]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/sfc/efx.c
net: fix network drivers ndo_start_xmit() return values (part 8)
[mirror_ubuntu-zesty-kernel.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30
31 #define EFX_MAX_MTU (9 * 1024)
32
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38 static struct workqueue_struct *refill_workqueue;
39
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44 static struct workqueue_struct *reset_workqueue;
45
46 /**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52 /*
53 * Use separate channels for TX and RX events
54 *
55 * Set this to 1 to use separate channels for TX and RX. It allows us
56 * to control interrupt affinity separately for TX and RX.
57 *
58 * This is only used in MSI-X interrupt mode
59 */
60 static unsigned int separate_tx_channels;
61 module_param(separate_tx_channels, uint, 0644);
62 MODULE_PARM_DESC(separate_tx_channels,
63 "Use separate channels for TX and RX");
64
65 /* This is the weight assigned to each of the (per-channel) virtual
66 * NAPI devices.
67 */
68 static int napi_weight = 64;
69
70 /* This is the time (in jiffies) between invocations of the hardware
71 * monitor, which checks for known hardware bugs and resets the
72 * hardware and driver as necessary.
73 */
74 unsigned int efx_monitor_interval = 1 * HZ;
75
76 /* This controls whether or not the driver will initialise devices
77 * with invalid MAC addresses stored in the EEPROM or flash. If true,
78 * such devices will be initialised with a random locally-generated
79 * MAC address. This allows for loading the sfc_mtd driver to
80 * reprogram the flash, even if the flash contents (including the MAC
81 * address) have previously been erased.
82 */
83 static unsigned int allow_bad_hwaddr;
84
85 /* Initial interrupt moderation settings. They can be modified after
86 * module load with ethtool.
87 *
88 * The default for RX should strike a balance between increasing the
89 * round-trip latency and reducing overhead.
90 */
91 static unsigned int rx_irq_mod_usec = 60;
92
93 /* Initial interrupt moderation settings. They can be modified after
94 * module load with ethtool.
95 *
96 * This default is chosen to ensure that a 10G link does not go idle
97 * while a TX queue is stopped after it has become full. A queue is
98 * restarted when it drops below half full. The time this takes (assuming
99 * worst case 3 descriptors per packet and 1024 descriptors) is
100 * 512 / 3 * 1.2 = 205 usec.
101 */
102 static unsigned int tx_irq_mod_usec = 150;
103
104 /* This is the first interrupt mode to try out of:
105 * 0 => MSI-X
106 * 1 => MSI
107 * 2 => legacy
108 */
109 static unsigned int interrupt_mode;
110
111 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
112 * i.e. the number of CPUs among which we may distribute simultaneous
113 * interrupt handling.
114 *
115 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
116 * The default (0) means to assign an interrupt to each package (level II cache)
117 */
118 static unsigned int rss_cpus;
119 module_param(rss_cpus, uint, 0444);
120 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
121
122 static int phy_flash_cfg;
123 module_param(phy_flash_cfg, int, 0644);
124 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
125
126 static unsigned irq_adapt_low_thresh = 10000;
127 module_param(irq_adapt_low_thresh, uint, 0644);
128 MODULE_PARM_DESC(irq_adapt_low_thresh,
129 "Threshold score for reducing IRQ moderation");
130
131 static unsigned irq_adapt_high_thresh = 20000;
132 module_param(irq_adapt_high_thresh, uint, 0644);
133 MODULE_PARM_DESC(irq_adapt_high_thresh,
134 "Threshold score for increasing IRQ moderation");
135
136 /**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
145
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
148 if (efx->state == STATE_RUNNING) \
149 ASSERT_RTNL(); \
150 } while (0)
151
152 /**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158 /* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
166 {
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
169
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
171 !channel->enabled))
172 return 0;
173
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
185 efx_rx_strategy(channel);
186
187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
188
189 return rx_packets;
190 }
191
192 /* Mark channel as finished processing
193 *
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
197 */
198 static inline void efx_channel_processed(struct efx_channel *channel)
199 {
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel->work_pending = false;
204 smp_wmb();
205
206 falcon_eventq_read_ack(channel);
207 }
208
209 /* NAPI poll handler
210 *
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
213 */
214 static int efx_poll(struct napi_struct *napi, int budget)
215 {
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
218 int rx_packets;
219
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
222
223 rx_packets = efx_process_channel(channel, budget);
224
225 if (rx_packets < budget) {
226 struct efx_nic *efx = channel->efx;
227
228 if (channel->used_flags & EFX_USED_BY_RX &&
229 efx->irq_rx_adaptive &&
230 unlikely(++channel->irq_count == 1000)) {
231 unsigned old_irq_moderation = channel->irq_moderation;
232
233 if (unlikely(channel->irq_mod_score <
234 irq_adapt_low_thresh)) {
235 channel->irq_moderation =
236 max_t(int,
237 channel->irq_moderation -
238 FALCON_IRQ_MOD_RESOLUTION,
239 FALCON_IRQ_MOD_RESOLUTION);
240 } else if (unlikely(channel->irq_mod_score >
241 irq_adapt_high_thresh)) {
242 channel->irq_moderation =
243 min(channel->irq_moderation +
244 FALCON_IRQ_MOD_RESOLUTION,
245 efx->irq_rx_moderation);
246 }
247
248 if (channel->irq_moderation != old_irq_moderation)
249 falcon_set_int_moderation(channel);
250
251 channel->irq_count = 0;
252 channel->irq_mod_score = 0;
253 }
254
255 /* There is no race here; although napi_disable() will
256 * only wait for napi_complete(), this isn't a problem
257 * since efx_channel_processed() will have no effect if
258 * interrupts have already been disabled.
259 */
260 napi_complete(napi);
261 efx_channel_processed(channel);
262 }
263
264 return rx_packets;
265 }
266
267 /* Process the eventq of the specified channel immediately on this CPU
268 *
269 * Disable hardware generated interrupts, wait for any existing
270 * processing to finish, then directly poll (and ack ) the eventq.
271 * Finally reenable NAPI and interrupts.
272 *
273 * Since we are touching interrupts the caller should hold the suspend lock
274 */
275 void efx_process_channel_now(struct efx_channel *channel)
276 {
277 struct efx_nic *efx = channel->efx;
278
279 BUG_ON(!channel->used_flags);
280 BUG_ON(!channel->enabled);
281
282 /* Disable interrupts and wait for ISRs to complete */
283 falcon_disable_interrupts(efx);
284 if (efx->legacy_irq)
285 synchronize_irq(efx->legacy_irq);
286 if (channel->irq)
287 synchronize_irq(channel->irq);
288
289 /* Wait for any NAPI processing to complete */
290 napi_disable(&channel->napi_str);
291
292 /* Poll the channel */
293 efx_process_channel(channel, efx->type->evq_size);
294
295 /* Ack the eventq. This may cause an interrupt to be generated
296 * when they are reenabled */
297 efx_channel_processed(channel);
298
299 napi_enable(&channel->napi_str);
300 falcon_enable_interrupts(efx);
301 }
302
303 /* Create event queue
304 * Event queue memory allocations are done only once. If the channel
305 * is reset, the memory buffer will be reused; this guards against
306 * errors during channel reset and also simplifies interrupt handling.
307 */
308 static int efx_probe_eventq(struct efx_channel *channel)
309 {
310 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
311
312 return falcon_probe_eventq(channel);
313 }
314
315 /* Prepare channel's event queue */
316 static void efx_init_eventq(struct efx_channel *channel)
317 {
318 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
319
320 channel->eventq_read_ptr = 0;
321
322 falcon_init_eventq(channel);
323 }
324
325 static void efx_fini_eventq(struct efx_channel *channel)
326 {
327 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
328
329 falcon_fini_eventq(channel);
330 }
331
332 static void efx_remove_eventq(struct efx_channel *channel)
333 {
334 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
335
336 falcon_remove_eventq(channel);
337 }
338
339 /**************************************************************************
340 *
341 * Channel handling
342 *
343 *************************************************************************/
344
345 static int efx_probe_channel(struct efx_channel *channel)
346 {
347 struct efx_tx_queue *tx_queue;
348 struct efx_rx_queue *rx_queue;
349 int rc;
350
351 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
352
353 rc = efx_probe_eventq(channel);
354 if (rc)
355 goto fail1;
356
357 efx_for_each_channel_tx_queue(tx_queue, channel) {
358 rc = efx_probe_tx_queue(tx_queue);
359 if (rc)
360 goto fail2;
361 }
362
363 efx_for_each_channel_rx_queue(rx_queue, channel) {
364 rc = efx_probe_rx_queue(rx_queue);
365 if (rc)
366 goto fail3;
367 }
368
369 channel->n_rx_frm_trunc = 0;
370
371 return 0;
372
373 fail3:
374 efx_for_each_channel_rx_queue(rx_queue, channel)
375 efx_remove_rx_queue(rx_queue);
376 fail2:
377 efx_for_each_channel_tx_queue(tx_queue, channel)
378 efx_remove_tx_queue(tx_queue);
379 fail1:
380 return rc;
381 }
382
383
384 static void efx_set_channel_names(struct efx_nic *efx)
385 {
386 struct efx_channel *channel;
387 const char *type = "";
388 int number;
389
390 efx_for_each_channel(channel, efx) {
391 number = channel->channel;
392 if (efx->n_channels > efx->n_rx_queues) {
393 if (channel->channel < efx->n_rx_queues) {
394 type = "-rx";
395 } else {
396 type = "-tx";
397 number -= efx->n_rx_queues;
398 }
399 }
400 snprintf(channel->name, sizeof(channel->name),
401 "%s%s-%d", efx->name, type, number);
402 }
403 }
404
405 /* Channels are shutdown and reinitialised whilst the NIC is running
406 * to propagate configuration changes (mtu, checksum offload), or
407 * to clear hardware error conditions
408 */
409 static void efx_init_channels(struct efx_nic *efx)
410 {
411 struct efx_tx_queue *tx_queue;
412 struct efx_rx_queue *rx_queue;
413 struct efx_channel *channel;
414
415 /* Calculate the rx buffer allocation parameters required to
416 * support the current MTU, including padding for header
417 * alignment and overruns.
418 */
419 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
420 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
421 efx->type->rx_buffer_padding);
422 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
423
424 /* Initialise the channels */
425 efx_for_each_channel(channel, efx) {
426 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
427
428 efx_init_eventq(channel);
429
430 efx_for_each_channel_tx_queue(tx_queue, channel)
431 efx_init_tx_queue(tx_queue);
432
433 /* The rx buffer allocation strategy is MTU dependent */
434 efx_rx_strategy(channel);
435
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_init_rx_queue(rx_queue);
438
439 WARN_ON(channel->rx_pkt != NULL);
440 efx_rx_strategy(channel);
441 }
442 }
443
444 /* This enables event queue processing and packet transmission.
445 *
446 * Note that this function is not allowed to fail, since that would
447 * introduce too much complexity into the suspend/resume path.
448 */
449 static void efx_start_channel(struct efx_channel *channel)
450 {
451 struct efx_rx_queue *rx_queue;
452
453 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
454
455 /* The interrupt handler for this channel may set work_pending
456 * as soon as we enable it. Make sure it's cleared before
457 * then. Similarly, make sure it sees the enabled flag set. */
458 channel->work_pending = false;
459 channel->enabled = true;
460 smp_wmb();
461
462 napi_enable(&channel->napi_str);
463
464 /* Load up RX descriptors */
465 efx_for_each_channel_rx_queue(rx_queue, channel)
466 efx_fast_push_rx_descriptors(rx_queue);
467 }
468
469 /* This disables event queue processing and packet transmission.
470 * This function does not guarantee that all queue processing
471 * (e.g. RX refill) is complete.
472 */
473 static void efx_stop_channel(struct efx_channel *channel)
474 {
475 struct efx_rx_queue *rx_queue;
476
477 if (!channel->enabled)
478 return;
479
480 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
481
482 channel->enabled = false;
483 napi_disable(&channel->napi_str);
484
485 /* Ensure that any worker threads have exited or will be no-ops */
486 efx_for_each_channel_rx_queue(rx_queue, channel) {
487 spin_lock_bh(&rx_queue->add_lock);
488 spin_unlock_bh(&rx_queue->add_lock);
489 }
490 }
491
492 static void efx_fini_channels(struct efx_nic *efx)
493 {
494 struct efx_channel *channel;
495 struct efx_tx_queue *tx_queue;
496 struct efx_rx_queue *rx_queue;
497 int rc;
498
499 EFX_ASSERT_RESET_SERIALISED(efx);
500 BUG_ON(efx->port_enabled);
501
502 rc = falcon_flush_queues(efx);
503 if (rc)
504 EFX_ERR(efx, "failed to flush queues\n");
505 else
506 EFX_LOG(efx, "successfully flushed all queues\n");
507
508 efx_for_each_channel(channel, efx) {
509 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
510
511 efx_for_each_channel_rx_queue(rx_queue, channel)
512 efx_fini_rx_queue(rx_queue);
513 efx_for_each_channel_tx_queue(tx_queue, channel)
514 efx_fini_tx_queue(tx_queue);
515 efx_fini_eventq(channel);
516 }
517 }
518
519 static void efx_remove_channel(struct efx_channel *channel)
520 {
521 struct efx_tx_queue *tx_queue;
522 struct efx_rx_queue *rx_queue;
523
524 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
525
526 efx_for_each_channel_rx_queue(rx_queue, channel)
527 efx_remove_rx_queue(rx_queue);
528 efx_for_each_channel_tx_queue(tx_queue, channel)
529 efx_remove_tx_queue(tx_queue);
530 efx_remove_eventq(channel);
531
532 channel->used_flags = 0;
533 }
534
535 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
536 {
537 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
538 }
539
540 /**************************************************************************
541 *
542 * Port handling
543 *
544 **************************************************************************/
545
546 /* This ensures that the kernel is kept informed (via
547 * netif_carrier_on/off) of the link status, and also maintains the
548 * link status's stop on the port's TX queue.
549 */
550 static void efx_link_status_changed(struct efx_nic *efx)
551 {
552 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
553 * that no events are triggered between unregister_netdev() and the
554 * driver unloading. A more general condition is that NETDEV_CHANGE
555 * can only be generated between NETDEV_UP and NETDEV_DOWN */
556 if (!netif_running(efx->net_dev))
557 return;
558
559 if (efx->port_inhibited) {
560 netif_carrier_off(efx->net_dev);
561 return;
562 }
563
564 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
565 efx->n_link_state_changes++;
566
567 if (efx->link_up)
568 netif_carrier_on(efx->net_dev);
569 else
570 netif_carrier_off(efx->net_dev);
571 }
572
573 /* Status message for kernel log */
574 if (efx->link_up) {
575 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
576 efx->link_speed, efx->link_fd ? "full" : "half",
577 efx->net_dev->mtu,
578 (efx->promiscuous ? " [PROMISC]" : ""));
579 } else {
580 EFX_INFO(efx, "link down\n");
581 }
582
583 }
584
585 static void efx_fini_port(struct efx_nic *efx);
586
587 /* This call reinitialises the MAC to pick up new PHY settings. The
588 * caller must hold the mac_lock */
589 void __efx_reconfigure_port(struct efx_nic *efx)
590 {
591 WARN_ON(!mutex_is_locked(&efx->mac_lock));
592
593 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
594 raw_smp_processor_id());
595
596 /* Serialise the promiscuous flag with efx_set_multicast_list. */
597 if (efx_dev_registered(efx)) {
598 netif_addr_lock_bh(efx->net_dev);
599 netif_addr_unlock_bh(efx->net_dev);
600 }
601
602 falcon_deconfigure_mac_wrapper(efx);
603
604 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
605 if (LOOPBACK_INTERNAL(efx))
606 efx->phy_mode |= PHY_MODE_TX_DISABLED;
607 else
608 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
609 efx->phy_op->reconfigure(efx);
610
611 if (falcon_switch_mac(efx))
612 goto fail;
613
614 efx->mac_op->reconfigure(efx);
615
616 /* Inform kernel of loss/gain of carrier */
617 efx_link_status_changed(efx);
618 return;
619
620 fail:
621 EFX_ERR(efx, "failed to reconfigure MAC\n");
622 efx->port_enabled = false;
623 efx_fini_port(efx);
624 }
625
626 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
627 * disabled. */
628 void efx_reconfigure_port(struct efx_nic *efx)
629 {
630 EFX_ASSERT_RESET_SERIALISED(efx);
631
632 mutex_lock(&efx->mac_lock);
633 __efx_reconfigure_port(efx);
634 mutex_unlock(&efx->mac_lock);
635 }
636
637 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
638 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
639 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
640 static void efx_phy_work(struct work_struct *data)
641 {
642 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
643
644 mutex_lock(&efx->mac_lock);
645 if (efx->port_enabled)
646 __efx_reconfigure_port(efx);
647 mutex_unlock(&efx->mac_lock);
648 }
649
650 static void efx_mac_work(struct work_struct *data)
651 {
652 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
653
654 mutex_lock(&efx->mac_lock);
655 if (efx->port_enabled)
656 efx->mac_op->irq(efx);
657 mutex_unlock(&efx->mac_lock);
658 }
659
660 static int efx_probe_port(struct efx_nic *efx)
661 {
662 int rc;
663
664 EFX_LOG(efx, "create port\n");
665
666 /* Connect up MAC/PHY operations table and read MAC address */
667 rc = falcon_probe_port(efx);
668 if (rc)
669 goto err;
670
671 if (phy_flash_cfg)
672 efx->phy_mode = PHY_MODE_SPECIAL;
673
674 /* Sanity check MAC address */
675 if (is_valid_ether_addr(efx->mac_address)) {
676 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
677 } else {
678 EFX_ERR(efx, "invalid MAC address %pM\n",
679 efx->mac_address);
680 if (!allow_bad_hwaddr) {
681 rc = -EINVAL;
682 goto err;
683 }
684 random_ether_addr(efx->net_dev->dev_addr);
685 EFX_INFO(efx, "using locally-generated MAC %pM\n",
686 efx->net_dev->dev_addr);
687 }
688
689 return 0;
690
691 err:
692 efx_remove_port(efx);
693 return rc;
694 }
695
696 static int efx_init_port(struct efx_nic *efx)
697 {
698 int rc;
699
700 EFX_LOG(efx, "init port\n");
701
702 rc = efx->phy_op->init(efx);
703 if (rc)
704 return rc;
705 mutex_lock(&efx->mac_lock);
706 efx->phy_op->reconfigure(efx);
707 rc = falcon_switch_mac(efx);
708 mutex_unlock(&efx->mac_lock);
709 if (rc)
710 goto fail;
711 efx->mac_op->reconfigure(efx);
712
713 efx->port_initialized = true;
714 efx_stats_enable(efx);
715 return 0;
716
717 fail:
718 efx->phy_op->fini(efx);
719 return rc;
720 }
721
722 /* Allow efx_reconfigure_port() to be scheduled, and close the window
723 * between efx_stop_port and efx_flush_all whereby a previously scheduled
724 * efx_phy_work()/efx_mac_work() may have been cancelled */
725 static void efx_start_port(struct efx_nic *efx)
726 {
727 EFX_LOG(efx, "start port\n");
728 BUG_ON(efx->port_enabled);
729
730 mutex_lock(&efx->mac_lock);
731 efx->port_enabled = true;
732 __efx_reconfigure_port(efx);
733 efx->mac_op->irq(efx);
734 mutex_unlock(&efx->mac_lock);
735 }
736
737 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
738 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
739 * and efx_mac_work may still be scheduled via NAPI processing until
740 * efx_flush_all() is called */
741 static void efx_stop_port(struct efx_nic *efx)
742 {
743 EFX_LOG(efx, "stop port\n");
744
745 mutex_lock(&efx->mac_lock);
746 efx->port_enabled = false;
747 mutex_unlock(&efx->mac_lock);
748
749 /* Serialise against efx_set_multicast_list() */
750 if (efx_dev_registered(efx)) {
751 netif_addr_lock_bh(efx->net_dev);
752 netif_addr_unlock_bh(efx->net_dev);
753 }
754 }
755
756 static void efx_fini_port(struct efx_nic *efx)
757 {
758 EFX_LOG(efx, "shut down port\n");
759
760 if (!efx->port_initialized)
761 return;
762
763 efx_stats_disable(efx);
764 efx->phy_op->fini(efx);
765 efx->port_initialized = false;
766
767 efx->link_up = false;
768 efx_link_status_changed(efx);
769 }
770
771 static void efx_remove_port(struct efx_nic *efx)
772 {
773 EFX_LOG(efx, "destroying port\n");
774
775 falcon_remove_port(efx);
776 }
777
778 /**************************************************************************
779 *
780 * NIC handling
781 *
782 **************************************************************************/
783
784 /* This configures the PCI device to enable I/O and DMA. */
785 static int efx_init_io(struct efx_nic *efx)
786 {
787 struct pci_dev *pci_dev = efx->pci_dev;
788 dma_addr_t dma_mask = efx->type->max_dma_mask;
789 int rc;
790
791 EFX_LOG(efx, "initialising I/O\n");
792
793 rc = pci_enable_device(pci_dev);
794 if (rc) {
795 EFX_ERR(efx, "failed to enable PCI device\n");
796 goto fail1;
797 }
798
799 pci_set_master(pci_dev);
800
801 /* Set the PCI DMA mask. Try all possibilities from our
802 * genuine mask down to 32 bits, because some architectures
803 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
804 * masks event though they reject 46 bit masks.
805 */
806 while (dma_mask > 0x7fffffffUL) {
807 if (pci_dma_supported(pci_dev, dma_mask) &&
808 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
809 break;
810 dma_mask >>= 1;
811 }
812 if (rc) {
813 EFX_ERR(efx, "could not find a suitable DMA mask\n");
814 goto fail2;
815 }
816 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
817 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
818 if (rc) {
819 /* pci_set_consistent_dma_mask() is not *allowed* to
820 * fail with a mask that pci_set_dma_mask() accepted,
821 * but just in case...
822 */
823 EFX_ERR(efx, "failed to set consistent DMA mask\n");
824 goto fail2;
825 }
826
827 efx->membase_phys = pci_resource_start(efx->pci_dev,
828 efx->type->mem_bar);
829 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
830 if (rc) {
831 EFX_ERR(efx, "request for memory BAR failed\n");
832 rc = -EIO;
833 goto fail3;
834 }
835 efx->membase = ioremap_nocache(efx->membase_phys,
836 efx->type->mem_map_size);
837 if (!efx->membase) {
838 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
839 efx->type->mem_bar,
840 (unsigned long long)efx->membase_phys,
841 efx->type->mem_map_size);
842 rc = -ENOMEM;
843 goto fail4;
844 }
845 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
846 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
847 efx->type->mem_map_size, efx->membase);
848
849 return 0;
850
851 fail4:
852 pci_release_region(efx->pci_dev, efx->type->mem_bar);
853 fail3:
854 efx->membase_phys = 0;
855 fail2:
856 pci_disable_device(efx->pci_dev);
857 fail1:
858 return rc;
859 }
860
861 static void efx_fini_io(struct efx_nic *efx)
862 {
863 EFX_LOG(efx, "shutting down I/O\n");
864
865 if (efx->membase) {
866 iounmap(efx->membase);
867 efx->membase = NULL;
868 }
869
870 if (efx->membase_phys) {
871 pci_release_region(efx->pci_dev, efx->type->mem_bar);
872 efx->membase_phys = 0;
873 }
874
875 pci_disable_device(efx->pci_dev);
876 }
877
878 /* Get number of RX queues wanted. Return number of online CPU
879 * packages in the expectation that an IRQ balancer will spread
880 * interrupts across them. */
881 static int efx_wanted_rx_queues(void)
882 {
883 cpumask_var_t core_mask;
884 int count;
885 int cpu;
886
887 if (unlikely(!alloc_cpumask_var(&core_mask, GFP_KERNEL))) {
888 printk(KERN_WARNING
889 "sfc: RSS disabled due to allocation failure\n");
890 return 1;
891 }
892
893 cpumask_clear(core_mask);
894 count = 0;
895 for_each_online_cpu(cpu) {
896 if (!cpumask_test_cpu(cpu, core_mask)) {
897 ++count;
898 cpumask_or(core_mask, core_mask,
899 topology_core_cpumask(cpu));
900 }
901 }
902
903 free_cpumask_var(core_mask);
904 return count;
905 }
906
907 /* Probe the number and type of interrupts we are able to obtain, and
908 * the resulting numbers of channels and RX queues.
909 */
910 static void efx_probe_interrupts(struct efx_nic *efx)
911 {
912 int max_channels =
913 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
914 int rc, i;
915
916 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
917 struct msix_entry xentries[EFX_MAX_CHANNELS];
918 int wanted_ints;
919 int rx_queues;
920
921 /* We want one RX queue and interrupt per CPU package
922 * (or as specified by the rss_cpus module parameter).
923 * We will need one channel per interrupt.
924 */
925 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
926 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
927 wanted_ints = min(wanted_ints, max_channels);
928
929 for (i = 0; i < wanted_ints; i++)
930 xentries[i].entry = i;
931 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
932 if (rc > 0) {
933 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
934 " available (%d < %d).\n", rc, wanted_ints);
935 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
936 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
937 wanted_ints = rc;
938 rc = pci_enable_msix(efx->pci_dev, xentries,
939 wanted_ints);
940 }
941
942 if (rc == 0) {
943 efx->n_rx_queues = min(rx_queues, wanted_ints);
944 efx->n_channels = wanted_ints;
945 for (i = 0; i < wanted_ints; i++)
946 efx->channel[i].irq = xentries[i].vector;
947 } else {
948 /* Fall back to single channel MSI */
949 efx->interrupt_mode = EFX_INT_MODE_MSI;
950 EFX_ERR(efx, "could not enable MSI-X\n");
951 }
952 }
953
954 /* Try single interrupt MSI */
955 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
956 efx->n_rx_queues = 1;
957 efx->n_channels = 1;
958 rc = pci_enable_msi(efx->pci_dev);
959 if (rc == 0) {
960 efx->channel[0].irq = efx->pci_dev->irq;
961 } else {
962 EFX_ERR(efx, "could not enable MSI\n");
963 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
964 }
965 }
966
967 /* Assume legacy interrupts */
968 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
969 efx->n_rx_queues = 1;
970 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
971 efx->legacy_irq = efx->pci_dev->irq;
972 }
973 }
974
975 static void efx_remove_interrupts(struct efx_nic *efx)
976 {
977 struct efx_channel *channel;
978
979 /* Remove MSI/MSI-X interrupts */
980 efx_for_each_channel(channel, efx)
981 channel->irq = 0;
982 pci_disable_msi(efx->pci_dev);
983 pci_disable_msix(efx->pci_dev);
984
985 /* Remove legacy interrupt */
986 efx->legacy_irq = 0;
987 }
988
989 static void efx_set_channels(struct efx_nic *efx)
990 {
991 struct efx_tx_queue *tx_queue;
992 struct efx_rx_queue *rx_queue;
993
994 efx_for_each_tx_queue(tx_queue, efx) {
995 if (separate_tx_channels)
996 tx_queue->channel = &efx->channel[efx->n_channels-1];
997 else
998 tx_queue->channel = &efx->channel[0];
999 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1000 }
1001
1002 efx_for_each_rx_queue(rx_queue, efx) {
1003 rx_queue->channel = &efx->channel[rx_queue->queue];
1004 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1005 }
1006 }
1007
1008 static int efx_probe_nic(struct efx_nic *efx)
1009 {
1010 int rc;
1011
1012 EFX_LOG(efx, "creating NIC\n");
1013
1014 /* Carry out hardware-type specific initialisation */
1015 rc = falcon_probe_nic(efx);
1016 if (rc)
1017 return rc;
1018
1019 /* Determine the number of channels and RX queues by trying to hook
1020 * in MSI-X interrupts. */
1021 efx_probe_interrupts(efx);
1022
1023 efx_set_channels(efx);
1024
1025 /* Initialise the interrupt moderation settings */
1026 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1027
1028 return 0;
1029 }
1030
1031 static void efx_remove_nic(struct efx_nic *efx)
1032 {
1033 EFX_LOG(efx, "destroying NIC\n");
1034
1035 efx_remove_interrupts(efx);
1036 falcon_remove_nic(efx);
1037 }
1038
1039 /**************************************************************************
1040 *
1041 * NIC startup/shutdown
1042 *
1043 *************************************************************************/
1044
1045 static int efx_probe_all(struct efx_nic *efx)
1046 {
1047 struct efx_channel *channel;
1048 int rc;
1049
1050 /* Create NIC */
1051 rc = efx_probe_nic(efx);
1052 if (rc) {
1053 EFX_ERR(efx, "failed to create NIC\n");
1054 goto fail1;
1055 }
1056
1057 /* Create port */
1058 rc = efx_probe_port(efx);
1059 if (rc) {
1060 EFX_ERR(efx, "failed to create port\n");
1061 goto fail2;
1062 }
1063
1064 /* Create channels */
1065 efx_for_each_channel(channel, efx) {
1066 rc = efx_probe_channel(channel);
1067 if (rc) {
1068 EFX_ERR(efx, "failed to create channel %d\n",
1069 channel->channel);
1070 goto fail3;
1071 }
1072 }
1073 efx_set_channel_names(efx);
1074
1075 return 0;
1076
1077 fail3:
1078 efx_for_each_channel(channel, efx)
1079 efx_remove_channel(channel);
1080 efx_remove_port(efx);
1081 fail2:
1082 efx_remove_nic(efx);
1083 fail1:
1084 return rc;
1085 }
1086
1087 /* Called after previous invocation(s) of efx_stop_all, restarts the
1088 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1089 * and ensures that the port is scheduled to be reconfigured.
1090 * This function is safe to call multiple times when the NIC is in any
1091 * state. */
1092 static void efx_start_all(struct efx_nic *efx)
1093 {
1094 struct efx_channel *channel;
1095
1096 EFX_ASSERT_RESET_SERIALISED(efx);
1097
1098 /* Check that it is appropriate to restart the interface. All
1099 * of these flags are safe to read under just the rtnl lock */
1100 if (efx->port_enabled)
1101 return;
1102 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1103 return;
1104 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1105 return;
1106
1107 /* Mark the port as enabled so port reconfigurations can start, then
1108 * restart the transmit interface early so the watchdog timer stops */
1109 efx_start_port(efx);
1110 if (efx_dev_registered(efx))
1111 efx_wake_queue(efx);
1112
1113 efx_for_each_channel(channel, efx)
1114 efx_start_channel(channel);
1115
1116 falcon_enable_interrupts(efx);
1117
1118 /* Start hardware monitor if we're in RUNNING */
1119 if (efx->state == STATE_RUNNING)
1120 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1121 efx_monitor_interval);
1122 }
1123
1124 /* Flush all delayed work. Should only be called when no more delayed work
1125 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1126 * since we're holding the rtnl_lock at this point. */
1127 static void efx_flush_all(struct efx_nic *efx)
1128 {
1129 struct efx_rx_queue *rx_queue;
1130
1131 /* Make sure the hardware monitor is stopped */
1132 cancel_delayed_work_sync(&efx->monitor_work);
1133
1134 /* Ensure that all RX slow refills are complete. */
1135 efx_for_each_rx_queue(rx_queue, efx)
1136 cancel_delayed_work_sync(&rx_queue->work);
1137
1138 /* Stop scheduled port reconfigurations */
1139 cancel_work_sync(&efx->mac_work);
1140 cancel_work_sync(&efx->phy_work);
1141
1142 }
1143
1144 /* Quiesce hardware and software without bringing the link down.
1145 * Safe to call multiple times, when the nic and interface is in any
1146 * state. The caller is guaranteed to subsequently be in a position
1147 * to modify any hardware and software state they see fit without
1148 * taking locks. */
1149 static void efx_stop_all(struct efx_nic *efx)
1150 {
1151 struct efx_channel *channel;
1152
1153 EFX_ASSERT_RESET_SERIALISED(efx);
1154
1155 /* port_enabled can be read safely under the rtnl lock */
1156 if (!efx->port_enabled)
1157 return;
1158
1159 /* Disable interrupts and wait for ISR to complete */
1160 falcon_disable_interrupts(efx);
1161 if (efx->legacy_irq)
1162 synchronize_irq(efx->legacy_irq);
1163 efx_for_each_channel(channel, efx) {
1164 if (channel->irq)
1165 synchronize_irq(channel->irq);
1166 }
1167
1168 /* Stop all NAPI processing and synchronous rx refills */
1169 efx_for_each_channel(channel, efx)
1170 efx_stop_channel(channel);
1171
1172 /* Stop all asynchronous port reconfigurations. Since all
1173 * event processing has already been stopped, there is no
1174 * window to loose phy events */
1175 efx_stop_port(efx);
1176
1177 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1178 efx_flush_all(efx);
1179
1180 /* Isolate the MAC from the TX and RX engines, so that queue
1181 * flushes will complete in a timely fashion. */
1182 falcon_drain_tx_fifo(efx);
1183
1184 /* Stop the kernel transmit interface late, so the watchdog
1185 * timer isn't ticking over the flush */
1186 if (efx_dev_registered(efx)) {
1187 efx_stop_queue(efx);
1188 netif_tx_lock_bh(efx->net_dev);
1189 netif_tx_unlock_bh(efx->net_dev);
1190 }
1191 }
1192
1193 static void efx_remove_all(struct efx_nic *efx)
1194 {
1195 struct efx_channel *channel;
1196
1197 efx_for_each_channel(channel, efx)
1198 efx_remove_channel(channel);
1199 efx_remove_port(efx);
1200 efx_remove_nic(efx);
1201 }
1202
1203 /* A convinience function to safely flush all the queues */
1204 void efx_flush_queues(struct efx_nic *efx)
1205 {
1206 EFX_ASSERT_RESET_SERIALISED(efx);
1207
1208 efx_stop_all(efx);
1209
1210 efx_fini_channels(efx);
1211 efx_init_channels(efx);
1212
1213 efx_start_all(efx);
1214 }
1215
1216 /**************************************************************************
1217 *
1218 * Interrupt moderation
1219 *
1220 **************************************************************************/
1221
1222 /* Set interrupt moderation parameters */
1223 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1224 bool rx_adaptive)
1225 {
1226 struct efx_tx_queue *tx_queue;
1227 struct efx_rx_queue *rx_queue;
1228
1229 EFX_ASSERT_RESET_SERIALISED(efx);
1230
1231 efx_for_each_tx_queue(tx_queue, efx)
1232 tx_queue->channel->irq_moderation = tx_usecs;
1233
1234 efx->irq_rx_adaptive = rx_adaptive;
1235 efx->irq_rx_moderation = rx_usecs;
1236 efx_for_each_rx_queue(rx_queue, efx)
1237 rx_queue->channel->irq_moderation = rx_usecs;
1238 }
1239
1240 /**************************************************************************
1241 *
1242 * Hardware monitor
1243 *
1244 **************************************************************************/
1245
1246 /* Run periodically off the general workqueue. Serialised against
1247 * efx_reconfigure_port via the mac_lock */
1248 static void efx_monitor(struct work_struct *data)
1249 {
1250 struct efx_nic *efx = container_of(data, struct efx_nic,
1251 monitor_work.work);
1252 int rc;
1253
1254 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1255 raw_smp_processor_id());
1256
1257 /* If the mac_lock is already held then it is likely a port
1258 * reconfiguration is already in place, which will likely do
1259 * most of the work of check_hw() anyway. */
1260 if (!mutex_trylock(&efx->mac_lock))
1261 goto out_requeue;
1262 if (!efx->port_enabled)
1263 goto out_unlock;
1264 rc = efx->board_info.monitor(efx);
1265 if (rc) {
1266 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1267 (rc == -ERANGE) ? "reported fault" : "failed");
1268 efx->phy_mode |= PHY_MODE_LOW_POWER;
1269 falcon_sim_phy_event(efx);
1270 }
1271 efx->phy_op->poll(efx);
1272 efx->mac_op->poll(efx);
1273
1274 out_unlock:
1275 mutex_unlock(&efx->mac_lock);
1276 out_requeue:
1277 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1278 efx_monitor_interval);
1279 }
1280
1281 /**************************************************************************
1282 *
1283 * ioctls
1284 *
1285 *************************************************************************/
1286
1287 /* Net device ioctl
1288 * Context: process, rtnl_lock() held.
1289 */
1290 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1291 {
1292 struct efx_nic *efx = netdev_priv(net_dev);
1293 struct mii_ioctl_data *data = if_mii(ifr);
1294
1295 EFX_ASSERT_RESET_SERIALISED(efx);
1296
1297 /* Convert phy_id from older PRTAD/DEVAD format */
1298 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1299 (data->phy_id & 0xfc00) == 0x0400)
1300 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1301
1302 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1303 }
1304
1305 /**************************************************************************
1306 *
1307 * NAPI interface
1308 *
1309 **************************************************************************/
1310
1311 static int efx_init_napi(struct efx_nic *efx)
1312 {
1313 struct efx_channel *channel;
1314
1315 efx_for_each_channel(channel, efx) {
1316 channel->napi_dev = efx->net_dev;
1317 netif_napi_add(channel->napi_dev, &channel->napi_str,
1318 efx_poll, napi_weight);
1319 }
1320 return 0;
1321 }
1322
1323 static void efx_fini_napi(struct efx_nic *efx)
1324 {
1325 struct efx_channel *channel;
1326
1327 efx_for_each_channel(channel, efx) {
1328 if (channel->napi_dev)
1329 netif_napi_del(&channel->napi_str);
1330 channel->napi_dev = NULL;
1331 }
1332 }
1333
1334 /**************************************************************************
1335 *
1336 * Kernel netpoll interface
1337 *
1338 *************************************************************************/
1339
1340 #ifdef CONFIG_NET_POLL_CONTROLLER
1341
1342 /* Although in the common case interrupts will be disabled, this is not
1343 * guaranteed. However, all our work happens inside the NAPI callback,
1344 * so no locking is required.
1345 */
1346 static void efx_netpoll(struct net_device *net_dev)
1347 {
1348 struct efx_nic *efx = netdev_priv(net_dev);
1349 struct efx_channel *channel;
1350
1351 efx_for_each_channel(channel, efx)
1352 efx_schedule_channel(channel);
1353 }
1354
1355 #endif
1356
1357 /**************************************************************************
1358 *
1359 * Kernel net device interface
1360 *
1361 *************************************************************************/
1362
1363 /* Context: process, rtnl_lock() held. */
1364 static int efx_net_open(struct net_device *net_dev)
1365 {
1366 struct efx_nic *efx = netdev_priv(net_dev);
1367 EFX_ASSERT_RESET_SERIALISED(efx);
1368
1369 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1370 raw_smp_processor_id());
1371
1372 if (efx->state == STATE_DISABLED)
1373 return -EIO;
1374 if (efx->phy_mode & PHY_MODE_SPECIAL)
1375 return -EBUSY;
1376
1377 efx_start_all(efx);
1378 return 0;
1379 }
1380
1381 /* Context: process, rtnl_lock() held.
1382 * Note that the kernel will ignore our return code; this method
1383 * should really be a void.
1384 */
1385 static int efx_net_stop(struct net_device *net_dev)
1386 {
1387 struct efx_nic *efx = netdev_priv(net_dev);
1388
1389 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1390 raw_smp_processor_id());
1391
1392 if (efx->state != STATE_DISABLED) {
1393 /* Stop the device and flush all the channels */
1394 efx_stop_all(efx);
1395 efx_fini_channels(efx);
1396 efx_init_channels(efx);
1397 }
1398
1399 return 0;
1400 }
1401
1402 void efx_stats_disable(struct efx_nic *efx)
1403 {
1404 spin_lock(&efx->stats_lock);
1405 ++efx->stats_disable_count;
1406 spin_unlock(&efx->stats_lock);
1407 }
1408
1409 void efx_stats_enable(struct efx_nic *efx)
1410 {
1411 spin_lock(&efx->stats_lock);
1412 --efx->stats_disable_count;
1413 spin_unlock(&efx->stats_lock);
1414 }
1415
1416 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1417 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1418 {
1419 struct efx_nic *efx = netdev_priv(net_dev);
1420 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1421 struct net_device_stats *stats = &net_dev->stats;
1422
1423 /* Update stats if possible, but do not wait if another thread
1424 * is updating them or if MAC stats fetches are temporarily
1425 * disabled; slightly stale stats are acceptable.
1426 */
1427 if (!spin_trylock(&efx->stats_lock))
1428 return stats;
1429 if (!efx->stats_disable_count) {
1430 efx->mac_op->update_stats(efx);
1431 falcon_update_nic_stats(efx);
1432 }
1433 spin_unlock(&efx->stats_lock);
1434
1435 stats->rx_packets = mac_stats->rx_packets;
1436 stats->tx_packets = mac_stats->tx_packets;
1437 stats->rx_bytes = mac_stats->rx_bytes;
1438 stats->tx_bytes = mac_stats->tx_bytes;
1439 stats->multicast = mac_stats->rx_multicast;
1440 stats->collisions = mac_stats->tx_collision;
1441 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1442 mac_stats->rx_length_error);
1443 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1444 stats->rx_crc_errors = mac_stats->rx_bad;
1445 stats->rx_frame_errors = mac_stats->rx_align_error;
1446 stats->rx_fifo_errors = mac_stats->rx_overflow;
1447 stats->rx_missed_errors = mac_stats->rx_missed;
1448 stats->tx_window_errors = mac_stats->tx_late_collision;
1449
1450 stats->rx_errors = (stats->rx_length_errors +
1451 stats->rx_over_errors +
1452 stats->rx_crc_errors +
1453 stats->rx_frame_errors +
1454 stats->rx_fifo_errors +
1455 stats->rx_missed_errors +
1456 mac_stats->rx_symbol_error);
1457 stats->tx_errors = (stats->tx_window_errors +
1458 mac_stats->tx_bad);
1459
1460 return stats;
1461 }
1462
1463 /* Context: netif_tx_lock held, BHs disabled. */
1464 static void efx_watchdog(struct net_device *net_dev)
1465 {
1466 struct efx_nic *efx = netdev_priv(net_dev);
1467
1468 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1469 " resetting channels\n",
1470 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1471
1472 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1473 }
1474
1475
1476 /* Context: process, rtnl_lock() held. */
1477 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1478 {
1479 struct efx_nic *efx = netdev_priv(net_dev);
1480 int rc = 0;
1481
1482 EFX_ASSERT_RESET_SERIALISED(efx);
1483
1484 if (new_mtu > EFX_MAX_MTU)
1485 return -EINVAL;
1486
1487 efx_stop_all(efx);
1488
1489 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1490
1491 efx_fini_channels(efx);
1492 net_dev->mtu = new_mtu;
1493 efx_init_channels(efx);
1494
1495 efx_start_all(efx);
1496 return rc;
1497 }
1498
1499 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1500 {
1501 struct efx_nic *efx = netdev_priv(net_dev);
1502 struct sockaddr *addr = data;
1503 char *new_addr = addr->sa_data;
1504
1505 EFX_ASSERT_RESET_SERIALISED(efx);
1506
1507 if (!is_valid_ether_addr(new_addr)) {
1508 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1509 new_addr);
1510 return -EINVAL;
1511 }
1512
1513 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1514
1515 /* Reconfigure the MAC */
1516 efx_reconfigure_port(efx);
1517
1518 return 0;
1519 }
1520
1521 /* Context: netif_addr_lock held, BHs disabled. */
1522 static void efx_set_multicast_list(struct net_device *net_dev)
1523 {
1524 struct efx_nic *efx = netdev_priv(net_dev);
1525 struct dev_mc_list *mc_list = net_dev->mc_list;
1526 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1527 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1528 bool changed = (efx->promiscuous != promiscuous);
1529 u32 crc;
1530 int bit;
1531 int i;
1532
1533 efx->promiscuous = promiscuous;
1534
1535 /* Build multicast hash table */
1536 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1537 memset(mc_hash, 0xff, sizeof(*mc_hash));
1538 } else {
1539 memset(mc_hash, 0x00, sizeof(*mc_hash));
1540 for (i = 0; i < net_dev->mc_count; i++) {
1541 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1542 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1543 set_bit_le(bit, mc_hash->byte);
1544 mc_list = mc_list->next;
1545 }
1546 }
1547
1548 if (!efx->port_enabled)
1549 /* Delay pushing settings until efx_start_port() */
1550 return;
1551
1552 if (changed)
1553 queue_work(efx->workqueue, &efx->phy_work);
1554
1555 /* Create and activate new global multicast hash table */
1556 falcon_set_multicast_hash(efx);
1557 }
1558
1559 static const struct net_device_ops efx_netdev_ops = {
1560 .ndo_open = efx_net_open,
1561 .ndo_stop = efx_net_stop,
1562 .ndo_get_stats = efx_net_stats,
1563 .ndo_tx_timeout = efx_watchdog,
1564 .ndo_start_xmit = efx_hard_start_xmit,
1565 .ndo_validate_addr = eth_validate_addr,
1566 .ndo_do_ioctl = efx_ioctl,
1567 .ndo_change_mtu = efx_change_mtu,
1568 .ndo_set_mac_address = efx_set_mac_address,
1569 .ndo_set_multicast_list = efx_set_multicast_list,
1570 #ifdef CONFIG_NET_POLL_CONTROLLER
1571 .ndo_poll_controller = efx_netpoll,
1572 #endif
1573 };
1574
1575 static void efx_update_name(struct efx_nic *efx)
1576 {
1577 strcpy(efx->name, efx->net_dev->name);
1578 efx_mtd_rename(efx);
1579 efx_set_channel_names(efx);
1580 }
1581
1582 static int efx_netdev_event(struct notifier_block *this,
1583 unsigned long event, void *ptr)
1584 {
1585 struct net_device *net_dev = ptr;
1586
1587 if (net_dev->netdev_ops == &efx_netdev_ops &&
1588 event == NETDEV_CHANGENAME)
1589 efx_update_name(netdev_priv(net_dev));
1590
1591 return NOTIFY_DONE;
1592 }
1593
1594 static struct notifier_block efx_netdev_notifier = {
1595 .notifier_call = efx_netdev_event,
1596 };
1597
1598 static ssize_t
1599 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1600 {
1601 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1602 return sprintf(buf, "%d\n", efx->phy_type);
1603 }
1604 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1605
1606 static int efx_register_netdev(struct efx_nic *efx)
1607 {
1608 struct net_device *net_dev = efx->net_dev;
1609 int rc;
1610
1611 net_dev->watchdog_timeo = 5 * HZ;
1612 net_dev->irq = efx->pci_dev->irq;
1613 net_dev->netdev_ops = &efx_netdev_ops;
1614 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1615 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1616
1617 /* Always start with carrier off; PHY events will detect the link */
1618 netif_carrier_off(efx->net_dev);
1619
1620 /* Clear MAC statistics */
1621 efx->mac_op->update_stats(efx);
1622 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1623
1624 rc = register_netdev(net_dev);
1625 if (rc) {
1626 EFX_ERR(efx, "could not register net dev\n");
1627 return rc;
1628 }
1629
1630 rtnl_lock();
1631 efx_update_name(efx);
1632 rtnl_unlock();
1633
1634 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1635 if (rc) {
1636 EFX_ERR(efx, "failed to init net dev attributes\n");
1637 goto fail_registered;
1638 }
1639
1640 return 0;
1641
1642 fail_registered:
1643 unregister_netdev(net_dev);
1644 return rc;
1645 }
1646
1647 static void efx_unregister_netdev(struct efx_nic *efx)
1648 {
1649 struct efx_tx_queue *tx_queue;
1650
1651 if (!efx->net_dev)
1652 return;
1653
1654 BUG_ON(netdev_priv(efx->net_dev) != efx);
1655
1656 /* Free up any skbs still remaining. This has to happen before
1657 * we try to unregister the netdev as running their destructors
1658 * may be needed to get the device ref. count to 0. */
1659 efx_for_each_tx_queue(tx_queue, efx)
1660 efx_release_tx_buffers(tx_queue);
1661
1662 if (efx_dev_registered(efx)) {
1663 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1664 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1665 unregister_netdev(efx->net_dev);
1666 }
1667 }
1668
1669 /**************************************************************************
1670 *
1671 * Device reset and suspend
1672 *
1673 **************************************************************************/
1674
1675 /* Tears down the entire software state and most of the hardware state
1676 * before reset. */
1677 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1678 struct ethtool_cmd *ecmd)
1679 {
1680 EFX_ASSERT_RESET_SERIALISED(efx);
1681
1682 efx_stats_disable(efx);
1683 efx_stop_all(efx);
1684 mutex_lock(&efx->mac_lock);
1685 mutex_lock(&efx->spi_lock);
1686
1687 efx->phy_op->get_settings(efx, ecmd);
1688
1689 efx_fini_channels(efx);
1690 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1691 efx->phy_op->fini(efx);
1692 }
1693
1694 /* This function will always ensure that the locks acquired in
1695 * efx_reset_down() are released. A failure return code indicates
1696 * that we were unable to reinitialise the hardware, and the
1697 * driver should be disabled. If ok is false, then the rx and tx
1698 * engines are not restarted, pending a RESET_DISABLE. */
1699 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1700 struct ethtool_cmd *ecmd, bool ok)
1701 {
1702 int rc;
1703
1704 EFX_ASSERT_RESET_SERIALISED(efx);
1705
1706 rc = falcon_init_nic(efx);
1707 if (rc) {
1708 EFX_ERR(efx, "failed to initialise NIC\n");
1709 ok = false;
1710 }
1711
1712 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1713 if (ok) {
1714 rc = efx->phy_op->init(efx);
1715 if (rc)
1716 ok = false;
1717 }
1718 if (!ok)
1719 efx->port_initialized = false;
1720 }
1721
1722 if (ok) {
1723 efx_init_channels(efx);
1724
1725 if (efx->phy_op->set_settings(efx, ecmd))
1726 EFX_ERR(efx, "could not restore PHY settings\n");
1727 }
1728
1729 mutex_unlock(&efx->spi_lock);
1730 mutex_unlock(&efx->mac_lock);
1731
1732 if (ok) {
1733 efx_start_all(efx);
1734 efx_stats_enable(efx);
1735 }
1736 return rc;
1737 }
1738
1739 /* Reset the NIC as transparently as possible. Do not reset the PHY
1740 * Note that the reset may fail, in which case the card will be left
1741 * in a most-probably-unusable state.
1742 *
1743 * This function will sleep. You cannot reset from within an atomic
1744 * state; use efx_schedule_reset() instead.
1745 *
1746 * Grabs the rtnl_lock.
1747 */
1748 static int efx_reset(struct efx_nic *efx)
1749 {
1750 struct ethtool_cmd ecmd;
1751 enum reset_type method = efx->reset_pending;
1752 int rc = 0;
1753
1754 /* Serialise with kernel interfaces */
1755 rtnl_lock();
1756
1757 /* If we're not RUNNING then don't reset. Leave the reset_pending
1758 * flag set so that efx_pci_probe_main will be retried */
1759 if (efx->state != STATE_RUNNING) {
1760 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1761 goto out_unlock;
1762 }
1763
1764 EFX_INFO(efx, "resetting (%d)\n", method);
1765
1766 efx_reset_down(efx, method, &ecmd);
1767
1768 rc = falcon_reset_hw(efx, method);
1769 if (rc) {
1770 EFX_ERR(efx, "failed to reset hardware\n");
1771 goto out_disable;
1772 }
1773
1774 /* Allow resets to be rescheduled. */
1775 efx->reset_pending = RESET_TYPE_NONE;
1776
1777 /* Reinitialise bus-mastering, which may have been turned off before
1778 * the reset was scheduled. This is still appropriate, even in the
1779 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1780 * can respond to requests. */
1781 pci_set_master(efx->pci_dev);
1782
1783 /* Leave device stopped if necessary */
1784 if (method == RESET_TYPE_DISABLE) {
1785 efx_reset_up(efx, method, &ecmd, false);
1786 rc = -EIO;
1787 } else {
1788 rc = efx_reset_up(efx, method, &ecmd, true);
1789 }
1790
1791 out_disable:
1792 if (rc) {
1793 EFX_ERR(efx, "has been disabled\n");
1794 efx->state = STATE_DISABLED;
1795 dev_close(efx->net_dev);
1796 } else {
1797 EFX_LOG(efx, "reset complete\n");
1798 }
1799
1800 out_unlock:
1801 rtnl_unlock();
1802 return rc;
1803 }
1804
1805 /* The worker thread exists so that code that cannot sleep can
1806 * schedule a reset for later.
1807 */
1808 static void efx_reset_work(struct work_struct *data)
1809 {
1810 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1811
1812 efx_reset(nic);
1813 }
1814
1815 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1816 {
1817 enum reset_type method;
1818
1819 if (efx->reset_pending != RESET_TYPE_NONE) {
1820 EFX_INFO(efx, "quenching already scheduled reset\n");
1821 return;
1822 }
1823
1824 switch (type) {
1825 case RESET_TYPE_INVISIBLE:
1826 case RESET_TYPE_ALL:
1827 case RESET_TYPE_WORLD:
1828 case RESET_TYPE_DISABLE:
1829 method = type;
1830 break;
1831 case RESET_TYPE_RX_RECOVERY:
1832 case RESET_TYPE_RX_DESC_FETCH:
1833 case RESET_TYPE_TX_DESC_FETCH:
1834 case RESET_TYPE_TX_SKIP:
1835 method = RESET_TYPE_INVISIBLE;
1836 break;
1837 default:
1838 method = RESET_TYPE_ALL;
1839 break;
1840 }
1841
1842 if (method != type)
1843 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1844 else
1845 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1846
1847 efx->reset_pending = method;
1848
1849 queue_work(reset_workqueue, &efx->reset_work);
1850 }
1851
1852 /**************************************************************************
1853 *
1854 * List of NICs we support
1855 *
1856 **************************************************************************/
1857
1858 /* PCI device ID table */
1859 static struct pci_device_id efx_pci_table[] __devinitdata = {
1860 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1861 .driver_data = (unsigned long) &falcon_a_nic_type},
1862 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1863 .driver_data = (unsigned long) &falcon_b_nic_type},
1864 {0} /* end of list */
1865 };
1866
1867 /**************************************************************************
1868 *
1869 * Dummy PHY/MAC/Board operations
1870 *
1871 * Can be used for some unimplemented operations
1872 * Needed so all function pointers are valid and do not have to be tested
1873 * before use
1874 *
1875 **************************************************************************/
1876 int efx_port_dummy_op_int(struct efx_nic *efx)
1877 {
1878 return 0;
1879 }
1880 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1881 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1882
1883 static struct efx_mac_operations efx_dummy_mac_operations = {
1884 .reconfigure = efx_port_dummy_op_void,
1885 .poll = efx_port_dummy_op_void,
1886 .irq = efx_port_dummy_op_void,
1887 };
1888
1889 static struct efx_phy_operations efx_dummy_phy_operations = {
1890 .init = efx_port_dummy_op_int,
1891 .reconfigure = efx_port_dummy_op_void,
1892 .poll = efx_port_dummy_op_void,
1893 .fini = efx_port_dummy_op_void,
1894 .clear_interrupt = efx_port_dummy_op_void,
1895 };
1896
1897 static struct efx_board efx_dummy_board_info = {
1898 .init = efx_port_dummy_op_int,
1899 .init_leds = efx_port_dummy_op_void,
1900 .set_id_led = efx_port_dummy_op_blink,
1901 .monitor = efx_port_dummy_op_int,
1902 .blink = efx_port_dummy_op_blink,
1903 .fini = efx_port_dummy_op_void,
1904 };
1905
1906 /**************************************************************************
1907 *
1908 * Data housekeeping
1909 *
1910 **************************************************************************/
1911
1912 /* This zeroes out and then fills in the invariants in a struct
1913 * efx_nic (including all sub-structures).
1914 */
1915 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1916 struct pci_dev *pci_dev, struct net_device *net_dev)
1917 {
1918 struct efx_channel *channel;
1919 struct efx_tx_queue *tx_queue;
1920 struct efx_rx_queue *rx_queue;
1921 int i;
1922
1923 /* Initialise common structures */
1924 memset(efx, 0, sizeof(*efx));
1925 spin_lock_init(&efx->biu_lock);
1926 spin_lock_init(&efx->phy_lock);
1927 mutex_init(&efx->spi_lock);
1928 INIT_WORK(&efx->reset_work, efx_reset_work);
1929 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1930 efx->pci_dev = pci_dev;
1931 efx->state = STATE_INIT;
1932 efx->reset_pending = RESET_TYPE_NONE;
1933 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1934 efx->board_info = efx_dummy_board_info;
1935
1936 efx->net_dev = net_dev;
1937 efx->rx_checksum_enabled = true;
1938 spin_lock_init(&efx->netif_stop_lock);
1939 spin_lock_init(&efx->stats_lock);
1940 efx->stats_disable_count = 1;
1941 mutex_init(&efx->mac_lock);
1942 efx->mac_op = &efx_dummy_mac_operations;
1943 efx->phy_op = &efx_dummy_phy_operations;
1944 efx->mdio.dev = net_dev;
1945 INIT_WORK(&efx->phy_work, efx_phy_work);
1946 INIT_WORK(&efx->mac_work, efx_mac_work);
1947 atomic_set(&efx->netif_stop_count, 1);
1948
1949 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1950 channel = &efx->channel[i];
1951 channel->efx = efx;
1952 channel->channel = i;
1953 channel->work_pending = false;
1954 }
1955 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1956 tx_queue = &efx->tx_queue[i];
1957 tx_queue->efx = efx;
1958 tx_queue->queue = i;
1959 tx_queue->buffer = NULL;
1960 tx_queue->channel = &efx->channel[0]; /* for safety */
1961 tx_queue->tso_headers_free = NULL;
1962 }
1963 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1964 rx_queue = &efx->rx_queue[i];
1965 rx_queue->efx = efx;
1966 rx_queue->queue = i;
1967 rx_queue->channel = &efx->channel[0]; /* for safety */
1968 rx_queue->buffer = NULL;
1969 spin_lock_init(&rx_queue->add_lock);
1970 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1971 }
1972
1973 efx->type = type;
1974
1975 /* Sanity-check NIC type */
1976 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1977 (efx->type->txd_ring_mask + 1));
1978 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1979 (efx->type->rxd_ring_mask + 1));
1980 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1981 (efx->type->evq_size - 1));
1982 /* As close as we can get to guaranteeing that we don't overflow */
1983 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1984 (efx->type->txd_ring_mask + 1 +
1985 efx->type->rxd_ring_mask + 1));
1986 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1987
1988 /* Higher numbered interrupt modes are less capable! */
1989 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1990 interrupt_mode);
1991
1992 /* Would be good to use the net_dev name, but we're too early */
1993 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1994 pci_name(pci_dev));
1995 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1996 if (!efx->workqueue)
1997 return -ENOMEM;
1998
1999 return 0;
2000 }
2001
2002 static void efx_fini_struct(struct efx_nic *efx)
2003 {
2004 if (efx->workqueue) {
2005 destroy_workqueue(efx->workqueue);
2006 efx->workqueue = NULL;
2007 }
2008 }
2009
2010 /**************************************************************************
2011 *
2012 * PCI interface
2013 *
2014 **************************************************************************/
2015
2016 /* Main body of final NIC shutdown code
2017 * This is called only at module unload (or hotplug removal).
2018 */
2019 static void efx_pci_remove_main(struct efx_nic *efx)
2020 {
2021 EFX_ASSERT_RESET_SERIALISED(efx);
2022
2023 /* Skip everything if we never obtained a valid membase */
2024 if (!efx->membase)
2025 return;
2026
2027 efx_fini_channels(efx);
2028 efx_fini_port(efx);
2029
2030 /* Shutdown the board, then the NIC and board state */
2031 efx->board_info.fini(efx);
2032 falcon_fini_interrupt(efx);
2033
2034 efx_fini_napi(efx);
2035 efx_remove_all(efx);
2036 }
2037
2038 /* Final NIC shutdown
2039 * This is called only at module unload (or hotplug removal).
2040 */
2041 static void efx_pci_remove(struct pci_dev *pci_dev)
2042 {
2043 struct efx_nic *efx;
2044
2045 efx = pci_get_drvdata(pci_dev);
2046 if (!efx)
2047 return;
2048
2049 /* Mark the NIC as fini, then stop the interface */
2050 rtnl_lock();
2051 efx->state = STATE_FINI;
2052 dev_close(efx->net_dev);
2053
2054 /* Allow any queued efx_resets() to complete */
2055 rtnl_unlock();
2056
2057 if (efx->membase == NULL)
2058 goto out;
2059
2060 efx_unregister_netdev(efx);
2061
2062 efx_mtd_remove(efx);
2063
2064 /* Wait for any scheduled resets to complete. No more will be
2065 * scheduled from this point because efx_stop_all() has been
2066 * called, we are no longer registered with driverlink, and
2067 * the net_device's have been removed. */
2068 cancel_work_sync(&efx->reset_work);
2069
2070 efx_pci_remove_main(efx);
2071
2072 out:
2073 efx_fini_io(efx);
2074 EFX_LOG(efx, "shutdown successful\n");
2075
2076 pci_set_drvdata(pci_dev, NULL);
2077 efx_fini_struct(efx);
2078 free_netdev(efx->net_dev);
2079 };
2080
2081 /* Main body of NIC initialisation
2082 * This is called at module load (or hotplug insertion, theoretically).
2083 */
2084 static int efx_pci_probe_main(struct efx_nic *efx)
2085 {
2086 int rc;
2087
2088 /* Do start-of-day initialisation */
2089 rc = efx_probe_all(efx);
2090 if (rc)
2091 goto fail1;
2092
2093 rc = efx_init_napi(efx);
2094 if (rc)
2095 goto fail2;
2096
2097 /* Initialise the board */
2098 rc = efx->board_info.init(efx);
2099 if (rc) {
2100 EFX_ERR(efx, "failed to initialise board\n");
2101 goto fail3;
2102 }
2103
2104 rc = falcon_init_nic(efx);
2105 if (rc) {
2106 EFX_ERR(efx, "failed to initialise NIC\n");
2107 goto fail4;
2108 }
2109
2110 rc = efx_init_port(efx);
2111 if (rc) {
2112 EFX_ERR(efx, "failed to initialise port\n");
2113 goto fail5;
2114 }
2115
2116 efx_init_channels(efx);
2117
2118 rc = falcon_init_interrupt(efx);
2119 if (rc)
2120 goto fail6;
2121
2122 return 0;
2123
2124 fail6:
2125 efx_fini_channels(efx);
2126 efx_fini_port(efx);
2127 fail5:
2128 fail4:
2129 efx->board_info.fini(efx);
2130 fail3:
2131 efx_fini_napi(efx);
2132 fail2:
2133 efx_remove_all(efx);
2134 fail1:
2135 return rc;
2136 }
2137
2138 /* NIC initialisation
2139 *
2140 * This is called at module load (or hotplug insertion,
2141 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2142 * sets up and registers the network devices with the kernel and hooks
2143 * the interrupt service routine. It does not prepare the device for
2144 * transmission; this is left to the first time one of the network
2145 * interfaces is brought up (i.e. efx_net_open).
2146 */
2147 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2148 const struct pci_device_id *entry)
2149 {
2150 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2151 struct net_device *net_dev;
2152 struct efx_nic *efx;
2153 int i, rc;
2154
2155 /* Allocate and initialise a struct net_device and struct efx_nic */
2156 net_dev = alloc_etherdev(sizeof(*efx));
2157 if (!net_dev)
2158 return -ENOMEM;
2159 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2160 NETIF_F_HIGHDMA | NETIF_F_TSO |
2161 NETIF_F_GRO);
2162 /* Mask for features that also apply to VLAN devices */
2163 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2164 NETIF_F_HIGHDMA | NETIF_F_TSO);
2165 efx = netdev_priv(net_dev);
2166 pci_set_drvdata(pci_dev, efx);
2167 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2168 if (rc)
2169 goto fail1;
2170
2171 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2172
2173 /* Set up basic I/O (BAR mappings etc) */
2174 rc = efx_init_io(efx);
2175 if (rc)
2176 goto fail2;
2177
2178 /* No serialisation is required with the reset path because
2179 * we're in STATE_INIT. */
2180 for (i = 0; i < 5; i++) {
2181 rc = efx_pci_probe_main(efx);
2182
2183 /* Serialise against efx_reset(). No more resets will be
2184 * scheduled since efx_stop_all() has been called, and we
2185 * have not and never have been registered with either
2186 * the rtnetlink or driverlink layers. */
2187 cancel_work_sync(&efx->reset_work);
2188
2189 if (rc == 0) {
2190 if (efx->reset_pending != RESET_TYPE_NONE) {
2191 /* If there was a scheduled reset during
2192 * probe, the NIC is probably hosed anyway */
2193 efx_pci_remove_main(efx);
2194 rc = -EIO;
2195 } else {
2196 break;
2197 }
2198 }
2199
2200 /* Retry if a recoverably reset event has been scheduled */
2201 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2202 (efx->reset_pending != RESET_TYPE_ALL))
2203 goto fail3;
2204
2205 efx->reset_pending = RESET_TYPE_NONE;
2206 }
2207
2208 if (rc) {
2209 EFX_ERR(efx, "Could not reset NIC\n");
2210 goto fail4;
2211 }
2212
2213 /* Switch to the running state before we expose the device to
2214 * the OS. This is to ensure that the initial gathering of
2215 * MAC stats succeeds. */
2216 efx->state = STATE_RUNNING;
2217
2218 efx_mtd_probe(efx); /* allowed to fail */
2219
2220 rc = efx_register_netdev(efx);
2221 if (rc)
2222 goto fail5;
2223
2224 EFX_LOG(efx, "initialisation successful\n");
2225 return 0;
2226
2227 fail5:
2228 efx_pci_remove_main(efx);
2229 fail4:
2230 fail3:
2231 efx_fini_io(efx);
2232 fail2:
2233 efx_fini_struct(efx);
2234 fail1:
2235 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2236 free_netdev(net_dev);
2237 return rc;
2238 }
2239
2240 static struct pci_driver efx_pci_driver = {
2241 .name = EFX_DRIVER_NAME,
2242 .id_table = efx_pci_table,
2243 .probe = efx_pci_probe,
2244 .remove = efx_pci_remove,
2245 };
2246
2247 /**************************************************************************
2248 *
2249 * Kernel module interface
2250 *
2251 *************************************************************************/
2252
2253 module_param(interrupt_mode, uint, 0444);
2254 MODULE_PARM_DESC(interrupt_mode,
2255 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2256
2257 static int __init efx_init_module(void)
2258 {
2259 int rc;
2260
2261 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2262
2263 rc = register_netdevice_notifier(&efx_netdev_notifier);
2264 if (rc)
2265 goto err_notifier;
2266
2267 refill_workqueue = create_workqueue("sfc_refill");
2268 if (!refill_workqueue) {
2269 rc = -ENOMEM;
2270 goto err_refill;
2271 }
2272 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2273 if (!reset_workqueue) {
2274 rc = -ENOMEM;
2275 goto err_reset;
2276 }
2277
2278 rc = pci_register_driver(&efx_pci_driver);
2279 if (rc < 0)
2280 goto err_pci;
2281
2282 return 0;
2283
2284 err_pci:
2285 destroy_workqueue(reset_workqueue);
2286 err_reset:
2287 destroy_workqueue(refill_workqueue);
2288 err_refill:
2289 unregister_netdevice_notifier(&efx_netdev_notifier);
2290 err_notifier:
2291 return rc;
2292 }
2293
2294 static void __exit efx_exit_module(void)
2295 {
2296 printk(KERN_INFO "Solarflare NET driver unloading\n");
2297
2298 pci_unregister_driver(&efx_pci_driver);
2299 destroy_workqueue(reset_workqueue);
2300 destroy_workqueue(refill_workqueue);
2301 unregister_netdevice_notifier(&efx_netdev_notifier);
2302
2303 }
2304
2305 module_init(efx_init_module);
2306 module_exit(efx_exit_module);
2307
2308 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2309 "Solarflare Communications");
2310 MODULE_DESCRIPTION("Solarflare Communications network driver");
2311 MODULE_LICENSE("GPL");
2312 MODULE_DEVICE_TABLE(pci, efx_pci_table);