, 0x42, msi_control);
3872
3873 return 0;
3874 }
3875
3876 /* Handle software interrupt used during MSI(X) test */
3877 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3878 {
3879 struct s2io_nic *sp = dev_id;
3880
3881 sp->msi_detected = 1;
3882 wake_up(&sp->msi_wait);
3883
3884 return IRQ_HANDLED;
3885 }
3886
3887 /* Test interrupt path by forcing a a software IRQ */
3888 static int s2io_test_msi(struct s2io_nic *sp)
3889 {
3890 struct pci_dev *pdev = sp->pdev;
3891 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3892 int err;
3893 u64 val64, saved64;
3894
3895 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3896 sp->name, sp);
3897 if (err) {
3898 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3899 sp->dev->name, pci_name(pdev), pdev->irq);
3900 return err;
3901 }
3902
3903 init_waitqueue_head(&sp->msi_wait);
3904 sp->msi_detected = 0;
3905
3906 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3907 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3908 val64 |= SCHED_INT_CTRL_TIMER_EN;
3909 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3910 writeq(val64, &bar0->scheduled_int_ctrl);
3911
3912 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3913
3914 if (!sp->msi_detected) {
3915 /* MSI(X) test failed, go back to INTx mode */
3916 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3917 "using MSI(X) during test\n",
3918 sp->dev->name, pci_name(pdev));
3919
3920 err = -EOPNOTSUPP;
3921 }
3922
3923 free_irq(sp->entries[1].vector, sp);
3924
3925 writeq(saved64, &bar0->scheduled_int_ctrl);
3926
3927 return err;
3928 }
3929
3930 static void remove_msix_isr(struct s2io_nic *sp)
3931 {
3932 int i;
3933 u16 msi_control;
3934
3935 for (i = 0; i < sp->num_entries; i++) {
3936 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3937 int vector = sp->entries[i].vector;
3938 void *arg = sp->s2io_entries[i].arg;
3939 free_irq(vector, arg);
3940 }
3941 }
3942
3943 kfree(sp->entries);
3944 kfree(sp->s2io_entries);
3945 sp->entries = NULL;
3946 sp->s2io_entries = NULL;
3947
3948 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3949 msi_control &= 0xFFFE; /* Disable MSI */
3950 pci_write_config_word(sp->pdev, 0x42, msi_control);
3951
3952 pci_disable_msix(sp->pdev);
3953 }
3954
3955 static void remove_inta_isr(struct s2io_nic *sp)
3956 {
3957 struct net_device *dev = sp->dev;
3958
3959 free_irq(sp->pdev->irq, dev);
3960 }
3961
3962 /* ********************************************************* *
3963 * Functions defined below concern the OS part of the driver *
3964 * ********************************************************* */
3965
3966 /**
3967 * s2io_open - open entry point of the driver
3968 * @dev : pointer to the device structure.
3969 * Description:
3970 * This function is the open entry point of the driver. It mainly calls a
3971 * function to allocate Rx buffers and inserts them into the buffer
3972 * descriptors and then enables the Rx part of the NIC.
3973 * Return value:
3974 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3975 * file on failure.
3976 */
3977
3978 static int s2io_open(struct net_device *dev)
3979 {
3980 struct s2io_nic *sp = netdev_priv(dev);
3981 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3982 int err = 0;
3983
3984 /*
3985 * Make sure you have link off by default every time
3986 * Nic is initialized
3987 */
3988 netif_carrier_off(dev);
3989 sp->last_link_state = 0;
3990
3991 /* Initialize H/W and enable interrupts */
3992 err = s2io_card_up(sp);
3993 if (err) {
3994 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3995 dev->name);
3996 goto hw_init_failed;
3997 }
3998
3999 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4000 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4001 s2io_card_down(sp);
4002 err = -ENODEV;
4003 goto hw_init_failed;
4004 }
4005 s2io_start_all_tx_queue(sp);
4006 return 0;
4007
4008 hw_init_failed:
4009 if (sp->config.intr_type == MSI_X) {
4010 if (sp->entries) {
4011 kfree(sp->entries);
4012 swstats->mem_freed += sp->num_entries *
4013 sizeof(struct msix_entry);
4014 }
4015 if (sp->s2io_entries) {
4016 kfree(sp->s2io_entries);
4017 swstats->mem_freed += sp->num_entries *
4018 sizeof(struct s2io_msix_entry);
4019 }
4020 }
4021 return err;
4022 }
4023
4024 /**
4025 * s2io_close -close entry point of the driver
4026 * @dev : device pointer.
4027 * Description:
4028 * This is the stop entry point of the driver. It needs to undo exactly
4029 * whatever was done by the open entry point,thus it's usually referred to
4030 * as the close function.Among other things this function mainly stops the
4031 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4032 * Return value:
4033 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4034 * file on failure.
4035 */
4036
4037 static int s2io_close(struct net_device *dev)
4038 {
4039 struct s2io_nic *sp = netdev_priv(dev);
4040 struct config_param *config = &sp->config;
4041 u64 tmp64;
4042 int offset;
4043
4044 /* Return if the device is already closed *
4045 * Can happen when s2io_card_up failed in change_mtu *
4046 */
4047 if (!is_s2io_card_up(sp))
4048 return 0;
4049
4050 s2io_stop_all_tx_queue(sp);
4051 /* delete all populated mac entries */
4052 for (offset = 1; offset < config->max_mc_addr; offset++) {
4053 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4054 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4055 do_s2io_delete_unicast_mc(sp, tmp64);
4056 }
4057
4058 s2io_card_down(sp);
4059
4060 return 0;
4061 }
4062
4063 /**
4064 * s2io_xmit - Tx entry point of te driver
4065 * @skb : the socket buffer containing the Tx data.
4066 * @dev : device pointer.
4067 * Description :
4068 * This function is the Tx entry point of the driver. S2IO NIC supports
4069 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4070 * NOTE: when device cant queue the pkt,just the trans_start variable will
4071 * not be upadted.
4072 * Return value:
4073 * 0 on success & 1 on failure.
4074 */
4075
4076 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4077 {
4078 struct s2io_nic *sp = netdev_priv(dev);
4079 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4080 register u64 val64;
4081 struct TxD *txdp;
4082 struct TxFIFO_element __iomem *tx_fifo;
4083 unsigned long flags = 0;
4084 u16 vlan_tag = 0;
4085 struct fifo_info *fifo = NULL;
4086 int do_spin_lock = 1;
4087 int offload_type;
4088 int enable_per_list_interrupt = 0;
4089 struct config_param *config = &sp->config;
4090 struct mac_info *mac_control = &sp->mac_control;
4091 struct stat_block *stats = mac_control->stats_info;
4092 struct swStat *swstats = &stats->sw_stat;
4093
4094 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4095
4096 if (unlikely(skb->len <= 0)) {
4097 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4098 dev_kfree_skb_any(skb);
4099 return NETDEV_TX_OK;
4100 }
4101
4102 if (!is_s2io_card_up(sp)) {
4103 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4104 dev->name);
4105 dev_kfree_skb(skb);
4106 return NETDEV_TX_OK;
4107 }
4108
4109 queue = 0;
4110 if (sp->vlgrp && vlan_tx_tag_present(skb))
4111 vlan_tag = vlan_tx_tag_get(skb);
4112 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4113 if (skb->protocol == htons(ETH_P_IP)) {
4114 struct iphdr *ip;
4115 struct tcphdr *th;
4116 ip = ip_hdr(skb);
4117
4118 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4119 th = (struct tcphdr *)(((unsigned char *)ip) +
4120 ip->ihl*4);
4121
4122 if (ip->protocol == IPPROTO_TCP) {
4123 queue_len = sp->total_tcp_fifos;
4124 queue = (ntohs(th->source) +
4125 ntohs(th->dest)) &
4126 sp->fifo_selector[queue_len - 1];
4127 if (queue >= queue_len)
4128 queue = queue_len - 1;
4129 } else if (ip->protocol == IPPROTO_UDP) {
4130 queue_len = sp->total_udp_fifos;
4131 queue = (ntohs(th->source) +
4132 ntohs(th->dest)) &
4133 sp->fifo_selector[queue_len - 1];
4134 if (queue >= queue_len)
4135 queue = queue_len - 1;
4136 queue += sp->udp_fifo_idx;
4137 if (skb->len > 1024)
4138 enable_per_list_interrupt = 1;
4139 do_spin_lock = 0;
4140 }
4141 }
4142 }
4143 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4144 /* get fifo number based on skb->priority value */
4145 queue = config->fifo_mapping
4146 [skb->priority & (MAX_TX_FIFOS - 1)];
4147 fifo = &mac_control->fifos[queue];
4148
4149 if (do_spin_lock)
4150 spin_lock_irqsave(&fifo->tx_lock, flags);
4151 else {
4152 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4153 return NETDEV_TX_LOCKED;
4154 }
4155
4156 if (sp->config.multiq) {
4157 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4158 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4159 return NETDEV_TX_BUSY;
4160 }
4161 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4162 if (netif_queue_stopped(dev)) {
4163 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4164 return NETDEV_TX_BUSY;
4165 }
4166 }
4167
4168 put_off = (u16)fifo->tx_curr_put_info.offset;
4169 get_off = (u16)fifo->tx_curr_get_info.offset;
4170 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4171
4172 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4173 /* Avoid "put" pointer going beyond "get" pointer */
4174 if (txdp->Host_Control ||
4175 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4176 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4177 s2io_stop_tx_queue(sp, fifo->fifo_no);
4178 dev_kfree_skb(skb);
4179 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4180 return NETDEV_TX_OK;
4181 }
4182
4183 offload_type = s2io_offload_type(skb);
4184 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4185 txdp->Control_1 |= TXD_TCP_LSO_EN;
4186 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4187 }
4188 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4189 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4190 TXD_TX_CKO_TCP_EN |
4191 TXD_TX_CKO_UDP_EN);
4192 }
4193 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4194 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4195 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4196 if (enable_per_list_interrupt)
4197 if (put_off & (queue_len >> 5))
4198 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4199 if (vlan_tag) {
4200 txdp->Control_2 |= TXD_VLAN_ENABLE;
4201 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4202 }
4203
4204 frg_len = skb->len - skb->data_len;
4205 if (offload_type == SKB_GSO_UDP) {
4206 int ufo_size;
4207
4208 ufo_size = s2io_udp_mss(skb);
4209 ufo_size &= ~7;
4210 txdp->Control_1 |= TXD_UFO_EN;
4211 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4212 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4213 #ifdef __BIG_ENDIAN
4214 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4215 fifo->ufo_in_band_v[put_off] =
4216 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4217 #else
4218 fifo->ufo_in_band_v[put_off] =
4219 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4220 #endif
4221 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4222 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4223 fifo->ufo_in_band_v,
4224 sizeof(u64),
4225 PCI_DMA_TODEVICE);
4226 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4227 goto pci_map_failed;
4228 txdp++;
4229 }
4230
4231 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4232 frg_len, PCI_DMA_TODEVICE);
4233 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4234 goto pci_map_failed;
4235
4236 txdp->Host_Control = (unsigned long)skb;
4237 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4238 if (offload_type == SKB_GSO_UDP)
4239 txdp->Control_1 |= TXD_UFO_EN;
4240
4241 frg_cnt = skb_shinfo(skb)->nr_frags;
4242 /* For fragmented SKB. */
4243 for (i = 0; i < frg_cnt; i++) {
4244 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4245 /* A '0' length fragment will be ignored */
4246 if (!frag->size)
4247 continue;
4248 txdp++;
4249 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4250 frag->page_offset,
4251 frag->size,
4252 PCI_DMA_TODEVICE);
4253 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4254 if (offload_type == SKB_GSO_UDP)
4255 txdp->Control_1 |= TXD_UFO_EN;
4256 }
4257 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4258
4259 if (offload_type == SKB_GSO_UDP)
4260 frg_cnt++; /* as Txd0 was used for inband header */
4261
4262 tx_fifo = mac_control->tx_FIFO_start[queue];
4263 val64 = fifo->list_info[put_off].list_phy_addr;
4264 writeq(val64, &tx_fifo->TxDL_Pointer);
4265
4266 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4267 TX_FIFO_LAST_LIST);
4268 if (offload_type)
4269 val64 |= TX_FIFO_SPECIAL_FUNC;
4270
4271 writeq(val64, &tx_fifo->List_Control);
4272
4273 mmiowb();
4274
4275 put_off++;
4276 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4277 put_off = 0;
4278 fifo->tx_curr_put_info.offset = put_off;
4279
4280 /* Avoid "put" pointer going beyond "get" pointer */
4281 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4282 swstats->fifo_full_cnt++;
4283 DBG_PRINT(TX_DBG,
4284 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4285 put_off, get_off);
4286 s2io_stop_tx_queue(sp, fifo->fifo_no);
4287 }
4288 swstats->mem_allocated += skb->truesize;
4289 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4290
4291 if (sp->config.intr_type == MSI_X)
4292 tx_intr_handler(fifo);
4293
4294 return NETDEV_TX_OK;
4295
4296 pci_map_failed:
4297 swstats->pci_map_fail_cnt++;
4298 s2io_stop_tx_queue(sp, fifo->fifo_no);
4299 swstats->mem_freed += skb->truesize;
4300 dev_kfree_skb(skb);
4301 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4302 return NETDEV_TX_OK;
4303 }
4304
4305 static void
4306 s2io_alarm_handle(unsigned long data)
4307 {
4308 struct s2io_nic *sp = (struct s2io_nic *)data;
4309 struct net_device *dev = sp->dev;
4310
4311 s2io_handle_errors(dev);
4312 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4313 }
4314
4315 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4316 {
4317 struct ring_info *ring = (struct ring_info *)dev_id;
4318 struct s2io_nic *sp = ring->nic;
4319 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4320
4321 if (unlikely(!is_s2io_card_up(sp)))
4322 return IRQ_HANDLED;
4323
4324 if (sp->config.napi) {
4325 u8 __iomem *addr = NULL;
4326 u8 val8 = 0;
4327
4328 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4329 addr += (7 - ring->ring_no);
4330 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4331 writeb(val8, addr);
4332 val8 = readb(addr);
4333 napi_schedule(&ring->napi);
4334 } else {
4335 rx_intr_handler(ring, 0);
4336 s2io_chk_rx_buffers(sp, ring);
4337 }
4338
4339 return IRQ_HANDLED;
4340 }
4341
4342 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4343 {
4344 int i;
4345 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4346 struct s2io_nic *sp = fifos->nic;
4347 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4348 struct config_param *config = &sp->config;
4349 u64 reason;
4350
4351 if (unlikely(!is_s2io_card_up(sp)))
4352 return IRQ_NONE;
4353
4354 reason = readq(&bar0->general_int_status);
4355 if (unlikely(reason == S2IO_MINUS_ONE))
4356 /* Nothing much can be done. Get out */
4357 return IRQ_HANDLED;
4358
4359 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4360 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4361
4362 if (reason & GEN_INTR_TXPIC)
4363 s2io_txpic_intr_handle(sp);
4364
4365 if (reason & GEN_INTR_TXTRAFFIC)
4366 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4367
4368 for (i = 0; i < config->tx_fifo_num; i++)
4369 tx_intr_handler(&fifos[i]);
4370
4371 writeq(sp->general_int_mask, &bar0->general_int_mask);
4372 readl(&bar0->general_int_status);
4373 return IRQ_HANDLED;
4374 }
4375 /* The interrupt was not raised by us */
4376 return IRQ_NONE;
4377 }
4378
4379 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4380 {
4381 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4382 u64 val64;
4383
4384 val64 = readq(&bar0->pic_int_status);
4385 if (val64 & PIC_INT_GPIO) {
4386 val64 = readq(&bar0->gpio_int_reg);
4387 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4388 (val64 & GPIO_INT_REG_LINK_UP)) {
4389 /*
4390 * This is unstable state so clear both up/down
4391 * interrupt and adapter to re-evaluate the link state.
4392 */
4393 val64 |= GPIO_INT_REG_LINK_DOWN;
4394 val64 |= GPIO_INT_REG_LINK_UP;
4395 writeq(val64, &bar0->gpio_int_reg);
4396 val64 = readq(&bar0->gpio_int_mask);
4397 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4398 GPIO_INT_MASK_LINK_DOWN);
4399 writeq(val64, &bar0->gpio_int_mask);
4400 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4401 val64 = readq(&bar0->adapter_status);
4402 /* Enable Adapter */
4403 val64 = readq(&bar0->adapter_control);
4404 val64 |= ADAPTER_CNTL_EN;
4405 writeq(val64, &bar0->adapter_control);
4406 val64 |= ADAPTER_LED_ON;
4407 writeq(val64, &bar0->adapter_control);
4408 if (!sp->device_enabled_once)
4409 sp->device_enabled_once = 1;
4410
4411 s2io_link(sp, LINK_UP);
4412 /*
4413 * unmask link down interrupt and mask link-up
4414 * intr
4415 */
4416 val64 = readq(&bar0->gpio_int_mask);
4417 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4418 val64 |= GPIO_INT_MASK_LINK_UP;
4419 writeq(val64, &bar0->gpio_int_mask);
4420
4421 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4422 val64 = readq(&bar0->adapter_status);
4423 s2io_link(sp, LINK_DOWN);
4424 /* Link is down so unmaks link up interrupt */
4425 val64 = readq(&bar0->gpio_int_mask);
4426 val64 &= ~GPIO_INT_MASK_LINK_UP;
4427 val64 |= GPIO_INT_MASK_LINK_DOWN;
4428 writeq(val64, &bar0->gpio_int_mask);
4429
4430 /* turn off LED */
4431 val64 = readq(&bar0->adapter_control);
4432 val64 = val64 & (~ADAPTER_LED_ON);
4433 writeq(val64, &bar0->adapter_control);
4434 }
4435 }
4436 val64 = readq(&bar0->gpio_int_mask);
4437 }
4438
4439 /**
4440 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4441 * @value: alarm bits
4442 * @addr: address value
4443 * @cnt: counter variable
4444 * Description: Check for alarm and increment the counter
4445 * Return Value:
4446 * 1 - if alarm bit set
4447 * 0 - if alarm bit is not set
4448 */
4449 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4450 unsigned long long *cnt)
4451 {
4452 u64 val64;
4453 val64 = readq(addr);
4454 if (val64 & value) {
4455 writeq(val64, addr);
4456 (*cnt)++;
4457 return 1;
4458 }
4459 return 0;
4460
4461 }
4462
4463 /**
4464 * s2io_handle_errors - Xframe error indication handler
4465 * @nic: device private variable
4466 * Description: Handle alarms such as loss of link, single or
4467 * double ECC errors, critical and serious errors.
4468 * Return Value:
4469 * NONE
4470 */
4471 static void s2io_handle_errors(void *dev_id)
4472 {
4473 struct net_device *dev = (struct net_device *)dev_id;
4474 struct s2io_nic *sp = netdev_priv(dev);
4475 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4476 u64 temp64 = 0, val64 = 0;
4477 int i = 0;
4478
4479 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4480 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4481
4482 if (!is_s2io_card_up(sp))
4483 return;
4484
4485 if (pci_channel_offline(sp->pdev))
4486 return;
4487
4488 memset(&sw_stat->ring_full_cnt, 0,
4489 sizeof(sw_stat->ring_full_cnt));
4490
4491 /* Handling the XPAK counters update */
4492 if (stats->xpak_timer_count < 72000) {
4493 /* waiting for an hour */
4494 stats->xpak_timer_count++;
4495 } else {
4496 s2io_updt_xpak_counter(dev);
4497 /* reset the count to zero */
4498 stats->xpak_timer_count = 0;
4499 }
4500
4501 /* Handling link status change error Intr */
4502 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4503 val64 = readq(&bar0->mac_rmac_err_reg);
4504 writeq(val64, &bar0->mac_rmac_err_reg);
4505 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4506 schedule_work(&sp->set_link_task);
4507 }
4508
4509 /* In case of a serious error, the device will be Reset. */
4510 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4511 &sw_stat->serious_err_cnt))
4512 goto reset;
4513
4514 /* Check for data parity error */
4515 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4516 &sw_stat->parity_err_cnt))
4517 goto reset;
4518
4519 /* Check for ring full counter */
4520 if (sp->device_type == XFRAME_II_DEVICE) {
4521 val64 = readq(&bar0->ring_bump_counter1);
4522 for (i = 0; i < 4; i++) {
4523 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4524 temp64 >>= 64 - ((i+1)*16);
4525 sw_stat->ring_full_cnt[i] += temp64;
4526 }
4527
4528 val64 = readq(&bar0->ring_bump_counter2);
4529 for (i = 0; i < 4; i++) {
4530 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4531 temp64 >>= 64 - ((i+1)*16);
4532 sw_stat->ring_full_cnt[i+4] += temp64;
4533 }
4534 }
4535
4536 val64 = readq(&bar0->txdma_int_status);
4537 /*check for pfc_err*/
4538 if (val64 & TXDMA_PFC_INT) {
4539 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4540 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4541 PFC_PCIX_ERR,
4542 &bar0->pfc_err_reg,
4543 &sw_stat->pfc_err_cnt))
4544 goto reset;
4545 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4546 &bar0->pfc_err_reg,
4547 &sw_stat->pfc_err_cnt);
4548 }
4549
4550 /*check for tda_err*/
4551 if (val64 & TXDMA_TDA_INT) {
4552 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4553 TDA_SM0_ERR_ALARM |
4554 TDA_SM1_ERR_ALARM,
4555 &bar0->tda_err_reg,
4556 &sw_stat->tda_err_cnt))
4557 goto reset;
4558 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4559 &bar0->tda_err_reg,
4560 &sw_stat->tda_err_cnt);
4561 }
4562 /*check for pcc_err*/
4563 if (val64 & TXDMA_PCC_INT) {
4564 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4565 PCC_N_SERR | PCC_6_COF_OV_ERR |
4566 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4567 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4568 PCC_TXB_ECC_DB_ERR,
4569 &bar0->pcc_err_reg,
4570 &sw_stat->pcc_err_cnt))
4571 goto reset;
4572 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4573 &bar0->pcc_err_reg,
4574 &sw_stat->pcc_err_cnt);
4575 }
4576
4577 /*check for tti_err*/
4578 if (val64 & TXDMA_TTI_INT) {
4579 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4580 &bar0->tti_err_reg,
4581 &sw_stat->tti_err_cnt))
4582 goto reset;
4583 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4584 &bar0->tti_err_reg,
4585 &sw_stat->tti_err_cnt);
4586 }
4587
4588 /*check for lso_err*/
4589 if (val64 & TXDMA_LSO_INT) {
4590 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4591 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4592 &bar0->lso_err_reg,
4593 &sw_stat->lso_err_cnt))
4594 goto reset;
4595 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4596 &bar0->lso_err_reg,
4597 &sw_stat->lso_err_cnt);
4598 }
4599
4600 /*check for tpa_err*/
4601 if (val64 & TXDMA_TPA_INT) {
4602 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4603 &bar0->tpa_err_reg,
4604 &sw_stat->tpa_err_cnt))
4605 goto reset;
4606 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4607 &bar0->tpa_err_reg,
4608 &sw_stat->tpa_err_cnt);
4609 }
4610
4611 /*check for sm_err*/
4612 if (val64 & TXDMA_SM_INT) {
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4614 &bar0->sm_err_reg,
4615 &sw_stat->sm_err_cnt))
4616 goto reset;
4617 }
4618
4619 val64 = readq(&bar0->mac_int_status);
4620 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622 &bar0->mac_tmac_err_reg,
4623 &sw_stat->mac_tmac_err_cnt))
4624 goto reset;
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4626 TMAC_DESC_ECC_SG_ERR |
4627 TMAC_DESC_ECC_DB_ERR,
4628 &bar0->mac_tmac_err_reg,
4629 &sw_stat->mac_tmac_err_cnt);
4630 }
4631
4632 val64 = readq(&bar0->xgxs_int_status);
4633 if (val64 & XGXS_INT_STATUS_TXGXS) {
4634 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4635 &bar0->xgxs_txgxs_err_reg,
4636 &sw_stat->xgxs_txgxs_err_cnt))
4637 goto reset;
4638 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4639 &bar0->xgxs_txgxs_err_reg,
4640 &sw_stat->xgxs_txgxs_err_cnt);
4641 }
4642
4643 val64 = readq(&bar0->rxdma_int_status);
4644 if (val64 & RXDMA_INT_RC_INT_M) {
4645 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4646 RC_FTC_ECC_DB_ERR |
4647 RC_PRCn_SM_ERR_ALARM |
4648 RC_FTC_SM_ERR_ALARM,
4649 &bar0->rc_err_reg,
4650 &sw_stat->rc_err_cnt))
4651 goto reset;
4652 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4653 RC_FTC_ECC_SG_ERR |
4654 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4655 &sw_stat->rc_err_cnt);
4656 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4657 PRC_PCI_AB_WR_Rn |
4658 PRC_PCI_AB_F_WR_Rn,
4659 &bar0->prc_pcix_err_reg,
4660 &sw_stat->prc_pcix_err_cnt))
4661 goto reset;
4662 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4663 PRC_PCI_DP_WR_Rn |
4664 PRC_PCI_DP_F_WR_Rn,
4665 &bar0->prc_pcix_err_reg,
4666 &sw_stat->prc_pcix_err_cnt);
4667 }
4668
4669 if (val64 & RXDMA_INT_RPA_INT_M) {
4670 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4671 &bar0->rpa_err_reg,
4672 &sw_stat->rpa_err_cnt))
4673 goto reset;
4674 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4675 &bar0->rpa_err_reg,
4676 &sw_stat->rpa_err_cnt);
4677 }
4678
4679 if (val64 & RXDMA_INT_RDA_INT_M) {
4680 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4681 RDA_FRM_ECC_DB_N_AERR |
4682 RDA_SM1_ERR_ALARM |
4683 RDA_SM0_ERR_ALARM |
4684 RDA_RXD_ECC_DB_SERR,
4685 &bar0->rda_err_reg,
4686 &sw_stat->rda_err_cnt))
4687 goto reset;
4688 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4689 RDA_FRM_ECC_SG_ERR |
4690 RDA_MISC_ERR |
4691 RDA_PCIX_ERR,
4692 &bar0->rda_err_reg,
4693 &sw_stat->rda_err_cnt);
4694 }
4695
4696 if (val64 & RXDMA_INT_RTI_INT_M) {
4697 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4698 &bar0->rti_err_reg,
4699 &sw_stat->rti_err_cnt))
4700 goto reset;
4701 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4702 &bar0->rti_err_reg,
4703 &sw_stat->rti_err_cnt);
4704 }
4705
4706 val64 = readq(&bar0->mac_int_status);
4707 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4708 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4709 &bar0->mac_rmac_err_reg,
4710 &sw_stat->mac_rmac_err_cnt))
4711 goto reset;
4712 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4713 RMAC_SINGLE_ECC_ERR |
4714 RMAC_DOUBLE_ECC_ERR,
4715 &bar0->mac_rmac_err_reg,
4716 &sw_stat->mac_rmac_err_cnt);
4717 }
4718
4719 val64 = readq(&bar0->xgxs_int_status);
4720 if (val64 & XGXS_INT_STATUS_RXGXS) {
4721 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4722 &bar0->xgxs_rxgxs_err_reg,
4723 &sw_stat->xgxs_rxgxs_err_cnt))
4724 goto reset;
4725 }
4726
4727 val64 = readq(&bar0->mc_int_status);
4728 if (val64 & MC_INT_STATUS_MC_INT) {
4729 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4730 &bar0->mc_err_reg,
4731 &sw_stat->mc_err_cnt))
4732 goto reset;
4733
4734 /* Handling Ecc errors */
4735 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4736 writeq(val64, &bar0->mc_err_reg);
4737 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4738 sw_stat->double_ecc_errs++;
4739 if (sp->device_type != XFRAME_II_DEVICE) {
4740 /*
4741 * Reset XframeI only if critical error
4742 */
4743 if (val64 &
4744 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4745 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4746 goto reset;
4747 }
4748 } else
4749 sw_stat->single_ecc_errs++;
4750 }
4751 }
4752 return;
4753
4754 reset:
4755 s2io_stop_all_tx_queue(sp);
4756 schedule_work(&sp->rst_timer_task);
4757 sw_stat->soft_reset_cnt++;
4758 return;
4759 }
4760
4761 /**
4762 * s2io_isr - ISR handler of the device .
4763 * @irq: the irq of the device.
4764 * @dev_id: a void pointer to the dev structure of the NIC.
4765 * Description: This function is the ISR handler of the device. It
4766 * identifies the reason for the interrupt and calls the relevant
4767 * service routines. As a contongency measure, this ISR allocates the
4768 * recv buffers, if their numbers are below the panic value which is
4769 * presently set to 25% of the original number of rcv buffers allocated.
4770 * Return value:
4771 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4772 * IRQ_NONE: will be returned if interrupt is not from our device
4773 */
4774 static irqreturn_t s2io_isr(int irq, void *dev_id)
4775 {
4776 struct net_device *dev = (struct net_device *)dev_id;
4777 struct s2io_nic *sp = netdev_priv(dev);
4778 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4779 int i;
4780 u64 reason = 0;
4781 struct mac_info *mac_control;
4782 struct config_param *config;
4783
4784 /* Pretend we handled any irq's from a disconnected card */
4785 if (pci_channel_offline(sp->pdev))
4786 return IRQ_NONE;
4787
4788 if (!is_s2io_card_up(sp))
4789 return IRQ_NONE;
4790
4791 config = &sp->config;
4792 mac_control = &sp->mac_control;
4793
4794 /*
4795 * Identify the cause for interrupt and call the appropriate
4796 * interrupt handler. Causes for the interrupt could be;
4797 * 1. Rx of packet.
4798 * 2. Tx complete.
4799 * 3. Link down.
4800 */
4801 reason = readq(&bar0->general_int_status);
4802
4803 if (unlikely(reason == S2IO_MINUS_ONE))
4804 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4805
4806 if (reason &
4807 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4808 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4809
4810 if (config->napi) {
4811 if (reason & GEN_INTR_RXTRAFFIC) {
4812 napi_schedule(&sp->napi);
4813 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4814 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4815 readl(&bar0->rx_traffic_int);
4816 }
4817 } else {
4818 /*
4819 * rx_traffic_int reg is an R1 register, writing all 1's
4820 * will ensure that the actual interrupt causing bit
4821 * get's cleared and hence a read can be avoided.
4822 */
4823 if (reason & GEN_INTR_RXTRAFFIC)
4824 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4825
4826 for (i = 0; i < config->rx_ring_num; i++) {
4827 struct ring_info *ring = &mac_control->rings[i];
4828
4829 rx_intr_handler(ring, 0);
4830 }
4831 }
4832
4833 /*
4834 * tx_traffic_int reg is an R1 register, writing all 1's
4835 * will ensure that the actual interrupt causing bit get's
4836 * cleared and hence a read can be avoided.
4837 */
4838 if (reason & GEN_INTR_TXTRAFFIC)
4839 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4840
4841 for (i = 0; i < config->tx_fifo_num; i++)
4842 tx_intr_handler(&mac_control->fifos[i]);
4843
4844 if (reason & GEN_INTR_TXPIC)
4845 s2io_txpic_intr_handle(sp);
4846
4847 /*
4848 * Reallocate the buffers from the interrupt handler itself.
4849 */
4850 if (!config->napi) {
4851 for (i = 0; i < config->rx_ring_num; i++) {
4852 struct ring_info *ring = &mac_control->rings[i];
4853
4854 s2io_chk_rx_buffers(sp, ring);
4855 }
4856 }
4857 writeq(sp->general_int_mask, &bar0->general_int_mask);
4858 readl(&bar0->general_int_status);
4859
4860 return IRQ_HANDLED;
4861
4862 } else if (!reason) {
4863 /* The interrupt was not raised by us */
4864 return IRQ_NONE;
4865 }
4866
4867 return IRQ_HANDLED;
4868 }
4869
4870 /**
4871 * s2io_updt_stats -
4872 */
4873 static void s2io_updt_stats(struct s2io_nic *sp)
4874 {
4875 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4876 u64 val64;
4877 int cnt = 0;
4878
4879 if (is_s2io_card_up(sp)) {
4880 /* Apprx 30us on a 133 MHz bus */
4881 val64 = SET_UPDT_CLICKS(10) |
4882 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4883 writeq(val64, &bar0->stat_cfg);
4884 do {
4885 udelay(100);
4886 val64 = readq(&bar0->stat_cfg);
4887 if (!(val64 & s2BIT(0)))
4888 break;
4889 cnt++;
4890 if (cnt == 5)
4891 break; /* Updt failed */
4892 } while (1);
4893 }
4894 }
4895
4896 /**
4897 * s2io_get_stats - Updates the device statistics structure.
4898 * @dev : pointer to the device structure.
4899 * Description:
4900 * This function updates the device statistics structure in the s2io_nic
4901 * structure and returns a pointer to the same.
4902 * Return value:
4903 * pointer to the updated net_device_stats structure.
4904 */
4905
4906 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4907 {
4908 struct s2io_nic *sp = netdev_priv(dev);
4909 struct config_param *config = &sp->config;
4910 struct mac_info *mac_control = &sp->mac_control;
4911 struct stat_block *stats = mac_control->stats_info;
4912 int i;
4913
4914 /* Configure Stats for immediate updt */
4915 s2io_updt_stats(sp);
4916
4917 /* Using sp->stats as a staging area, because reset (due to mtu
4918 change, for example) will clear some hardware counters */
4919 dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
4920 sp->stats.tx_packets;
4921 sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4922
4923 dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
4924 sp->stats.tx_errors;
4925 sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4926
4927 dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
4928 sp->stats.rx_errors;
4929 sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4930
4931 dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
4932 sp->stats.multicast;
4933 sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4934
4935 dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
4936 sp->stats.rx_length_errors;
4937 sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
4938
4939 /* collect per-ring rx_packets and rx_bytes */
4940 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4941 for (i = 0; i < config->rx_ring_num; i++) {
4942 struct ring_info *ring = &mac_control->rings[i];
4943
4944 dev->stats.rx_packets += ring->rx_packets;
4945 dev->stats.rx_bytes += ring->rx_bytes;
4946 }
4947
4948 return &dev->stats;
4949 }
4950
4951 /**
4952 * s2io_set_multicast - entry point for multicast address enable/disable.
4953 * @dev : pointer to the device structure
4954 * Description:
4955 * This function is a driver entry point which gets called by the kernel
4956 * whenever multicast addresses must be enabled/disabled. This also gets
4957 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4958 * determine, if multicast address must be enabled or if promiscuous mode
4959 * is to be disabled etc.
4960 * Return value:
4961 * void.
4962 */
4963
4964 static void s2io_set_multicast(struct net_device *dev)
4965 {
4966 int i, j, prev_cnt;
4967 struct dev_mc_list *mclist;
4968 struct s2io_nic *sp = netdev_priv(dev);
4969 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4970 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4971 0xfeffffffffffULL;
4972 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4973 void __iomem *add;
4974 struct config_param *config = &sp->config;
4975
4976 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4977 /* Enable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4979 &bar0->rmac_addr_data0_mem);
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4981 &bar0->rmac_addr_data1_mem);
4982 val64 = RMAC_ADDR_CMD_MEM_WE |
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4985 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986 /* Wait till command completes */
4987 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4989 S2IO_BIT_RESET);
4990
4991 sp->m_cast_flg = 1;
4992 sp->all_multi_pos = config->max_mc_addr - 1;
4993 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4994 /* Disable all Multicast addresses */
4995 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4996 &bar0->rmac_addr_data0_mem);
4997 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4998 &bar0->rmac_addr_data1_mem);
4999 val64 = RMAC_ADDR_CMD_MEM_WE |
5000 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5001 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5002 writeq(val64, &bar0->rmac_addr_cmd_mem);
5003 /* Wait till command completes */
5004 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5005 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5006 S2IO_BIT_RESET);
5007
5008 sp->m_cast_flg = 0;
5009 sp->all_multi_pos = 0;
5010 }
5011
5012 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5013 /* Put the NIC into promiscuous mode */
5014 add = &bar0->mac_cfg;
5015 val64 = readq(&bar0->mac_cfg);
5016 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5017
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019 writel((u32)val64, add);
5020 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5021 writel((u32) (val64 >> 32), (add + 4));
5022
5023 if (vlan_tag_strip != 1) {
5024 val64 = readq(&bar0->rx_pa_cfg);
5025 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5026 writeq(val64, &bar0->rx_pa_cfg);
5027 sp->vlan_strip_flag = 0;
5028 }
5029
5030 val64 = readq(&bar0->mac_cfg);
5031 sp->promisc_flg = 1;
5032 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5033 dev->name);
5034 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5035 /* Remove the NIC from promiscuous mode */
5036 add = &bar0->mac_cfg;
5037 val64 = readq(&bar0->mac_cfg);
5038 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5039
5040 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5041 writel((u32)val64, add);
5042 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5043 writel((u32) (val64 >> 32), (add + 4));
5044
5045 if (vlan_tag_strip != 0) {
5046 val64 = readq(&bar0->rx_pa_cfg);
5047 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5048 writeq(val64, &bar0->rx_pa_cfg);
5049 sp->vlan_strip_flag = 1;
5050 }
5051
5052 val64 = readq(&bar0->mac_cfg);
5053 sp->promisc_flg = 0;
5054 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5055 }
5056
5057 /* Update individual M_CAST address list */
5058 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5059 if (netdev_mc_count(dev) >
5060 (config->max_mc_addr - config->max_mac_addr)) {
5061 DBG_PRINT(ERR_DBG,
5062 "%s: No more Rx filters can be added - "
5063 "please enable ALL_MULTI instead\n",
5064 dev->name);
5065 return;
5066 }
5067
5068 prev_cnt = sp->mc_addr_count;
5069 sp->mc_addr_count = netdev_mc_count(dev);
5070
5071 /* Clear out the previous list of Mc in the H/W. */
5072 for (i = 0; i < prev_cnt; i++) {
5073 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5074 &bar0->rmac_addr_data0_mem);
5075 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5076 &bar0->rmac_addr_data1_mem);
5077 val64 = RMAC_ADDR_CMD_MEM_WE |
5078 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5079 RMAC_ADDR_CMD_MEM_OFFSET
5080 (config->mc_start_offset + i);
5081 writeq(val64, &bar0->rmac_addr_cmd_mem);
5082
5083 /* Wait for command completes */
5084 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5085 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5086 S2IO_BIT_RESET)) {
5087 DBG_PRINT(ERR_DBG,
5088 "%s: Adding Multicasts failed\n",
5089 dev->name);
5090 return;
5091 }
5092 }
5093
5094 /* Create the new Rx filter list and update the same in H/W. */
5095 i = 0;
5096 netdev_for_each_mc_addr(mclist, dev) {
5097 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5098 ETH_ALEN);
5099 mac_addr = 0;
5100 for (j = 0; j < ETH_ALEN; j++) {
5101 mac_addr |= mclist->dmi_addr[j];
5102 mac_addr <<= 8;
5103 }
5104 mac_addr >>= 8;
5105 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5106 &bar0->rmac_addr_data0_mem);
5107 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5108 &bar0->rmac_addr_data1_mem);
5109 val64 = RMAC_ADDR_CMD_MEM_WE |
5110 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5111 RMAC_ADDR_CMD_MEM_OFFSET
5112 (i + config->mc_start_offset);
5113 writeq(val64, &bar0->rmac_addr_cmd_mem);
5114
5115 /* Wait for command completes */
5116 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5117 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5118 S2IO_BIT_RESET)) {
5119 DBG_PRINT(ERR_DBG,
5120 "%s: Adding Multicasts failed\n",
5121 dev->name);
5122 return;
5123 }
5124 i++;
5125 }
5126 }
5127 }
5128
5129 /* read from CAM unicast & multicast addresses and store it in
5130 * def_mac_addr structure
5131 */
5132 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5133 {
5134 int offset;
5135 u64 mac_addr = 0x0;
5136 struct config_param *config = &sp->config;
5137
5138 /* store unicast & multicast mac addresses */
5139 for (offset = 0; offset < config->max_mc_addr; offset++) {
5140 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5141 /* if read fails disable the entry */
5142 if (mac_addr == FAILURE)
5143 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5144 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5145 }
5146 }
5147
5148 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5149 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5150 {
5151 int offset;
5152 struct config_param *config = &sp->config;
5153 /* restore unicast mac address */
5154 for (offset = 0; offset < config->max_mac_addr; offset++)
5155 do_s2io_prog_unicast(sp->dev,
5156 sp->def_mac_addr[offset].mac_addr);
5157
5158 /* restore multicast mac address */
5159 for (offset = config->mc_start_offset;
5160 offset < config->max_mc_addr; offset++)
5161 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5162 }
5163
5164 /* add a multicast MAC address to CAM */
5165 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5166 {
5167 int i;
5168 u64 mac_addr = 0;
5169 struct config_param *config = &sp->config;
5170
5171 for (i = 0; i < ETH_ALEN; i++) {
5172 mac_addr <<= 8;
5173 mac_addr |= addr[i];
5174 }
5175 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5176 return SUCCESS;
5177
5178 /* check if the multicast mac already preset in CAM */
5179 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5180 u64 tmp64;
5181 tmp64 = do_s2io_read_unicast_mc(sp, i);
5182 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5183 break;
5184
5185 if (tmp64 == mac_addr)
5186 return SUCCESS;
5187 }
5188 if (i == config->max_mc_addr) {
5189 DBG_PRINT(ERR_DBG,
5190 "CAM full no space left for multicast MAC\n");
5191 return FAILURE;
5192 }
5193 /* Update the internal structure with this new mac address */
5194 do_s2io_copy_mac_addr(sp, i, mac_addr);
5195
5196 return do_s2io_add_mac(sp, mac_addr, i);
5197 }
5198
5199 /* add MAC address to CAM */
5200 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5201 {
5202 u64 val64;
5203 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5204
5205 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5206 &bar0->rmac_addr_data0_mem);
5207
5208 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5209 RMAC_ADDR_CMD_MEM_OFFSET(off);
5210 writeq(val64, &bar0->rmac_addr_cmd_mem);
5211
5212 /* Wait till command completes */
5213 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5214 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5215 S2IO_BIT_RESET)) {
5216 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5217 return FAILURE;
5218 }
5219 return SUCCESS;
5220 }
5221 /* deletes a specified unicast/multicast mac entry from CAM */
5222 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5223 {
5224 int offset;
5225 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5226 struct config_param *config = &sp->config;
5227
5228 for (offset = 1;
5229 offset < config->max_mc_addr; offset++) {
5230 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5231 if (tmp64 == addr) {
5232 /* disable the entry by writing 0xffffffffffffULL */
5233 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5234 return FAILURE;
5235 /* store the new mac list from CAM */
5236 do_s2io_store_unicast_mc(sp);
5237 return SUCCESS;
5238 }
5239 }
5240 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5241 (unsigned long long)addr);
5242 return FAILURE;
5243 }
5244
5245 /* read mac entries from CAM */
5246 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5247 {
5248 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5249 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5250
5251 /* read mac addr */
5252 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5253 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5254 writeq(val64, &bar0->rmac_addr_cmd_mem);
5255
5256 /* Wait till command completes */
5257 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5258 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5259 S2IO_BIT_RESET)) {
5260 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5261 return FAILURE;
5262 }
5263 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5264
5265 return tmp64 >> 16;
5266 }
5267
5268 /**
5269 * s2io_set_mac_addr driver entry point
5270 */
5271
5272 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5273 {
5274 struct sockaddr *addr = p;
5275
5276 if (!is_valid_ether_addr(addr->sa_data))
5277 return -EINVAL;
5278
5279 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5280
5281 /* store the MAC address in CAM */
5282 return do_s2io_prog_unicast(dev, dev->dev_addr);
5283 }
5284 /**
5285 * do_s2io_prog_unicast - Programs the Xframe mac address
5286 * @dev : pointer to the device structure.
5287 * @addr: a uchar pointer to the new mac address which is to be set.
5288 * Description : This procedure will program the Xframe to receive
5289 * frames with new Mac Address
5290 * Return value: SUCCESS on success and an appropriate (-)ve integer
5291 * as defined in errno.h file on failure.
5292 */
5293
5294 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5295 {
5296 struct s2io_nic *sp = netdev_priv(dev);
5297 register u64 mac_addr = 0, perm_addr = 0;
5298 int i;
5299 u64 tmp64;
5300 struct config_param *config = &sp->config;
5301
5302 /*
5303 * Set the new MAC address as the new unicast filter and reflect this
5304 * change on the device address registered with the OS. It will be
5305 * at offset 0.
5306 */
5307 for (i = 0; i < ETH_ALEN; i++) {
5308 mac_addr <<= 8;
5309 mac_addr |= addr[i];
5310 perm_addr <<= 8;
5311 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5312 }
5313
5314 /* check if the dev_addr is different than perm_addr */
5315 if (mac_addr == perm_addr)
5316 return SUCCESS;
5317
5318 /* check if the mac already preset in CAM */
5319 for (i = 1; i < config->max_mac_addr; i++) {
5320 tmp64 = do_s2io_read_unicast_mc(sp, i);
5321 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5322 break;
5323
5324 if (tmp64 == mac_addr) {
5325 DBG_PRINT(INFO_DBG,
5326 "MAC addr:0x%llx already present in CAM\n",
5327 (unsigned long long)mac_addr);
5328 return SUCCESS;
5329 }
5330 }
5331 if (i == config->max_mac_addr) {
5332 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5333 return FAILURE;
5334 }
5335 /* Update the internal structure with this new mac address */
5336 do_s2io_copy_mac_addr(sp, i, mac_addr);
5337
5338 return do_s2io_add_mac(sp, mac_addr, i);
5339 }
5340
5341 /**
5342 * s2io_ethtool_sset - Sets different link parameters.
5343 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5344 * @info: pointer to the structure with parameters given by ethtool to set
5345 * link information.
5346 * Description:
5347 * The function sets different link parameters provided by the user onto
5348 * the NIC.
5349 * Return value:
5350 * 0 on success.
5351 */
5352
5353 static int s2io_ethtool_sset(struct net_device *dev,
5354 struct ethtool_cmd *info)
5355 {
5356 struct s2io_nic *sp = netdev_priv(dev);
5357 if ((info->autoneg == AUTONEG_ENABLE) ||
5358 (info->speed != SPEED_10000) ||
5359 (info->duplex != DUPLEX_FULL))
5360 return -EINVAL;
5361 else {
5362 s2io_close(sp->dev);
5363 s2io_open(sp->dev);
5364 }
5365
5366 return 0;
5367 }
5368
5369 /**
5370 * s2io_ethtol_gset - Return link specific information.
5371 * @sp : private member of the device structure, pointer to the
5372 * s2io_nic structure.
5373 * @info : pointer to the structure with parameters given by ethtool
5374 * to return link information.
5375 * Description:
5376 * Returns link specific information like speed, duplex etc.. to ethtool.
5377 * Return value :
5378 * return 0 on success.
5379 */
5380
5381 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5382 {
5383 struct s2io_nic *sp = netdev_priv(dev);
5384 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5385 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5386 info->port = PORT_FIBRE;
5387
5388 /* info->transceiver */
5389 info->transceiver = XCVR_EXTERNAL;
5390
5391 if (netif_carrier_ok(sp->dev)) {
5392 info->speed = 10000;
5393 info->duplex = DUPLEX_FULL;
5394 } else {
5395 info->speed = -1;
5396 info->duplex = -1;
5397 }
5398
5399 info->autoneg = AUTONEG_DISABLE;
5400 return 0;
5401 }
5402
5403 /**
5404 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5405 * @sp : private member of the device structure, which is a pointer to the
5406 * s2io_nic structure.
5407 * @info : pointer to the structure with parameters given by ethtool to
5408 * return driver information.
5409 * Description:
5410 * Returns driver specefic information like name, version etc.. to ethtool.
5411 * Return value:
5412 * void
5413 */
5414
5415 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5416 struct ethtool_drvinfo *info)
5417 {
5418 struct s2io_nic *sp = netdev_priv(dev);
5419
5420 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5421 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5422 strncpy(info->fw_version, "", sizeof(info->fw_version));
5423 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5424 info->regdump_len = XENA_REG_SPACE;
5425 info->eedump_len = XENA_EEPROM_SPACE;
5426 }
5427
5428 /**
5429 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5430 * @sp: private member of the device structure, which is a pointer to the
5431 * s2io_nic structure.
5432 * @regs : pointer to the structure with parameters given by ethtool for
5433 * dumping the registers.
5434 * @reg_space: The input argumnet into which all the registers are dumped.
5435 * Description:
5436 * Dumps the entire register space of xFrame NIC into the user given
5437 * buffer area.
5438 * Return value :
5439 * void .
5440 */
5441
5442 static void s2io_ethtool_gregs(struct net_device *dev,
5443 struct ethtool_regs *regs, void *space)
5444 {
5445 int i;
5446 u64 reg;
5447 u8 *reg_space = (u8 *)space;
5448 struct s2io_nic *sp = netdev_priv(dev);
5449
5450 regs->len = XENA_REG_SPACE;
5451 regs->version = sp->pdev->subsystem_device;
5452
5453 for (i = 0; i < regs->len; i += 8) {
5454 reg = readq(sp->bar0 + i);
5455 memcpy((reg_space + i), &reg, 8);
5456 }
5457 }
5458
5459 /**
5460 * s2io_phy_id - timer function that alternates adapter LED.
5461 * @data : address of the private member of the device structure, which
5462 * is a pointer to the s2io_nic structure, provided as an u32.
5463 * Description: This is actually the timer function that alternates the
5464 * adapter LED bit of the adapter control bit to set/reset every time on
5465 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5466 * once every second.
5467 */
5468 static void s2io_phy_id(unsigned long data)
5469 {
5470 struct s2io_nic *sp = (struct s2io_nic *)data;
5471 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5472 u64 val64 = 0;
5473 u16 subid;
5474
5475 subid = sp->pdev->subsystem_device;
5476 if ((sp->device_type == XFRAME_II_DEVICE) ||
5477 ((subid & 0xFF) >= 0x07)) {
5478 val64 = readq(&bar0->gpio_control);
5479 val64 ^= GPIO_CTRL_GPIO_0;
5480 writeq(val64, &bar0->gpio_control);
5481 } else {
5482 val64 = readq(&bar0->adapter_control);
5483 val64 ^= ADAPTER_LED_ON;
5484 writeq(val64, &bar0->adapter_control);
5485 }
5486
5487 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5488 }
5489
5490 /**
5491 * s2io_ethtool_idnic - To physically identify the nic on the system.
5492 * @sp : private member of the device structure, which is a pointer to the
5493 * s2io_nic structure.
5494 * @id : pointer to the structure with identification parameters given by
5495 * ethtool.
5496 * Description: Used to physically identify the NIC on the system.
5497 * The Link LED will blink for a time specified by the user for
5498 * identification.
5499 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5500 * identification is possible only if it's link is up.
5501 * Return value:
5502 * int , returns 0 on success
5503 */
5504
5505 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5506 {
5507 u64 val64 = 0, last_gpio_ctrl_val;
5508 struct s2io_nic *sp = netdev_priv(dev);
5509 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5510 u16 subid;
5511
5512 subid = sp->pdev->subsystem_device;
5513 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5514 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5515 val64 = readq(&bar0->adapter_control);
5516 if (!(val64 & ADAPTER_CNTL_EN)) {
5517 pr_err("Adapter Link down, cannot blink LED\n");
5518 return -EFAULT;
5519 }
5520 }
5521 if (sp->id_timer.function == NULL) {
5522 init_timer(&sp->id_timer);
5523 sp->id_timer.function = s2io_phy_id;
5524 sp->id_timer.data = (unsigned long)sp;
5525 }
5526 mod_timer(&sp->id_timer, jiffies);
5527 if (data)
5528 msleep_interruptible(data * HZ);
5529 else
5530 msleep_interruptible(MAX_FLICKER_TIME);
5531 del_timer_sync(&sp->id_timer);
5532
5533 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5534 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5535 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5536 }
5537
5538 return 0;
5539 }
5540
5541 static void s2io_ethtool_gringparam(struct net_device *dev,
5542 struct ethtool_ringparam *ering)
5543 {
5544 struct s2io_nic *sp = netdev_priv(dev);
5545 int i, tx_desc_count = 0, rx_desc_count = 0;
5546
5547 if (sp->rxd_mode == RXD_MODE_1)
5548 ering->rx_max_pending = MAX_RX_DESC_1;
5549 else if (sp->rxd_mode == RXD_MODE_3B)
5550 ering->rx_max_pending = MAX_RX_DESC_2;
5551
5552 ering->tx_max_pending = MAX_TX_DESC;
5553 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5554 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5555
5556 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5557 ering->tx_pending = tx_desc_count;
5558 rx_desc_count = 0;
5559 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5560 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5561
5562 ering->rx_pending = rx_desc_count;
5563
5564 ering->rx_mini_max_pending = 0;
5565 ering->rx_mini_pending = 0;
5566 if (sp->rxd_mode == RXD_MODE_1)
5567 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5568 else if (sp->rxd_mode == RXD_MODE_3B)
5569 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5570 ering->rx_jumbo_pending = rx_desc_count;
5571 }
5572
5573 /**
5574 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5575 * @sp : private member of the device structure, which is a pointer to the
5576 * s2io_nic structure.
5577 * @ep : pointer to the structure with pause parameters given by ethtool.
5578 * Description:
5579 * Returns the Pause frame generation and reception capability of the NIC.
5580 * Return value:
5581 * void
5582 */
5583 static void s2io_ethtool_getpause_data(struct net_device *dev,
5584 struct ethtool_pauseparam *ep)
5585 {
5586 u64 val64;
5587 struct s2io_nic *sp = netdev_priv(dev);
5588 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5589
5590 val64 = readq(&bar0->rmac_pause_cfg);
5591 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5592 ep->tx_pause = true;
5593 if (val64 & RMAC_PAUSE_RX_ENABLE)
5594 ep->rx_pause = true;
5595 ep->autoneg = false;
5596 }
5597
5598 /**
5599 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5600 * @sp : private member of the device structure, which is a pointer to the
5601 * s2io_nic structure.
5602 * @ep : pointer to the structure with pause parameters given by ethtool.
5603 * Description:
5604 * It can be used to set or reset Pause frame generation or reception
5605 * support of the NIC.
5606 * Return value:
5607 * int, returns 0 on Success
5608 */
5609
5610 static int s2io_ethtool_setpause_data(struct net_device *dev,
5611 struct ethtool_pauseparam *ep)
5612 {
5613 u64 val64;
5614 struct s2io_nic *sp = netdev_priv(dev);
5615 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5616
5617 val64 = readq(&bar0->rmac_pause_cfg);
5618 if (ep->tx_pause)
5619 val64 |= RMAC_PAUSE_GEN_ENABLE;
5620 else
5621 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5622 if (ep->rx_pause)
5623 val64 |= RMAC_PAUSE_RX_ENABLE;
5624 else
5625 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5626 writeq(val64, &bar0->rmac_pause_cfg);
5627 return 0;
5628 }
5629
5630 /**
5631 * read_eeprom - reads 4 bytes of data from user given offset.
5632 * @sp : private member of the device structure, which is a pointer to the
5633 * s2io_nic structure.
5634 * @off : offset at which the data must be written
5635 * @data : Its an output parameter where the data read at the given
5636 * offset is stored.
5637 * Description:
5638 * Will read 4 bytes of data from the user given offset and return the
5639 * read data.
5640 * NOTE: Will allow to read only part of the EEPROM visible through the
5641 * I2C bus.
5642 * Return value:
5643 * -1 on failure and 0 on success.
5644 */
5645
5646 #define S2IO_DEV_ID 5
5647 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5648 {
5649 int ret = -1;
5650 u32 exit_cnt = 0;
5651 u64 val64;
5652 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5653
5654 if (sp->device_type == XFRAME_I_DEVICE) {
5655 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5656 I2C_CONTROL_ADDR(off) |
5657 I2C_CONTROL_BYTE_CNT(0x3) |
5658 I2C_CONTROL_READ |
5659 I2C_CONTROL_CNTL_START;
5660 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5661
5662 while (exit_cnt < 5) {
5663 val64 = readq(&bar0->i2c_control);
5664 if (I2C_CONTROL_CNTL_END(val64)) {
5665 *data = I2C_CONTROL_GET_DATA(val64);
5666 ret = 0;
5667 break;
5668 }
5669 msleep(50);
5670 exit_cnt++;
5671 }
5672 }
5673
5674 if (sp->device_type == XFRAME_II_DEVICE) {
5675 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5676 SPI_CONTROL_BYTECNT(0x3) |
5677 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5678 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5679 val64 |= SPI_CONTROL_REQ;
5680 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5681 while (exit_cnt < 5) {
5682 val64 = readq(&bar0->spi_control);
5683 if (val64 & SPI_CONTROL_NACK) {
5684 ret = 1;
5685 break;
5686 } else if (val64 & SPI_CONTROL_DONE) {
5687 *data = readq(&bar0->spi_data);
5688 *data &= 0xffffff;
5689 ret = 0;
5690 break;
5691 }
5692 msleep(50);
5693 exit_cnt++;
5694 }
5695 }
5696 return ret;
5697 }
5698
5699 /**
5700 * write_eeprom - actually writes the relevant part of the data value.
5701 * @sp : private member of the device structure, which is a pointer to the
5702 * s2io_nic structure.
5703 * @off : offset at which the data must be written
5704 * @data : The data that is to be written
5705 * @cnt : Number of bytes of the data that are actually to be written into
5706 * the Eeprom. (max of 3)
5707 * Description:
5708 * Actually writes the relevant part of the data value into the Eeprom
5709 * through the I2C bus.
5710 * Return value:
5711 * 0 on success, -1 on failure.
5712 */
5713
5714 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5715 {
5716 int exit_cnt = 0, ret = -1;
5717 u64 val64;
5718 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5719
5720 if (sp->device_type == XFRAME_I_DEVICE) {
5721 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5722 I2C_CONTROL_ADDR(off) |
5723 I2C_CONTROL_BYTE_CNT(cnt) |
5724 I2C_CONTROL_SET_DATA((u32)data) |
5725 I2C_CONTROL_CNTL_START;
5726 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5727
5728 while (exit_cnt < 5) {
5729 val64 = readq(&bar0->i2c_control);
5730 if (I2C_CONTROL_CNTL_END(val64)) {
5731 if (!(val64 & I2C_CONTROL_NACK))
5732 ret = 0;
5733 break;
5734 }
5735 msleep(50);
5736 exit_cnt++;
5737 }
5738 }
5739
5740 if (sp->device_type == XFRAME_II_DEVICE) {
5741 int write_cnt = (cnt == 8) ? 0 : cnt;
5742 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5743
5744 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5745 SPI_CONTROL_BYTECNT(write_cnt) |
5746 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5747 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5748 val64 |= SPI_CONTROL_REQ;
5749 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5750 while (exit_cnt < 5) {
5751 val64 = readq(&bar0->spi_control);
5752 if (val64 & SPI_CONTROL_NACK) {
5753 ret = 1;
5754 break;
5755 } else if (val64 & SPI_CONTROL_DONE) {
5756 ret = 0;
5757 break;
5758 }
5759 msleep(50);
5760 exit_cnt++;
5761 }
5762 }
5763 return ret;
5764 }
5765 static void s2io_vpd_read(struct s2io_nic *nic)
5766 {
5767 u8 *vpd_data;
5768 u8 data;
5769 int i = 0, cnt, fail = 0;
5770 int vpd_addr = 0x80;
5771 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5772
5773 if (nic->device_type == XFRAME_II_DEVICE) {
5774 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5775 vpd_addr = 0x80;
5776 } else {
5777 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5778 vpd_addr = 0x50;
5779 }
5780 strcpy(nic->serial_num, "NOT AVAILABLE");
5781
5782 vpd_data = kmalloc(256, GFP_KERNEL);
5783 if (!vpd_data) {
5784 swstats->mem_alloc_fail_cnt++;
5785 return;
5786 }
5787 swstats->mem_allocated += 256;
5788
5789 for (i = 0; i < 256; i += 4) {
5790 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5791 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5792 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5793 for (cnt = 0; cnt < 5; cnt++) {
5794 msleep(2);
5795 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5796 if (data == 0x80)
5797 break;
5798 }
5799 if (cnt >= 5) {
5800 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5801 fail = 1;
5802 break;
5803 }
5804 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5805 (u32 *)&vpd_data[i]);
5806 }
5807
5808 if (!fail) {
5809 /* read serial number of adapter */
5810 for (cnt = 0; cnt < 256; cnt++) {
5811 if ((vpd_data[cnt] == 'S') &&
5812 (vpd_data[cnt+1] == 'N') &&
5813 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5814 memset(nic->serial_num, 0, VPD_STRING_LEN);
5815 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5816 vpd_data[cnt+2]);
5817 break;
5818 }
5819 }
5820 }
5821
5822 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5823 memset(nic->product_name, 0, vpd_data[1]);
5824 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5825 }
5826 kfree(vpd_data);
5827 swstats->mem_freed += 256;
5828 }
5829
5830 /**
5831 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5832 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5833 * @eeprom : pointer to the user level structure provided by ethtool,
5834 * containing all relevant information.
5835 * @data_buf : user defined value to be written into Eeprom.
5836 * Description: Reads the values stored in the Eeprom at given offset
5837 * for a given length. Stores these values int the input argument data
5838 * buffer 'data_buf' and returns these to the caller (ethtool.)
5839 * Return value:
5840 * int 0 on success
5841 */
5842
5843 static int s2io_ethtool_geeprom(struct net_device *dev,
5844 struct ethtool_eeprom *eeprom, u8 * data_buf)
5845 {
5846 u32 i, valid;
5847 u64 data;
5848 struct s2io_nic *sp = netdev_priv(dev);
5849
5850 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5851
5852 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5853 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5854
5855 for (i = 0; i < eeprom->len; i += 4) {
5856 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5857 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5858 return -EFAULT;
5859 }
5860 valid = INV(data);
5861 memcpy((data_buf + i), &valid, 4);
5862 }
5863 return 0;
5864 }
5865
5866 /**
5867 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5868 * @sp : private member of the device structure, which is a pointer to the
5869 * s2io_nic structure.
5870 * @eeprom : pointer to the user level structure provided by ethtool,
5871 * containing all relevant information.
5872 * @data_buf ; user defined value to be written into Eeprom.
5873 * Description:
5874 * Tries to write the user provided value in the Eeprom, at the offset
5875 * given by the user.
5876 * Return value:
5877 * 0 on success, -EFAULT on failure.
5878 */
5879
5880 static int s2io_ethtool_seeprom(struct net_device *dev,
5881 struct ethtool_eeprom *eeprom,
5882 u8 *data_buf)
5883 {
5884 int len = eeprom->len, cnt = 0;
5885 u64 valid = 0, data;
5886 struct s2io_nic *sp = netdev_priv(dev);
5887
5888 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5889 DBG_PRINT(ERR_DBG,
5890 "ETHTOOL_WRITE_EEPROM Err: "
5891 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5892 (sp->pdev->vendor | (sp->pdev->device << 16)),
5893 eeprom->magic);
5894 return -EFAULT;
5895 }
5896
5897 while (len) {
5898 data = (u32)data_buf[cnt] & 0x000000FF;
5899 if (data)
5900 valid = (u32)(data << 24);
5901 else
5902 valid = data;
5903
5904 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5905 DBG_PRINT(ERR_DBG,
5906 "ETHTOOL_WRITE_EEPROM Err: "
5907 "Cannot write into the specified offset\n");
5908 return -EFAULT;
5909 }
5910 cnt++;
5911 len--;
5912 }
5913
5914 return 0;
5915 }
5916
5917 /**
5918 * s2io_register_test - reads and writes into all clock domains.
5919 * @sp : private member of the device structure, which is a pointer to the
5920 * s2io_nic structure.
5921 * @data : variable that returns the result of each of the test conducted b
5922 * by the driver.
5923 * Description:
5924 * Read and write into all clock domains. The NIC has 3 clock domains,
5925 * see that registers in all the three regions are accessible.
5926 * Return value:
5927 * 0 on success.
5928 */
5929
5930 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5931 {
5932 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5933 u64 val64 = 0, exp_val;
5934 int fail = 0;
5935
5936 val64 = readq(&bar0->pif_rd_swapper_fb);
5937 if (val64 != 0x123456789abcdefULL) {
5938 fail = 1;
5939 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5940 }
5941
5942 val64 = readq(&bar0->rmac_pause_cfg);
5943 if (val64 != 0xc000ffff00000000ULL) {
5944 fail = 1;
5945 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5946 }
5947
5948 val64 = readq(&bar0->rx_queue_cfg);
5949 if (sp->device_type == XFRAME_II_DEVICE)
5950 exp_val = 0x0404040404040404ULL;
5951 else
5952 exp_val = 0x0808080808080808ULL;
5953 if (val64 != exp_val) {
5954 fail = 1;
5955 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5956 }
5957
5958 val64 = readq(&bar0->xgxs_efifo_cfg);
5959 if (val64 != 0x000000001923141EULL) {
5960 fail = 1;
5961 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5962 }
5963
5964 val64 = 0x5A5A5A5A5A5A5A5AULL;
5965 writeq(val64, &bar0->xmsi_data);
5966 val64 = readq(&bar0->xmsi_data);
5967 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5968 fail = 1;
5969 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5970 }
5971
5972 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5973 writeq(val64, &bar0->xmsi_data);
5974 val64 = readq(&bar0->xmsi_data);
5975 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5976 fail = 1;
5977 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5978 }
5979
5980 *data = fail;
5981 return fail;
5982 }
5983
5984 /**
5985 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5986 * @sp : private member of the device structure, which is a pointer to the
5987 * s2io_nic structure.
5988 * @data:variable that returns the result of each of the test conducted by
5989 * the driver.
5990 * Description:
5991 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5992 * register.
5993 * Return value:
5994 * 0 on success.
5995 */
5996
5997 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5998 {
5999 int fail = 0;
6000 u64 ret_data, org_4F0, org_7F0;
6001 u8 saved_4F0 = 0, saved_7F0 = 0;
6002 struct net_device *dev = sp->dev;
6003
6004 /* Test Write Error at offset 0 */
6005 /* Note that SPI interface allows write access to all areas
6006 * of EEPROM. Hence doing all negative testing only for Xframe I.
6007 */
6008 if (sp->device_type == XFRAME_I_DEVICE)
6009 if (!write_eeprom(sp, 0, 0, 3))
6010 fail = 1;
6011
6012 /* Save current values at offsets 0x4F0 and 0x7F0 */
6013 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6014 saved_4F0 = 1;
6015 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6016 saved_7F0 = 1;
6017
6018 /* Test Write at offset 4f0 */
6019 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6020 fail = 1;
6021 if (read_eeprom(sp, 0x4F0, &ret_data))
6022 fail = 1;
6023
6024 if (ret_data != 0x012345) {
6025 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6026 "Data written %llx Data read %llx\n",
6027 dev->name, (unsigned long long)0x12345,
6028 (unsigned long long)ret_data);
6029 fail = 1;
6030 }
6031
6032 /* Reset the EEPROM data go FFFF */
6033 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6034
6035 /* Test Write Request Error at offset 0x7c */
6036 if (sp->device_type == XFRAME_I_DEVICE)
6037 if (!write_eeprom(sp, 0x07C, 0, 3))
6038 fail = 1;
6039
6040 /* Test Write Request at offset 0x7f0 */
6041 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6042 fail = 1;
6043 if (read_eeprom(sp, 0x7F0, &ret_data))
6044 fail = 1;
6045
6046 if (ret_data != 0x012345) {
6047 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6048 "Data written %llx Data read %llx\n",
6049 dev->name, (unsigned long long)0x12345,
6050 (unsigned long long)ret_data);
6051 fail = 1;
6052 }
6053
6054 /* Reset the EEPROM data go FFFF */
6055 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6056
6057 if (sp->device_type == XFRAME_I_DEVICE) {
6058 /* Test Write Error at offset 0x80 */
6059 if (!write_eeprom(sp, 0x080, 0, 3))
6060 fail = 1;
6061
6062 /* Test Write Error at offset 0xfc */
6063 if (!write_eeprom(sp, 0x0FC, 0, 3))
6064 fail = 1;
6065
6066 /* Test Write Error at offset 0x100 */
6067 if (!write_eeprom(sp, 0x100, 0, 3))
6068 fail = 1;
6069
6070 /* Test Write Error at offset 4ec */
6071 if (!write_eeprom(sp, 0x4EC, 0, 3))
6072 fail = 1;
6073 }
6074
6075 /* Restore values at offsets 0x4F0 and 0x7F0 */
6076 if (saved_4F0)
6077 write_eeprom(sp, 0x4F0, org_4F0, 3);
6078 if (saved_7F0)
6079 write_eeprom(sp, 0x7F0, org_7F0, 3);
6080
6081 *data = fail;
6082 return fail;
6083 }
6084
6085 /**
6086 * s2io_bist_test - invokes the MemBist test of the card .
6087 * @sp : private member of the device structure, which is a pointer to the
6088 * s2io_nic structure.
6089 * @data:variable that returns the result of each of the test conducted by
6090 * the driver.
6091 * Description:
6092 * This invokes the MemBist test of the card. We give around
6093 * 2 secs time for the Test to complete. If it's still not complete
6094 * within this peiod, we consider that the test failed.
6095 * Return value:
6096 * 0 on success and -1 on failure.
6097 */
6098
6099 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6100 {
6101 u8 bist = 0;
6102 int cnt = 0, ret = -1;
6103
6104 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6105 bist |= PCI_BIST_START;
6106 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6107
6108 while (cnt < 20) {
6109 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6110 if (!(bist & PCI_BIST_START)) {
6111 *data = (bist & PCI_BIST_CODE_MASK);
6112 ret = 0;
6113 break;
6114 }
6115 msleep(100);
6116 cnt++;
6117 }
6118
6119 return ret;
6120 }
6121
6122 /**
6123 * s2io-link_test - verifies the link state of the nic
6124 * @sp ; private member of the device structure, which is a pointer to the
6125 * s2io_nic structure.
6126 * @data: variable that returns the result of each of the test conducted by
6127 * the driver.
6128 * Description:
6129 * The function verifies the link state of the NIC and updates the input
6130 * argument 'data' appropriately.
6131 * Return value:
6132 * 0 on success.
6133 */
6134
6135 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6136 {
6137 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6138 u64 val64;
6139
6140 val64 = readq(&bar0->adapter_status);
6141 if (!(LINK_IS_UP(val64)))
6142 *data = 1;
6143 else
6144 *data = 0;
6145
6146 return *data;
6147 }
6148
6149 /**
6150 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6151 * @sp - private member of the device structure, which is a pointer to the
6152 * s2io_nic structure.
6153 * @data - variable that returns the result of each of the test
6154 * conducted by the driver.
6155 * Description:
6156 * This is one of the offline test that tests the read and write
6157 * access to the RldRam chip on the NIC.
6158 * Return value:
6159 * 0 on success.
6160 */
6161
6162 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6163 {
6164 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6165 u64 val64;
6166 int cnt, iteration = 0, test_fail = 0;
6167
6168 val64 = readq(&bar0->adapter_control);
6169 val64 &= ~ADAPTER_ECC_EN;
6170 writeq(val64, &bar0->adapter_control);
6171
6172 val64 = readq(&bar0->mc_rldram_test_ctrl);
6173 val64 |= MC_RLDRAM_TEST_MODE;
6174 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6175
6176 val64 = readq(&bar0->mc_rldram_mrs);
6177 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6178 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6179
6180 val64 |= MC_RLDRAM_MRS_ENABLE;
6181 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6182
6183 while (iteration < 2) {
6184 val64 = 0x55555555aaaa0000ULL;
6185 if (iteration == 1)
6186 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6187 writeq(val64, &bar0->mc_rldram_test_d0);
6188
6189 val64 = 0xaaaa5a5555550000ULL;
6190 if (iteration == 1)
6191 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6192 writeq(val64, &bar0->mc_rldram_test_d1);
6193
6194 val64 = 0x55aaaaaaaa5a0000ULL;
6195 if (iteration == 1)
6196 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6197 writeq(val64, &bar0->mc_rldram_test_d2);
6198
6199 val64 = (u64) (0x0000003ffffe0100ULL);
6200 writeq(val64, &bar0->mc_rldram_test_add);
6201
6202 val64 = MC_RLDRAM_TEST_MODE |
6203 MC_RLDRAM_TEST_WRITE |
6204 MC_RLDRAM_TEST_GO;
6205 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6206
6207 for (cnt = 0; cnt < 5; cnt++) {
6208 val64 = readq(&bar0->mc_rldram_test_ctrl);
6209 if (val64 & MC_RLDRAM_TEST_DONE)
6210 break;
6211 msleep(200);
6212 }
6213
6214 if (cnt == 5)
6215 break;
6216
6217 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6218 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6219
6220 for (cnt = 0; cnt < 5; cnt++) {
6221 val64 = readq(&bar0->mc_rldram_test_ctrl);
6222 if (val64 & MC_RLDRAM_TEST_DONE)
6223 break;
6224 msleep(500);
6225 }
6226
6227 if (cnt == 5)
6228 break;
6229
6230 val64 = readq(&bar0->mc_rldram_test_ctrl);
6231 if (!(val64 & MC_RLDRAM_TEST_PASS))
6232 test_fail = 1;
6233
6234 iteration++;
6235 }
6236
6237 *data = test_fail;
6238
6239 /* Bring the adapter out of test mode */
6240 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6241
6242 return test_fail;
6243 }
6244
6245 /**
6246 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6247 * @sp : private member of the device structure, which is a pointer to the
6248 * s2io_nic structure.
6249 * @ethtest : pointer to a ethtool command specific structure that will be
6250 * returned to the user.
6251 * @data : variable that returns the result of each of the test
6252 * conducted by the driver.
6253 * Description:
6254 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6255 * the health of the card.
6256 * Return value:
6257 * void
6258 */
6259
6260 static void s2io_ethtool_test(struct net_device *dev,
6261 struct ethtool_test *ethtest,
6262 uint64_t *data)
6263 {
6264 struct s2io_nic *sp = netdev_priv(dev);
6265 int orig_state = netif_running(sp->dev);
6266
6267 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6268 /* Offline Tests. */
6269 if (orig_state)
6270 s2io_close(sp->dev);
6271
6272 if (s2io_register_test(sp, &data[0]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6274
6275 s2io_reset(sp);
6276
6277 if (s2io_rldram_test(sp, &data[3]))
6278 ethtest->flags |= ETH_TEST_FL_FAILED;
6279
6280 s2io_reset(sp);
6281
6282 if (s2io_eeprom_test(sp, &data[1]))
6283 ethtest->flags |= ETH_TEST_FL_FAILED;
6284
6285 if (s2io_bist_test(sp, &data[4]))
6286 ethtest->flags |= ETH_TEST_FL_FAILED;
6287
6288 if (orig_state)
6289 s2io_open(sp->dev);
6290
6291 data[2] = 0;
6292 } else {
6293 /* Online Tests. */
6294 if (!orig_state) {
6295 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6296 dev->name);
6297 data[0] = -1;
6298 data[1] = -1;
6299 data[2] = -1;
6300 data[3] = -1;
6301 data[4] = -1;
6302 }
6303
6304 if (s2io_link_test(sp, &data[2]))
6305 ethtest->flags |= ETH_TEST_FL_FAILED;
6306
6307 data[0] = 0;
6308 data[1] = 0;
6309 data[3] = 0;
6310 data[4] = 0;
6311 }
6312 }
6313
6314 static void s2io_get_ethtool_stats(struct net_device *dev,
6315 struct ethtool_stats *estats,
6316 u64 *tmp_stats)
6317 {
6318 int i = 0, k;
6319 struct s2io_nic *sp = netdev_priv(dev);
6320 struct stat_block *stats = sp->mac_control.stats_info;
6321 struct swStat *swstats = &stats->sw_stat;
6322 struct xpakStat *xstats = &stats->xpak_stat;
6323
6324 s2io_updt_stats(sp);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6327 le32_to_cpu(stats->tmac_frms);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6330 le32_to_cpu(stats->tmac_data_octets);
6331 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6332 tmp_stats[i++] =
6333 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6334 le32_to_cpu(stats->tmac_mcst_frms);
6335 tmp_stats[i++] =
6336 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6337 le32_to_cpu(stats->tmac_bcst_frms);
6338 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6341 le32_to_cpu(stats->tmac_ttl_octets);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6344 le32_to_cpu(stats->tmac_ucst_frms);
6345 tmp_stats[i++] =
6346 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6347 le32_to_cpu(stats->tmac_nucst_frms);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6350 le32_to_cpu(stats->tmac_any_err_frms);
6351 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6352 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6353 tmp_stats[i++] =
6354 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6355 le32_to_cpu(stats->tmac_vld_ip);
6356 tmp_stats[i++] =
6357 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6358 le32_to_cpu(stats->tmac_drop_ip);
6359 tmp_stats[i++] =
6360 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6361 le32_to_cpu(stats->tmac_icmp);
6362 tmp_stats[i++] =
6363 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6364 le32_to_cpu(stats->tmac_rst_tcp);
6365 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6366 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6367 le32_to_cpu(stats->tmac_udp);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6370 le32_to_cpu(stats->rmac_vld_frms);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6373 le32_to_cpu(stats->rmac_data_octets);
6374 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6375 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6378 le32_to_cpu(stats->rmac_vld_mcst_frms);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6381 le32_to_cpu(stats->rmac_vld_bcst_frms);
6382 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6383 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6387 tmp_stats[i++] =
6388 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6389 le32_to_cpu(stats->rmac_ttl_octets);
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6392 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6395 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6396 tmp_stats[i++] =
6397 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6398 le32_to_cpu(stats->rmac_discarded_frms);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6401 << 32 | le32_to_cpu(stats->rmac_drop_events);
6402 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6403 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6404 tmp_stats[i++] =
6405 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6406 le32_to_cpu(stats->rmac_usized_frms);
6407 tmp_stats[i++] =
6408 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6409 le32_to_cpu(stats->rmac_osized_frms);
6410 tmp_stats[i++] =
6411 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6412 le32_to_cpu(stats->rmac_frag_frms);
6413 tmp_stats[i++] =
6414 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6415 le32_to_cpu(stats->rmac_jabber_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6420 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6421 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6422 tmp_stats[i++] =
6423 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6424 le32_to_cpu(stats->rmac_ip);
6425 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6426 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6427 tmp_stats[i++] =
6428 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6429 le32_to_cpu(stats->rmac_drop_ip);
6430 tmp_stats[i++] =
6431 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6432 le32_to_cpu(stats->rmac_icmp);
6433 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6434 tmp_stats[i++] =
6435 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6436 le32_to_cpu(stats->rmac_udp);
6437 tmp_stats[i++] =
6438 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6439 le32_to_cpu(stats->rmac_err_drp_udp);
6440 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6445 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6446 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6447 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6448 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6449 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6450 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6451 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6452 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6453 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6454 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6455 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6456 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6457 tmp_stats[i++] =
6458 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6459 le32_to_cpu(stats->rmac_pause_cnt);
6460 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6461 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6462 tmp_stats[i++] =
6463 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6464 le32_to_cpu(stats->rmac_accepted_ip);
6465 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6466 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6474 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6475 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6476 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6477 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6478 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6479 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6480 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6481 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6482 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6483 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6484
6485 /* Enhanced statistics exist only for Hercules */
6486 if (sp->device_type == XFRAME_II_DEVICE) {
6487 tmp_stats[i++] =
6488 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6489 tmp_stats[i++] =
6490 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6491 tmp_stats[i++] =
6492 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6493 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6494 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6495 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6496 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6497 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6498 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6499 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6500 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6501 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6502 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6503 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6504 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6505 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6506 }
6507
6508 tmp_stats[i++] = 0;
6509 tmp_stats[i++] = swstats->single_ecc_errs;
6510 tmp_stats[i++] = swstats->double_ecc_errs;
6511 tmp_stats[i++] = swstats->parity_err_cnt;
6512 tmp_stats[i++] = swstats->serious_err_cnt;
6513 tmp_stats[i++] = swstats->soft_reset_cnt;
6514 tmp_stats[i++] = swstats->fifo_full_cnt;
6515 for (k = 0; k < MAX_RX_RINGS; k++)
6516 tmp_stats[i++] = swstats->ring_full_cnt[k];
6517 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6518 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6519 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6520 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6521 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6522 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6523 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6524 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6525 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6526 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6527 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6528 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6529 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6530 tmp_stats[i++] = swstats->sending_both;
6531 tmp_stats[i++] = swstats->outof_sequence_pkts;
6532 tmp_stats[i++] = swstats->flush_max_pkts;
6533 if (swstats->num_aggregations) {
6534 u64 tmp = swstats->sum_avg_pkts_aggregated;
6535 int count = 0;
6536 /*
6537 * Since 64-bit divide does not work on all platforms,
6538 * do repeated subtraction.
6539 */
6540 while (tmp >= swstats->num_aggregations) {
6541 tmp -= swstats->num_aggregations;
6542 count++;
6543 }
6544 tmp_stats[i++] = count;
6545 } else
6546 tmp_stats[i++] = 0;
6547 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6548 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6549 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6550 tmp_stats[i++] = swstats->mem_allocated;
6551 tmp_stats[i++] = swstats->mem_freed;
6552 tmp_stats[i++] = swstats->link_up_cnt;
6553 tmp_stats[i++] = swstats->link_down_cnt;
6554 tmp_stats[i++] = swstats->link_up_time;
6555 tmp_stats[i++] = swstats->link_down_time;
6556
6557 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6558 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6559 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6560 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6561 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6562
6563 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6564 tmp_stats[i++] = swstats->rx_abort_cnt;
6565 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6566 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6567 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6568 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6569 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6570 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6571 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6572 tmp_stats[i++] = swstats->tda_err_cnt;
6573 tmp_stats[i++] = swstats->pfc_err_cnt;
6574 tmp_stats[i++] = swstats->pcc_err_cnt;
6575 tmp_stats[i++] = swstats->tti_err_cnt;
6576 tmp_stats[i++] = swstats->tpa_err_cnt;
6577 tmp_stats[i++] = swstats->sm_err_cnt;
6578 tmp_stats[i++] = swstats->lso_err_cnt;
6579 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6580 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6581 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6582 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6583 tmp_stats[i++] = swstats->rc_err_cnt;
6584 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6585 tmp_stats[i++] = swstats->rpa_err_cnt;
6586 tmp_stats[i++] = swstats->rda_err_cnt;
6587 tmp_stats[i++] = swstats->rti_err_cnt;
6588 tmp_stats[i++] = swstats->mc_err_cnt;
6589 }
6590
6591 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6592 {
6593 return XENA_REG_SPACE;
6594 }
6595
6596
6597 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6598 {
6599 struct s2io_nic *sp = netdev_priv(dev);
6600
6601 return sp->rx_csum;
6602 }
6603
6604 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6605 {
6606 struct s2io_nic *sp = netdev_priv(dev);
6607
6608 if (data)
6609 sp->rx_csum = 1;
6610 else
6611 sp->rx_csum = 0;
6612
6613 return 0;
6614 }
6615
6616 static int s2io_get_eeprom_len(struct net_device *dev)
6617 {
6618 return XENA_EEPROM_SPACE;
6619 }
6620
6621 static int s2io_get_sset_count(struct net_device *dev, int sset)
6622 {
6623 struct s2io_nic *sp = netdev_priv(dev);
6624
6625 switch (sset) {
6626 case ETH_SS_TEST:
6627 return S2IO_TEST_LEN;
6628 case ETH_SS_STATS:
6629 switch (sp->device_type) {
6630 case XFRAME_I_DEVICE:
6631 return XFRAME_I_STAT_LEN;
6632 case XFRAME_II_DEVICE:
6633 return XFRAME_II_STAT_LEN;
6634 default:
6635 return 0;
6636 }
6637 default:
6638 return -EOPNOTSUPP;
6639 }
6640 }
6641
6642 static void s2io_ethtool_get_strings(struct net_device *dev,
6643 u32 stringset, u8 *data)
6644 {
6645 int stat_size = 0;
6646 struct s2io_nic *sp = netdev_priv(dev);
6647
6648 switch (stringset) {
6649 case ETH_SS_TEST:
6650 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6651 break;
6652 case ETH_SS_STATS:
6653 stat_size = sizeof(ethtool_xena_stats_keys);
6654 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6655 if (sp->device_type == XFRAME_II_DEVICE) {
6656 memcpy(data + stat_size,
6657 &ethtool_enhanced_stats_keys,
6658 sizeof(ethtool_enhanced_stats_keys));
6659 stat_size += sizeof(ethtool_enhanced_stats_keys);
6660 }
6661
6662 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6663 sizeof(ethtool_driver_stats_keys));
6664 }
6665 }
6666
6667 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6668 {
6669 if (data)
6670 dev->features |= NETIF_F_IP_CSUM;
6671 else
6672 dev->features &= ~NETIF_F_IP_CSUM;
6673
6674 return 0;
6675 }
6676
6677 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6678 {
6679 return (dev->features & NETIF_F_TSO) != 0;
6680 }
6681 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6682 {
6683 if (data)
6684 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6685 else
6686 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6687
6688 return 0;
6689 }
6690
6691 static const struct ethtool_ops netdev_ethtool_ops = {
6692 .get_settings = s2io_ethtool_gset,
6693 .set_settings = s2io_ethtool_sset,
6694 .get_drvinfo = s2io_ethtool_gdrvinfo,
6695 .get_regs_len = s2io_ethtool_get_regs_len,
6696 .get_regs = s2io_ethtool_gregs,
6697 .get_link = ethtool_op_get_link,
6698 .get_eeprom_len = s2io_get_eeprom_len,
6699 .get_eeprom = s2io_ethtool_geeprom,
6700 .set_eeprom = s2io_ethtool_seeprom,
6701 .get_ringparam = s2io_ethtool_gringparam,
6702 .get_pauseparam = s2io_ethtool_getpause_data,
6703 .set_pauseparam = s2io_ethtool_setpause_data,
6704 .get_rx_csum = s2io_ethtool_get_rx_csum,
6705 .set_rx_csum = s2io_ethtool_set_rx_csum,
6706 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6707 .set_sg = ethtool_op_set_sg,
6708 .get_tso = s2io_ethtool_op_get_tso,
6709 .set_tso = s2io_ethtool_op_set_tso,
6710 .set_ufo = ethtool_op_set_ufo,
6711 .self_test = s2io_ethtool_test,
6712 .get_strings = s2io_ethtool_get_strings,
6713 .phys_id = s2io_ethtool_idnic,
6714 .get_ethtool_stats = s2io_get_ethtool_stats,
6715 .get_sset_count = s2io_get_sset_count,
6716 };
6717
6718 /**
6719 * s2io_ioctl - Entry point for the Ioctl
6720 * @dev : Device pointer.
6721 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6722 * a proprietary structure used to pass information to the driver.
6723 * @cmd : This is used to distinguish between the different commands that
6724 * can be passed to the IOCTL functions.
6725 * Description:
6726 * Currently there are no special functionality supported in IOCTL, hence
6727 * function always return EOPNOTSUPPORTED
6728 */
6729
6730 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6731 {
6732 return -EOPNOTSUPP;
6733 }
6734
6735 /**
6736 * s2io_change_mtu - entry point to change MTU size for the device.
6737 * @dev : device pointer.
6738 * @new_mtu : the new MTU size for the device.
6739 * Description: A driver entry point to change MTU size for the device.
6740 * Before changing the MTU the device must be stopped.
6741 * Return value:
6742 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6743 * file on failure.
6744 */
6745
6746 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6747 {
6748 struct s2io_nic *sp = netdev_priv(dev);
6749 int ret = 0;
6750
6751 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6752 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6753 return -EPERM;
6754 }
6755
6756 dev->mtu = new_mtu;
6757 if (netif_running(dev)) {
6758 s2io_stop_all_tx_queue(sp);
6759 s2io_card_down(sp);
6760 ret = s2io_card_up(sp);
6761 if (ret) {
6762 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6763 __func__);
6764 return ret;
6765 }
6766 s2io_wake_all_tx_queue(sp);
6767 } else { /* Device is down */
6768 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6769 u64 val64 = new_mtu;
6770
6771 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6772 }
6773
6774 return ret;
6775 }
6776
6777 /**
6778 * s2io_set_link - Set the LInk status
6779 * @data: long pointer to device private structue
6780 * Description: Sets the link status for the adapter
6781 */
6782
6783 static void s2io_set_link(struct work_struct *work)
6784 {
6785 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6786 set_link_task);
6787 struct net_device *dev = nic->dev;
6788 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6789 register u64 val64;
6790 u16 subid;
6791
6792 rtnl_lock();
6793
6794 if (!netif_running(dev))
6795 goto out_unlock;
6796
6797 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6798 /* The card is being reset, no point doing anything */
6799 goto out_unlock;
6800 }
6801
6802 subid = nic->pdev->subsystem_device;
6803 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6804 /*
6805 * Allow a small delay for the NICs self initiated
6806 * cleanup to complete.
6807 */
6808 msleep(100);
6809 }
6810
6811 val64 = readq(&bar0->adapter_status);
6812 if (LINK_IS_UP(val64)) {
6813 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6814 if (verify_xena_quiescence(nic)) {
6815 val64 = readq(&bar0->adapter_control);
6816 val64 |= ADAPTER_CNTL_EN;
6817 writeq(val64, &bar0->adapter_control);
6818 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6819 nic->device_type, subid)) {
6820 val64 = readq(&bar0->gpio_control);
6821 val64 |= GPIO_CTRL_GPIO_0;
6822 writeq(val64, &bar0->gpio_control);
6823 val64 = readq(&bar0->gpio_control);
6824 } else {
6825 val64 |= ADAPTER_LED_ON;
6826 writeq(val64, &bar0->adapter_control);
6827 }
6828 nic->device_enabled_once = true;
6829 } else {
6830 DBG_PRINT(ERR_DBG,
6831 "%s: Error: device is not Quiescent\n",
6832 dev->name);
6833 s2io_stop_all_tx_queue(nic);
6834 }
6835 }
6836 val64 = readq(&bar0->adapter_control);
6837 val64 |= ADAPTER_LED_ON;
6838 writeq(val64, &bar0->adapter_control);
6839 s2io_link(nic, LINK_UP);
6840 } else {
6841 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6842 subid)) {
6843 val64 = readq(&bar0->gpio_control);
6844 val64 &= ~GPIO_CTRL_GPIO_0;
6845 writeq(val64, &bar0->gpio_control);
6846 val64 = readq(&bar0->gpio_control);
6847 }
6848 /* turn off LED */
6849 val64 = readq(&bar0->adapter_control);
6850 val64 = val64 & (~ADAPTER_LED_ON);
6851 writeq(val64, &bar0->adapter_control);
6852 s2io_link(nic, LINK_DOWN);
6853 }
6854 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6855
6856 out_unlock:
6857 rtnl_unlock();
6858 }
6859
6860 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6861 struct buffAdd *ba,
6862 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6863 u64 *temp2, int size)
6864 {
6865 struct net_device *dev = sp->dev;
6866 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6867
6868 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6869 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6870 /* allocate skb */
6871 if (*skb) {
6872 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6873 /*
6874 * As Rx frame are not going to be processed,
6875 * using same mapped address for the Rxd
6876 * buffer pointer
6877 */
6878 rxdp1->Buffer0_ptr = *temp0;
6879 } else {
6880 *skb = dev_alloc_skb(size);
6881 if (!(*skb)) {
6882 DBG_PRINT(INFO_DBG,
6883 "%s: Out of memory to allocate %s\n",
6884 dev->name, "1 buf mode SKBs");
6885 stats->mem_alloc_fail_cnt++;
6886 return -ENOMEM ;
6887 }
6888 stats->mem_allocated += (*skb)->truesize;
6889 /* storing the mapped addr in a temp variable
6890 * such it will be used for next rxd whose
6891 * Host Control is NULL
6892 */
6893 rxdp1->Buffer0_ptr = *temp0 =
6894 pci_map_single(sp->pdev, (*skb)->data,
6895 size - NET_IP_ALIGN,
6896 PCI_DMA_FROMDEVICE);
6897 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6898 goto memalloc_failed;
6899 rxdp->Host_Control = (unsigned long) (*skb);
6900 }
6901 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6902 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6903 /* Two buffer Mode */
6904 if (*skb) {
6905 rxdp3->Buffer2_ptr = *temp2;
6906 rxdp3->Buffer0_ptr = *temp0;
6907 rxdp3->Buffer1_ptr = *temp1;
6908 } else {
6909 *skb = dev_alloc_skb(size);
6910 if (!(*skb)) {
6911 DBG_PRINT(INFO_DBG,
6912 "%s: Out of memory to allocate %s\n",
6913 dev->name,
6914 "2 buf mode SKBs");
6915 stats->mem_alloc_fail_cnt++;
6916 return -ENOMEM;
6917 }
6918 stats->mem_allocated += (*skb)->truesize;
6919 rxdp3->Buffer2_ptr = *temp2 =
6920 pci_map_single(sp->pdev, (*skb)->data,
6921 dev->mtu + 4,
6922 PCI_DMA_FROMDEVICE);
6923 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6924 goto memalloc_failed;
6925 rxdp3->Buffer0_ptr = *temp0 =
6926 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6927 PCI_DMA_FROMDEVICE);
6928 if (pci_dma_mapping_error(sp->pdev,
6929 rxdp3->Buffer0_ptr)) {
6930 pci_unmap_single(sp->pdev,
6931 (dma_addr_t)rxdp3->Buffer2_ptr,
6932 dev->mtu + 4,
6933 PCI_DMA_FROMDEVICE);
6934 goto memalloc_failed;
6935 }
6936 rxdp->Host_Control = (unsigned long) (*skb);
6937
6938 /* Buffer-1 will be dummy buffer not used */
6939 rxdp3->Buffer1_ptr = *temp1 =
6940 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6941 PCI_DMA_FROMDEVICE);
6942 if (pci_dma_mapping_error(sp->pdev,
6943 rxdp3->Buffer1_ptr)) {
6944 pci_unmap_single(sp->pdev,
6945 (dma_addr_t)rxdp3->Buffer0_ptr,
6946 BUF0_LEN, PCI_DMA_FROMDEVICE);
6947 pci_unmap_single(sp->pdev,
6948 (dma_addr_t)rxdp3->Buffer2_ptr,
6949 dev->mtu + 4,
6950 PCI_DMA_FROMDEVICE);
6951 goto memalloc_failed;
6952 }
6953 }
6954 }
6955 return 0;
6956
6957 memalloc_failed:
6958 stats->pci_map_fail_cnt++;
6959 stats->mem_freed += (*skb)->truesize;
6960 dev_kfree_skb(*skb);
6961 return -ENOMEM;
6962 }
6963
6964 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6965 int size)
6966 {
6967 struct net_device *dev = sp->dev;
6968 if (sp->rxd_mode == RXD_MODE_1) {
6969 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6970 } else if (sp->rxd_mode == RXD_MODE_3B) {
6971 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6972 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6973 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6974 }
6975 }
6976
6977 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6978 {
6979 int i, j, k, blk_cnt = 0, size;
6980 struct config_param *config = &sp->config;
6981 struct mac_info *mac_control = &sp->mac_control;
6982 struct net_device *dev = sp->dev;
6983 struct RxD_t *rxdp = NULL;
6984 struct sk_buff *skb = NULL;
6985 struct buffAdd *ba = NULL;
6986 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6987
6988 /* Calculate the size based on ring mode */
6989 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6990 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6991 if (sp->rxd_mode == RXD_MODE_1)
6992 size += NET_IP_ALIGN;
6993 else if (sp->rxd_mode == RXD_MODE_3B)
6994 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6995
6996 for (i = 0; i < config->rx_ring_num; i++) {
6997 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6998 struct ring_info *ring = &mac_control->rings[i];
6999
7000 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7001
7002 for (j = 0; j < blk_cnt; j++) {
7003 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7004 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7005 if (sp->rxd_mode == RXD_MODE_3B)
7006 ba = &ring->ba[j][k];
7007 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7008 (u64 *)&temp0_64,
7009 (u64 *)&temp1_64,
7010 (u64 *)&temp2_64,
7011 size) == -ENOMEM) {
7012 return 0;
7013 }
7014
7015 set_rxd_buffer_size(sp, rxdp, size);
7016 wmb();
7017 /* flip the Ownership bit to Hardware */
7018 rxdp->Control_1 |= RXD_OWN_XENA;
7019 }
7020 }
7021 }
7022 return 0;
7023
7024 }
7025
7026 static int s2io_add_isr(struct s2io_nic *sp)
7027 {
7028 int ret = 0;
7029 struct net_device *dev = sp->dev;
7030 int err = 0;
7031
7032 if (sp->config.intr_type == MSI_X)
7033 ret = s2io_enable_msi_x(sp);
7034 if (ret) {
7035 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7036 sp->config.intr_type = INTA;
7037 }
7038
7039 /*
7040 * Store the values of the MSIX table in
7041 * the struct s2io_nic structure
7042 */
7043 store_xmsi_data(sp);
7044
7045 /* After proper initialization of H/W, register ISR */
7046 if (sp->config.intr_type == MSI_X) {
7047 int i, msix_rx_cnt = 0;
7048
7049 for (i = 0; i < sp->num_entries; i++) {
7050 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7051 if (sp->s2io_entries[i].type ==
7052 MSIX_RING_TYPE) {
7053 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7054 dev->name, i);
7055 err = request_irq(sp->entries[i].vector,
7056 s2io_msix_ring_handle,
7057 0,
7058 sp->desc[i],
7059 sp->s2io_entries[i].arg);
7060 } else if (sp->s2io_entries[i].type ==
7061 MSIX_ALARM_TYPE) {
7062 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7063 dev->name, i);
7064 err = request_irq(sp->entries[i].vector,
7065 s2io_msix_fifo_handle,
7066 0,
7067 sp->desc[i],
7068 sp->s2io_entries[i].arg);
7069
7070 }
7071 /* if either data or addr is zero print it. */
7072 if (!(sp->msix_info[i].addr &&
7073 sp->msix_info[i].data)) {
7074 DBG_PRINT(ERR_DBG,
7075 "%s @Addr:0x%llx Data:0x%llx\n",
7076 sp->desc[i],
7077 (unsigned long long)
7078 sp->msix_info[i].addr,
7079 (unsigned long long)
7080 ntohl(sp->msix_info[i].data));
7081 } else
7082 msix_rx_cnt++;
7083 if (err) {
7084 remove_msix_isr(sp);
7085
7086 DBG_PRINT(ERR_DBG,
7087 "%s:MSI-X-%d registration "
7088 "failed\n", dev->name, i);
7089
7090 DBG_PRINT(ERR_DBG,
7091 "%s: Defaulting to INTA\n",
7092 dev->name);
7093 sp->config.intr_type = INTA;
7094 break;
7095 }
7096 sp->s2io_entries[i].in_use =
7097 MSIX_REGISTERED_SUCCESS;
7098 }
7099 }
7100 if (!err) {
7101 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7102 DBG_PRINT(INFO_DBG,
7103 "MSI-X-TX entries enabled through alarm vector\n");
7104 }
7105 }
7106 if (sp->config.intr_type == INTA) {
7107 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7108 sp->name, dev);
7109 if (err) {
7110 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7111 dev->name);
7112 return -1;
7113 }
7114 }
7115 return 0;
7116 }
7117
7118 static void s2io_rem_isr(struct s2io_nic *sp)
7119 {
7120 if (sp->config.intr_type == MSI_X)
7121 remove_msix_isr(sp);
7122 else
7123 remove_inta_isr(sp);
7124 }
7125
7126 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7127 {
7128 int cnt = 0;
7129 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7130 register u64 val64 = 0;
7131 struct config_param *config;
7132 config = &sp->config;
7133
7134 if (!is_s2io_card_up(sp))
7135 return;
7136
7137 del_timer_sync(&sp->alarm_timer);
7138 /* If s2io_set_link task is executing, wait till it completes. */
7139 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7140 msleep(50);
7141 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7142
7143 /* Disable napi */
7144 if (sp->config.napi) {
7145 int off = 0;
7146 if (config->intr_type == MSI_X) {
7147 for (; off < sp->config.rx_ring_num; off++)
7148 napi_disable(&sp->mac_control.rings[off].napi);
7149 }
7150 else
7151 napi_disable(&sp->napi);
7152 }
7153
7154 /* disable Tx and Rx traffic on the NIC */
7155 if (do_io)
7156 stop_nic(sp);
7157
7158 s2io_rem_isr(sp);
7159
7160 /* stop the tx queue, indicate link down */
7161 s2io_link(sp, LINK_DOWN);
7162
7163 /* Check if the device is Quiescent and then Reset the NIC */
7164 while (do_io) {
7165 /* As per the HW requirement we need to replenish the
7166 * receive buffer to avoid the ring bump. Since there is
7167 * no intention of processing the Rx frame at this pointwe are
7168 * just settting the ownership bit of rxd in Each Rx
7169 * ring to HW and set the appropriate buffer size
7170 * based on the ring mode
7171 */
7172 rxd_owner_bit_reset(sp);
7173
7174 val64 = readq(&bar0->adapter_status);
7175 if (verify_xena_quiescence(sp)) {
7176 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7177 break;
7178 }
7179
7180 msleep(50);
7181 cnt++;
7182 if (cnt == 10) {
7183 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7184 "adapter status reads 0x%llx\n",
7185 (unsigned long long)val64);
7186 break;
7187 }
7188 }
7189 if (do_io)
7190 s2io_reset(sp);
7191
7192 /* Free all Tx buffers */
7193 free_tx_buffers(sp);
7194
7195 /* Free all Rx buffers */
7196 free_rx_buffers(sp);
7197
7198 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7199 }
7200
7201 static void s2io_card_down(struct s2io_nic *sp)
7202 {
7203 do_s2io_card_down(sp, 1);
7204 }
7205
7206 static int s2io_card_up(struct s2io_nic *sp)
7207 {
7208 int i, ret = 0;
7209 struct config_param *config;
7210 struct mac_info *mac_control;
7211 struct net_device *dev = (struct net_device *)sp->dev;
7212 u16 interruptible;
7213
7214 /* Initialize the H/W I/O registers */
7215 ret = init_nic(sp);
7216 if (ret != 0) {
7217 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7218 dev->name);
7219 if (ret != -EIO)
7220 s2io_reset(sp);
7221 return ret;
7222 }
7223
7224 /*
7225 * Initializing the Rx buffers. For now we are considering only 1
7226 * Rx ring and initializing buffers into 30 Rx blocks
7227 */
7228 config = &sp->config;
7229 mac_control = &sp->mac_control;
7230
7231 for (i = 0; i < config->rx_ring_num; i++) {
7232 struct ring_info *ring = &mac_control->rings[i];
7233
7234 ring->mtu = dev->mtu;
7235 ret = fill_rx_buffers(sp, ring, 1);
7236 if (ret) {
7237 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7238 dev->name);
7239 s2io_reset(sp);
7240 free_rx_buffers(sp);
7241 return -ENOMEM;
7242 }
7243 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7244 ring->rx_bufs_left);
7245 }
7246
7247 /* Initialise napi */
7248 if (config->napi) {
7249 if (config->intr_type == MSI_X) {
7250 for (i = 0; i < sp->config.rx_ring_num; i++)
7251 napi_enable(&sp->mac_control.rings[i].napi);
7252 } else {
7253 napi_enable(&sp->napi);
7254 }
7255 }
7256
7257 /* Maintain the state prior to the open */
7258 if (sp->promisc_flg)
7259 sp->promisc_flg = 0;
7260 if (sp->m_cast_flg) {
7261 sp->m_cast_flg = 0;
7262 sp->all_multi_pos = 0;
7263 }
7264
7265 /* Setting its receive mode */
7266 s2io_set_multicast(dev);
7267
7268 if (sp->lro) {
7269 /* Initialize max aggregatable pkts per session based on MTU */
7270 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7271 /* Check if we can use (if specified) user provided value */
7272 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7273 sp->lro_max_aggr_per_sess = lro_max_pkts;
7274 }
7275
7276 /* Enable Rx Traffic and interrupts on the NIC */
7277 if (start_nic(sp)) {
7278 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7279 s2io_reset(sp);
7280 free_rx_buffers(sp);
7281 return -ENODEV;
7282 }
7283
7284 /* Add interrupt service routine */
7285 if (s2io_add_isr(sp) != 0) {
7286 if (sp->config.intr_type == MSI_X)
7287 s2io_rem_isr(sp);
7288 s2io_reset(sp);
7289 free_rx_buffers(sp);
7290 return -ENODEV;
7291 }
7292
7293 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7294
7295 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7296
7297 /* Enable select interrupts */
7298 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7299 if (sp->config.intr_type != INTA) {
7300 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7301 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7302 } else {
7303 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7304 interruptible |= TX_PIC_INTR;
7305 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7306 }
7307
7308 return 0;
7309 }
7310
7311 /**
7312 * s2io_restart_nic - Resets the NIC.
7313 * @data : long pointer to the device private structure
7314 * Description:
7315 * This function is scheduled to be run by the s2io_tx_watchdog
7316 * function after 0.5 secs to reset the NIC. The idea is to reduce
7317 * the run time of the watch dog routine which is run holding a
7318 * spin lock.
7319 */
7320
7321 static void s2io_restart_nic(struct work_struct *work)
7322 {
7323 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7324 struct net_device *dev = sp->dev;
7325
7326 rtnl_lock();
7327
7328 if (!netif_running(dev))
7329 goto out_unlock;
7330
7331 s2io_card_down(sp);
7332 if (s2io_card_up(sp)) {
7333 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7334 }
7335 s2io_wake_all_tx_queue(sp);
7336 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7337 out_unlock:
7338 rtnl_unlock();
7339 }
7340
7341 /**
7342 * s2io_tx_watchdog - Watchdog for transmit side.
7343 * @dev : Pointer to net device structure
7344 * Description:
7345 * This function is triggered if the Tx Queue is stopped
7346 * for a pre-defined amount of time when the Interface is still up.
7347 * If the Interface is jammed in such a situation, the hardware is
7348 * reset (by s2io_close) and restarted again (by s2io_open) to
7349 * overcome any problem that might have been caused in the hardware.
7350 * Return value:
7351 * void
7352 */
7353
7354 static void s2io_tx_watchdog(struct net_device *dev)
7355 {
7356 struct s2io_nic *sp = netdev_priv(dev);
7357 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7358
7359 if (netif_carrier_ok(dev)) {
7360 swstats->watchdog_timer_cnt++;
7361 schedule_work(&sp->rst_timer_task);
7362 swstats->soft_reset_cnt++;
7363 }
7364 }
7365
7366 /**
7367 * rx_osm_handler - To perform some OS related operations on SKB.
7368 * @sp: private member of the device structure,pointer to s2io_nic structure.
7369 * @skb : the socket buffer pointer.
7370 * @len : length of the packet
7371 * @cksum : FCS checksum of the frame.
7372 * @ring_no : the ring from which this RxD was extracted.
7373 * Description:
7374 * This function is called by the Rx interrupt serivce routine to perform
7375 * some OS related operations on the SKB before passing it to the upper
7376 * layers. It mainly checks if the checksum is OK, if so adds it to the
7377 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7378 * to the upper layer. If the checksum is wrong, it increments the Rx
7379 * packet error count, frees the SKB and returns error.
7380 * Return value:
7381 * SUCCESS on success and -1 on failure.
7382 */
7383 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7384 {
7385 struct s2io_nic *sp = ring_data->nic;
7386 struct net_device *dev = (struct net_device *)ring_data->dev;
7387 struct sk_buff *skb = (struct sk_buff *)
7388 ((unsigned long)rxdp->Host_Control);
7389 int ring_no = ring_data->ring_no;
7390 u16 l3_csum, l4_csum;
7391 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7392 struct lro *uninitialized_var(lro);
7393 u8 err_mask;
7394 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7395
7396 skb->dev = dev;
7397
7398 if (err) {
7399 /* Check for parity error */
7400 if (err & 0x1)
7401 swstats->parity_err_cnt++;
7402
7403 err_mask = err >> 48;
7404 switch (err_mask) {
7405 case 1:
7406 swstats->rx_parity_err_cnt++;
7407 break;
7408
7409 case 2:
7410 swstats->rx_abort_cnt++;
7411 break;
7412
7413 case 3:
7414 swstats->rx_parity_abort_cnt++;
7415 break;
7416
7417 case 4:
7418 swstats->rx_rda_fail_cnt++;
7419 break;
7420
7421 case 5:
7422 swstats->rx_unkn_prot_cnt++;
7423 break;
7424
7425 case 6:
7426 swstats->rx_fcs_err_cnt++;
7427 break;
7428
7429 case 7:
7430 swstats->rx_buf_size_err_cnt++;
7431 break;
7432
7433 case 8:
7434 swstats->rx_rxd_corrupt_cnt++;
7435 break;
7436
7437 case 15:
7438 swstats->rx_unkn_err_cnt++;
7439 break;
7440 }
7441 /*
7442 * Drop the packet if bad transfer code. Exception being
7443 * 0x5, which could be due to unsupported IPv6 extension header.
7444 * In this case, we let stack handle the packet.
7445 * Note that in this case, since checksum will be incorrect,
7446 * stack will validate the same.
7447 */
7448 if (err_mask != 0x5) {
7449 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7450 dev->name, err_mask);
7451 dev->stats.rx_crc_errors++;
7452 swstats->mem_freed
7453 += skb->truesize;
7454 dev_kfree_skb(skb);
7455 ring_data->rx_bufs_left -= 1;
7456 rxdp->Host_Control = 0;
7457 return 0;
7458 }
7459 }
7460
7461 /* Updating statistics */
7462 ring_data->rx_packets++;
7463 rxdp->Host_Control = 0;
7464 if (sp->rxd_mode == RXD_MODE_1) {
7465 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7466
7467 ring_data->rx_bytes += len;
7468 skb_put(skb, len);
7469
7470 } else if (sp->rxd_mode == RXD_MODE_3B) {
7471 int get_block = ring_data->rx_curr_get_info.block_index;
7472 int get_off = ring_data->rx_curr_get_info.offset;
7473 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7474 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7475 unsigned char *buff = skb_push(skb, buf0_len);
7476
7477 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7478 ring_data->rx_bytes += buf0_len + buf2_len;
7479 memcpy(buff, ba->ba_0, buf0_len);
7480 skb_put(skb, buf2_len);
7481 }
7482
7483 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7484 ((!ring_data->lro) ||
7485 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7486 (sp->rx_csum)) {
7487 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7488 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7489 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7490 /*
7491 * NIC verifies if the Checksum of the received
7492 * frame is Ok or not and accordingly returns
7493 * a flag in the RxD.
7494 */
7495 skb->ip_summed = CHECKSUM_UNNECESSARY;
7496 if (ring_data->lro) {
7497 u32 tcp_len;
7498 u8 *tcp;
7499 int ret = 0;
7500
7501 ret = s2io_club_tcp_session(ring_data,
7502 skb->data, &tcp,
7503 &tcp_len, &lro,
7504 rxdp, sp);
7505 switch (ret) {
7506 case 3: /* Begin anew */
7507 lro->parent = skb;
7508 goto aggregate;
7509 case 1: /* Aggregate */
7510 lro_append_pkt(sp, lro, skb, tcp_len);
7511 goto aggregate;
7512 case 4: /* Flush session */
7513 lro_append_pkt(sp, lro, skb, tcp_len);
7514 queue_rx_frame(lro->parent,
7515 lro->vlan_tag);
7516 clear_lro_session(lro);
7517 swstats->flush_max_pkts++;
7518 goto aggregate;
7519 case 2: /* Flush both */
7520 lro->parent->data_len = lro->frags_len;
7521 swstats->sending_both++;
7522 queue_rx_frame(lro->parent,
7523 lro->vlan_tag);
7524 clear_lro_session(lro);
7525 goto send_up;
7526 case 0: /* sessions exceeded */
7527 case -1: /* non-TCP or not L2 aggregatable */
7528 case 5: /*
7529 * First pkt in session not
7530 * L3/L4 aggregatable
7531 */
7532 break;
7533 default:
7534 DBG_PRINT(ERR_DBG,
7535 "%s: Samadhana!!\n",
7536 __func__);
7537 BUG();
7538 }
7539 }
7540 } else {
7541 /*
7542 * Packet with erroneous checksum, let the
7543 * upper layers deal with it.
7544 */
7545 skb->ip_summed = CHECKSUM_NONE;
7546 }
7547 } else
7548 skb->ip_summed = CHECKSUM_NONE;
7549
7550 swstats->mem_freed += skb->truesize;
7551 send_up:
7552 skb_record_rx_queue(skb, ring_no);
7553 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7554 aggregate:
7555 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7556 return SUCCESS;
7557 }
7558
7559 /**
7560 * s2io_link - stops/starts the Tx queue.
7561 * @sp : private member of the device structure, which is a pointer to the
7562 * s2io_nic structure.
7563 * @link : inidicates whether link is UP/DOWN.
7564 * Description:
7565 * This function stops/starts the Tx queue depending on whether the link
7566 * status of the NIC is is down or up. This is called by the Alarm
7567 * interrupt handler whenever a link change interrupt comes up.
7568 * Return value:
7569 * void.
7570 */
7571
7572 static void s2io_link(struct s2io_nic *sp, int link)
7573 {
7574 struct net_device *dev = (struct net_device *)sp->dev;
7575 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7576
7577 if (link != sp->last_link_state) {
7578 init_tti(sp, link);
7579 if (link == LINK_DOWN) {
7580 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7581 s2io_stop_all_tx_queue(sp);
7582 netif_carrier_off(dev);
7583 if (swstats->link_up_cnt)
7584 swstats->link_up_time =
7585 jiffies - sp->start_time;
7586 swstats->link_down_cnt++;
7587 } else {
7588 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7589 if (swstats->link_down_cnt)
7590 swstats->link_down_time =
7591 jiffies - sp->start_time;
7592 swstats->link_up_cnt++;
7593 netif_carrier_on(dev);
7594 s2io_wake_all_tx_queue(sp);
7595 }
7596 }
7597 sp->last_link_state = link;
7598 sp->start_time = jiffies;
7599 }
7600
7601 /**
7602 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7603 * @sp : private member of the device structure, which is a pointer to the
7604 * s2io_nic structure.
7605 * Description:
7606 * This function initializes a few of the PCI and PCI-X configuration registers
7607 * with recommended values.
7608 * Return value:
7609 * void
7610 */
7611
7612 static void s2io_init_pci(struct s2io_nic *sp)
7613 {
7614 u16 pci_cmd = 0, pcix_cmd = 0;
7615
7616 /* Enable Data Parity Error Recovery in PCI-X command register. */
7617 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7618 &(pcix_cmd));
7619 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7620 (pcix_cmd | 1));
7621 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7622 &(pcix_cmd));
7623
7624 /* Set the PErr Response bit in PCI command register. */
7625 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7626 pci_write_config_word(sp->pdev, PCI_COMMAND,
7627 (pci_cmd | PCI_COMMAND_PARITY));
7628 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7629 }
7630
7631 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7632 u8 *dev_multiq)
7633 {
7634 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7635 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7636 "(%d) not supported\n", tx_fifo_num);
7637
7638 if (tx_fifo_num < 1)
7639 tx_fifo_num = 1;
7640 else
7641 tx_fifo_num = MAX_TX_FIFOS;
7642
7643 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7644 }
7645
7646 if (multiq)
7647 *dev_multiq = multiq;
7648
7649 if (tx_steering_type && (1 == tx_fifo_num)) {
7650 if (tx_steering_type != TX_DEFAULT_STEERING)
7651 DBG_PRINT(ERR_DBG,
7652 "Tx steering is not supported with "
7653 "one fifo. Disabling Tx steering.\n");
7654 tx_steering_type = NO_STEERING;
7655 }
7656
7657 if ((tx_steering_type < NO_STEERING) ||
7658 (tx_steering_type > TX_DEFAULT_STEERING)) {
7659 DBG_PRINT(ERR_DBG,
7660 "Requested transmit steering not supported\n");
7661 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7662 tx_steering_type = NO_STEERING;
7663 }
7664
7665 if (rx_ring_num > MAX_RX_RINGS) {
7666 DBG_PRINT(ERR_DBG,
7667 "Requested number of rx rings not supported\n");
7668 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7669 MAX_RX_RINGS);
7670 rx_ring_num = MAX_RX_RINGS;
7671 }
7672
7673 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7674 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7675 "Defaulting to INTA\n");
7676 *dev_intr_type = INTA;
7677 }
7678
7679 if ((*dev_intr_type == MSI_X) &&
7680 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7681 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7682 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7683 "Defaulting to INTA\n");
7684 *dev_intr_type = INTA;
7685 }
7686
7687 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7688 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7689 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7690 rx_ring_mode = 1;
7691 }
7692 return SUCCESS;
7693 }
7694
7695 /**
7696 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7697 * or Traffic class respectively.
7698 * @nic: device private variable
7699 * Description: The function configures the receive steering to
7700 * desired receive ring.
7701 * Return Value: SUCCESS on success and
7702 * '-1' on failure (endian settings incorrect).
7703 */
7704 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7705 {
7706 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7707 register u64 val64 = 0;
7708
7709 if (ds_codepoint > 63)
7710 return FAILURE;
7711
7712 val64 = RTS_DS_MEM_DATA(ring);
7713 writeq(val64, &bar0->rts_ds_mem_data);
7714
7715 val64 = RTS_DS_MEM_CTRL_WE |
7716 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7717 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7718
7719 writeq(val64, &bar0->rts_ds_mem_ctrl);
7720
7721 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7722 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7723 S2IO_BIT_RESET);
7724 }
7725
7726 static const struct net_device_ops s2io_netdev_ops = {
7727 .ndo_open = s2io_open,
7728 .ndo_stop = s2io_close,
7729 .ndo_get_stats = s2io_get_stats,
7730 .ndo_start_xmit = s2io_xmit,
7731 .ndo_validate_addr = eth_validate_addr,
7732 .ndo_set_multicast_list = s2io_set_multicast,
7733 .ndo_do_ioctl = s2io_ioctl,
7734 .ndo_set_mac_address = s2io_set_mac_addr,
7735 .ndo_change_mtu = s2io_change_mtu,
7736 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7737 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7738 .ndo_tx_timeout = s2io_tx_watchdog,
7739 #ifdef CONFIG_NET_POLL_CONTROLLER
7740 .ndo_poll_controller = s2io_netpoll,
7741 #endif
7742 };
7743
7744 /**
7745 * s2io_init_nic - Initialization of the adapter .
7746 * @pdev : structure containing the PCI related information of the device.
7747 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7748 * Description:
7749 * The function initializes an adapter identified by the pci_dec structure.
7750 * All OS related initialization including memory and device structure and
7751 * initlaization of the device private variable is done. Also the swapper
7752 * control register is initialized to enable read and write into the I/O
7753 * registers of the device.
7754 * Return value:
7755 * returns 0 on success and negative on failure.
7756 */
7757
7758 static int __devinit
7759 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7760 {
7761 struct s2io_nic *sp;
7762 struct net_device *dev;
7763 int i, j, ret;
7764 int dma_flag = false;
7765 u32 mac_up, mac_down;
7766 u64 val64 = 0, tmp64 = 0;
7767 struct XENA_dev_config __iomem *bar0 = NULL;
7768 u16 subid;
7769 struct config_param *config;
7770 struct mac_info *mac_control;
7771 int mode;
7772 u8 dev_intr_type = intr_type;
7773 u8 dev_multiq = 0;
7774
7775 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7776 if (ret)
7777 return ret;
7778
7779 ret = pci_enable_device(pdev);
7780 if (ret) {
7781 DBG_PRINT(ERR_DBG,
7782 "%s: pci_enable_device failed\n", __func__);
7783 return ret;
7784 }
7785
7786 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7787 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7788 dma_flag = true;
7789 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7790 DBG_PRINT(ERR_DBG,
7791 "Unable to obtain 64bit DMA "
7792 "for consistent allocations\n");
7793 pci_disable_device(pdev);
7794 return -ENOMEM;
7795 }
7796 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7797 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7798 } else {
7799 pci_disable_device(pdev);
7800 return -ENOMEM;
7801 }
7802 ret = pci_request_regions(pdev, s2io_driver_name);
7803 if (ret) {
7804 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7805 __func__, ret);
7806 pci_disable_device(pdev);
7807 return -ENODEV;
7808 }
7809 if (dev_multiq)
7810 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7811 else
7812 dev = alloc_etherdev(sizeof(struct s2io_nic));
7813 if (dev == NULL) {
7814 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7815 pci_disable_device(pdev);
7816 pci_release_regions(pdev);
7817 return -ENODEV;
7818 }
7819
7820 pci_set_master(pdev);
7821 pci_set_drvdata(pdev, dev);
7822 SET_NETDEV_DEV(dev, &pdev->dev);
7823
7824 /* Private member variable initialized to s2io NIC structure */
7825 sp = netdev_priv(dev);
7826 memset(sp, 0, sizeof(struct s2io_nic));
7827 sp->dev = dev;
7828 sp->pdev = pdev;
7829 sp->high_dma_flag = dma_flag;
7830 sp->device_enabled_once = false;
7831 if (rx_ring_mode == 1)
7832 sp->rxd_mode = RXD_MODE_1;
7833 if (rx_ring_mode == 2)
7834 sp->rxd_mode = RXD_MODE_3B;
7835
7836 sp->config.intr_type = dev_intr_type;
7837
7838 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7839 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7840 sp->device_type = XFRAME_II_DEVICE;
7841 else
7842 sp->device_type = XFRAME_I_DEVICE;
7843
7844 sp->lro = lro_enable;
7845
7846 /* Initialize some PCI/PCI-X fields of the NIC. */
7847 s2io_init_pci(sp);
7848
7849 /*
7850 * Setting the device configuration parameters.
7851 * Most of these parameters can be specified by the user during
7852 * module insertion as they are module loadable parameters. If
7853 * these parameters are not not specified during load time, they
7854 * are initialized with default values.
7855 */
7856 config = &sp->config;
7857 mac_control = &sp->mac_control;
7858
7859 config->napi = napi;
7860 config->tx_steering_type = tx_steering_type;
7861
7862 /* Tx side parameters. */
7863 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7864 config->tx_fifo_num = MAX_TX_FIFOS;
7865 else
7866 config->tx_fifo_num = tx_fifo_num;
7867
7868 /* Initialize the fifos used for tx steering */
7869 if (config->tx_fifo_num < 5) {
7870 if (config->tx_fifo_num == 1)
7871 sp->total_tcp_fifos = 1;
7872 else
7873 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7874 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7875 sp->total_udp_fifos = 1;
7876 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7877 } else {
7878 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7879 FIFO_OTHER_MAX_NUM);
7880 sp->udp_fifo_idx = sp->total_tcp_fifos;
7881 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7882 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7883 }
7884
7885 config->multiq = dev_multiq;
7886 for (i = 0; i < config->tx_fifo_num; i++) {
7887 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7888
7889 tx_cfg->fifo_len = tx_fifo_len[i];
7890 tx_cfg->fifo_priority = i;
7891 }
7892
7893 /* mapping the QoS priority to the configured fifos */
7894 for (i = 0; i < MAX_TX_FIFOS; i++)
7895 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7896
7897 /* map the hashing selector table to the configured fifos */
7898 for (i = 0; i < config->tx_fifo_num; i++)
7899 sp->fifo_selector[i] = fifo_selector[i];
7900
7901
7902 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7903 for (i = 0; i < config->tx_fifo_num; i++) {
7904 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7905
7906 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7907 if (tx_cfg->fifo_len < 65) {
7908 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7909 break;
7910 }
7911 }
7912 /* + 2 because one Txd for skb->data and one Txd for UFO */
7913 config->max_txds = MAX_SKB_FRAGS + 2;
7914
7915 /* Rx side parameters. */
7916 config->rx_ring_num = rx_ring_num;
7917 for (i = 0; i < config->rx_ring_num; i++) {
7918 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7919 struct ring_info *ring = &mac_control->rings[i];
7920
7921 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7922 rx_cfg->ring_priority = i;
7923 ring->rx_bufs_left = 0;
7924 ring->rxd_mode = sp->rxd_mode;
7925 ring->rxd_count = rxd_count[sp->rxd_mode];
7926 ring->pdev = sp->pdev;
7927 ring->dev = sp->dev;
7928 }
7929
7930 for (i = 0; i < rx_ring_num; i++) {
7931 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7932
7933 rx_cfg->ring_org = RING_ORG_BUFF1;
7934 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7935 }
7936
7937 /* Setting Mac Control parameters */
7938 mac_control->rmac_pause_time = rmac_pause_time;
7939 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7940 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7941
7942
7943 /* initialize the shared memory used by the NIC and the host */
7944 if (init_shared_mem(sp)) {
7945 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7946 ret = -ENOMEM;
7947 goto mem_alloc_failed;
7948 }
7949
7950 sp->bar0 = pci_ioremap_bar(pdev, 0);
7951 if (!sp->bar0) {
7952 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7953 dev->name);
7954 ret = -ENOMEM;
7955 goto bar0_remap_failed;
7956 }
7957
7958 sp->bar1 = pci_ioremap_bar(pdev, 2);
7959 if (!sp->bar1) {
7960 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7961 dev->name);
7962 ret = -ENOMEM;
7963 goto bar1_remap_failed;
7964 }
7965
7966 dev->irq = pdev->irq;
7967 dev->base_addr = (unsigned long)sp->bar0;
7968
7969 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7970 for (j = 0; j < MAX_TX_FIFOS; j++) {
7971 mac_control->tx_FIFO_start[j] =
7972 (struct TxFIFO_element __iomem *)
7973 (sp->bar1 + (j * 0x00020000));
7974 }
7975
7976 /* Driver entry points */
7977 dev->netdev_ops = &s2io_netdev_ops;
7978 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7979 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7980
7981 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7982 if (sp->high_dma_flag == true)
7983 dev->features |= NETIF_F_HIGHDMA;
7984 dev->features |= NETIF_F_TSO;
7985 dev->features |= NETIF_F_TSO6;
7986 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7987 dev->features |= NETIF_F_UFO;
7988 dev->features |= NETIF_F_HW_CSUM;
7989 }
7990 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7991 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7992 INIT_WORK(&sp->set_link_task, s2io_set_link);
7993
7994 pci_save_state(sp->pdev);
7995
7996 /* Setting swapper control on the NIC, for proper reset operation */
7997 if (s2io_set_swapper(sp)) {
7998 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7999 dev->name);
8000 ret = -EAGAIN;
8001 goto set_swap_failed;
8002 }
8003
8004 /* Verify if the Herc works on the slot its placed into */
8005 if (sp->device_type & XFRAME_II_DEVICE) {
8006 mode = s2io_verify_pci_mode(sp);
8007 if (mode < 0) {
8008 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8009 __func__);
8010 ret = -EBADSLT;
8011 goto set_swap_failed;
8012 }
8013 }
8014
8015 if (sp->config.intr_type == MSI_X) {
8016 sp->num_entries = config->rx_ring_num + 1;
8017 ret = s2io_enable_msi_x(sp);
8018
8019 if (!ret) {
8020 ret = s2io_test_msi(sp);
8021 /* rollback MSI-X, will re-enable during add_isr() */
8022 remove_msix_isr(sp);
8023 }
8024 if (ret) {
8025
8026 DBG_PRINT(ERR_DBG,
8027 "MSI-X requested but failed to enable\n");
8028 sp->config.intr_type = INTA;
8029 }
8030 }
8031
8032 if (config->intr_type == MSI_X) {
8033 for (i = 0; i < config->rx_ring_num ; i++) {
8034 struct ring_info *ring = &mac_control->rings[i];
8035
8036 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8037 }
8038 } else {
8039 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8040 }
8041
8042 /* Not needed for Herc */
8043 if (sp->device_type & XFRAME_I_DEVICE) {
8044 /*
8045 * Fix for all "FFs" MAC address problems observed on
8046 * Alpha platforms
8047 */
8048 fix_mac_address(sp);
8049 s2io_reset(sp);
8050 }
8051
8052 /*
8053 * MAC address initialization.
8054 * For now only one mac address will be read and used.
8055 */
8056 bar0 = sp->bar0;
8057 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8058 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8059 writeq(val64, &bar0->rmac_addr_cmd_mem);
8060 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8061 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8062 S2IO_BIT_RESET);
8063 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8064 mac_down = (u32)tmp64;
8065 mac_up = (u32) (tmp64 >> 32);
8066
8067 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8068 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8069 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8070 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8071 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8072 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8073
8074 /* Set the factory defined MAC address initially */
8075 dev->addr_len = ETH_ALEN;
8076 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8077 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8078
8079 /* initialize number of multicast & unicast MAC entries variables */
8080 if (sp->device_type == XFRAME_I_DEVICE) {
8081 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8082 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8083 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8084 } else if (sp->device_type == XFRAME_II_DEVICE) {
8085 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8086 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8087 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8088 }
8089
8090 /* store mac addresses from CAM to s2io_nic structure */
8091 do_s2io_store_unicast_mc(sp);
8092
8093 /* Configure MSIX vector for number of rings configured plus one */
8094 if ((sp->device_type == XFRAME_II_DEVICE) &&
8095 (config->intr_type == MSI_X))
8096 sp->num_entries = config->rx_ring_num + 1;
8097
8098 /* Store the values of the MSIX table in the s2io_nic structure */
8099 store_xmsi_data(sp);
8100 /* reset Nic and bring it to known state */
8101 s2io_reset(sp);
8102
8103 /*
8104 * Initialize link state flags
8105 * and the card state parameter
8106 */
8107 sp->state = 0;
8108
8109 /* Initialize spinlocks */
8110 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8111 struct fifo_info *fifo = &mac_control->fifos[i];
8112
8113 spin_lock_init(&fifo->tx_lock);
8114 }
8115
8116 /*
8117 * SXE-002: Configure link and activity LED to init state
8118 * on driver load.
8119 */
8120 subid = sp->pdev->subsystem_device;
8121 if ((subid & 0xFF) >= 0x07) {
8122 val64 = readq(&bar0->gpio_control);
8123 val64 |= 0x0000800000000000ULL;
8124 writeq(val64, &bar0->gpio_control);
8125 val64 = 0x0411040400000000ULL;
8126 writeq(val64, (void __iomem *)bar0 + 0x2700);
8127 val64 = readq(&bar0->gpio_control);
8128 }
8129
8130 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8131
8132 if (register_netdev(dev)) {
8133 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8134 ret = -ENODEV;
8135 goto register_failed;
8136 }
8137 s2io_vpd_read(sp);
8138 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8139 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8140 sp->product_name, pdev->revision);
8141 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8142 s2io_driver_version);
8143 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8144 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8145 if (sp->device_type & XFRAME_II_DEVICE) {
8146 mode = s2io_print_pci_mode(sp);
8147 if (mode < 0) {
8148 ret = -EBADSLT;
8149 unregister_netdev(dev);
8150 goto set_swap_failed;
8151 }
8152 }
8153 switch (sp->rxd_mode) {
8154 case RXD_MODE_1:
8155 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8156 dev->name);
8157 break;
8158 case RXD_MODE_3B:
8159 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8160 dev->name);
8161 break;
8162 }
8163
8164 switch (sp->config.napi) {
8165 case 0:
8166 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8167 break;
8168 case 1:
8169 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8170 break;
8171 }
8172
8173 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8174 sp->config.tx_fifo_num);
8175
8176 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8177 sp->config.rx_ring_num);
8178
8179 switch (sp->config.intr_type) {
8180 case INTA:
8181 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8182 break;
8183 case MSI_X:
8184 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8185 break;
8186 }
8187 if (sp->config.multiq) {
8188 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8189 struct fifo_info *fifo = &mac_control->fifos[i];
8190
8191 fifo->multiq = config->multiq;
8192 }
8193 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8194 dev->name);
8195 } else
8196 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8197 dev->name);
8198
8199 switch (sp->config.tx_steering_type) {
8200 case NO_STEERING:
8201 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8202 dev->name);
8203 break;
8204 case TX_PRIORITY_STEERING:
8205 DBG_PRINT(ERR_DBG,
8206 "%s: Priority steering enabled for transmit\n",
8207 dev->name);
8208 break;
8209 case TX_DEFAULT_STEERING:
8210 DBG_PRINT(ERR_DBG,
8211 "%s: Default steering enabled for transmit\n",
8212 dev->name);
8213 }
8214
8215 if (sp->lro)
8216 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8217 dev->name);
8218 if (ufo)
8219 DBG_PRINT(ERR_DBG,
8220 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8221 dev->name);
8222 /* Initialize device name */
8223 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8224
8225 if (vlan_tag_strip)
8226 sp->vlan_strip_flag = 1;
8227 else
8228 sp->vlan_strip_flag = 0;
8229
8230 /*
8231 * Make Link state as off at this point, when the Link change
8232 * interrupt comes the state will be automatically changed to
8233 * the right state.
8234 */
8235 netif_carrier_off(dev);
8236
8237 return 0;
8238
8239 register_failed:
8240 set_swap_failed:
8241 iounmap(sp->bar1);
8242 bar1_remap_failed:
8243 iounmap(sp->bar0);
8244 bar0_remap_failed:
8245 mem_alloc_failed:
8246 free_shared_mem(sp);
8247 pci_disable_device(pdev);
8248 pci_release_regions(pdev);
8249 pci_set_drvdata(pdev, NULL);
8250 free_netdev(dev);
8251
8252 return ret;
8253 }
8254
8255 /**
8256 * s2io_rem_nic - Free the PCI device
8257 * @pdev: structure containing the PCI related information of the device.
8258 * Description: This function is called by the Pci subsystem to release a
8259 * PCI device and free up all resource held up by the device. This could
8260 * be in response to a Hot plug event or when the driver is to be removed
8261 * from memory.
8262 */
8263
8264 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8265 {
8266 struct net_device *dev =
8267 (struct net_device *)pci_get_drvdata(pdev);
8268 struct s2io_nic *sp;
8269
8270 if (dev == NULL) {
8271 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8272 return;
8273 }
8274
8275 flush_scheduled_work();
8276
8277 sp = netdev_priv(dev);
8278 unregister_netdev(dev);
8279
8280 free_shared_mem(sp);
8281 iounmap(sp->bar0);
8282 iounmap(sp->bar1);
8283 pci_release_regions(pdev);
8284 pci_set_drvdata(pdev, NULL);
8285 free_netdev(dev);
8286 pci_disable_device(pdev);
8287 }
8288
8289 /**
8290 * s2io_starter - Entry point for the driver
8291 * Description: This function is the entry point for the driver. It verifies
8292 * the module loadable parameters and initializes PCI configuration space.
8293 */
8294
8295 static int __init s2io_starter(void)
8296 {
8297 return pci_register_driver(&s2io_driver);
8298 }
8299
8300 /**
8301 * s2io_closer - Cleanup routine for the driver
8302 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8303 */
8304
8305 static __exit void s2io_closer(void)
8306 {
8307 pci_unregister_driver(&s2io_driver);
8308 DBG_PRINT(INIT_DBG, "cleanup done\n");
8309 }
8310
8311 module_init(s2io_starter);
8312 module_exit(s2io_closer);
8313
8314 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8315 struct tcphdr **tcp, struct RxD_t *rxdp,
8316 struct s2io_nic *sp)
8317 {
8318 int ip_off;
8319 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8320
8321 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8322 DBG_PRINT(INIT_DBG,
8323 "%s: Non-TCP frames not supported for LRO\n",
8324 __func__);
8325 return -1;
8326 }
8327
8328 /* Checking for DIX type or DIX type with VLAN */
8329 if ((l2_type == 0) || (l2_type == 4)) {
8330 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8331 /*
8332 * If vlan stripping is disabled and the frame is VLAN tagged,
8333 * shift the offset by the VLAN header size bytes.
8334 */
8335 if ((!sp->vlan_strip_flag) &&
8336 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8337 ip_off += HEADER_VLAN_SIZE;
8338 } else {
8339 /* LLC, SNAP etc are considered non-mergeable */
8340 return -1;
8341 }
8342
8343 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8344 ip_len = (u8)((*ip)->ihl);
8345 ip_len <<= 2;
8346 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8347
8348 return 0;
8349 }
8350
8351 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8352 struct tcphdr *tcp)
8353 {
8354 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8355 if ((lro->iph->saddr != ip->saddr) ||
8356 (lro->iph->daddr != ip->daddr) ||
8357 (lro->tcph->source != tcp->source) ||
8358 (lro->tcph->dest != tcp->dest))
8359 return -1;
8360 return 0;
8361 }
8362
8363 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8364 {
8365 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8366 }
8367
8368 static void initiate_new_session(struct lro *lro, u8 *l2h,
8369 struct iphdr *ip, struct tcphdr *tcp,
8370 u32 tcp_pyld_len, u16 vlan_tag)
8371 {
8372 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8373 lro->l2h = l2h;
8374 lro->iph = ip;
8375 lro->tcph = tcp;
8376 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8377 lro->tcp_ack = tcp->ack_seq;
8378 lro->sg_num = 1;
8379 lro->total_len = ntohs(ip->tot_len);
8380 lro->frags_len = 0;
8381 lro->vlan_tag = vlan_tag;
8382 /*
8383 * Check if we saw TCP timestamp.
8384 * Other consistency checks have already been done.
8385 */
8386 if (tcp->doff == 8) {
8387 __be32 *ptr;
8388 ptr = (__be32 *)(tcp+1);
8389 lro->saw_ts = 1;
8390 lro->cur_tsval = ntohl(*(ptr+1));
8391 lro->cur_tsecr = *(ptr+2);
8392 }
8393 lro->in_use = 1;
8394 }
8395
8396 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8397 {
8398 struct iphdr *ip = lro->iph;
8399 struct tcphdr *tcp = lro->tcph;
8400 __sum16 nchk;
8401 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8402
8403 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8404
8405 /* Update L3 header */
8406 ip->tot_len = htons(lro->total_len);
8407 ip->check = 0;
8408 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8409 ip->check = nchk;
8410
8411 /* Update L4 header */
8412 tcp->ack_seq = lro->tcp_ack;
8413 tcp->window = lro->window;
8414
8415 /* Update tsecr field if this session has timestamps enabled */
8416 if (lro->saw_ts) {
8417 __be32 *ptr = (__be32 *)(tcp + 1);
8418 *(ptr+2) = lro->cur_tsecr;
8419 }
8420
8421 /* Update counters required for calculation of
8422 * average no. of packets aggregated.
8423 */
8424 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8425 swstats->num_aggregations++;
8426 }
8427
8428 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8429 struct tcphdr *tcp, u32 l4_pyld)
8430 {
8431 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8432 lro->total_len += l4_pyld;
8433 lro->frags_len += l4_pyld;
8434 lro->tcp_next_seq += l4_pyld;
8435 lro->sg_num++;
8436
8437 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8438 lro->tcp_ack = tcp->ack_seq;
8439 lro->window = tcp->window;
8440
8441 if (lro->saw_ts) {
8442 __be32 *ptr;
8443 /* Update tsecr and tsval from this packet */
8444 ptr = (__be32 *)(tcp+1);
8445 lro->cur_tsval = ntohl(*(ptr+1));
8446 lro->cur_tsecr = *(ptr + 2);
8447 }
8448 }
8449
8450 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8451 struct tcphdr *tcp, u32 tcp_pyld_len)
8452 {
8453 u8 *ptr;
8454
8455 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8456
8457 if (!tcp_pyld_len) {
8458 /* Runt frame or a pure ack */
8459 return -1;
8460 }
8461
8462 if (ip->ihl != 5) /* IP has options */
8463 return -1;
8464
8465 /* If we see CE codepoint in IP header, packet is not mergeable */
8466 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8467 return -1;
8468
8469 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8470 if (tcp->urg || tcp->psh || tcp->rst ||
8471 tcp->syn || tcp->fin ||
8472 tcp->ece || tcp->cwr || !tcp->ack) {
8473 /*
8474 * Currently recognize only the ack control word and
8475 * any other control field being set would result in
8476 * flushing the LRO session
8477 */
8478 return -1;
8479 }
8480
8481 /*
8482 * Allow only one TCP timestamp option. Don't aggregate if
8483 * any other options are detected.
8484 */
8485 if (tcp->doff != 5 && tcp->doff != 8)
8486 return -1;
8487
8488 if (tcp->doff == 8) {
8489 ptr = (u8 *)(tcp + 1);
8490 while (*ptr == TCPOPT_NOP)
8491 ptr++;
8492 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8493 return -1;
8494
8495 /* Ensure timestamp value increases monotonically */
8496 if (l_lro)
8497 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8498 return -1;
8499
8500 /* timestamp echo reply should be non-zero */
8501 if (*((__be32 *)(ptr+6)) == 0)
8502 return -1;
8503 }
8504
8505 return 0;
8506 }
8507
8508 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8509 u8 **tcp, u32 *tcp_len, struct lro **lro,
8510 struct RxD_t *rxdp, struct s2io_nic *sp)
8511 {
8512 struct iphdr *ip;
8513 struct tcphdr *tcph;
8514 int ret = 0, i;
8515 u16 vlan_tag = 0;
8516 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8517
8518 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8519 rxdp, sp);
8520 if (ret)
8521 return ret;
8522
8523 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8524
8525 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8526 tcph = (struct tcphdr *)*tcp;
8527 *tcp_len = get_l4_pyld_length(ip, tcph);
8528 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8529 struct lro *l_lro = &ring_data->lro0_n[i];
8530 if (l_lro->in_use) {
8531 if (check_for_socket_match(l_lro, ip, tcph))
8532 continue;
8533 /* Sock pair matched */
8534 *lro = l_lro;
8535
8536 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8537 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8538 "expected 0x%x, actual 0x%x\n",
8539 __func__,
8540 (*lro)->tcp_next_seq,
8541 ntohl(tcph->seq));
8542
8543 swstats->outof_sequence_pkts++;
8544 ret = 2;
8545 break;
8546 }
8547
8548 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8549 *tcp_len))
8550 ret = 1; /* Aggregate */
8551 else
8552 ret = 2; /* Flush both */
8553 break;
8554 }
8555 }
8556
8557 if (ret == 0) {
8558 /* Before searching for available LRO objects,
8559 * check if the pkt is L3/L4 aggregatable. If not
8560 * don't create new LRO session. Just send this
8561 * packet up.
8562 */
8563 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8564 return 5;
8565
8566 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8567 struct lro *l_lro = &ring_data->lro0_n[i];
8568 if (!(l_lro->in_use)) {
8569 *lro = l_lro;
8570 ret = 3; /* Begin anew */
8571 break;
8572 }
8573 }
8574 }
8575
8576 if (ret == 0) { /* sessions exceeded */
8577 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8578 __func__);
8579 *lro = NULL;
8580 return ret;
8581 }
8582
8583 switch (ret) {
8584 case 3:
8585 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8586 vlan_tag);
8587 break;
8588 case 2:
8589 update_L3L4_header(sp, *lro);
8590 break;
8591 case 1:
8592 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8593 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8594 update_L3L4_header(sp, *lro);
8595 ret = 4; /* Flush the LRO */
8596 }
8597 break;
8598 default:
8599 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8600 break;
8601 }
8602
8603 return ret;
8604 }
8605
8606 static void clear_lro_session(struct lro *lro)
8607 {
8608 static u16 lro_struct_size = sizeof(struct lro);
8609
8610 memset(lro, 0, lro_struct_size);
8611 }
8612
8613 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8614 {
8615 struct net_device *dev = skb->dev;
8616 struct s2io_nic *sp = netdev_priv(dev);
8617
8618 skb->protocol = eth_type_trans(skb, dev);
8619 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8620 /* Queueing the vlan frame to the upper layer */
8621 if (sp->config.napi)
8622 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8623 else
8624 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8625 } else {
8626 if (sp->config.napi)
8627 netif_receive_skb(skb);
8628 else
8629 netif_rx(skb);
8630 }
8631 }
8632
8633 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8634 struct sk_buff *skb, u32 tcp_len)
8635 {
8636 struct sk_buff *first = lro->parent;
8637 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8638
8639 first->len += tcp_len;
8640 first->data_len = lro->frags_len;
8641 skb_pull(skb, (skb->len - tcp_len));
8642 if (skb_shinfo(first)->frag_list)
8643 lro->last_frag->next = skb;
8644 else
8645 skb_shinfo(first)->frag_list = skb;
8646 first->truesize += skb->truesize;
8647 lro->last_frag = skb;
8648 swstats->clubbed_frms_cnt++;
8649 return;
8650 }
8651
8652 /**
8653 * s2io_io_error_detected - called when PCI error is detected
8654 * @pdev: Pointer to PCI device
8655 * @state: The current pci connection state
8656 *
8657 * This function is called after a PCI bus error affecting
8658 * this device has been detected.
8659 */
8660 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8661 pci_channel_state_t state)
8662 {
8663 struct net_device *netdev = pci_get_drvdata(pdev);
8664 struct s2io_nic *sp = netdev_priv(netdev);
8665
8666 netif_device_detach(netdev);
8667
8668 if (state == pci_channel_io_perm_failure)
8669 return PCI_ERS_RESULT_DISCONNECT;
8670
8671 if (netif_running(netdev)) {
8672 /* Bring down the card, while avoiding PCI I/O */
8673 do_s2io_card_down(sp, 0);
8674 }
8675 pci_disable_device(pdev);
8676
8677 return PCI_ERS_RESULT_NEED_RESET;
8678 }
8679
8680 /**
8681 * s2io_io_slot_reset - called after the pci bus has been reset.
8682 * @pdev: Pointer to PCI device
8683 *
8684 * Restart the card from scratch, as if from a cold-boot.
8685 * At this point, the card has exprienced a hard reset,
8686 * followed by fixups by BIOS, and has its config space
8687 * set up identically to what it was at cold boot.
8688 */
8689 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8690 {
8691 struct net_device *netdev = pci_get_drvdata(pdev);
8692 struct s2io_nic *sp = netdev_priv(netdev);
8693
8694 if (pci_enable_device(pdev)) {
8695 pr_err("Cannot re-enable PCI device after reset.\n");
8696 return PCI_ERS_RESULT_DISCONNECT;
8697 }
8698
8699 pci_set_master(pdev);
8700 s2io_reset(sp);
8701
8702 return PCI_ERS_RESULT_RECOVERED;
8703 }
8704
8705 /**
8706 * s2io_io_resume - called when traffic can start flowing again.
8707 * @pdev: Pointer to PCI device
8708 *
8709 * This callback is called when the error recovery driver tells
8710 * us that its OK to resume normal operation.
8711 */
8712 static void s2io_io_resume(struct pci_dev *pdev)
8713 {
8714 struct net_device *netdev = pci_get_drvdata(pdev);
8715 struct s2io_nic *sp = netdev_priv(netdev);
8716
8717 if (netif_running(netdev)) {
8718 if (s2io_card_up(sp)) {
8719 pr_err("Can't bring device back up after reset.\n");
8720 return;
8721 }
8722
8723 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8724 s2io_card_down(sp);
8725 pr_err("Can't restore mac addr after reset.\n");
8726 return;
8727 }
8728 }
8729
8730 netif_device_attach(netdev);
8731 netif_tx_wake_all_queues(netdev);
8732 }