]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/sfc/efx.c
net: convert print_mac to %pM
[mirror_ubuntu-bionic-kernel.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "gmii.h"
25 #include "ethtool.h"
26 #include "tx.h"
27 #include "rx.h"
28 #include "efx.h"
29 #include "mdio_10g.h"
30 #include "falcon.h"
31 #include "mac.h"
32
33 #define EFX_MAX_MTU (9 * 1024)
34
35 /* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40 static struct workqueue_struct *refill_workqueue;
41
42 /**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48 /*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
54 static int lro = true;
55 module_param(lro, int, 0644);
56 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58 /*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
67 static unsigned int separate_tx_and_rx_channels = true;
68
69 /* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72 static int napi_weight = 64;
73
74 /* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78 unsigned int efx_monitor_interval = 1 * HZ;
79
80 /* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
82 */
83 static unsigned int monitor_reset = true;
84
85 /* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
91 */
92 static unsigned int allow_bad_hwaddr;
93
94 /* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
96 *
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
99 */
100 static unsigned int rx_irq_mod_usec = 60;
101
102 /* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
104 *
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
110 */
111 static unsigned int tx_irq_mod_usec = 150;
112
113 /* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
117 */
118 static unsigned int interrupt_mode;
119
120 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
123 *
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
126 */
127 static unsigned int rss_cpus;
128 module_param(rss_cpus, uint, 0444);
129 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
130
131 /**************************************************************************
132 *
133 * Utility functions and prototypes
134 *
135 *************************************************************************/
136 static void efx_remove_channel(struct efx_channel *channel);
137 static void efx_remove_port(struct efx_nic *efx);
138 static void efx_fini_napi(struct efx_nic *efx);
139 static void efx_fini_channels(struct efx_nic *efx);
140
141 #define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if (efx->state == STATE_RUNNING) \
144 ASSERT_RTNL(); \
145 } while (0)
146
147 /**************************************************************************
148 *
149 * Event queue processing
150 *
151 *************************************************************************/
152
153 /* Process channel's event queue
154 *
155 * This function is responsible for processing the event queue of a
156 * single channel. The caller must guarantee that this function will
157 * never be concurrently called more than once on the same channel,
158 * though different channels may be being processed concurrently.
159 */
160 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
161 {
162 struct efx_nic *efx = channel->efx;
163 int rx_packets;
164
165 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
166 !channel->enabled))
167 return 0;
168
169 rx_packets = falcon_process_eventq(channel, rx_quota);
170 if (rx_packets == 0)
171 return 0;
172
173 /* Deliver last RX packet. */
174 if (channel->rx_pkt) {
175 __efx_rx_packet(channel, channel->rx_pkt,
176 channel->rx_pkt_csummed);
177 channel->rx_pkt = NULL;
178 }
179
180 efx_flush_lro(channel);
181 efx_rx_strategy(channel);
182
183 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
184
185 return rx_packets;
186 }
187
188 /* Mark channel as finished processing
189 *
190 * Note that since we will not receive further interrupts for this
191 * channel before we finish processing and call the eventq_read_ack()
192 * method, there is no need to use the interrupt hold-off timers.
193 */
194 static inline void efx_channel_processed(struct efx_channel *channel)
195 {
196 /* The interrupt handler for this channel may set work_pending
197 * as soon as we acknowledge the events we've seen. Make sure
198 * it's cleared before then. */
199 channel->work_pending = false;
200 smp_wmb();
201
202 falcon_eventq_read_ack(channel);
203 }
204
205 /* NAPI poll handler
206 *
207 * NAPI guarantees serialisation of polls of the same device, which
208 * provides the guarantee required by efx_process_channel().
209 */
210 static int efx_poll(struct napi_struct *napi, int budget)
211 {
212 struct efx_channel *channel =
213 container_of(napi, struct efx_channel, napi_str);
214 struct net_device *napi_dev = channel->napi_dev;
215 int rx_packets;
216
217 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
218 channel->channel, raw_smp_processor_id());
219
220 rx_packets = efx_process_channel(channel, budget);
221
222 if (rx_packets < budget) {
223 /* There is no race here; although napi_disable() will
224 * only wait for netif_rx_complete(), this isn't a problem
225 * since efx_channel_processed() will have no effect if
226 * interrupts have already been disabled.
227 */
228 netif_rx_complete(napi_dev, napi);
229 efx_channel_processed(channel);
230 }
231
232 return rx_packets;
233 }
234
235 /* Process the eventq of the specified channel immediately on this CPU
236 *
237 * Disable hardware generated interrupts, wait for any existing
238 * processing to finish, then directly poll (and ack ) the eventq.
239 * Finally reenable NAPI and interrupts.
240 *
241 * Since we are touching interrupts the caller should hold the suspend lock
242 */
243 void efx_process_channel_now(struct efx_channel *channel)
244 {
245 struct efx_nic *efx = channel->efx;
246
247 BUG_ON(!channel->used_flags);
248 BUG_ON(!channel->enabled);
249
250 /* Disable interrupts and wait for ISRs to complete */
251 falcon_disable_interrupts(efx);
252 if (efx->legacy_irq)
253 synchronize_irq(efx->legacy_irq);
254 if (channel->irq)
255 synchronize_irq(channel->irq);
256
257 /* Wait for any NAPI processing to complete */
258 napi_disable(&channel->napi_str);
259
260 /* Poll the channel */
261 efx_process_channel(channel, efx->type->evq_size);
262
263 /* Ack the eventq. This may cause an interrupt to be generated
264 * when they are reenabled */
265 efx_channel_processed(channel);
266
267 napi_enable(&channel->napi_str);
268 falcon_enable_interrupts(efx);
269 }
270
271 /* Create event queue
272 * Event queue memory allocations are done only once. If the channel
273 * is reset, the memory buffer will be reused; this guards against
274 * errors during channel reset and also simplifies interrupt handling.
275 */
276 static int efx_probe_eventq(struct efx_channel *channel)
277 {
278 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
279
280 return falcon_probe_eventq(channel);
281 }
282
283 /* Prepare channel's event queue */
284 static void efx_init_eventq(struct efx_channel *channel)
285 {
286 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
287
288 channel->eventq_read_ptr = 0;
289
290 falcon_init_eventq(channel);
291 }
292
293 static void efx_fini_eventq(struct efx_channel *channel)
294 {
295 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
296
297 falcon_fini_eventq(channel);
298 }
299
300 static void efx_remove_eventq(struct efx_channel *channel)
301 {
302 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
303
304 falcon_remove_eventq(channel);
305 }
306
307 /**************************************************************************
308 *
309 * Channel handling
310 *
311 *************************************************************************/
312
313 static int efx_probe_channel(struct efx_channel *channel)
314 {
315 struct efx_tx_queue *tx_queue;
316 struct efx_rx_queue *rx_queue;
317 int rc;
318
319 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
320
321 rc = efx_probe_eventq(channel);
322 if (rc)
323 goto fail1;
324
325 efx_for_each_channel_tx_queue(tx_queue, channel) {
326 rc = efx_probe_tx_queue(tx_queue);
327 if (rc)
328 goto fail2;
329 }
330
331 efx_for_each_channel_rx_queue(rx_queue, channel) {
332 rc = efx_probe_rx_queue(rx_queue);
333 if (rc)
334 goto fail3;
335 }
336
337 channel->n_rx_frm_trunc = 0;
338
339 return 0;
340
341 fail3:
342 efx_for_each_channel_rx_queue(rx_queue, channel)
343 efx_remove_rx_queue(rx_queue);
344 fail2:
345 efx_for_each_channel_tx_queue(tx_queue, channel)
346 efx_remove_tx_queue(tx_queue);
347 fail1:
348 return rc;
349 }
350
351
352 /* Channels are shutdown and reinitialised whilst the NIC is running
353 * to propagate configuration changes (mtu, checksum offload), or
354 * to clear hardware error conditions
355 */
356 static void efx_init_channels(struct efx_nic *efx)
357 {
358 struct efx_tx_queue *tx_queue;
359 struct efx_rx_queue *rx_queue;
360 struct efx_channel *channel;
361
362 /* Calculate the rx buffer allocation parameters required to
363 * support the current MTU, including padding for header
364 * alignment and overruns.
365 */
366 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
367 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
368 efx->type->rx_buffer_padding);
369 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
370
371 /* Initialise the channels */
372 efx_for_each_channel(channel, efx) {
373 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
374
375 efx_init_eventq(channel);
376
377 efx_for_each_channel_tx_queue(tx_queue, channel)
378 efx_init_tx_queue(tx_queue);
379
380 /* The rx buffer allocation strategy is MTU dependent */
381 efx_rx_strategy(channel);
382
383 efx_for_each_channel_rx_queue(rx_queue, channel)
384 efx_init_rx_queue(rx_queue);
385
386 WARN_ON(channel->rx_pkt != NULL);
387 efx_rx_strategy(channel);
388 }
389 }
390
391 /* This enables event queue processing and packet transmission.
392 *
393 * Note that this function is not allowed to fail, since that would
394 * introduce too much complexity into the suspend/resume path.
395 */
396 static void efx_start_channel(struct efx_channel *channel)
397 {
398 struct efx_rx_queue *rx_queue;
399
400 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
401
402 if (!(channel->efx->net_dev->flags & IFF_UP))
403 netif_napi_add(channel->napi_dev, &channel->napi_str,
404 efx_poll, napi_weight);
405
406 /* The interrupt handler for this channel may set work_pending
407 * as soon as we enable it. Make sure it's cleared before
408 * then. Similarly, make sure it sees the enabled flag set. */
409 channel->work_pending = false;
410 channel->enabled = true;
411 smp_wmb();
412
413 napi_enable(&channel->napi_str);
414
415 /* Load up RX descriptors */
416 efx_for_each_channel_rx_queue(rx_queue, channel)
417 efx_fast_push_rx_descriptors(rx_queue);
418 }
419
420 /* This disables event queue processing and packet transmission.
421 * This function does not guarantee that all queue processing
422 * (e.g. RX refill) is complete.
423 */
424 static void efx_stop_channel(struct efx_channel *channel)
425 {
426 struct efx_rx_queue *rx_queue;
427
428 if (!channel->enabled)
429 return;
430
431 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
432
433 channel->enabled = false;
434 napi_disable(&channel->napi_str);
435
436 /* Ensure that any worker threads have exited or will be no-ops */
437 efx_for_each_channel_rx_queue(rx_queue, channel) {
438 spin_lock_bh(&rx_queue->add_lock);
439 spin_unlock_bh(&rx_queue->add_lock);
440 }
441 }
442
443 static void efx_fini_channels(struct efx_nic *efx)
444 {
445 struct efx_channel *channel;
446 struct efx_tx_queue *tx_queue;
447 struct efx_rx_queue *rx_queue;
448 int rc;
449
450 EFX_ASSERT_RESET_SERIALISED(efx);
451 BUG_ON(efx->port_enabled);
452
453 rc = falcon_flush_queues(efx);
454 if (rc)
455 EFX_ERR(efx, "failed to flush queues\n");
456 else
457 EFX_LOG(efx, "successfully flushed all queues\n");
458
459 efx_for_each_channel(channel, efx) {
460 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
461
462 efx_for_each_channel_rx_queue(rx_queue, channel)
463 efx_fini_rx_queue(rx_queue);
464 efx_for_each_channel_tx_queue(tx_queue, channel)
465 efx_fini_tx_queue(tx_queue);
466 efx_fini_eventq(channel);
467 }
468 }
469
470 static void efx_remove_channel(struct efx_channel *channel)
471 {
472 struct efx_tx_queue *tx_queue;
473 struct efx_rx_queue *rx_queue;
474
475 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
476
477 efx_for_each_channel_rx_queue(rx_queue, channel)
478 efx_remove_rx_queue(rx_queue);
479 efx_for_each_channel_tx_queue(tx_queue, channel)
480 efx_remove_tx_queue(tx_queue);
481 efx_remove_eventq(channel);
482
483 channel->used_flags = 0;
484 }
485
486 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
487 {
488 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
489 }
490
491 /**************************************************************************
492 *
493 * Port handling
494 *
495 **************************************************************************/
496
497 /* This ensures that the kernel is kept informed (via
498 * netif_carrier_on/off) of the link status, and also maintains the
499 * link status's stop on the port's TX queue.
500 */
501 static void efx_link_status_changed(struct efx_nic *efx)
502 {
503 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
504 * that no events are triggered between unregister_netdev() and the
505 * driver unloading. A more general condition is that NETDEV_CHANGE
506 * can only be generated between NETDEV_UP and NETDEV_DOWN */
507 if (!netif_running(efx->net_dev))
508 return;
509
510 if (efx->port_inhibited) {
511 netif_carrier_off(efx->net_dev);
512 return;
513 }
514
515 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
516 efx->n_link_state_changes++;
517
518 if (efx->link_up)
519 netif_carrier_on(efx->net_dev);
520 else
521 netif_carrier_off(efx->net_dev);
522 }
523
524 /* Status message for kernel log */
525 if (efx->link_up) {
526 struct mii_if_info *gmii = &efx->mii;
527 unsigned adv, lpa;
528 /* NONE here means direct XAUI from the controller, with no
529 * MDIO-attached device we can query. */
530 if (efx->phy_type != PHY_TYPE_NONE) {
531 adv = gmii_advertised(gmii);
532 lpa = gmii_lpa(gmii);
533 } else {
534 lpa = GM_LPA_10000 | LPA_DUPLEX;
535 adv = lpa;
536 }
537 EFX_INFO(efx, "link up at %dMbps %s-duplex "
538 "(adv %04x lpa %04x) (MTU %d)%s\n",
539 (efx->link_options & GM_LPA_10000 ? 10000 :
540 (efx->link_options & GM_LPA_1000 ? 1000 :
541 (efx->link_options & GM_LPA_100 ? 100 :
542 10))),
543 (efx->link_options & GM_LPA_DUPLEX ?
544 "full" : "half"),
545 adv, lpa,
546 efx->net_dev->mtu,
547 (efx->promiscuous ? " [PROMISC]" : ""));
548 } else {
549 EFX_INFO(efx, "link down\n");
550 }
551
552 }
553
554 /* This call reinitialises the MAC to pick up new PHY settings. The
555 * caller must hold the mac_lock */
556 void __efx_reconfigure_port(struct efx_nic *efx)
557 {
558 WARN_ON(!mutex_is_locked(&efx->mac_lock));
559
560 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
561 raw_smp_processor_id());
562
563 /* Serialise the promiscuous flag with efx_set_multicast_list. */
564 if (efx_dev_registered(efx)) {
565 netif_addr_lock_bh(efx->net_dev);
566 netif_addr_unlock_bh(efx->net_dev);
567 }
568
569 falcon_reconfigure_xmac(efx);
570
571 /* Inform kernel of loss/gain of carrier */
572 efx_link_status_changed(efx);
573 }
574
575 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
576 * disabled. */
577 void efx_reconfigure_port(struct efx_nic *efx)
578 {
579 EFX_ASSERT_RESET_SERIALISED(efx);
580
581 mutex_lock(&efx->mac_lock);
582 __efx_reconfigure_port(efx);
583 mutex_unlock(&efx->mac_lock);
584 }
585
586 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
587 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
588 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
589 static void efx_reconfigure_work(struct work_struct *data)
590 {
591 struct efx_nic *efx = container_of(data, struct efx_nic,
592 reconfigure_work);
593
594 mutex_lock(&efx->mac_lock);
595 if (efx->port_enabled)
596 __efx_reconfigure_port(efx);
597 mutex_unlock(&efx->mac_lock);
598 }
599
600 static int efx_probe_port(struct efx_nic *efx)
601 {
602 int rc;
603
604 EFX_LOG(efx, "create port\n");
605
606 /* Connect up MAC/PHY operations table and read MAC address */
607 rc = falcon_probe_port(efx);
608 if (rc)
609 goto err;
610
611 /* Sanity check MAC address */
612 if (is_valid_ether_addr(efx->mac_address)) {
613 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
614 } else {
615 EFX_ERR(efx, "invalid MAC address %pM\n",
616 efx->mac_address);
617 if (!allow_bad_hwaddr) {
618 rc = -EINVAL;
619 goto err;
620 }
621 random_ether_addr(efx->net_dev->dev_addr);
622 EFX_INFO(efx, "using locally-generated MAC %pM\n",
623 efx->net_dev->dev_addr);
624 }
625
626 return 0;
627
628 err:
629 efx_remove_port(efx);
630 return rc;
631 }
632
633 static int efx_init_port(struct efx_nic *efx)
634 {
635 int rc;
636
637 EFX_LOG(efx, "init port\n");
638
639 /* Initialise the MAC and PHY */
640 rc = falcon_init_xmac(efx);
641 if (rc)
642 return rc;
643
644 efx->port_initialized = true;
645 efx->stats_enabled = true;
646
647 /* Reconfigure port to program MAC registers */
648 falcon_reconfigure_xmac(efx);
649
650 return 0;
651 }
652
653 /* Allow efx_reconfigure_port() to be scheduled, and close the window
654 * between efx_stop_port and efx_flush_all whereby a previously scheduled
655 * efx_reconfigure_port() may have been cancelled */
656 static void efx_start_port(struct efx_nic *efx)
657 {
658 EFX_LOG(efx, "start port\n");
659 BUG_ON(efx->port_enabled);
660
661 mutex_lock(&efx->mac_lock);
662 efx->port_enabled = true;
663 __efx_reconfigure_port(efx);
664 mutex_unlock(&efx->mac_lock);
665 }
666
667 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
668 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
669 * efx_reconfigure_work can still be scheduled via NAPI processing
670 * until efx_flush_all() is called */
671 static void efx_stop_port(struct efx_nic *efx)
672 {
673 EFX_LOG(efx, "stop port\n");
674
675 mutex_lock(&efx->mac_lock);
676 efx->port_enabled = false;
677 mutex_unlock(&efx->mac_lock);
678
679 /* Serialise against efx_set_multicast_list() */
680 if (efx_dev_registered(efx)) {
681 netif_addr_lock_bh(efx->net_dev);
682 netif_addr_unlock_bh(efx->net_dev);
683 }
684 }
685
686 static void efx_fini_port(struct efx_nic *efx)
687 {
688 EFX_LOG(efx, "shut down port\n");
689
690 if (!efx->port_initialized)
691 return;
692
693 falcon_fini_xmac(efx);
694 efx->port_initialized = false;
695
696 efx->link_up = false;
697 efx_link_status_changed(efx);
698 }
699
700 static void efx_remove_port(struct efx_nic *efx)
701 {
702 EFX_LOG(efx, "destroying port\n");
703
704 falcon_remove_port(efx);
705 }
706
707 /**************************************************************************
708 *
709 * NIC handling
710 *
711 **************************************************************************/
712
713 /* This configures the PCI device to enable I/O and DMA. */
714 static int efx_init_io(struct efx_nic *efx)
715 {
716 struct pci_dev *pci_dev = efx->pci_dev;
717 dma_addr_t dma_mask = efx->type->max_dma_mask;
718 int rc;
719
720 EFX_LOG(efx, "initialising I/O\n");
721
722 rc = pci_enable_device(pci_dev);
723 if (rc) {
724 EFX_ERR(efx, "failed to enable PCI device\n");
725 goto fail1;
726 }
727
728 pci_set_master(pci_dev);
729
730 /* Set the PCI DMA mask. Try all possibilities from our
731 * genuine mask down to 32 bits, because some architectures
732 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
733 * masks event though they reject 46 bit masks.
734 */
735 while (dma_mask > 0x7fffffffUL) {
736 if (pci_dma_supported(pci_dev, dma_mask) &&
737 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
738 break;
739 dma_mask >>= 1;
740 }
741 if (rc) {
742 EFX_ERR(efx, "could not find a suitable DMA mask\n");
743 goto fail2;
744 }
745 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
746 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
747 if (rc) {
748 /* pci_set_consistent_dma_mask() is not *allowed* to
749 * fail with a mask that pci_set_dma_mask() accepted,
750 * but just in case...
751 */
752 EFX_ERR(efx, "failed to set consistent DMA mask\n");
753 goto fail2;
754 }
755
756 efx->membase_phys = pci_resource_start(efx->pci_dev,
757 efx->type->mem_bar);
758 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
759 if (rc) {
760 EFX_ERR(efx, "request for memory BAR failed\n");
761 rc = -EIO;
762 goto fail3;
763 }
764 efx->membase = ioremap_nocache(efx->membase_phys,
765 efx->type->mem_map_size);
766 if (!efx->membase) {
767 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
768 efx->type->mem_bar,
769 (unsigned long long)efx->membase_phys,
770 efx->type->mem_map_size);
771 rc = -ENOMEM;
772 goto fail4;
773 }
774 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
775 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
776 efx->type->mem_map_size, efx->membase);
777
778 return 0;
779
780 fail4:
781 pci_release_region(efx->pci_dev, efx->type->mem_bar);
782 fail3:
783 efx->membase_phys = 0;
784 fail2:
785 pci_disable_device(efx->pci_dev);
786 fail1:
787 return rc;
788 }
789
790 static void efx_fini_io(struct efx_nic *efx)
791 {
792 EFX_LOG(efx, "shutting down I/O\n");
793
794 if (efx->membase) {
795 iounmap(efx->membase);
796 efx->membase = NULL;
797 }
798
799 if (efx->membase_phys) {
800 pci_release_region(efx->pci_dev, efx->type->mem_bar);
801 efx->membase_phys = 0;
802 }
803
804 pci_disable_device(efx->pci_dev);
805 }
806
807 /* Get number of RX queues wanted. Return number of online CPU
808 * packages in the expectation that an IRQ balancer will spread
809 * interrupts across them. */
810 static int efx_wanted_rx_queues(void)
811 {
812 cpumask_t core_mask;
813 int count;
814 int cpu;
815
816 cpus_clear(core_mask);
817 count = 0;
818 for_each_online_cpu(cpu) {
819 if (!cpu_isset(cpu, core_mask)) {
820 ++count;
821 cpus_or(core_mask, core_mask,
822 topology_core_siblings(cpu));
823 }
824 }
825
826 return count;
827 }
828
829 /* Probe the number and type of interrupts we are able to obtain, and
830 * the resulting numbers of channels and RX queues.
831 */
832 static void efx_probe_interrupts(struct efx_nic *efx)
833 {
834 int max_channels =
835 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
836 int rc, i;
837
838 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
839 struct msix_entry xentries[EFX_MAX_CHANNELS];
840 int wanted_ints;
841
842 /* We want one RX queue and interrupt per CPU package
843 * (or as specified by the rss_cpus module parameter).
844 * We will need one channel per interrupt.
845 */
846 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
847 efx->n_rx_queues = min(wanted_ints, max_channels);
848
849 for (i = 0; i < efx->n_rx_queues; i++)
850 xentries[i].entry = i;
851 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
852 if (rc > 0) {
853 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
854 efx->n_rx_queues = rc;
855 rc = pci_enable_msix(efx->pci_dev, xentries,
856 efx->n_rx_queues);
857 }
858
859 if (rc == 0) {
860 for (i = 0; i < efx->n_rx_queues; i++)
861 efx->channel[i].irq = xentries[i].vector;
862 } else {
863 /* Fall back to single channel MSI */
864 efx->interrupt_mode = EFX_INT_MODE_MSI;
865 EFX_ERR(efx, "could not enable MSI-X\n");
866 }
867 }
868
869 /* Try single interrupt MSI */
870 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
871 efx->n_rx_queues = 1;
872 rc = pci_enable_msi(efx->pci_dev);
873 if (rc == 0) {
874 efx->channel[0].irq = efx->pci_dev->irq;
875 } else {
876 EFX_ERR(efx, "could not enable MSI\n");
877 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
878 }
879 }
880
881 /* Assume legacy interrupts */
882 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
883 efx->n_rx_queues = 1;
884 efx->legacy_irq = efx->pci_dev->irq;
885 }
886 }
887
888 static void efx_remove_interrupts(struct efx_nic *efx)
889 {
890 struct efx_channel *channel;
891
892 /* Remove MSI/MSI-X interrupts */
893 efx_for_each_channel(channel, efx)
894 channel->irq = 0;
895 pci_disable_msi(efx->pci_dev);
896 pci_disable_msix(efx->pci_dev);
897
898 /* Remove legacy interrupt */
899 efx->legacy_irq = 0;
900 }
901
902 static void efx_set_channels(struct efx_nic *efx)
903 {
904 struct efx_tx_queue *tx_queue;
905 struct efx_rx_queue *rx_queue;
906
907 efx_for_each_tx_queue(tx_queue, efx) {
908 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
909 tx_queue->channel = &efx->channel[1];
910 else
911 tx_queue->channel = &efx->channel[0];
912 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
913 }
914
915 efx_for_each_rx_queue(rx_queue, efx) {
916 rx_queue->channel = &efx->channel[rx_queue->queue];
917 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
918 }
919 }
920
921 static int efx_probe_nic(struct efx_nic *efx)
922 {
923 int rc;
924
925 EFX_LOG(efx, "creating NIC\n");
926
927 /* Carry out hardware-type specific initialisation */
928 rc = falcon_probe_nic(efx);
929 if (rc)
930 return rc;
931
932 /* Determine the number of channels and RX queues by trying to hook
933 * in MSI-X interrupts. */
934 efx_probe_interrupts(efx);
935
936 efx_set_channels(efx);
937
938 /* Initialise the interrupt moderation settings */
939 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
940
941 return 0;
942 }
943
944 static void efx_remove_nic(struct efx_nic *efx)
945 {
946 EFX_LOG(efx, "destroying NIC\n");
947
948 efx_remove_interrupts(efx);
949 falcon_remove_nic(efx);
950 }
951
952 /**************************************************************************
953 *
954 * NIC startup/shutdown
955 *
956 *************************************************************************/
957
958 static int efx_probe_all(struct efx_nic *efx)
959 {
960 struct efx_channel *channel;
961 int rc;
962
963 /* Create NIC */
964 rc = efx_probe_nic(efx);
965 if (rc) {
966 EFX_ERR(efx, "failed to create NIC\n");
967 goto fail1;
968 }
969
970 /* Create port */
971 rc = efx_probe_port(efx);
972 if (rc) {
973 EFX_ERR(efx, "failed to create port\n");
974 goto fail2;
975 }
976
977 /* Create channels */
978 efx_for_each_channel(channel, efx) {
979 rc = efx_probe_channel(channel);
980 if (rc) {
981 EFX_ERR(efx, "failed to create channel %d\n",
982 channel->channel);
983 goto fail3;
984 }
985 }
986
987 return 0;
988
989 fail3:
990 efx_for_each_channel(channel, efx)
991 efx_remove_channel(channel);
992 efx_remove_port(efx);
993 fail2:
994 efx_remove_nic(efx);
995 fail1:
996 return rc;
997 }
998
999 /* Called after previous invocation(s) of efx_stop_all, restarts the
1000 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1001 * and ensures that the port is scheduled to be reconfigured.
1002 * This function is safe to call multiple times when the NIC is in any
1003 * state. */
1004 static void efx_start_all(struct efx_nic *efx)
1005 {
1006 struct efx_channel *channel;
1007
1008 EFX_ASSERT_RESET_SERIALISED(efx);
1009
1010 /* Check that it is appropriate to restart the interface. All
1011 * of these flags are safe to read under just the rtnl lock */
1012 if (efx->port_enabled)
1013 return;
1014 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1015 return;
1016 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1017 return;
1018
1019 /* Mark the port as enabled so port reconfigurations can start, then
1020 * restart the transmit interface early so the watchdog timer stops */
1021 efx_start_port(efx);
1022 if (efx_dev_registered(efx))
1023 efx_wake_queue(efx);
1024
1025 efx_for_each_channel(channel, efx)
1026 efx_start_channel(channel);
1027
1028 falcon_enable_interrupts(efx);
1029
1030 /* Start hardware monitor if we're in RUNNING */
1031 if (efx->state == STATE_RUNNING)
1032 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1033 efx_monitor_interval);
1034 }
1035
1036 /* Flush all delayed work. Should only be called when no more delayed work
1037 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1038 * since we're holding the rtnl_lock at this point. */
1039 static void efx_flush_all(struct efx_nic *efx)
1040 {
1041 struct efx_rx_queue *rx_queue;
1042
1043 /* Make sure the hardware monitor is stopped */
1044 cancel_delayed_work_sync(&efx->monitor_work);
1045
1046 /* Ensure that all RX slow refills are complete. */
1047 efx_for_each_rx_queue(rx_queue, efx)
1048 cancel_delayed_work_sync(&rx_queue->work);
1049
1050 /* Stop scheduled port reconfigurations */
1051 cancel_work_sync(&efx->reconfigure_work);
1052
1053 }
1054
1055 /* Quiesce hardware and software without bringing the link down.
1056 * Safe to call multiple times, when the nic and interface is in any
1057 * state. The caller is guaranteed to subsequently be in a position
1058 * to modify any hardware and software state they see fit without
1059 * taking locks. */
1060 static void efx_stop_all(struct efx_nic *efx)
1061 {
1062 struct efx_channel *channel;
1063
1064 EFX_ASSERT_RESET_SERIALISED(efx);
1065
1066 /* port_enabled can be read safely under the rtnl lock */
1067 if (!efx->port_enabled)
1068 return;
1069
1070 /* Disable interrupts and wait for ISR to complete */
1071 falcon_disable_interrupts(efx);
1072 if (efx->legacy_irq)
1073 synchronize_irq(efx->legacy_irq);
1074 efx_for_each_channel(channel, efx) {
1075 if (channel->irq)
1076 synchronize_irq(channel->irq);
1077 }
1078
1079 /* Stop all NAPI processing and synchronous rx refills */
1080 efx_for_each_channel(channel, efx)
1081 efx_stop_channel(channel);
1082
1083 /* Stop all asynchronous port reconfigurations. Since all
1084 * event processing has already been stopped, there is no
1085 * window to loose phy events */
1086 efx_stop_port(efx);
1087
1088 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1089 efx_flush_all(efx);
1090
1091 /* Isolate the MAC from the TX and RX engines, so that queue
1092 * flushes will complete in a timely fashion. */
1093 falcon_drain_tx_fifo(efx);
1094
1095 /* Stop the kernel transmit interface late, so the watchdog
1096 * timer isn't ticking over the flush */
1097 if (efx_dev_registered(efx)) {
1098 efx_stop_queue(efx);
1099 netif_tx_lock_bh(efx->net_dev);
1100 netif_tx_unlock_bh(efx->net_dev);
1101 }
1102 }
1103
1104 static void efx_remove_all(struct efx_nic *efx)
1105 {
1106 struct efx_channel *channel;
1107
1108 efx_for_each_channel(channel, efx)
1109 efx_remove_channel(channel);
1110 efx_remove_port(efx);
1111 efx_remove_nic(efx);
1112 }
1113
1114 /* A convinience function to safely flush all the queues */
1115 void efx_flush_queues(struct efx_nic *efx)
1116 {
1117 EFX_ASSERT_RESET_SERIALISED(efx);
1118
1119 efx_stop_all(efx);
1120
1121 efx_fini_channels(efx);
1122 efx_init_channels(efx);
1123
1124 efx_start_all(efx);
1125 }
1126
1127 /**************************************************************************
1128 *
1129 * Interrupt moderation
1130 *
1131 **************************************************************************/
1132
1133 /* Set interrupt moderation parameters */
1134 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1135 {
1136 struct efx_tx_queue *tx_queue;
1137 struct efx_rx_queue *rx_queue;
1138
1139 EFX_ASSERT_RESET_SERIALISED(efx);
1140
1141 efx_for_each_tx_queue(tx_queue, efx)
1142 tx_queue->channel->irq_moderation = tx_usecs;
1143
1144 efx_for_each_rx_queue(rx_queue, efx)
1145 rx_queue->channel->irq_moderation = rx_usecs;
1146 }
1147
1148 /**************************************************************************
1149 *
1150 * Hardware monitor
1151 *
1152 **************************************************************************/
1153
1154 /* Run periodically off the general workqueue. Serialised against
1155 * efx_reconfigure_port via the mac_lock */
1156 static void efx_monitor(struct work_struct *data)
1157 {
1158 struct efx_nic *efx = container_of(data, struct efx_nic,
1159 monitor_work.work);
1160 int rc = 0;
1161
1162 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1163 raw_smp_processor_id());
1164
1165
1166 /* If the mac_lock is already held then it is likely a port
1167 * reconfiguration is already in place, which will likely do
1168 * most of the work of check_hw() anyway. */
1169 if (!mutex_trylock(&efx->mac_lock)) {
1170 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1171 efx_monitor_interval);
1172 return;
1173 }
1174
1175 if (efx->port_enabled)
1176 rc = falcon_check_xmac(efx);
1177 mutex_unlock(&efx->mac_lock);
1178
1179 if (rc) {
1180 if (monitor_reset) {
1181 EFX_ERR(efx, "hardware monitor detected a fault: "
1182 "triggering reset\n");
1183 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1184 } else {
1185 EFX_ERR(efx, "hardware monitor detected a fault, "
1186 "skipping reset\n");
1187 }
1188 }
1189
1190 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1191 efx_monitor_interval);
1192 }
1193
1194 /**************************************************************************
1195 *
1196 * ioctls
1197 *
1198 *************************************************************************/
1199
1200 /* Net device ioctl
1201 * Context: process, rtnl_lock() held.
1202 */
1203 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1204 {
1205 struct efx_nic *efx = netdev_priv(net_dev);
1206
1207 EFX_ASSERT_RESET_SERIALISED(efx);
1208
1209 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1210 }
1211
1212 /**************************************************************************
1213 *
1214 * NAPI interface
1215 *
1216 **************************************************************************/
1217
1218 static int efx_init_napi(struct efx_nic *efx)
1219 {
1220 struct efx_channel *channel;
1221 int rc;
1222
1223 efx_for_each_channel(channel, efx) {
1224 channel->napi_dev = efx->net_dev;
1225 rc = efx_lro_init(&channel->lro_mgr, efx);
1226 if (rc)
1227 goto err;
1228 }
1229 return 0;
1230 err:
1231 efx_fini_napi(efx);
1232 return rc;
1233 }
1234
1235 static void efx_fini_napi(struct efx_nic *efx)
1236 {
1237 struct efx_channel *channel;
1238
1239 efx_for_each_channel(channel, efx) {
1240 efx_lro_fini(&channel->lro_mgr);
1241 channel->napi_dev = NULL;
1242 }
1243 }
1244
1245 /**************************************************************************
1246 *
1247 * Kernel netpoll interface
1248 *
1249 *************************************************************************/
1250
1251 #ifdef CONFIG_NET_POLL_CONTROLLER
1252
1253 /* Although in the common case interrupts will be disabled, this is not
1254 * guaranteed. However, all our work happens inside the NAPI callback,
1255 * so no locking is required.
1256 */
1257 static void efx_netpoll(struct net_device *net_dev)
1258 {
1259 struct efx_nic *efx = netdev_priv(net_dev);
1260 struct efx_channel *channel;
1261
1262 efx_for_each_channel(channel, efx)
1263 efx_schedule_channel(channel);
1264 }
1265
1266 #endif
1267
1268 /**************************************************************************
1269 *
1270 * Kernel net device interface
1271 *
1272 *************************************************************************/
1273
1274 /* Context: process, rtnl_lock() held. */
1275 static int efx_net_open(struct net_device *net_dev)
1276 {
1277 struct efx_nic *efx = netdev_priv(net_dev);
1278 EFX_ASSERT_RESET_SERIALISED(efx);
1279
1280 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1281 raw_smp_processor_id());
1282
1283 if (efx->phy_mode & PHY_MODE_SPECIAL)
1284 return -EBUSY;
1285
1286 efx_start_all(efx);
1287 return 0;
1288 }
1289
1290 /* Context: process, rtnl_lock() held.
1291 * Note that the kernel will ignore our return code; this method
1292 * should really be a void.
1293 */
1294 static int efx_net_stop(struct net_device *net_dev)
1295 {
1296 struct efx_nic *efx = netdev_priv(net_dev);
1297
1298 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1299 raw_smp_processor_id());
1300
1301 /* Stop the device and flush all the channels */
1302 efx_stop_all(efx);
1303 efx_fini_channels(efx);
1304 efx_init_channels(efx);
1305
1306 return 0;
1307 }
1308
1309 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1310 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1311 {
1312 struct efx_nic *efx = netdev_priv(net_dev);
1313 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1314 struct net_device_stats *stats = &net_dev->stats;
1315
1316 /* Update stats if possible, but do not wait if another thread
1317 * is updating them (or resetting the NIC); slightly stale
1318 * stats are acceptable.
1319 */
1320 if (!spin_trylock(&efx->stats_lock))
1321 return stats;
1322 if (efx->stats_enabled) {
1323 falcon_update_stats_xmac(efx);
1324 falcon_update_nic_stats(efx);
1325 }
1326 spin_unlock(&efx->stats_lock);
1327
1328 stats->rx_packets = mac_stats->rx_packets;
1329 stats->tx_packets = mac_stats->tx_packets;
1330 stats->rx_bytes = mac_stats->rx_bytes;
1331 stats->tx_bytes = mac_stats->tx_bytes;
1332 stats->multicast = mac_stats->rx_multicast;
1333 stats->collisions = mac_stats->tx_collision;
1334 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1335 mac_stats->rx_length_error);
1336 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1337 stats->rx_crc_errors = mac_stats->rx_bad;
1338 stats->rx_frame_errors = mac_stats->rx_align_error;
1339 stats->rx_fifo_errors = mac_stats->rx_overflow;
1340 stats->rx_missed_errors = mac_stats->rx_missed;
1341 stats->tx_window_errors = mac_stats->tx_late_collision;
1342
1343 stats->rx_errors = (stats->rx_length_errors +
1344 stats->rx_over_errors +
1345 stats->rx_crc_errors +
1346 stats->rx_frame_errors +
1347 stats->rx_fifo_errors +
1348 stats->rx_missed_errors +
1349 mac_stats->rx_symbol_error);
1350 stats->tx_errors = (stats->tx_window_errors +
1351 mac_stats->tx_bad);
1352
1353 return stats;
1354 }
1355
1356 /* Context: netif_tx_lock held, BHs disabled. */
1357 static void efx_watchdog(struct net_device *net_dev)
1358 {
1359 struct efx_nic *efx = netdev_priv(net_dev);
1360
1361 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1362 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1363 monitor_reset ? "resetting channels" : "skipping reset");
1364
1365 if (monitor_reset)
1366 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1367 }
1368
1369
1370 /* Context: process, rtnl_lock() held. */
1371 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1372 {
1373 struct efx_nic *efx = netdev_priv(net_dev);
1374 int rc = 0;
1375
1376 EFX_ASSERT_RESET_SERIALISED(efx);
1377
1378 if (new_mtu > EFX_MAX_MTU)
1379 return -EINVAL;
1380
1381 efx_stop_all(efx);
1382
1383 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1384
1385 efx_fini_channels(efx);
1386 net_dev->mtu = new_mtu;
1387 efx_init_channels(efx);
1388
1389 efx_start_all(efx);
1390 return rc;
1391 }
1392
1393 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1394 {
1395 struct efx_nic *efx = netdev_priv(net_dev);
1396 struct sockaddr *addr = data;
1397 char *new_addr = addr->sa_data;
1398
1399 EFX_ASSERT_RESET_SERIALISED(efx);
1400
1401 if (!is_valid_ether_addr(new_addr)) {
1402 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1403 new_addr);
1404 return -EINVAL;
1405 }
1406
1407 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1408
1409 /* Reconfigure the MAC */
1410 efx_reconfigure_port(efx);
1411
1412 return 0;
1413 }
1414
1415 /* Context: netif_addr_lock held, BHs disabled. */
1416 static void efx_set_multicast_list(struct net_device *net_dev)
1417 {
1418 struct efx_nic *efx = netdev_priv(net_dev);
1419 struct dev_mc_list *mc_list = net_dev->mc_list;
1420 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1421 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1422 bool changed = (efx->promiscuous != promiscuous);
1423 u32 crc;
1424 int bit;
1425 int i;
1426
1427 efx->promiscuous = promiscuous;
1428
1429 /* Build multicast hash table */
1430 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1431 memset(mc_hash, 0xff, sizeof(*mc_hash));
1432 } else {
1433 memset(mc_hash, 0x00, sizeof(*mc_hash));
1434 for (i = 0; i < net_dev->mc_count; i++) {
1435 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1436 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1437 set_bit_le(bit, mc_hash->byte);
1438 mc_list = mc_list->next;
1439 }
1440 }
1441
1442 if (!efx->port_enabled)
1443 /* Delay pushing settings until efx_start_port() */
1444 return;
1445
1446 if (changed)
1447 queue_work(efx->workqueue, &efx->reconfigure_work);
1448
1449 /* Create and activate new global multicast hash table */
1450 falcon_set_multicast_hash(efx);
1451 }
1452
1453 static int efx_netdev_event(struct notifier_block *this,
1454 unsigned long event, void *ptr)
1455 {
1456 struct net_device *net_dev = ptr;
1457
1458 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1459 struct efx_nic *efx = netdev_priv(net_dev);
1460
1461 strcpy(efx->name, net_dev->name);
1462 }
1463
1464 return NOTIFY_DONE;
1465 }
1466
1467 static struct notifier_block efx_netdev_notifier = {
1468 .notifier_call = efx_netdev_event,
1469 };
1470
1471 static int efx_register_netdev(struct efx_nic *efx)
1472 {
1473 struct net_device *net_dev = efx->net_dev;
1474 int rc;
1475
1476 net_dev->watchdog_timeo = 5 * HZ;
1477 net_dev->irq = efx->pci_dev->irq;
1478 net_dev->open = efx_net_open;
1479 net_dev->stop = efx_net_stop;
1480 net_dev->get_stats = efx_net_stats;
1481 net_dev->tx_timeout = &efx_watchdog;
1482 net_dev->hard_start_xmit = efx_hard_start_xmit;
1483 net_dev->do_ioctl = efx_ioctl;
1484 net_dev->change_mtu = efx_change_mtu;
1485 net_dev->set_mac_address = efx_set_mac_address;
1486 net_dev->set_multicast_list = efx_set_multicast_list;
1487 #ifdef CONFIG_NET_POLL_CONTROLLER
1488 net_dev->poll_controller = efx_netpoll;
1489 #endif
1490 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1491 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1492
1493 /* Always start with carrier off; PHY events will detect the link */
1494 netif_carrier_off(efx->net_dev);
1495
1496 /* Clear MAC statistics */
1497 falcon_update_stats_xmac(efx);
1498 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1499
1500 rc = register_netdev(net_dev);
1501 if (rc) {
1502 EFX_ERR(efx, "could not register net dev\n");
1503 return rc;
1504 }
1505 strcpy(efx->name, net_dev->name);
1506
1507 return 0;
1508 }
1509
1510 static void efx_unregister_netdev(struct efx_nic *efx)
1511 {
1512 struct efx_tx_queue *tx_queue;
1513
1514 if (!efx->net_dev)
1515 return;
1516
1517 BUG_ON(netdev_priv(efx->net_dev) != efx);
1518
1519 /* Free up any skbs still remaining. This has to happen before
1520 * we try to unregister the netdev as running their destructors
1521 * may be needed to get the device ref. count to 0. */
1522 efx_for_each_tx_queue(tx_queue, efx)
1523 efx_release_tx_buffers(tx_queue);
1524
1525 if (efx_dev_registered(efx)) {
1526 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1527 unregister_netdev(efx->net_dev);
1528 }
1529 }
1530
1531 /**************************************************************************
1532 *
1533 * Device reset and suspend
1534 *
1535 **************************************************************************/
1536
1537 /* Tears down the entire software state and most of the hardware state
1538 * before reset. */
1539 void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1540 {
1541 int rc;
1542
1543 EFX_ASSERT_RESET_SERIALISED(efx);
1544
1545 /* The net_dev->get_stats handler is quite slow, and will fail
1546 * if a fetch is pending over reset. Serialise against it. */
1547 spin_lock(&efx->stats_lock);
1548 efx->stats_enabled = false;
1549 spin_unlock(&efx->stats_lock);
1550
1551 efx_stop_all(efx);
1552 mutex_lock(&efx->mac_lock);
1553
1554 rc = falcon_xmac_get_settings(efx, ecmd);
1555 if (rc)
1556 EFX_ERR(efx, "could not back up PHY settings\n");
1557
1558 efx_fini_channels(efx);
1559 }
1560
1561 /* This function will always ensure that the locks acquired in
1562 * efx_reset_down() are released. A failure return code indicates
1563 * that we were unable to reinitialise the hardware, and the
1564 * driver should be disabled. If ok is false, then the rx and tx
1565 * engines are not restarted, pending a RESET_DISABLE. */
1566 int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
1567 {
1568 int rc;
1569
1570 EFX_ASSERT_RESET_SERIALISED(efx);
1571
1572 rc = falcon_init_nic(efx);
1573 if (rc) {
1574 EFX_ERR(efx, "failed to initialise NIC\n");
1575 ok = false;
1576 }
1577
1578 if (ok) {
1579 efx_init_channels(efx);
1580
1581 if (falcon_xmac_set_settings(efx, ecmd))
1582 EFX_ERR(efx, "could not restore PHY settings\n");
1583 }
1584
1585 mutex_unlock(&efx->mac_lock);
1586
1587 if (ok) {
1588 efx_start_all(efx);
1589 efx->stats_enabled = true;
1590 }
1591 return rc;
1592 }
1593
1594 /* Reset the NIC as transparently as possible. Do not reset the PHY
1595 * Note that the reset may fail, in which case the card will be left
1596 * in a most-probably-unusable state.
1597 *
1598 * This function will sleep. You cannot reset from within an atomic
1599 * state; use efx_schedule_reset() instead.
1600 *
1601 * Grabs the rtnl_lock.
1602 */
1603 static int efx_reset(struct efx_nic *efx)
1604 {
1605 struct ethtool_cmd ecmd;
1606 enum reset_type method = efx->reset_pending;
1607 int rc;
1608
1609 /* Serialise with kernel interfaces */
1610 rtnl_lock();
1611
1612 /* If we're not RUNNING then don't reset. Leave the reset_pending
1613 * flag set so that efx_pci_probe_main will be retried */
1614 if (efx->state != STATE_RUNNING) {
1615 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1616 goto unlock_rtnl;
1617 }
1618
1619 EFX_INFO(efx, "resetting (%d)\n", method);
1620
1621 efx_reset_down(efx, &ecmd);
1622
1623 rc = falcon_reset_hw(efx, method);
1624 if (rc) {
1625 EFX_ERR(efx, "failed to reset hardware\n");
1626 goto fail;
1627 }
1628
1629 /* Allow resets to be rescheduled. */
1630 efx->reset_pending = RESET_TYPE_NONE;
1631
1632 /* Reinitialise bus-mastering, which may have been turned off before
1633 * the reset was scheduled. This is still appropriate, even in the
1634 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1635 * can respond to requests. */
1636 pci_set_master(efx->pci_dev);
1637
1638 /* Leave device stopped if necessary */
1639 if (method == RESET_TYPE_DISABLE) {
1640 rc = -EIO;
1641 goto fail;
1642 }
1643
1644 rc = efx_reset_up(efx, &ecmd, true);
1645 if (rc)
1646 goto disable;
1647
1648 EFX_LOG(efx, "reset complete\n");
1649 unlock_rtnl:
1650 rtnl_unlock();
1651 return 0;
1652
1653 fail:
1654 efx_reset_up(efx, &ecmd, false);
1655 disable:
1656 EFX_ERR(efx, "has been disabled\n");
1657 efx->state = STATE_DISABLED;
1658
1659 rtnl_unlock();
1660 efx_unregister_netdev(efx);
1661 efx_fini_port(efx);
1662 return rc;
1663 }
1664
1665 /* The worker thread exists so that code that cannot sleep can
1666 * schedule a reset for later.
1667 */
1668 static void efx_reset_work(struct work_struct *data)
1669 {
1670 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1671
1672 efx_reset(nic);
1673 }
1674
1675 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1676 {
1677 enum reset_type method;
1678
1679 if (efx->reset_pending != RESET_TYPE_NONE) {
1680 EFX_INFO(efx, "quenching already scheduled reset\n");
1681 return;
1682 }
1683
1684 switch (type) {
1685 case RESET_TYPE_INVISIBLE:
1686 case RESET_TYPE_ALL:
1687 case RESET_TYPE_WORLD:
1688 case RESET_TYPE_DISABLE:
1689 method = type;
1690 break;
1691 case RESET_TYPE_RX_RECOVERY:
1692 case RESET_TYPE_RX_DESC_FETCH:
1693 case RESET_TYPE_TX_DESC_FETCH:
1694 case RESET_TYPE_TX_SKIP:
1695 method = RESET_TYPE_INVISIBLE;
1696 break;
1697 default:
1698 method = RESET_TYPE_ALL;
1699 break;
1700 }
1701
1702 if (method != type)
1703 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1704 else
1705 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1706
1707 efx->reset_pending = method;
1708
1709 queue_work(efx->reset_workqueue, &efx->reset_work);
1710 }
1711
1712 /**************************************************************************
1713 *
1714 * List of NICs we support
1715 *
1716 **************************************************************************/
1717
1718 /* PCI device ID table */
1719 static struct pci_device_id efx_pci_table[] __devinitdata = {
1720 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1721 .driver_data = (unsigned long) &falcon_a_nic_type},
1722 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1723 .driver_data = (unsigned long) &falcon_b_nic_type},
1724 {0} /* end of list */
1725 };
1726
1727 /**************************************************************************
1728 *
1729 * Dummy PHY/MAC/Board operations
1730 *
1731 * Can be used for some unimplemented operations
1732 * Needed so all function pointers are valid and do not have to be tested
1733 * before use
1734 *
1735 **************************************************************************/
1736 int efx_port_dummy_op_int(struct efx_nic *efx)
1737 {
1738 return 0;
1739 }
1740 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1741 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1742
1743 static struct efx_phy_operations efx_dummy_phy_operations = {
1744 .init = efx_port_dummy_op_int,
1745 .reconfigure = efx_port_dummy_op_void,
1746 .check_hw = efx_port_dummy_op_int,
1747 .fini = efx_port_dummy_op_void,
1748 .clear_interrupt = efx_port_dummy_op_void,
1749 };
1750
1751 static struct efx_board efx_dummy_board_info = {
1752 .init = efx_port_dummy_op_int,
1753 .init_leds = efx_port_dummy_op_int,
1754 .set_fault_led = efx_port_dummy_op_blink,
1755 .blink = efx_port_dummy_op_blink,
1756 .fini = efx_port_dummy_op_void,
1757 };
1758
1759 /**************************************************************************
1760 *
1761 * Data housekeeping
1762 *
1763 **************************************************************************/
1764
1765 /* This zeroes out and then fills in the invariants in a struct
1766 * efx_nic (including all sub-structures).
1767 */
1768 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1769 struct pci_dev *pci_dev, struct net_device *net_dev)
1770 {
1771 struct efx_channel *channel;
1772 struct efx_tx_queue *tx_queue;
1773 struct efx_rx_queue *rx_queue;
1774 int i, rc;
1775
1776 /* Initialise common structures */
1777 memset(efx, 0, sizeof(*efx));
1778 spin_lock_init(&efx->biu_lock);
1779 spin_lock_init(&efx->phy_lock);
1780 INIT_WORK(&efx->reset_work, efx_reset_work);
1781 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1782 efx->pci_dev = pci_dev;
1783 efx->state = STATE_INIT;
1784 efx->reset_pending = RESET_TYPE_NONE;
1785 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1786 efx->board_info = efx_dummy_board_info;
1787
1788 efx->net_dev = net_dev;
1789 efx->rx_checksum_enabled = true;
1790 spin_lock_init(&efx->netif_stop_lock);
1791 spin_lock_init(&efx->stats_lock);
1792 mutex_init(&efx->mac_lock);
1793 efx->phy_op = &efx_dummy_phy_operations;
1794 efx->mii.dev = net_dev;
1795 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1796 atomic_set(&efx->netif_stop_count, 1);
1797
1798 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1799 channel = &efx->channel[i];
1800 channel->efx = efx;
1801 channel->channel = i;
1802 channel->work_pending = false;
1803 }
1804 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1805 tx_queue = &efx->tx_queue[i];
1806 tx_queue->efx = efx;
1807 tx_queue->queue = i;
1808 tx_queue->buffer = NULL;
1809 tx_queue->channel = &efx->channel[0]; /* for safety */
1810 tx_queue->tso_headers_free = NULL;
1811 }
1812 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1813 rx_queue = &efx->rx_queue[i];
1814 rx_queue->efx = efx;
1815 rx_queue->queue = i;
1816 rx_queue->channel = &efx->channel[0]; /* for safety */
1817 rx_queue->buffer = NULL;
1818 spin_lock_init(&rx_queue->add_lock);
1819 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1820 }
1821
1822 efx->type = type;
1823
1824 /* Sanity-check NIC type */
1825 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1826 (efx->type->txd_ring_mask + 1));
1827 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1828 (efx->type->rxd_ring_mask + 1));
1829 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1830 (efx->type->evq_size - 1));
1831 /* As close as we can get to guaranteeing that we don't overflow */
1832 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1833 (efx->type->txd_ring_mask + 1 +
1834 efx->type->rxd_ring_mask + 1));
1835 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1836
1837 /* Higher numbered interrupt modes are less capable! */
1838 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1839 interrupt_mode);
1840
1841 efx->workqueue = create_singlethread_workqueue("sfc_work");
1842 if (!efx->workqueue) {
1843 rc = -ENOMEM;
1844 goto fail1;
1845 }
1846
1847 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1848 if (!efx->reset_workqueue) {
1849 rc = -ENOMEM;
1850 goto fail2;
1851 }
1852
1853 return 0;
1854
1855 fail2:
1856 destroy_workqueue(efx->workqueue);
1857 efx->workqueue = NULL;
1858
1859 fail1:
1860 return rc;
1861 }
1862
1863 static void efx_fini_struct(struct efx_nic *efx)
1864 {
1865 if (efx->reset_workqueue) {
1866 destroy_workqueue(efx->reset_workqueue);
1867 efx->reset_workqueue = NULL;
1868 }
1869 if (efx->workqueue) {
1870 destroy_workqueue(efx->workqueue);
1871 efx->workqueue = NULL;
1872 }
1873 }
1874
1875 /**************************************************************************
1876 *
1877 * PCI interface
1878 *
1879 **************************************************************************/
1880
1881 /* Main body of final NIC shutdown code
1882 * This is called only at module unload (or hotplug removal).
1883 */
1884 static void efx_pci_remove_main(struct efx_nic *efx)
1885 {
1886 EFX_ASSERT_RESET_SERIALISED(efx);
1887
1888 /* Skip everything if we never obtained a valid membase */
1889 if (!efx->membase)
1890 return;
1891
1892 efx_fini_channels(efx);
1893 efx_fini_port(efx);
1894
1895 /* Shutdown the board, then the NIC and board state */
1896 efx->board_info.fini(efx);
1897 falcon_fini_interrupt(efx);
1898
1899 efx_fini_napi(efx);
1900 efx_remove_all(efx);
1901 }
1902
1903 /* Final NIC shutdown
1904 * This is called only at module unload (or hotplug removal).
1905 */
1906 static void efx_pci_remove(struct pci_dev *pci_dev)
1907 {
1908 struct efx_nic *efx;
1909
1910 efx = pci_get_drvdata(pci_dev);
1911 if (!efx)
1912 return;
1913
1914 /* Mark the NIC as fini, then stop the interface */
1915 rtnl_lock();
1916 efx->state = STATE_FINI;
1917 dev_close(efx->net_dev);
1918
1919 /* Allow any queued efx_resets() to complete */
1920 rtnl_unlock();
1921
1922 if (efx->membase == NULL)
1923 goto out;
1924
1925 efx_unregister_netdev(efx);
1926
1927 /* Wait for any scheduled resets to complete. No more will be
1928 * scheduled from this point because efx_stop_all() has been
1929 * called, we are no longer registered with driverlink, and
1930 * the net_device's have been removed. */
1931 flush_workqueue(efx->reset_workqueue);
1932
1933 efx_pci_remove_main(efx);
1934
1935 out:
1936 efx_fini_io(efx);
1937 EFX_LOG(efx, "shutdown successful\n");
1938
1939 pci_set_drvdata(pci_dev, NULL);
1940 efx_fini_struct(efx);
1941 free_netdev(efx->net_dev);
1942 };
1943
1944 /* Main body of NIC initialisation
1945 * This is called at module load (or hotplug insertion, theoretically).
1946 */
1947 static int efx_pci_probe_main(struct efx_nic *efx)
1948 {
1949 int rc;
1950
1951 /* Do start-of-day initialisation */
1952 rc = efx_probe_all(efx);
1953 if (rc)
1954 goto fail1;
1955
1956 rc = efx_init_napi(efx);
1957 if (rc)
1958 goto fail2;
1959
1960 /* Initialise the board */
1961 rc = efx->board_info.init(efx);
1962 if (rc) {
1963 EFX_ERR(efx, "failed to initialise board\n");
1964 goto fail3;
1965 }
1966
1967 rc = falcon_init_nic(efx);
1968 if (rc) {
1969 EFX_ERR(efx, "failed to initialise NIC\n");
1970 goto fail4;
1971 }
1972
1973 rc = efx_init_port(efx);
1974 if (rc) {
1975 EFX_ERR(efx, "failed to initialise port\n");
1976 goto fail5;
1977 }
1978
1979 efx_init_channels(efx);
1980
1981 rc = falcon_init_interrupt(efx);
1982 if (rc)
1983 goto fail6;
1984
1985 return 0;
1986
1987 fail6:
1988 efx_fini_channels(efx);
1989 efx_fini_port(efx);
1990 fail5:
1991 fail4:
1992 fail3:
1993 efx_fini_napi(efx);
1994 fail2:
1995 efx_remove_all(efx);
1996 fail1:
1997 return rc;
1998 }
1999
2000 /* NIC initialisation
2001 *
2002 * This is called at module load (or hotplug insertion,
2003 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2004 * sets up and registers the network devices with the kernel and hooks
2005 * the interrupt service routine. It does not prepare the device for
2006 * transmission; this is left to the first time one of the network
2007 * interfaces is brought up (i.e. efx_net_open).
2008 */
2009 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2010 const struct pci_device_id *entry)
2011 {
2012 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2013 struct net_device *net_dev;
2014 struct efx_nic *efx;
2015 int i, rc;
2016
2017 /* Allocate and initialise a struct net_device and struct efx_nic */
2018 net_dev = alloc_etherdev(sizeof(*efx));
2019 if (!net_dev)
2020 return -ENOMEM;
2021 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2022 NETIF_F_HIGHDMA | NETIF_F_TSO);
2023 if (lro)
2024 net_dev->features |= NETIF_F_LRO;
2025 /* Mask for features that also apply to VLAN devices */
2026 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2027 NETIF_F_HIGHDMA | NETIF_F_TSO);
2028 efx = netdev_priv(net_dev);
2029 pci_set_drvdata(pci_dev, efx);
2030 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2031 if (rc)
2032 goto fail1;
2033
2034 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2035
2036 /* Set up basic I/O (BAR mappings etc) */
2037 rc = efx_init_io(efx);
2038 if (rc)
2039 goto fail2;
2040
2041 /* No serialisation is required with the reset path because
2042 * we're in STATE_INIT. */
2043 for (i = 0; i < 5; i++) {
2044 rc = efx_pci_probe_main(efx);
2045 if (rc == 0)
2046 break;
2047
2048 /* Serialise against efx_reset(). No more resets will be
2049 * scheduled since efx_stop_all() has been called, and we
2050 * have not and never have been registered with either
2051 * the rtnetlink or driverlink layers. */
2052 flush_workqueue(efx->reset_workqueue);
2053
2054 /* Retry if a recoverably reset event has been scheduled */
2055 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2056 (efx->reset_pending != RESET_TYPE_ALL))
2057 goto fail3;
2058
2059 efx->reset_pending = RESET_TYPE_NONE;
2060 }
2061
2062 if (rc) {
2063 EFX_ERR(efx, "Could not reset NIC\n");
2064 goto fail4;
2065 }
2066
2067 /* Switch to the running state before we expose the device to
2068 * the OS. This is to ensure that the initial gathering of
2069 * MAC stats succeeds. */
2070 rtnl_lock();
2071 efx->state = STATE_RUNNING;
2072 rtnl_unlock();
2073
2074 rc = efx_register_netdev(efx);
2075 if (rc)
2076 goto fail5;
2077
2078 EFX_LOG(efx, "initialisation successful\n");
2079
2080 return 0;
2081
2082 fail5:
2083 efx_pci_remove_main(efx);
2084 fail4:
2085 fail3:
2086 efx_fini_io(efx);
2087 fail2:
2088 efx_fini_struct(efx);
2089 fail1:
2090 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2091 free_netdev(net_dev);
2092 return rc;
2093 }
2094
2095 static struct pci_driver efx_pci_driver = {
2096 .name = EFX_DRIVER_NAME,
2097 .id_table = efx_pci_table,
2098 .probe = efx_pci_probe,
2099 .remove = efx_pci_remove,
2100 };
2101
2102 /**************************************************************************
2103 *
2104 * Kernel module interface
2105 *
2106 *************************************************************************/
2107
2108 module_param(interrupt_mode, uint, 0444);
2109 MODULE_PARM_DESC(interrupt_mode,
2110 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2111
2112 static int __init efx_init_module(void)
2113 {
2114 int rc;
2115
2116 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2117
2118 rc = register_netdevice_notifier(&efx_netdev_notifier);
2119 if (rc)
2120 goto err_notifier;
2121
2122 refill_workqueue = create_workqueue("sfc_refill");
2123 if (!refill_workqueue) {
2124 rc = -ENOMEM;
2125 goto err_refill;
2126 }
2127
2128 rc = pci_register_driver(&efx_pci_driver);
2129 if (rc < 0)
2130 goto err_pci;
2131
2132 return 0;
2133
2134 err_pci:
2135 destroy_workqueue(refill_workqueue);
2136 err_refill:
2137 unregister_netdevice_notifier(&efx_netdev_notifier);
2138 err_notifier:
2139 return rc;
2140 }
2141
2142 static void __exit efx_exit_module(void)
2143 {
2144 printk(KERN_INFO "Solarflare NET driver unloading\n");
2145
2146 pci_unregister_driver(&efx_pci_driver);
2147 destroy_workqueue(refill_workqueue);
2148 unregister_netdevice_notifier(&efx_netdev_notifier);
2149
2150 }
2151
2152 module_init(efx_init_module);
2153 module_exit(efx_exit_module);
2154
2155 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2156 "Solarflare Communications");
2157 MODULE_DESCRIPTION("Solarflare Communications network driver");
2158 MODULE_LICENSE("GPL");
2159 MODULE_DEVICE_TABLE(pci, efx_pci_table);