]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/sfc/efx.c
2166c1d0a5332dfe47daa8c8af33520b9d4c7b88
[mirror_ubuntu-bionic-kernel.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include "net_driver.h"
25 #include "efx.h"
26 #include "nic.h"
27
28 #include "mcdi.h"
29 #include "workarounds.h"
30
31 /**************************************************************************
32 *
33 * Type name strings
34 *
35 **************************************************************************
36 */
37
38 /* Loopback mode names (see LOOPBACK_MODE()) */
39 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
40 const char *efx_loopback_mode_names[] = {
41 [LOOPBACK_NONE] = "NONE",
42 [LOOPBACK_DATA] = "DATAPATH",
43 [LOOPBACK_GMAC] = "GMAC",
44 [LOOPBACK_XGMII] = "XGMII",
45 [LOOPBACK_XGXS] = "XGXS",
46 [LOOPBACK_XAUI] = "XAUI",
47 [LOOPBACK_GMII] = "GMII",
48 [LOOPBACK_SGMII] = "SGMII",
49 [LOOPBACK_XGBR] = "XGBR",
50 [LOOPBACK_XFI] = "XFI",
51 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
52 [LOOPBACK_GMII_FAR] = "GMII_FAR",
53 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
54 [LOOPBACK_XFI_FAR] = "XFI_FAR",
55 [LOOPBACK_GPHY] = "GPHY",
56 [LOOPBACK_PHYXS] = "PHYXS",
57 [LOOPBACK_PCS] = "PCS",
58 [LOOPBACK_PMAPMD] = "PMA/PMD",
59 [LOOPBACK_XPORT] = "XPORT",
60 [LOOPBACK_XGMII_WS] = "XGMII_WS",
61 [LOOPBACK_XAUI_WS] = "XAUI_WS",
62 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
63 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
64 [LOOPBACK_GMII_WS] = "GMII_WS",
65 [LOOPBACK_XFI_WS] = "XFI_WS",
66 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
67 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
68 };
69
70 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
71 const char *efx_reset_type_names[] = {
72 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
73 [RESET_TYPE_ALL] = "ALL",
74 [RESET_TYPE_WORLD] = "WORLD",
75 [RESET_TYPE_DISABLE] = "DISABLE",
76 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
77 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
78 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
79 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
80 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
81 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
82 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
83 };
84
85 #define EFX_MAX_MTU (9 * 1024)
86
87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
88 * queued onto this work queue. This is not a per-nic work queue, because
89 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
90 */
91 static struct workqueue_struct *reset_workqueue;
92
93 /**************************************************************************
94 *
95 * Configurable values
96 *
97 *************************************************************************/
98
99 /*
100 * Use separate channels for TX and RX events
101 *
102 * Set this to 1 to use separate channels for TX and RX. It allows us
103 * to control interrupt affinity separately for TX and RX.
104 *
105 * This is only used in MSI-X interrupt mode
106 */
107 static unsigned int separate_tx_channels;
108 module_param(separate_tx_channels, uint, 0444);
109 MODULE_PARM_DESC(separate_tx_channels,
110 "Use separate channels for TX and RX");
111
112 /* This is the weight assigned to each of the (per-channel) virtual
113 * NAPI devices.
114 */
115 static int napi_weight = 64;
116
117 /* This is the time (in jiffies) between invocations of the hardware
118 * monitor. On Falcon-based NICs, this will:
119 * - Check the on-board hardware monitor;
120 * - Poll the link state and reconfigure the hardware as necessary.
121 */
122 static unsigned int efx_monitor_interval = 1 * HZ;
123
124 /* This controls whether or not the driver will initialise devices
125 * with invalid MAC addresses stored in the EEPROM or flash. If true,
126 * such devices will be initialised with a random locally-generated
127 * MAC address. This allows for loading the sfc_mtd driver to
128 * reprogram the flash, even if the flash contents (including the MAC
129 * address) have previously been erased.
130 */
131 static unsigned int allow_bad_hwaddr;
132
133 /* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * The default for RX should strike a balance between increasing the
137 * round-trip latency and reducing overhead.
138 */
139 static unsigned int rx_irq_mod_usec = 60;
140
141 /* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * This default is chosen to ensure that a 10G link does not go idle
145 * while a TX queue is stopped after it has become full. A queue is
146 * restarted when it drops below half full. The time this takes (assuming
147 * worst case 3 descriptors per packet and 1024 descriptors) is
148 * 512 / 3 * 1.2 = 205 usec.
149 */
150 static unsigned int tx_irq_mod_usec = 150;
151
152 /* This is the first interrupt mode to try out of:
153 * 0 => MSI-X
154 * 1 => MSI
155 * 2 => legacy
156 */
157 static unsigned int interrupt_mode;
158
159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
160 * i.e. the number of CPUs among which we may distribute simultaneous
161 * interrupt handling.
162 *
163 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164 * The default (0) means to assign an interrupt to each package (level II cache)
165 */
166 static unsigned int rss_cpus;
167 module_param(rss_cpus, uint, 0444);
168 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
169
170 static int phy_flash_cfg;
171 module_param(phy_flash_cfg, int, 0644);
172 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
173
174 static unsigned irq_adapt_low_thresh = 10000;
175 module_param(irq_adapt_low_thresh, uint, 0644);
176 MODULE_PARM_DESC(irq_adapt_low_thresh,
177 "Threshold score for reducing IRQ moderation");
178
179 static unsigned irq_adapt_high_thresh = 20000;
180 module_param(irq_adapt_high_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_high_thresh,
182 "Threshold score for increasing IRQ moderation");
183
184 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
185 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
186 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
187 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
188 module_param(debug, uint, 0);
189 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
190
191 /**************************************************************************
192 *
193 * Utility functions and prototypes
194 *
195 *************************************************************************/
196
197 static void efx_remove_channels(struct efx_nic *efx);
198 static void efx_remove_port(struct efx_nic *efx);
199 static void efx_init_napi(struct efx_nic *efx);
200 static void efx_fini_napi(struct efx_nic *efx);
201 static void efx_fini_napi_channel(struct efx_channel *channel);
202 static void efx_fini_struct(struct efx_nic *efx);
203 static void efx_start_all(struct efx_nic *efx);
204 static void efx_stop_all(struct efx_nic *efx);
205
206 #define EFX_ASSERT_RESET_SERIALISED(efx) \
207 do { \
208 if ((efx->state == STATE_RUNNING) || \
209 (efx->state == STATE_DISABLED)) \
210 ASSERT_RTNL(); \
211 } while (0)
212
213 /**************************************************************************
214 *
215 * Event queue processing
216 *
217 *************************************************************************/
218
219 /* Process channel's event queue
220 *
221 * This function is responsible for processing the event queue of a
222 * single channel. The caller must guarantee that this function will
223 * never be concurrently called more than once on the same channel,
224 * though different channels may be being processed concurrently.
225 */
226 static int efx_process_channel(struct efx_channel *channel, int budget)
227 {
228 struct efx_nic *efx = channel->efx;
229 int spent;
230
231 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
232 !channel->enabled))
233 return 0;
234
235 spent = efx_nic_process_eventq(channel, budget);
236 if (spent == 0)
237 return 0;
238
239 /* Deliver last RX packet. */
240 if (channel->rx_pkt) {
241 __efx_rx_packet(channel, channel->rx_pkt,
242 channel->rx_pkt_csummed);
243 channel->rx_pkt = NULL;
244 }
245
246 efx_rx_strategy(channel);
247
248 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
249
250 return spent;
251 }
252
253 /* Mark channel as finished processing
254 *
255 * Note that since we will not receive further interrupts for this
256 * channel before we finish processing and call the eventq_read_ack()
257 * method, there is no need to use the interrupt hold-off timers.
258 */
259 static inline void efx_channel_processed(struct efx_channel *channel)
260 {
261 /* The interrupt handler for this channel may set work_pending
262 * as soon as we acknowledge the events we've seen. Make sure
263 * it's cleared before then. */
264 channel->work_pending = false;
265 smp_wmb();
266
267 efx_nic_eventq_read_ack(channel);
268 }
269
270 /* NAPI poll handler
271 *
272 * NAPI guarantees serialisation of polls of the same device, which
273 * provides the guarantee required by efx_process_channel().
274 */
275 static int efx_poll(struct napi_struct *napi, int budget)
276 {
277 struct efx_channel *channel =
278 container_of(napi, struct efx_channel, napi_str);
279 struct efx_nic *efx = channel->efx;
280 int spent;
281
282 netif_vdbg(efx, intr, efx->net_dev,
283 "channel %d NAPI poll executing on CPU %d\n",
284 channel->channel, raw_smp_processor_id());
285
286 spent = efx_process_channel(channel, budget);
287
288 if (spent < budget) {
289 if (channel->channel < efx->n_rx_channels &&
290 efx->irq_rx_adaptive &&
291 unlikely(++channel->irq_count == 1000)) {
292 if (unlikely(channel->irq_mod_score <
293 irq_adapt_low_thresh)) {
294 if (channel->irq_moderation > 1) {
295 channel->irq_moderation -= 1;
296 efx->type->push_irq_moderation(channel);
297 }
298 } else if (unlikely(channel->irq_mod_score >
299 irq_adapt_high_thresh)) {
300 if (channel->irq_moderation <
301 efx->irq_rx_moderation) {
302 channel->irq_moderation += 1;
303 efx->type->push_irq_moderation(channel);
304 }
305 }
306 channel->irq_count = 0;
307 channel->irq_mod_score = 0;
308 }
309
310 /* There is no race here; although napi_disable() will
311 * only wait for napi_complete(), this isn't a problem
312 * since efx_channel_processed() will have no effect if
313 * interrupts have already been disabled.
314 */
315 napi_complete(napi);
316 efx_channel_processed(channel);
317 }
318
319 return spent;
320 }
321
322 /* Process the eventq of the specified channel immediately on this CPU
323 *
324 * Disable hardware generated interrupts, wait for any existing
325 * processing to finish, then directly poll (and ack ) the eventq.
326 * Finally reenable NAPI and interrupts.
327 *
328 * Since we are touching interrupts the caller should hold the suspend lock
329 */
330 void efx_process_channel_now(struct efx_channel *channel)
331 {
332 struct efx_nic *efx = channel->efx;
333
334 BUG_ON(channel->channel >= efx->n_channels);
335 BUG_ON(!channel->enabled);
336
337 /* Disable interrupts and wait for ISRs to complete */
338 efx_nic_disable_interrupts(efx);
339 if (efx->legacy_irq) {
340 synchronize_irq(efx->legacy_irq);
341 efx->legacy_irq_enabled = false;
342 }
343 if (channel->irq)
344 synchronize_irq(channel->irq);
345
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
348
349 /* Poll the channel */
350 efx_process_channel(channel, channel->eventq_mask + 1);
351
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
355
356 napi_enable(&channel->napi_str);
357 if (efx->legacy_irq)
358 efx->legacy_irq_enabled = true;
359 efx_nic_enable_interrupts(efx);
360 }
361
362 /* Create event queue
363 * Event queue memory allocations are done only once. If the channel
364 * is reset, the memory buffer will be reused; this guards against
365 * errors during channel reset and also simplifies interrupt handling.
366 */
367 static int efx_probe_eventq(struct efx_channel *channel)
368 {
369 struct efx_nic *efx = channel->efx;
370 unsigned long entries;
371
372 netif_dbg(channel->efx, probe, channel->efx->net_dev,
373 "chan %d create event queue\n", channel->channel);
374
375 /* Build an event queue with room for one event per tx and rx buffer,
376 * plus some extra for link state events and MCDI completions. */
377 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
378 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
379 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
380
381 return efx_nic_probe_eventq(channel);
382 }
383
384 /* Prepare channel's event queue */
385 static void efx_init_eventq(struct efx_channel *channel)
386 {
387 netif_dbg(channel->efx, drv, channel->efx->net_dev,
388 "chan %d init event queue\n", channel->channel);
389
390 channel->eventq_read_ptr = 0;
391
392 efx_nic_init_eventq(channel);
393 }
394
395 static void efx_fini_eventq(struct efx_channel *channel)
396 {
397 netif_dbg(channel->efx, drv, channel->efx->net_dev,
398 "chan %d fini event queue\n", channel->channel);
399
400 efx_nic_fini_eventq(channel);
401 }
402
403 static void efx_remove_eventq(struct efx_channel *channel)
404 {
405 netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 "chan %d remove event queue\n", channel->channel);
407
408 efx_nic_remove_eventq(channel);
409 }
410
411 /**************************************************************************
412 *
413 * Channel handling
414 *
415 *************************************************************************/
416
417 /* Allocate and initialise a channel structure, optionally copying
418 * parameters (but not resources) from an old channel structure. */
419 static struct efx_channel *
420 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
421 {
422 struct efx_channel *channel;
423 struct efx_rx_queue *rx_queue;
424 struct efx_tx_queue *tx_queue;
425 int j;
426
427 if (old_channel) {
428 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
429 if (!channel)
430 return NULL;
431
432 *channel = *old_channel;
433
434 channel->napi_dev = NULL;
435 memset(&channel->eventq, 0, sizeof(channel->eventq));
436
437 rx_queue = &channel->rx_queue;
438 rx_queue->buffer = NULL;
439 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
440
441 for (j = 0; j < EFX_TXQ_TYPES; j++) {
442 tx_queue = &channel->tx_queue[j];
443 if (tx_queue->channel)
444 tx_queue->channel = channel;
445 tx_queue->buffer = NULL;
446 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
447 }
448 } else {
449 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
450 if (!channel)
451 return NULL;
452
453 channel->efx = efx;
454 channel->channel = i;
455
456 for (j = 0; j < EFX_TXQ_TYPES; j++) {
457 tx_queue = &channel->tx_queue[j];
458 tx_queue->efx = efx;
459 tx_queue->queue = i * EFX_TXQ_TYPES + j;
460 tx_queue->channel = channel;
461 }
462 }
463
464 spin_lock_init(&channel->tx_stop_lock);
465 atomic_set(&channel->tx_stop_count, 1);
466
467 rx_queue = &channel->rx_queue;
468 rx_queue->efx = efx;
469 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
470 (unsigned long)rx_queue);
471
472 return channel;
473 }
474
475 static int efx_probe_channel(struct efx_channel *channel)
476 {
477 struct efx_tx_queue *tx_queue;
478 struct efx_rx_queue *rx_queue;
479 int rc;
480
481 netif_dbg(channel->efx, probe, channel->efx->net_dev,
482 "creating channel %d\n", channel->channel);
483
484 rc = efx_probe_eventq(channel);
485 if (rc)
486 goto fail1;
487
488 efx_for_each_channel_tx_queue(tx_queue, channel) {
489 rc = efx_probe_tx_queue(tx_queue);
490 if (rc)
491 goto fail2;
492 }
493
494 efx_for_each_channel_rx_queue(rx_queue, channel) {
495 rc = efx_probe_rx_queue(rx_queue);
496 if (rc)
497 goto fail3;
498 }
499
500 channel->n_rx_frm_trunc = 0;
501
502 return 0;
503
504 fail3:
505 efx_for_each_channel_rx_queue(rx_queue, channel)
506 efx_remove_rx_queue(rx_queue);
507 fail2:
508 efx_for_each_channel_tx_queue(tx_queue, channel)
509 efx_remove_tx_queue(tx_queue);
510 fail1:
511 return rc;
512 }
513
514
515 static void efx_set_channel_names(struct efx_nic *efx)
516 {
517 struct efx_channel *channel;
518 const char *type = "";
519 int number;
520
521 efx_for_each_channel(channel, efx) {
522 number = channel->channel;
523 if (efx->n_channels > efx->n_rx_channels) {
524 if (channel->channel < efx->n_rx_channels) {
525 type = "-rx";
526 } else {
527 type = "-tx";
528 number -= efx->n_rx_channels;
529 }
530 }
531 snprintf(efx->channel_name[channel->channel],
532 sizeof(efx->channel_name[0]),
533 "%s%s-%d", efx->name, type, number);
534 }
535 }
536
537 static int efx_probe_channels(struct efx_nic *efx)
538 {
539 struct efx_channel *channel;
540 int rc;
541
542 /* Restart special buffer allocation */
543 efx->next_buffer_table = 0;
544
545 efx_for_each_channel(channel, efx) {
546 rc = efx_probe_channel(channel);
547 if (rc) {
548 netif_err(efx, probe, efx->net_dev,
549 "failed to create channel %d\n",
550 channel->channel);
551 goto fail;
552 }
553 }
554 efx_set_channel_names(efx);
555
556 return 0;
557
558 fail:
559 efx_remove_channels(efx);
560 return rc;
561 }
562
563 /* Channels are shutdown and reinitialised whilst the NIC is running
564 * to propagate configuration changes (mtu, checksum offload), or
565 * to clear hardware error conditions
566 */
567 static void efx_init_channels(struct efx_nic *efx)
568 {
569 struct efx_tx_queue *tx_queue;
570 struct efx_rx_queue *rx_queue;
571 struct efx_channel *channel;
572
573 /* Calculate the rx buffer allocation parameters required to
574 * support the current MTU, including padding for header
575 * alignment and overruns.
576 */
577 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
578 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
579 efx->type->rx_buffer_hash_size +
580 efx->type->rx_buffer_padding);
581 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
582 sizeof(struct efx_rx_page_state));
583
584 /* Initialise the channels */
585 efx_for_each_channel(channel, efx) {
586 netif_dbg(channel->efx, drv, channel->efx->net_dev,
587 "init chan %d\n", channel->channel);
588
589 efx_init_eventq(channel);
590
591 efx_for_each_channel_tx_queue(tx_queue, channel)
592 efx_init_tx_queue(tx_queue);
593
594 /* The rx buffer allocation strategy is MTU dependent */
595 efx_rx_strategy(channel);
596
597 efx_for_each_channel_rx_queue(rx_queue, channel)
598 efx_init_rx_queue(rx_queue);
599
600 WARN_ON(channel->rx_pkt != NULL);
601 efx_rx_strategy(channel);
602 }
603 }
604
605 /* This enables event queue processing and packet transmission.
606 *
607 * Note that this function is not allowed to fail, since that would
608 * introduce too much complexity into the suspend/resume path.
609 */
610 static void efx_start_channel(struct efx_channel *channel)
611 {
612 struct efx_rx_queue *rx_queue;
613
614 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
615 "starting chan %d\n", channel->channel);
616
617 /* The interrupt handler for this channel may set work_pending
618 * as soon as we enable it. Make sure it's cleared before
619 * then. Similarly, make sure it sees the enabled flag set. */
620 channel->work_pending = false;
621 channel->enabled = true;
622 smp_wmb();
623
624 /* Fill the queues before enabling NAPI */
625 efx_for_each_channel_rx_queue(rx_queue, channel)
626 efx_fast_push_rx_descriptors(rx_queue);
627
628 napi_enable(&channel->napi_str);
629 }
630
631 /* This disables event queue processing and packet transmission.
632 * This function does not guarantee that all queue processing
633 * (e.g. RX refill) is complete.
634 */
635 static void efx_stop_channel(struct efx_channel *channel)
636 {
637 if (!channel->enabled)
638 return;
639
640 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
641 "stop chan %d\n", channel->channel);
642
643 channel->enabled = false;
644 napi_disable(&channel->napi_str);
645 }
646
647 static void efx_fini_channels(struct efx_nic *efx)
648 {
649 struct efx_channel *channel;
650 struct efx_tx_queue *tx_queue;
651 struct efx_rx_queue *rx_queue;
652 int rc;
653
654 EFX_ASSERT_RESET_SERIALISED(efx);
655 BUG_ON(efx->port_enabled);
656
657 rc = efx_nic_flush_queues(efx);
658 if (rc && EFX_WORKAROUND_7803(efx)) {
659 /* Schedule a reset to recover from the flush failure. The
660 * descriptor caches reference memory we're about to free,
661 * but falcon_reconfigure_mac_wrapper() won't reconnect
662 * the MACs because of the pending reset. */
663 netif_err(efx, drv, efx->net_dev,
664 "Resetting to recover from flush failure\n");
665 efx_schedule_reset(efx, RESET_TYPE_ALL);
666 } else if (rc) {
667 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
668 } else {
669 netif_dbg(efx, drv, efx->net_dev,
670 "successfully flushed all queues\n");
671 }
672
673 efx_for_each_channel(channel, efx) {
674 netif_dbg(channel->efx, drv, channel->efx->net_dev,
675 "shut down chan %d\n", channel->channel);
676
677 efx_for_each_channel_rx_queue(rx_queue, channel)
678 efx_fini_rx_queue(rx_queue);
679 efx_for_each_channel_tx_queue(tx_queue, channel)
680 efx_fini_tx_queue(tx_queue);
681 efx_fini_eventq(channel);
682 }
683 }
684
685 static void efx_remove_channel(struct efx_channel *channel)
686 {
687 struct efx_tx_queue *tx_queue;
688 struct efx_rx_queue *rx_queue;
689
690 netif_dbg(channel->efx, drv, channel->efx->net_dev,
691 "destroy chan %d\n", channel->channel);
692
693 efx_for_each_channel_rx_queue(rx_queue, channel)
694 efx_remove_rx_queue(rx_queue);
695 efx_for_each_channel_tx_queue(tx_queue, channel)
696 efx_remove_tx_queue(tx_queue);
697 efx_remove_eventq(channel);
698 }
699
700 static void efx_remove_channels(struct efx_nic *efx)
701 {
702 struct efx_channel *channel;
703
704 efx_for_each_channel(channel, efx)
705 efx_remove_channel(channel);
706 }
707
708 int
709 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
710 {
711 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
712 u32 old_rxq_entries, old_txq_entries;
713 unsigned i;
714 int rc;
715
716 efx_stop_all(efx);
717 efx_fini_channels(efx);
718
719 /* Clone channels */
720 memset(other_channel, 0, sizeof(other_channel));
721 for (i = 0; i < efx->n_channels; i++) {
722 channel = efx_alloc_channel(efx, i, efx->channel[i]);
723 if (!channel) {
724 rc = -ENOMEM;
725 goto out;
726 }
727 other_channel[i] = channel;
728 }
729
730 /* Swap entry counts and channel pointers */
731 old_rxq_entries = efx->rxq_entries;
732 old_txq_entries = efx->txq_entries;
733 efx->rxq_entries = rxq_entries;
734 efx->txq_entries = txq_entries;
735 for (i = 0; i < efx->n_channels; i++) {
736 channel = efx->channel[i];
737 efx->channel[i] = other_channel[i];
738 other_channel[i] = channel;
739 }
740
741 rc = efx_probe_channels(efx);
742 if (rc)
743 goto rollback;
744
745 efx_init_napi(efx);
746
747 /* Destroy old channels */
748 for (i = 0; i < efx->n_channels; i++) {
749 efx_fini_napi_channel(other_channel[i]);
750 efx_remove_channel(other_channel[i]);
751 }
752 out:
753 /* Free unused channel structures */
754 for (i = 0; i < efx->n_channels; i++)
755 kfree(other_channel[i]);
756
757 efx_init_channels(efx);
758 efx_start_all(efx);
759 return rc;
760
761 rollback:
762 /* Swap back */
763 efx->rxq_entries = old_rxq_entries;
764 efx->txq_entries = old_txq_entries;
765 for (i = 0; i < efx->n_channels; i++) {
766 channel = efx->channel[i];
767 efx->channel[i] = other_channel[i];
768 other_channel[i] = channel;
769 }
770 goto out;
771 }
772
773 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
774 {
775 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
776 }
777
778 /**************************************************************************
779 *
780 * Port handling
781 *
782 **************************************************************************/
783
784 /* This ensures that the kernel is kept informed (via
785 * netif_carrier_on/off) of the link status, and also maintains the
786 * link status's stop on the port's TX queue.
787 */
788 void efx_link_status_changed(struct efx_nic *efx)
789 {
790 struct efx_link_state *link_state = &efx->link_state;
791
792 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
793 * that no events are triggered between unregister_netdev() and the
794 * driver unloading. A more general condition is that NETDEV_CHANGE
795 * can only be generated between NETDEV_UP and NETDEV_DOWN */
796 if (!netif_running(efx->net_dev))
797 return;
798
799 if (efx->port_inhibited) {
800 netif_carrier_off(efx->net_dev);
801 return;
802 }
803
804 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
805 efx->n_link_state_changes++;
806
807 if (link_state->up)
808 netif_carrier_on(efx->net_dev);
809 else
810 netif_carrier_off(efx->net_dev);
811 }
812
813 /* Status message for kernel log */
814 if (link_state->up) {
815 netif_info(efx, link, efx->net_dev,
816 "link up at %uMbps %s-duplex (MTU %d)%s\n",
817 link_state->speed, link_state->fd ? "full" : "half",
818 efx->net_dev->mtu,
819 (efx->promiscuous ? " [PROMISC]" : ""));
820 } else {
821 netif_info(efx, link, efx->net_dev, "link down\n");
822 }
823
824 }
825
826 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
827 {
828 efx->link_advertising = advertising;
829 if (advertising) {
830 if (advertising & ADVERTISED_Pause)
831 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
832 else
833 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
834 if (advertising & ADVERTISED_Asym_Pause)
835 efx->wanted_fc ^= EFX_FC_TX;
836 }
837 }
838
839 void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
840 {
841 efx->wanted_fc = wanted_fc;
842 if (efx->link_advertising) {
843 if (wanted_fc & EFX_FC_RX)
844 efx->link_advertising |= (ADVERTISED_Pause |
845 ADVERTISED_Asym_Pause);
846 else
847 efx->link_advertising &= ~(ADVERTISED_Pause |
848 ADVERTISED_Asym_Pause);
849 if (wanted_fc & EFX_FC_TX)
850 efx->link_advertising ^= ADVERTISED_Asym_Pause;
851 }
852 }
853
854 static void efx_fini_port(struct efx_nic *efx);
855
856 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
857 * the MAC appropriately. All other PHY configuration changes are pushed
858 * through phy_op->set_settings(), and pushed asynchronously to the MAC
859 * through efx_monitor().
860 *
861 * Callers must hold the mac_lock
862 */
863 int __efx_reconfigure_port(struct efx_nic *efx)
864 {
865 enum efx_phy_mode phy_mode;
866 int rc;
867
868 WARN_ON(!mutex_is_locked(&efx->mac_lock));
869
870 /* Serialise the promiscuous flag with efx_set_multicast_list. */
871 if (efx_dev_registered(efx)) {
872 netif_addr_lock_bh(efx->net_dev);
873 netif_addr_unlock_bh(efx->net_dev);
874 }
875
876 /* Disable PHY transmit in mac level loopbacks */
877 phy_mode = efx->phy_mode;
878 if (LOOPBACK_INTERNAL(efx))
879 efx->phy_mode |= PHY_MODE_TX_DISABLED;
880 else
881 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
882
883 rc = efx->type->reconfigure_port(efx);
884
885 if (rc)
886 efx->phy_mode = phy_mode;
887
888 return rc;
889 }
890
891 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
892 * disabled. */
893 int efx_reconfigure_port(struct efx_nic *efx)
894 {
895 int rc;
896
897 EFX_ASSERT_RESET_SERIALISED(efx);
898
899 mutex_lock(&efx->mac_lock);
900 rc = __efx_reconfigure_port(efx);
901 mutex_unlock(&efx->mac_lock);
902
903 return rc;
904 }
905
906 /* Asynchronous work item for changing MAC promiscuity and multicast
907 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
908 * MAC directly. */
909 static void efx_mac_work(struct work_struct *data)
910 {
911 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
912
913 mutex_lock(&efx->mac_lock);
914 if (efx->port_enabled) {
915 efx->type->push_multicast_hash(efx);
916 efx->mac_op->reconfigure(efx);
917 }
918 mutex_unlock(&efx->mac_lock);
919 }
920
921 static int efx_probe_port(struct efx_nic *efx)
922 {
923 unsigned char *perm_addr;
924 int rc;
925
926 netif_dbg(efx, probe, efx->net_dev, "create port\n");
927
928 if (phy_flash_cfg)
929 efx->phy_mode = PHY_MODE_SPECIAL;
930
931 /* Connect up MAC/PHY operations table */
932 rc = efx->type->probe_port(efx);
933 if (rc)
934 return rc;
935
936 /* Sanity check MAC address */
937 perm_addr = efx->net_dev->perm_addr;
938 if (is_valid_ether_addr(perm_addr)) {
939 memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
940 } else {
941 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
942 perm_addr);
943 if (!allow_bad_hwaddr) {
944 rc = -EINVAL;
945 goto err;
946 }
947 random_ether_addr(efx->net_dev->dev_addr);
948 netif_info(efx, probe, efx->net_dev,
949 "using locally-generated MAC %pM\n",
950 efx->net_dev->dev_addr);
951 }
952
953 return 0;
954
955 err:
956 efx->type->remove_port(efx);
957 return rc;
958 }
959
960 static int efx_init_port(struct efx_nic *efx)
961 {
962 int rc;
963
964 netif_dbg(efx, drv, efx->net_dev, "init port\n");
965
966 mutex_lock(&efx->mac_lock);
967
968 rc = efx->phy_op->init(efx);
969 if (rc)
970 goto fail1;
971
972 efx->port_initialized = true;
973
974 /* Reconfigure the MAC before creating dma queues (required for
975 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
976 efx->mac_op->reconfigure(efx);
977
978 /* Ensure the PHY advertises the correct flow control settings */
979 rc = efx->phy_op->reconfigure(efx);
980 if (rc)
981 goto fail2;
982
983 mutex_unlock(&efx->mac_lock);
984 return 0;
985
986 fail2:
987 efx->phy_op->fini(efx);
988 fail1:
989 mutex_unlock(&efx->mac_lock);
990 return rc;
991 }
992
993 static void efx_start_port(struct efx_nic *efx)
994 {
995 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
996 BUG_ON(efx->port_enabled);
997
998 mutex_lock(&efx->mac_lock);
999 efx->port_enabled = true;
1000
1001 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1002 * and then cancelled by efx_flush_all() */
1003 efx->type->push_multicast_hash(efx);
1004 efx->mac_op->reconfigure(efx);
1005
1006 mutex_unlock(&efx->mac_lock);
1007 }
1008
1009 /* Prevent efx_mac_work() and efx_monitor() from working */
1010 static void efx_stop_port(struct efx_nic *efx)
1011 {
1012 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1013
1014 mutex_lock(&efx->mac_lock);
1015 efx->port_enabled = false;
1016 mutex_unlock(&efx->mac_lock);
1017
1018 /* Serialise against efx_set_multicast_list() */
1019 if (efx_dev_registered(efx)) {
1020 netif_addr_lock_bh(efx->net_dev);
1021 netif_addr_unlock_bh(efx->net_dev);
1022 }
1023 }
1024
1025 static void efx_fini_port(struct efx_nic *efx)
1026 {
1027 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1028
1029 if (!efx->port_initialized)
1030 return;
1031
1032 efx->phy_op->fini(efx);
1033 efx->port_initialized = false;
1034
1035 efx->link_state.up = false;
1036 efx_link_status_changed(efx);
1037 }
1038
1039 static void efx_remove_port(struct efx_nic *efx)
1040 {
1041 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1042
1043 efx->type->remove_port(efx);
1044 }
1045
1046 /**************************************************************************
1047 *
1048 * NIC handling
1049 *
1050 **************************************************************************/
1051
1052 /* This configures the PCI device to enable I/O and DMA. */
1053 static int efx_init_io(struct efx_nic *efx)
1054 {
1055 struct pci_dev *pci_dev = efx->pci_dev;
1056 dma_addr_t dma_mask = efx->type->max_dma_mask;
1057 int rc;
1058
1059 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1060
1061 rc = pci_enable_device(pci_dev);
1062 if (rc) {
1063 netif_err(efx, probe, efx->net_dev,
1064 "failed to enable PCI device\n");
1065 goto fail1;
1066 }
1067
1068 pci_set_master(pci_dev);
1069
1070 /* Set the PCI DMA mask. Try all possibilities from our
1071 * genuine mask down to 32 bits, because some architectures
1072 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1073 * masks event though they reject 46 bit masks.
1074 */
1075 while (dma_mask > 0x7fffffffUL) {
1076 if (pci_dma_supported(pci_dev, dma_mask) &&
1077 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1078 break;
1079 dma_mask >>= 1;
1080 }
1081 if (rc) {
1082 netif_err(efx, probe, efx->net_dev,
1083 "could not find a suitable DMA mask\n");
1084 goto fail2;
1085 }
1086 netif_dbg(efx, probe, efx->net_dev,
1087 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1088 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1089 if (rc) {
1090 /* pci_set_consistent_dma_mask() is not *allowed* to
1091 * fail with a mask that pci_set_dma_mask() accepted,
1092 * but just in case...
1093 */
1094 netif_err(efx, probe, efx->net_dev,
1095 "failed to set consistent DMA mask\n");
1096 goto fail2;
1097 }
1098
1099 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1100 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1101 if (rc) {
1102 netif_err(efx, probe, efx->net_dev,
1103 "request for memory BAR failed\n");
1104 rc = -EIO;
1105 goto fail3;
1106 }
1107 efx->membase = ioremap_nocache(efx->membase_phys,
1108 efx->type->mem_map_size);
1109 if (!efx->membase) {
1110 netif_err(efx, probe, efx->net_dev,
1111 "could not map memory BAR at %llx+%x\n",
1112 (unsigned long long)efx->membase_phys,
1113 efx->type->mem_map_size);
1114 rc = -ENOMEM;
1115 goto fail4;
1116 }
1117 netif_dbg(efx, probe, efx->net_dev,
1118 "memory BAR at %llx+%x (virtual %p)\n",
1119 (unsigned long long)efx->membase_phys,
1120 efx->type->mem_map_size, efx->membase);
1121
1122 return 0;
1123
1124 fail4:
1125 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1126 fail3:
1127 efx->membase_phys = 0;
1128 fail2:
1129 pci_disable_device(efx->pci_dev);
1130 fail1:
1131 return rc;
1132 }
1133
1134 static void efx_fini_io(struct efx_nic *efx)
1135 {
1136 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1137
1138 if (efx->membase) {
1139 iounmap(efx->membase);
1140 efx->membase = NULL;
1141 }
1142
1143 if (efx->membase_phys) {
1144 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1145 efx->membase_phys = 0;
1146 }
1147
1148 pci_disable_device(efx->pci_dev);
1149 }
1150
1151 /* Get number of channels wanted. Each channel will have its own IRQ,
1152 * 1 RX queue and/or 2 TX queues. */
1153 static int efx_wanted_channels(void)
1154 {
1155 cpumask_var_t core_mask;
1156 int count;
1157 int cpu;
1158
1159 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
1160 printk(KERN_WARNING
1161 "sfc: RSS disabled due to allocation failure\n");
1162 return 1;
1163 }
1164
1165 count = 0;
1166 for_each_online_cpu(cpu) {
1167 if (!cpumask_test_cpu(cpu, core_mask)) {
1168 ++count;
1169 cpumask_or(core_mask, core_mask,
1170 topology_core_cpumask(cpu));
1171 }
1172 }
1173
1174 free_cpumask_var(core_mask);
1175 return count;
1176 }
1177
1178 /* Probe the number and type of interrupts we are able to obtain, and
1179 * the resulting numbers of channels and RX queues.
1180 */
1181 static void efx_probe_interrupts(struct efx_nic *efx)
1182 {
1183 int max_channels =
1184 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1185 int rc, i;
1186
1187 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1188 struct msix_entry xentries[EFX_MAX_CHANNELS];
1189 int n_channels;
1190
1191 n_channels = efx_wanted_channels();
1192 if (separate_tx_channels)
1193 n_channels *= 2;
1194 n_channels = min(n_channels, max_channels);
1195
1196 for (i = 0; i < n_channels; i++)
1197 xentries[i].entry = i;
1198 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1199 if (rc > 0) {
1200 netif_err(efx, drv, efx->net_dev,
1201 "WARNING: Insufficient MSI-X vectors"
1202 " available (%d < %d).\n", rc, n_channels);
1203 netif_err(efx, drv, efx->net_dev,
1204 "WARNING: Performance may be reduced.\n");
1205 EFX_BUG_ON_PARANOID(rc >= n_channels);
1206 n_channels = rc;
1207 rc = pci_enable_msix(efx->pci_dev, xentries,
1208 n_channels);
1209 }
1210
1211 if (rc == 0) {
1212 efx->n_channels = n_channels;
1213 if (separate_tx_channels) {
1214 efx->n_tx_channels =
1215 max(efx->n_channels / 2, 1U);
1216 efx->n_rx_channels =
1217 max(efx->n_channels -
1218 efx->n_tx_channels, 1U);
1219 } else {
1220 efx->n_tx_channels = efx->n_channels;
1221 efx->n_rx_channels = efx->n_channels;
1222 }
1223 for (i = 0; i < n_channels; i++)
1224 efx_get_channel(efx, i)->irq =
1225 xentries[i].vector;
1226 } else {
1227 /* Fall back to single channel MSI */
1228 efx->interrupt_mode = EFX_INT_MODE_MSI;
1229 netif_err(efx, drv, efx->net_dev,
1230 "could not enable MSI-X\n");
1231 }
1232 }
1233
1234 /* Try single interrupt MSI */
1235 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1236 efx->n_channels = 1;
1237 efx->n_rx_channels = 1;
1238 efx->n_tx_channels = 1;
1239 rc = pci_enable_msi(efx->pci_dev);
1240 if (rc == 0) {
1241 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1242 } else {
1243 netif_err(efx, drv, efx->net_dev,
1244 "could not enable MSI\n");
1245 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1246 }
1247 }
1248
1249 /* Assume legacy interrupts */
1250 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1251 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1252 efx->n_rx_channels = 1;
1253 efx->n_tx_channels = 1;
1254 efx->legacy_irq = efx->pci_dev->irq;
1255 }
1256 }
1257
1258 static void efx_remove_interrupts(struct efx_nic *efx)
1259 {
1260 struct efx_channel *channel;
1261
1262 /* Remove MSI/MSI-X interrupts */
1263 efx_for_each_channel(channel, efx)
1264 channel->irq = 0;
1265 pci_disable_msi(efx->pci_dev);
1266 pci_disable_msix(efx->pci_dev);
1267
1268 /* Remove legacy interrupt */
1269 efx->legacy_irq = 0;
1270 }
1271
1272 struct efx_tx_queue *
1273 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1274 {
1275 unsigned tx_channel_offset =
1276 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1277 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1278 type >= EFX_TXQ_TYPES);
1279 return &efx->channel[tx_channel_offset + index]->tx_queue[type];
1280 }
1281
1282 static void efx_set_channels(struct efx_nic *efx)
1283 {
1284 struct efx_channel *channel;
1285 struct efx_tx_queue *tx_queue;
1286 unsigned tx_channel_offset =
1287 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1288
1289 /* Channel pointers were set in efx_init_struct() but we now
1290 * need to clear them for TX queues in any RX-only channels. */
1291 efx_for_each_channel(channel, efx) {
1292 if (channel->channel - tx_channel_offset >=
1293 efx->n_tx_channels) {
1294 efx_for_each_channel_tx_queue(tx_queue, channel)
1295 tx_queue->channel = NULL;
1296 }
1297 }
1298 }
1299
1300 static int efx_probe_nic(struct efx_nic *efx)
1301 {
1302 size_t i;
1303 int rc;
1304
1305 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1306
1307 /* Carry out hardware-type specific initialisation */
1308 rc = efx->type->probe(efx);
1309 if (rc)
1310 return rc;
1311
1312 /* Determine the number of channels and queues by trying to hook
1313 * in MSI-X interrupts. */
1314 efx_probe_interrupts(efx);
1315
1316 if (efx->n_channels > 1)
1317 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1318 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1319 efx->rx_indir_table[i] = i % efx->n_rx_channels;
1320
1321 efx_set_channels(efx);
1322 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1323 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1324
1325 /* Initialise the interrupt moderation settings */
1326 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1327
1328 return 0;
1329 }
1330
1331 static void efx_remove_nic(struct efx_nic *efx)
1332 {
1333 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1334
1335 efx_remove_interrupts(efx);
1336 efx->type->remove(efx);
1337 }
1338
1339 /**************************************************************************
1340 *
1341 * NIC startup/shutdown
1342 *
1343 *************************************************************************/
1344
1345 static int efx_probe_all(struct efx_nic *efx)
1346 {
1347 int rc;
1348
1349 rc = efx_probe_nic(efx);
1350 if (rc) {
1351 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1352 goto fail1;
1353 }
1354
1355 rc = efx_probe_port(efx);
1356 if (rc) {
1357 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1358 goto fail2;
1359 }
1360
1361 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1362 rc = efx_probe_channels(efx);
1363 if (rc)
1364 goto fail3;
1365
1366 rc = efx_probe_filters(efx);
1367 if (rc) {
1368 netif_err(efx, probe, efx->net_dev,
1369 "failed to create filter tables\n");
1370 goto fail4;
1371 }
1372
1373 return 0;
1374
1375 fail4:
1376 efx_remove_channels(efx);
1377 fail3:
1378 efx_remove_port(efx);
1379 fail2:
1380 efx_remove_nic(efx);
1381 fail1:
1382 return rc;
1383 }
1384
1385 /* Called after previous invocation(s) of efx_stop_all, restarts the
1386 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1387 * and ensures that the port is scheduled to be reconfigured.
1388 * This function is safe to call multiple times when the NIC is in any
1389 * state. */
1390 static void efx_start_all(struct efx_nic *efx)
1391 {
1392 struct efx_channel *channel;
1393
1394 EFX_ASSERT_RESET_SERIALISED(efx);
1395
1396 /* Check that it is appropriate to restart the interface. All
1397 * of these flags are safe to read under just the rtnl lock */
1398 if (efx->port_enabled)
1399 return;
1400 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1401 return;
1402 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1403 return;
1404
1405 /* Mark the port as enabled so port reconfigurations can start, then
1406 * restart the transmit interface early so the watchdog timer stops */
1407 efx_start_port(efx);
1408
1409 efx_for_each_channel(channel, efx) {
1410 if (efx_dev_registered(efx))
1411 efx_wake_queue(channel);
1412 efx_start_channel(channel);
1413 }
1414
1415 if (efx->legacy_irq)
1416 efx->legacy_irq_enabled = true;
1417 efx_nic_enable_interrupts(efx);
1418
1419 /* Switch to event based MCDI completions after enabling interrupts.
1420 * If a reset has been scheduled, then we need to stay in polled mode.
1421 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1422 * reset_pending [modified from an atomic context], we instead guarantee
1423 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1424 efx_mcdi_mode_event(efx);
1425 if (efx->reset_pending != RESET_TYPE_NONE)
1426 efx_mcdi_mode_poll(efx);
1427
1428 /* Start the hardware monitor if there is one. Otherwise (we're link
1429 * event driven), we have to poll the PHY because after an event queue
1430 * flush, we could have a missed a link state change */
1431 if (efx->type->monitor != NULL) {
1432 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1433 efx_monitor_interval);
1434 } else {
1435 mutex_lock(&efx->mac_lock);
1436 if (efx->phy_op->poll(efx))
1437 efx_link_status_changed(efx);
1438 mutex_unlock(&efx->mac_lock);
1439 }
1440
1441 efx->type->start_stats(efx);
1442 }
1443
1444 /* Flush all delayed work. Should only be called when no more delayed work
1445 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1446 * since we're holding the rtnl_lock at this point. */
1447 static void efx_flush_all(struct efx_nic *efx)
1448 {
1449 /* Make sure the hardware monitor is stopped */
1450 cancel_delayed_work_sync(&efx->monitor_work);
1451 /* Stop scheduled port reconfigurations */
1452 cancel_work_sync(&efx->mac_work);
1453 }
1454
1455 /* Quiesce hardware and software without bringing the link down.
1456 * Safe to call multiple times, when the nic and interface is in any
1457 * state. The caller is guaranteed to subsequently be in a position
1458 * to modify any hardware and software state they see fit without
1459 * taking locks. */
1460 static void efx_stop_all(struct efx_nic *efx)
1461 {
1462 struct efx_channel *channel;
1463
1464 EFX_ASSERT_RESET_SERIALISED(efx);
1465
1466 /* port_enabled can be read safely under the rtnl lock */
1467 if (!efx->port_enabled)
1468 return;
1469
1470 efx->type->stop_stats(efx);
1471
1472 /* Switch to MCDI polling on Siena before disabling interrupts */
1473 efx_mcdi_mode_poll(efx);
1474
1475 /* Disable interrupts and wait for ISR to complete */
1476 efx_nic_disable_interrupts(efx);
1477 if (efx->legacy_irq) {
1478 synchronize_irq(efx->legacy_irq);
1479 efx->legacy_irq_enabled = false;
1480 }
1481 efx_for_each_channel(channel, efx) {
1482 if (channel->irq)
1483 synchronize_irq(channel->irq);
1484 }
1485
1486 /* Stop all NAPI processing and synchronous rx refills */
1487 efx_for_each_channel(channel, efx)
1488 efx_stop_channel(channel);
1489
1490 /* Stop all asynchronous port reconfigurations. Since all
1491 * event processing has already been stopped, there is no
1492 * window to loose phy events */
1493 efx_stop_port(efx);
1494
1495 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1496 efx_flush_all(efx);
1497
1498 /* Stop the kernel transmit interface late, so the watchdog
1499 * timer isn't ticking over the flush */
1500 if (efx_dev_registered(efx)) {
1501 struct efx_channel *channel;
1502 efx_for_each_channel(channel, efx)
1503 efx_stop_queue(channel);
1504 netif_tx_lock_bh(efx->net_dev);
1505 netif_tx_unlock_bh(efx->net_dev);
1506 }
1507 }
1508
1509 static void efx_remove_all(struct efx_nic *efx)
1510 {
1511 efx_remove_filters(efx);
1512 efx_remove_channels(efx);
1513 efx_remove_port(efx);
1514 efx_remove_nic(efx);
1515 }
1516
1517 /**************************************************************************
1518 *
1519 * Interrupt moderation
1520 *
1521 **************************************************************************/
1522
1523 static unsigned irq_mod_ticks(int usecs, int resolution)
1524 {
1525 if (usecs <= 0)
1526 return 0; /* cannot receive interrupts ahead of time :-) */
1527 if (usecs < resolution)
1528 return 1; /* never round down to 0 */
1529 return usecs / resolution;
1530 }
1531
1532 /* Set interrupt moderation parameters */
1533 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1534 bool rx_adaptive)
1535 {
1536 struct efx_channel *channel;
1537 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1538 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1539
1540 EFX_ASSERT_RESET_SERIALISED(efx);
1541
1542 efx->irq_rx_adaptive = rx_adaptive;
1543 efx->irq_rx_moderation = rx_ticks;
1544 efx_for_each_channel(channel, efx) {
1545 if (efx_channel_get_rx_queue(channel))
1546 channel->irq_moderation = rx_ticks;
1547 else if (efx_channel_get_tx_queue(channel, 0))
1548 channel->irq_moderation = tx_ticks;
1549 }
1550 }
1551
1552 /**************************************************************************
1553 *
1554 * Hardware monitor
1555 *
1556 **************************************************************************/
1557
1558 /* Run periodically off the general workqueue */
1559 static void efx_monitor(struct work_struct *data)
1560 {
1561 struct efx_nic *efx = container_of(data, struct efx_nic,
1562 monitor_work.work);
1563
1564 netif_vdbg(efx, timer, efx->net_dev,
1565 "hardware monitor executing on CPU %d\n",
1566 raw_smp_processor_id());
1567 BUG_ON(efx->type->monitor == NULL);
1568
1569 /* If the mac_lock is already held then it is likely a port
1570 * reconfiguration is already in place, which will likely do
1571 * most of the work of monitor() anyway. */
1572 if (mutex_trylock(&efx->mac_lock)) {
1573 if (efx->port_enabled)
1574 efx->type->monitor(efx);
1575 mutex_unlock(&efx->mac_lock);
1576 }
1577
1578 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1579 efx_monitor_interval);
1580 }
1581
1582 /**************************************************************************
1583 *
1584 * ioctls
1585 *
1586 *************************************************************************/
1587
1588 /* Net device ioctl
1589 * Context: process, rtnl_lock() held.
1590 */
1591 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1592 {
1593 struct efx_nic *efx = netdev_priv(net_dev);
1594 struct mii_ioctl_data *data = if_mii(ifr);
1595
1596 EFX_ASSERT_RESET_SERIALISED(efx);
1597
1598 /* Convert phy_id from older PRTAD/DEVAD format */
1599 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1600 (data->phy_id & 0xfc00) == 0x0400)
1601 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1602
1603 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1604 }
1605
1606 /**************************************************************************
1607 *
1608 * NAPI interface
1609 *
1610 **************************************************************************/
1611
1612 static void efx_init_napi(struct efx_nic *efx)
1613 {
1614 struct efx_channel *channel;
1615
1616 efx_for_each_channel(channel, efx) {
1617 channel->napi_dev = efx->net_dev;
1618 netif_napi_add(channel->napi_dev, &channel->napi_str,
1619 efx_poll, napi_weight);
1620 }
1621 }
1622
1623 static void efx_fini_napi_channel(struct efx_channel *channel)
1624 {
1625 if (channel->napi_dev)
1626 netif_napi_del(&channel->napi_str);
1627 channel->napi_dev = NULL;
1628 }
1629
1630 static void efx_fini_napi(struct efx_nic *efx)
1631 {
1632 struct efx_channel *channel;
1633
1634 efx_for_each_channel(channel, efx)
1635 efx_fini_napi_channel(channel);
1636 }
1637
1638 /**************************************************************************
1639 *
1640 * Kernel netpoll interface
1641 *
1642 *************************************************************************/
1643
1644 #ifdef CONFIG_NET_POLL_CONTROLLER
1645
1646 /* Although in the common case interrupts will be disabled, this is not
1647 * guaranteed. However, all our work happens inside the NAPI callback,
1648 * so no locking is required.
1649 */
1650 static void efx_netpoll(struct net_device *net_dev)
1651 {
1652 struct efx_nic *efx = netdev_priv(net_dev);
1653 struct efx_channel *channel;
1654
1655 efx_for_each_channel(channel, efx)
1656 efx_schedule_channel(channel);
1657 }
1658
1659 #endif
1660
1661 /**************************************************************************
1662 *
1663 * Kernel net device interface
1664 *
1665 *************************************************************************/
1666
1667 /* Context: process, rtnl_lock() held. */
1668 static int efx_net_open(struct net_device *net_dev)
1669 {
1670 struct efx_nic *efx = netdev_priv(net_dev);
1671 EFX_ASSERT_RESET_SERIALISED(efx);
1672
1673 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1674 raw_smp_processor_id());
1675
1676 if (efx->state == STATE_DISABLED)
1677 return -EIO;
1678 if (efx->phy_mode & PHY_MODE_SPECIAL)
1679 return -EBUSY;
1680 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1681 return -EIO;
1682
1683 /* Notify the kernel of the link state polled during driver load,
1684 * before the monitor starts running */
1685 efx_link_status_changed(efx);
1686
1687 efx_start_all(efx);
1688 return 0;
1689 }
1690
1691 /* Context: process, rtnl_lock() held.
1692 * Note that the kernel will ignore our return code; this method
1693 * should really be a void.
1694 */
1695 static int efx_net_stop(struct net_device *net_dev)
1696 {
1697 struct efx_nic *efx = netdev_priv(net_dev);
1698
1699 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1700 raw_smp_processor_id());
1701
1702 if (efx->state != STATE_DISABLED) {
1703 /* Stop the device and flush all the channels */
1704 efx_stop_all(efx);
1705 efx_fini_channels(efx);
1706 efx_init_channels(efx);
1707 }
1708
1709 return 0;
1710 }
1711
1712 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1713 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1714 {
1715 struct efx_nic *efx = netdev_priv(net_dev);
1716 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1717
1718 spin_lock_bh(&efx->stats_lock);
1719 efx->type->update_stats(efx);
1720 spin_unlock_bh(&efx->stats_lock);
1721
1722 stats->rx_packets = mac_stats->rx_packets;
1723 stats->tx_packets = mac_stats->tx_packets;
1724 stats->rx_bytes = mac_stats->rx_bytes;
1725 stats->tx_bytes = mac_stats->tx_bytes;
1726 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1727 stats->multicast = mac_stats->rx_multicast;
1728 stats->collisions = mac_stats->tx_collision;
1729 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1730 mac_stats->rx_length_error);
1731 stats->rx_crc_errors = mac_stats->rx_bad;
1732 stats->rx_frame_errors = mac_stats->rx_align_error;
1733 stats->rx_fifo_errors = mac_stats->rx_overflow;
1734 stats->rx_missed_errors = mac_stats->rx_missed;
1735 stats->tx_window_errors = mac_stats->tx_late_collision;
1736
1737 stats->rx_errors = (stats->rx_length_errors +
1738 stats->rx_crc_errors +
1739 stats->rx_frame_errors +
1740 mac_stats->rx_symbol_error);
1741 stats->tx_errors = (stats->tx_window_errors +
1742 mac_stats->tx_bad);
1743
1744 return stats;
1745 }
1746
1747 /* Context: netif_tx_lock held, BHs disabled. */
1748 static void efx_watchdog(struct net_device *net_dev)
1749 {
1750 struct efx_nic *efx = netdev_priv(net_dev);
1751
1752 netif_err(efx, tx_err, efx->net_dev,
1753 "TX stuck with port_enabled=%d: resetting channels\n",
1754 efx->port_enabled);
1755
1756 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1757 }
1758
1759
1760 /* Context: process, rtnl_lock() held. */
1761 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1762 {
1763 struct efx_nic *efx = netdev_priv(net_dev);
1764 int rc = 0;
1765
1766 EFX_ASSERT_RESET_SERIALISED(efx);
1767
1768 if (new_mtu > EFX_MAX_MTU)
1769 return -EINVAL;
1770
1771 efx_stop_all(efx);
1772
1773 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1774
1775 efx_fini_channels(efx);
1776
1777 mutex_lock(&efx->mac_lock);
1778 /* Reconfigure the MAC before enabling the dma queues so that
1779 * the RX buffers don't overflow */
1780 net_dev->mtu = new_mtu;
1781 efx->mac_op->reconfigure(efx);
1782 mutex_unlock(&efx->mac_lock);
1783
1784 efx_init_channels(efx);
1785
1786 efx_start_all(efx);
1787 return rc;
1788 }
1789
1790 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1791 {
1792 struct efx_nic *efx = netdev_priv(net_dev);
1793 struct sockaddr *addr = data;
1794 char *new_addr = addr->sa_data;
1795
1796 EFX_ASSERT_RESET_SERIALISED(efx);
1797
1798 if (!is_valid_ether_addr(new_addr)) {
1799 netif_err(efx, drv, efx->net_dev,
1800 "invalid ethernet MAC address requested: %pM\n",
1801 new_addr);
1802 return -EINVAL;
1803 }
1804
1805 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1806
1807 /* Reconfigure the MAC */
1808 mutex_lock(&efx->mac_lock);
1809 efx->mac_op->reconfigure(efx);
1810 mutex_unlock(&efx->mac_lock);
1811
1812 return 0;
1813 }
1814
1815 /* Context: netif_addr_lock held, BHs disabled. */
1816 static void efx_set_multicast_list(struct net_device *net_dev)
1817 {
1818 struct efx_nic *efx = netdev_priv(net_dev);
1819 struct netdev_hw_addr *ha;
1820 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1821 u32 crc;
1822 int bit;
1823
1824 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1825
1826 /* Build multicast hash table */
1827 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1828 memset(mc_hash, 0xff, sizeof(*mc_hash));
1829 } else {
1830 memset(mc_hash, 0x00, sizeof(*mc_hash));
1831 netdev_for_each_mc_addr(ha, net_dev) {
1832 crc = ether_crc_le(ETH_ALEN, ha->addr);
1833 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1834 set_bit_le(bit, mc_hash->byte);
1835 }
1836
1837 /* Broadcast packets go through the multicast hash filter.
1838 * ether_crc_le() of the broadcast address is 0xbe2612ff
1839 * so we always add bit 0xff to the mask.
1840 */
1841 set_bit_le(0xff, mc_hash->byte);
1842 }
1843
1844 if (efx->port_enabled)
1845 queue_work(efx->workqueue, &efx->mac_work);
1846 /* Otherwise efx_start_port() will do this */
1847 }
1848
1849 static const struct net_device_ops efx_netdev_ops = {
1850 .ndo_open = efx_net_open,
1851 .ndo_stop = efx_net_stop,
1852 .ndo_get_stats64 = efx_net_stats,
1853 .ndo_tx_timeout = efx_watchdog,
1854 .ndo_start_xmit = efx_hard_start_xmit,
1855 .ndo_validate_addr = eth_validate_addr,
1856 .ndo_do_ioctl = efx_ioctl,
1857 .ndo_change_mtu = efx_change_mtu,
1858 .ndo_set_mac_address = efx_set_mac_address,
1859 .ndo_set_multicast_list = efx_set_multicast_list,
1860 #ifdef CONFIG_NET_POLL_CONTROLLER
1861 .ndo_poll_controller = efx_netpoll,
1862 #endif
1863 };
1864
1865 static void efx_update_name(struct efx_nic *efx)
1866 {
1867 strcpy(efx->name, efx->net_dev->name);
1868 efx_mtd_rename(efx);
1869 efx_set_channel_names(efx);
1870 }
1871
1872 static int efx_netdev_event(struct notifier_block *this,
1873 unsigned long event, void *ptr)
1874 {
1875 struct net_device *net_dev = ptr;
1876
1877 if (net_dev->netdev_ops == &efx_netdev_ops &&
1878 event == NETDEV_CHANGENAME)
1879 efx_update_name(netdev_priv(net_dev));
1880
1881 return NOTIFY_DONE;
1882 }
1883
1884 static struct notifier_block efx_netdev_notifier = {
1885 .notifier_call = efx_netdev_event,
1886 };
1887
1888 static ssize_t
1889 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1890 {
1891 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1892 return sprintf(buf, "%d\n", efx->phy_type);
1893 }
1894 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1895
1896 static int efx_register_netdev(struct efx_nic *efx)
1897 {
1898 struct net_device *net_dev = efx->net_dev;
1899 int rc;
1900
1901 net_dev->watchdog_timeo = 5 * HZ;
1902 net_dev->irq = efx->pci_dev->irq;
1903 net_dev->netdev_ops = &efx_netdev_ops;
1904 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1905
1906 /* Clear MAC statistics */
1907 efx->mac_op->update_stats(efx);
1908 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1909
1910 rtnl_lock();
1911
1912 rc = dev_alloc_name(net_dev, net_dev->name);
1913 if (rc < 0)
1914 goto fail_locked;
1915 efx_update_name(efx);
1916
1917 rc = register_netdevice(net_dev);
1918 if (rc)
1919 goto fail_locked;
1920
1921 /* Always start with carrier off; PHY events will detect the link */
1922 netif_carrier_off(efx->net_dev);
1923
1924 rtnl_unlock();
1925
1926 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1927 if (rc) {
1928 netif_err(efx, drv, efx->net_dev,
1929 "failed to init net dev attributes\n");
1930 goto fail_registered;
1931 }
1932
1933 return 0;
1934
1935 fail_locked:
1936 rtnl_unlock();
1937 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1938 return rc;
1939
1940 fail_registered:
1941 unregister_netdev(net_dev);
1942 return rc;
1943 }
1944
1945 static void efx_unregister_netdev(struct efx_nic *efx)
1946 {
1947 struct efx_channel *channel;
1948 struct efx_tx_queue *tx_queue;
1949
1950 if (!efx->net_dev)
1951 return;
1952
1953 BUG_ON(netdev_priv(efx->net_dev) != efx);
1954
1955 /* Free up any skbs still remaining. This has to happen before
1956 * we try to unregister the netdev as running their destructors
1957 * may be needed to get the device ref. count to 0. */
1958 efx_for_each_channel(channel, efx) {
1959 efx_for_each_channel_tx_queue(tx_queue, channel)
1960 efx_release_tx_buffers(tx_queue);
1961 }
1962
1963 if (efx_dev_registered(efx)) {
1964 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1965 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1966 unregister_netdev(efx->net_dev);
1967 }
1968 }
1969
1970 /**************************************************************************
1971 *
1972 * Device reset and suspend
1973 *
1974 **************************************************************************/
1975
1976 /* Tears down the entire software state and most of the hardware state
1977 * before reset. */
1978 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1979 {
1980 EFX_ASSERT_RESET_SERIALISED(efx);
1981
1982 efx_stop_all(efx);
1983 mutex_lock(&efx->mac_lock);
1984
1985 efx_fini_channels(efx);
1986 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1987 efx->phy_op->fini(efx);
1988 efx->type->fini(efx);
1989 }
1990
1991 /* This function will always ensure that the locks acquired in
1992 * efx_reset_down() are released. A failure return code indicates
1993 * that we were unable to reinitialise the hardware, and the
1994 * driver should be disabled. If ok is false, then the rx and tx
1995 * engines are not restarted, pending a RESET_DISABLE. */
1996 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1997 {
1998 int rc;
1999
2000 EFX_ASSERT_RESET_SERIALISED(efx);
2001
2002 rc = efx->type->init(efx);
2003 if (rc) {
2004 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2005 goto fail;
2006 }
2007
2008 if (!ok)
2009 goto fail;
2010
2011 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2012 rc = efx->phy_op->init(efx);
2013 if (rc)
2014 goto fail;
2015 if (efx->phy_op->reconfigure(efx))
2016 netif_err(efx, drv, efx->net_dev,
2017 "could not restore PHY settings\n");
2018 }
2019
2020 efx->mac_op->reconfigure(efx);
2021
2022 efx_init_channels(efx);
2023 efx_restore_filters(efx);
2024
2025 mutex_unlock(&efx->mac_lock);
2026
2027 efx_start_all(efx);
2028
2029 return 0;
2030
2031 fail:
2032 efx->port_initialized = false;
2033
2034 mutex_unlock(&efx->mac_lock);
2035
2036 return rc;
2037 }
2038
2039 /* Reset the NIC using the specified method. Note that the reset may
2040 * fail, in which case the card will be left in an unusable state.
2041 *
2042 * Caller must hold the rtnl_lock.
2043 */
2044 int efx_reset(struct efx_nic *efx, enum reset_type method)
2045 {
2046 int rc, rc2;
2047 bool disabled;
2048
2049 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2050 RESET_TYPE(method));
2051
2052 efx_reset_down(efx, method);
2053
2054 rc = efx->type->reset(efx, method);
2055 if (rc) {
2056 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2057 goto out;
2058 }
2059
2060 /* Allow resets to be rescheduled. */
2061 efx->reset_pending = RESET_TYPE_NONE;
2062
2063 /* Reinitialise bus-mastering, which may have been turned off before
2064 * the reset was scheduled. This is still appropriate, even in the
2065 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2066 * can respond to requests. */
2067 pci_set_master(efx->pci_dev);
2068
2069 out:
2070 /* Leave device stopped if necessary */
2071 disabled = rc || method == RESET_TYPE_DISABLE;
2072 rc2 = efx_reset_up(efx, method, !disabled);
2073 if (rc2) {
2074 disabled = true;
2075 if (!rc)
2076 rc = rc2;
2077 }
2078
2079 if (disabled) {
2080 dev_close(efx->net_dev);
2081 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2082 efx->state = STATE_DISABLED;
2083 } else {
2084 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2085 }
2086 return rc;
2087 }
2088
2089 /* The worker thread exists so that code that cannot sleep can
2090 * schedule a reset for later.
2091 */
2092 static void efx_reset_work(struct work_struct *data)
2093 {
2094 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2095
2096 if (efx->reset_pending == RESET_TYPE_NONE)
2097 return;
2098
2099 /* If we're not RUNNING then don't reset. Leave the reset_pending
2100 * flag set so that efx_pci_probe_main will be retried */
2101 if (efx->state != STATE_RUNNING) {
2102 netif_info(efx, drv, efx->net_dev,
2103 "scheduled reset quenched. NIC not RUNNING\n");
2104 return;
2105 }
2106
2107 rtnl_lock();
2108 (void)efx_reset(efx, efx->reset_pending);
2109 rtnl_unlock();
2110 }
2111
2112 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2113 {
2114 enum reset_type method;
2115
2116 if (efx->reset_pending != RESET_TYPE_NONE) {
2117 netif_info(efx, drv, efx->net_dev,
2118 "quenching already scheduled reset\n");
2119 return;
2120 }
2121
2122 switch (type) {
2123 case RESET_TYPE_INVISIBLE:
2124 case RESET_TYPE_ALL:
2125 case RESET_TYPE_WORLD:
2126 case RESET_TYPE_DISABLE:
2127 method = type;
2128 break;
2129 case RESET_TYPE_RX_RECOVERY:
2130 case RESET_TYPE_RX_DESC_FETCH:
2131 case RESET_TYPE_TX_DESC_FETCH:
2132 case RESET_TYPE_TX_SKIP:
2133 method = RESET_TYPE_INVISIBLE;
2134 break;
2135 case RESET_TYPE_MC_FAILURE:
2136 default:
2137 method = RESET_TYPE_ALL;
2138 break;
2139 }
2140
2141 if (method != type)
2142 netif_dbg(efx, drv, efx->net_dev,
2143 "scheduling %s reset for %s\n",
2144 RESET_TYPE(method), RESET_TYPE(type));
2145 else
2146 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2147 RESET_TYPE(method));
2148
2149 efx->reset_pending = method;
2150
2151 /* efx_process_channel() will no longer read events once a
2152 * reset is scheduled. So switch back to poll'd MCDI completions. */
2153 efx_mcdi_mode_poll(efx);
2154
2155 queue_work(reset_workqueue, &efx->reset_work);
2156 }
2157
2158 /**************************************************************************
2159 *
2160 * List of NICs we support
2161 *
2162 **************************************************************************/
2163
2164 /* PCI device ID table */
2165 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2166 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
2167 .driver_data = (unsigned long) &falcon_a1_nic_type},
2168 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
2169 .driver_data = (unsigned long) &falcon_b0_nic_type},
2170 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2171 .driver_data = (unsigned long) &siena_a0_nic_type},
2172 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2173 .driver_data = (unsigned long) &siena_a0_nic_type},
2174 {0} /* end of list */
2175 };
2176
2177 /**************************************************************************
2178 *
2179 * Dummy PHY/MAC operations
2180 *
2181 * Can be used for some unimplemented operations
2182 * Needed so all function pointers are valid and do not have to be tested
2183 * before use
2184 *
2185 **************************************************************************/
2186 int efx_port_dummy_op_int(struct efx_nic *efx)
2187 {
2188 return 0;
2189 }
2190 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2191
2192 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2193 {
2194 return false;
2195 }
2196
2197 static struct efx_phy_operations efx_dummy_phy_operations = {
2198 .init = efx_port_dummy_op_int,
2199 .reconfigure = efx_port_dummy_op_int,
2200 .poll = efx_port_dummy_op_poll,
2201 .fini = efx_port_dummy_op_void,
2202 };
2203
2204 /**************************************************************************
2205 *
2206 * Data housekeeping
2207 *
2208 **************************************************************************/
2209
2210 /* This zeroes out and then fills in the invariants in a struct
2211 * efx_nic (including all sub-structures).
2212 */
2213 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2214 struct pci_dev *pci_dev, struct net_device *net_dev)
2215 {
2216 int i;
2217
2218 /* Initialise common structures */
2219 memset(efx, 0, sizeof(*efx));
2220 spin_lock_init(&efx->biu_lock);
2221 #ifdef CONFIG_SFC_MTD
2222 INIT_LIST_HEAD(&efx->mtd_list);
2223 #endif
2224 INIT_WORK(&efx->reset_work, efx_reset_work);
2225 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2226 efx->pci_dev = pci_dev;
2227 efx->msg_enable = debug;
2228 efx->state = STATE_INIT;
2229 efx->reset_pending = RESET_TYPE_NONE;
2230 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2231
2232 efx->net_dev = net_dev;
2233 efx->rx_checksum_enabled = true;
2234 spin_lock_init(&efx->stats_lock);
2235 mutex_init(&efx->mac_lock);
2236 efx->mac_op = type->default_mac_ops;
2237 efx->phy_op = &efx_dummy_phy_operations;
2238 efx->mdio.dev = net_dev;
2239 INIT_WORK(&efx->mac_work, efx_mac_work);
2240
2241 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2242 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2243 if (!efx->channel[i])
2244 goto fail;
2245 }
2246
2247 efx->type = type;
2248
2249 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2250
2251 /* Higher numbered interrupt modes are less capable! */
2252 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2253 interrupt_mode);
2254
2255 /* Would be good to use the net_dev name, but we're too early */
2256 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2257 pci_name(pci_dev));
2258 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2259 if (!efx->workqueue)
2260 goto fail;
2261
2262 return 0;
2263
2264 fail:
2265 efx_fini_struct(efx);
2266 return -ENOMEM;
2267 }
2268
2269 static void efx_fini_struct(struct efx_nic *efx)
2270 {
2271 int i;
2272
2273 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2274 kfree(efx->channel[i]);
2275
2276 if (efx->workqueue) {
2277 destroy_workqueue(efx->workqueue);
2278 efx->workqueue = NULL;
2279 }
2280 }
2281
2282 /**************************************************************************
2283 *
2284 * PCI interface
2285 *
2286 **************************************************************************/
2287
2288 /* Main body of final NIC shutdown code
2289 * This is called only at module unload (or hotplug removal).
2290 */
2291 static void efx_pci_remove_main(struct efx_nic *efx)
2292 {
2293 efx_nic_fini_interrupt(efx);
2294 efx_fini_channels(efx);
2295 efx_fini_port(efx);
2296 efx->type->fini(efx);
2297 efx_fini_napi(efx);
2298 efx_remove_all(efx);
2299 }
2300
2301 /* Final NIC shutdown
2302 * This is called only at module unload (or hotplug removal).
2303 */
2304 static void efx_pci_remove(struct pci_dev *pci_dev)
2305 {
2306 struct efx_nic *efx;
2307
2308 efx = pci_get_drvdata(pci_dev);
2309 if (!efx)
2310 return;
2311
2312 /* Mark the NIC as fini, then stop the interface */
2313 rtnl_lock();
2314 efx->state = STATE_FINI;
2315 dev_close(efx->net_dev);
2316
2317 /* Allow any queued efx_resets() to complete */
2318 rtnl_unlock();
2319
2320 efx_unregister_netdev(efx);
2321
2322 efx_mtd_remove(efx);
2323
2324 /* Wait for any scheduled resets to complete. No more will be
2325 * scheduled from this point because efx_stop_all() has been
2326 * called, we are no longer registered with driverlink, and
2327 * the net_device's have been removed. */
2328 cancel_work_sync(&efx->reset_work);
2329
2330 efx_pci_remove_main(efx);
2331
2332 efx_fini_io(efx);
2333 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2334
2335 pci_set_drvdata(pci_dev, NULL);
2336 efx_fini_struct(efx);
2337 free_netdev(efx->net_dev);
2338 };
2339
2340 /* Main body of NIC initialisation
2341 * This is called at module load (or hotplug insertion, theoretically).
2342 */
2343 static int efx_pci_probe_main(struct efx_nic *efx)
2344 {
2345 int rc;
2346
2347 /* Do start-of-day initialisation */
2348 rc = efx_probe_all(efx);
2349 if (rc)
2350 goto fail1;
2351
2352 efx_init_napi(efx);
2353
2354 rc = efx->type->init(efx);
2355 if (rc) {
2356 netif_err(efx, probe, efx->net_dev,
2357 "failed to initialise NIC\n");
2358 goto fail3;
2359 }
2360
2361 rc = efx_init_port(efx);
2362 if (rc) {
2363 netif_err(efx, probe, efx->net_dev,
2364 "failed to initialise port\n");
2365 goto fail4;
2366 }
2367
2368 efx_init_channels(efx);
2369
2370 rc = efx_nic_init_interrupt(efx);
2371 if (rc)
2372 goto fail5;
2373
2374 return 0;
2375
2376 fail5:
2377 efx_fini_channels(efx);
2378 efx_fini_port(efx);
2379 fail4:
2380 efx->type->fini(efx);
2381 fail3:
2382 efx_fini_napi(efx);
2383 efx_remove_all(efx);
2384 fail1:
2385 return rc;
2386 }
2387
2388 /* NIC initialisation
2389 *
2390 * This is called at module load (or hotplug insertion,
2391 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2392 * sets up and registers the network devices with the kernel and hooks
2393 * the interrupt service routine. It does not prepare the device for
2394 * transmission; this is left to the first time one of the network
2395 * interfaces is brought up (i.e. efx_net_open).
2396 */
2397 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2398 const struct pci_device_id *entry)
2399 {
2400 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2401 struct net_device *net_dev;
2402 struct efx_nic *efx;
2403 int i, rc;
2404
2405 /* Allocate and initialise a struct net_device and struct efx_nic */
2406 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
2407 if (!net_dev)
2408 return -ENOMEM;
2409 net_dev->features |= (type->offload_features | NETIF_F_SG |
2410 NETIF_F_HIGHDMA | NETIF_F_TSO |
2411 NETIF_F_GRO);
2412 if (type->offload_features & NETIF_F_V6_CSUM)
2413 net_dev->features |= NETIF_F_TSO6;
2414 /* Mask for features that also apply to VLAN devices */
2415 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2416 NETIF_F_HIGHDMA | NETIF_F_TSO);
2417 efx = netdev_priv(net_dev);
2418 pci_set_drvdata(pci_dev, efx);
2419 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2420 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2421 if (rc)
2422 goto fail1;
2423
2424 netif_info(efx, probe, efx->net_dev,
2425 "Solarflare Communications NIC detected\n");
2426
2427 /* Set up basic I/O (BAR mappings etc) */
2428 rc = efx_init_io(efx);
2429 if (rc)
2430 goto fail2;
2431
2432 /* No serialisation is required with the reset path because
2433 * we're in STATE_INIT. */
2434 for (i = 0; i < 5; i++) {
2435 rc = efx_pci_probe_main(efx);
2436
2437 /* Serialise against efx_reset(). No more resets will be
2438 * scheduled since efx_stop_all() has been called, and we
2439 * have not and never have been registered with either
2440 * the rtnetlink or driverlink layers. */
2441 cancel_work_sync(&efx->reset_work);
2442
2443 if (rc == 0) {
2444 if (efx->reset_pending != RESET_TYPE_NONE) {
2445 /* If there was a scheduled reset during
2446 * probe, the NIC is probably hosed anyway */
2447 efx_pci_remove_main(efx);
2448 rc = -EIO;
2449 } else {
2450 break;
2451 }
2452 }
2453
2454 /* Retry if a recoverably reset event has been scheduled */
2455 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2456 (efx->reset_pending != RESET_TYPE_ALL))
2457 goto fail3;
2458
2459 efx->reset_pending = RESET_TYPE_NONE;
2460 }
2461
2462 if (rc) {
2463 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2464 goto fail4;
2465 }
2466
2467 /* Switch to the running state before we expose the device to the OS,
2468 * so that dev_open()|efx_start_all() will actually start the device */
2469 efx->state = STATE_RUNNING;
2470
2471 rc = efx_register_netdev(efx);
2472 if (rc)
2473 goto fail5;
2474
2475 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2476
2477 rtnl_lock();
2478 efx_mtd_probe(efx); /* allowed to fail */
2479 rtnl_unlock();
2480 return 0;
2481
2482 fail5:
2483 efx_pci_remove_main(efx);
2484 fail4:
2485 fail3:
2486 efx_fini_io(efx);
2487 fail2:
2488 efx_fini_struct(efx);
2489 fail1:
2490 WARN_ON(rc > 0);
2491 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2492 free_netdev(net_dev);
2493 return rc;
2494 }
2495
2496 static int efx_pm_freeze(struct device *dev)
2497 {
2498 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2499
2500 efx->state = STATE_FINI;
2501
2502 netif_device_detach(efx->net_dev);
2503
2504 efx_stop_all(efx);
2505 efx_fini_channels(efx);
2506
2507 return 0;
2508 }
2509
2510 static int efx_pm_thaw(struct device *dev)
2511 {
2512 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2513
2514 efx->state = STATE_INIT;
2515
2516 efx_init_channels(efx);
2517
2518 mutex_lock(&efx->mac_lock);
2519 efx->phy_op->reconfigure(efx);
2520 mutex_unlock(&efx->mac_lock);
2521
2522 efx_start_all(efx);
2523
2524 netif_device_attach(efx->net_dev);
2525
2526 efx->state = STATE_RUNNING;
2527
2528 efx->type->resume_wol(efx);
2529
2530 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2531 queue_work(reset_workqueue, &efx->reset_work);
2532
2533 return 0;
2534 }
2535
2536 static int efx_pm_poweroff(struct device *dev)
2537 {
2538 struct pci_dev *pci_dev = to_pci_dev(dev);
2539 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2540
2541 efx->type->fini(efx);
2542
2543 efx->reset_pending = RESET_TYPE_NONE;
2544
2545 pci_save_state(pci_dev);
2546 return pci_set_power_state(pci_dev, PCI_D3hot);
2547 }
2548
2549 /* Used for both resume and restore */
2550 static int efx_pm_resume(struct device *dev)
2551 {
2552 struct pci_dev *pci_dev = to_pci_dev(dev);
2553 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2554 int rc;
2555
2556 rc = pci_set_power_state(pci_dev, PCI_D0);
2557 if (rc)
2558 return rc;
2559 pci_restore_state(pci_dev);
2560 rc = pci_enable_device(pci_dev);
2561 if (rc)
2562 return rc;
2563 pci_set_master(efx->pci_dev);
2564 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2565 if (rc)
2566 return rc;
2567 rc = efx->type->init(efx);
2568 if (rc)
2569 return rc;
2570 efx_pm_thaw(dev);
2571 return 0;
2572 }
2573
2574 static int efx_pm_suspend(struct device *dev)
2575 {
2576 int rc;
2577
2578 efx_pm_freeze(dev);
2579 rc = efx_pm_poweroff(dev);
2580 if (rc)
2581 efx_pm_resume(dev);
2582 return rc;
2583 }
2584
2585 static struct dev_pm_ops efx_pm_ops = {
2586 .suspend = efx_pm_suspend,
2587 .resume = efx_pm_resume,
2588 .freeze = efx_pm_freeze,
2589 .thaw = efx_pm_thaw,
2590 .poweroff = efx_pm_poweroff,
2591 .restore = efx_pm_resume,
2592 };
2593
2594 static struct pci_driver efx_pci_driver = {
2595 .name = KBUILD_MODNAME,
2596 .id_table = efx_pci_table,
2597 .probe = efx_pci_probe,
2598 .remove = efx_pci_remove,
2599 .driver.pm = &efx_pm_ops,
2600 };
2601
2602 /**************************************************************************
2603 *
2604 * Kernel module interface
2605 *
2606 *************************************************************************/
2607
2608 module_param(interrupt_mode, uint, 0444);
2609 MODULE_PARM_DESC(interrupt_mode,
2610 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2611
2612 static int __init efx_init_module(void)
2613 {
2614 int rc;
2615
2616 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2617
2618 rc = register_netdevice_notifier(&efx_netdev_notifier);
2619 if (rc)
2620 goto err_notifier;
2621
2622 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2623 if (!reset_workqueue) {
2624 rc = -ENOMEM;
2625 goto err_reset;
2626 }
2627
2628 rc = pci_register_driver(&efx_pci_driver);
2629 if (rc < 0)
2630 goto err_pci;
2631
2632 return 0;
2633
2634 err_pci:
2635 destroy_workqueue(reset_workqueue);
2636 err_reset:
2637 unregister_netdevice_notifier(&efx_netdev_notifier);
2638 err_notifier:
2639 return rc;
2640 }
2641
2642 static void __exit efx_exit_module(void)
2643 {
2644 printk(KERN_INFO "Solarflare NET driver unloading\n");
2645
2646 pci_unregister_driver(&efx_pci_driver);
2647 destroy_workqueue(reset_workqueue);
2648 unregister_netdevice_notifier(&efx_netdev_notifier);
2649
2650 }
2651
2652 module_init(efx_init_module);
2653 module_exit(efx_exit_module);
2654
2655 MODULE_AUTHOR("Solarflare Communications and "
2656 "Michael Brown <mbrown@fensystems.co.uk>");
2657 MODULE_DESCRIPTION("Solarflare Communications network driver");
2658 MODULE_LICENSE("GPL");
2659 MODULE_DEVICE_TABLE(pci, efx_pci_table);