]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/sfc/efx.c
Merge branch 'x86-txt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30
31 #define EFX_MAX_MTU (9 * 1024)
32
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38 static struct workqueue_struct *refill_workqueue;
39
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44 static struct workqueue_struct *reset_workqueue;
45
46 /**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52 /*
53 * Use separate channels for TX and RX events
54 *
55 * Set this to 1 to use separate channels for TX and RX. It allows us
56 * to control interrupt affinity separately for TX and RX.
57 *
58 * This is only used in MSI-X interrupt mode
59 */
60 static unsigned int separate_tx_channels;
61 module_param(separate_tx_channels, uint, 0644);
62 MODULE_PARM_DESC(separate_tx_channels,
63 "Use separate channels for TX and RX");
64
65 /* This is the weight assigned to each of the (per-channel) virtual
66 * NAPI devices.
67 */
68 static int napi_weight = 64;
69
70 /* This is the time (in jiffies) between invocations of the hardware
71 * monitor, which checks for known hardware bugs and resets the
72 * hardware and driver as necessary.
73 */
74 unsigned int efx_monitor_interval = 1 * HZ;
75
76 /* This controls whether or not the driver will initialise devices
77 * with invalid MAC addresses stored in the EEPROM or flash. If true,
78 * such devices will be initialised with a random locally-generated
79 * MAC address. This allows for loading the sfc_mtd driver to
80 * reprogram the flash, even if the flash contents (including the MAC
81 * address) have previously been erased.
82 */
83 static unsigned int allow_bad_hwaddr;
84
85 /* Initial interrupt moderation settings. They can be modified after
86 * module load with ethtool.
87 *
88 * The default for RX should strike a balance between increasing the
89 * round-trip latency and reducing overhead.
90 */
91 static unsigned int rx_irq_mod_usec = 60;
92
93 /* Initial interrupt moderation settings. They can be modified after
94 * module load with ethtool.
95 *
96 * This default is chosen to ensure that a 10G link does not go idle
97 * while a TX queue is stopped after it has become full. A queue is
98 * restarted when it drops below half full. The time this takes (assuming
99 * worst case 3 descriptors per packet and 1024 descriptors) is
100 * 512 / 3 * 1.2 = 205 usec.
101 */
102 static unsigned int tx_irq_mod_usec = 150;
103
104 /* This is the first interrupt mode to try out of:
105 * 0 => MSI-X
106 * 1 => MSI
107 * 2 => legacy
108 */
109 static unsigned int interrupt_mode;
110
111 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
112 * i.e. the number of CPUs among which we may distribute simultaneous
113 * interrupt handling.
114 *
115 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
116 * The default (0) means to assign an interrupt to each package (level II cache)
117 */
118 static unsigned int rss_cpus;
119 module_param(rss_cpus, uint, 0444);
120 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
121
122 static int phy_flash_cfg;
123 module_param(phy_flash_cfg, int, 0644);
124 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
125
126 static unsigned irq_adapt_low_thresh = 10000;
127 module_param(irq_adapt_low_thresh, uint, 0644);
128 MODULE_PARM_DESC(irq_adapt_low_thresh,
129 "Threshold score for reducing IRQ moderation");
130
131 static unsigned irq_adapt_high_thresh = 20000;
132 module_param(irq_adapt_high_thresh, uint, 0644);
133 MODULE_PARM_DESC(irq_adapt_high_thresh,
134 "Threshold score for increasing IRQ moderation");
135
136 /**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
145
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
148 if (efx->state == STATE_RUNNING) \
149 ASSERT_RTNL(); \
150 } while (0)
151
152 /**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158 /* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
166 {
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
169
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
171 !channel->enabled))
172 return 0;
173
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
185 efx_rx_strategy(channel);
186
187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
188
189 return rx_packets;
190 }
191
192 /* Mark channel as finished processing
193 *
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
197 */
198 static inline void efx_channel_processed(struct efx_channel *channel)
199 {
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel->work_pending = false;
204 smp_wmb();
205
206 falcon_eventq_read_ack(channel);
207 }
208
209 /* NAPI poll handler
210 *
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
213 */
214 static int efx_poll(struct napi_struct *napi, int budget)
215 {
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
218 int rx_packets;
219
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
222
223 rx_packets = efx_process_channel(channel, budget);
224
225 if (rx_packets < budget) {
226 struct efx_nic *efx = channel->efx;
227
228 if (channel->used_flags & EFX_USED_BY_RX &&
229 efx->irq_rx_adaptive &&
230 unlikely(++channel->irq_count == 1000)) {
231 unsigned old_irq_moderation = channel->irq_moderation;
232
233 if (unlikely(channel->irq_mod_score <
234 irq_adapt_low_thresh)) {
235 channel->irq_moderation =
236 max_t(int,
237 channel->irq_moderation -
238 FALCON_IRQ_MOD_RESOLUTION,
239 FALCON_IRQ_MOD_RESOLUTION);
240 } else if (unlikely(channel->irq_mod_score >
241 irq_adapt_high_thresh)) {
242 channel->irq_moderation =
243 min(channel->irq_moderation +
244 FALCON_IRQ_MOD_RESOLUTION,
245 efx->irq_rx_moderation);
246 }
247
248 if (channel->irq_moderation != old_irq_moderation)
249 falcon_set_int_moderation(channel);
250
251 channel->irq_count = 0;
252 channel->irq_mod_score = 0;
253 }
254
255 /* There is no race here; although napi_disable() will
256 * only wait for napi_complete(), this isn't a problem
257 * since efx_channel_processed() will have no effect if
258 * interrupts have already been disabled.
259 */
260 napi_complete(napi);
261 efx_channel_processed(channel);
262 }
263
264 return rx_packets;
265 }
266
267 /* Process the eventq of the specified channel immediately on this CPU
268 *
269 * Disable hardware generated interrupts, wait for any existing
270 * processing to finish, then directly poll (and ack ) the eventq.
271 * Finally reenable NAPI and interrupts.
272 *
273 * Since we are touching interrupts the caller should hold the suspend lock
274 */
275 void efx_process_channel_now(struct efx_channel *channel)
276 {
277 struct efx_nic *efx = channel->efx;
278
279 BUG_ON(!channel->used_flags);
280 BUG_ON(!channel->enabled);
281
282 /* Disable interrupts and wait for ISRs to complete */
283 falcon_disable_interrupts(efx);
284 if (efx->legacy_irq)
285 synchronize_irq(efx->legacy_irq);
286 if (channel->irq)
287 synchronize_irq(channel->irq);
288
289 /* Wait for any NAPI processing to complete */
290 napi_disable(&channel->napi_str);
291
292 /* Poll the channel */
293 efx_process_channel(channel, efx->type->evq_size);
294
295 /* Ack the eventq. This may cause an interrupt to be generated
296 * when they are reenabled */
297 efx_channel_processed(channel);
298
299 napi_enable(&channel->napi_str);
300 falcon_enable_interrupts(efx);
301 }
302
303 /* Create event queue
304 * Event queue memory allocations are done only once. If the channel
305 * is reset, the memory buffer will be reused; this guards against
306 * errors during channel reset and also simplifies interrupt handling.
307 */
308 static int efx_probe_eventq(struct efx_channel *channel)
309 {
310 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
311
312 return falcon_probe_eventq(channel);
313 }
314
315 /* Prepare channel's event queue */
316 static void efx_init_eventq(struct efx_channel *channel)
317 {
318 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
319
320 channel->eventq_read_ptr = 0;
321
322 falcon_init_eventq(channel);
323 }
324
325 static void efx_fini_eventq(struct efx_channel *channel)
326 {
327 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
328
329 falcon_fini_eventq(channel);
330 }
331
332 static void efx_remove_eventq(struct efx_channel *channel)
333 {
334 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
335
336 falcon_remove_eventq(channel);
337 }
338
339 /**************************************************************************
340 *
341 * Channel handling
342 *
343 *************************************************************************/
344
345 static int efx_probe_channel(struct efx_channel *channel)
346 {
347 struct efx_tx_queue *tx_queue;
348 struct efx_rx_queue *rx_queue;
349 int rc;
350
351 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
352
353 rc = efx_probe_eventq(channel);
354 if (rc)
355 goto fail1;
356
357 efx_for_each_channel_tx_queue(tx_queue, channel) {
358 rc = efx_probe_tx_queue(tx_queue);
359 if (rc)
360 goto fail2;
361 }
362
363 efx_for_each_channel_rx_queue(rx_queue, channel) {
364 rc = efx_probe_rx_queue(rx_queue);
365 if (rc)
366 goto fail3;
367 }
368
369 channel->n_rx_frm_trunc = 0;
370
371 return 0;
372
373 fail3:
374 efx_for_each_channel_rx_queue(rx_queue, channel)
375 efx_remove_rx_queue(rx_queue);
376 fail2:
377 efx_for_each_channel_tx_queue(tx_queue, channel)
378 efx_remove_tx_queue(tx_queue);
379 fail1:
380 return rc;
381 }
382
383
384 static void efx_set_channel_names(struct efx_nic *efx)
385 {
386 struct efx_channel *channel;
387 const char *type = "";
388 int number;
389
390 efx_for_each_channel(channel, efx) {
391 number = channel->channel;
392 if (efx->n_channels > efx->n_rx_queues) {
393 if (channel->channel < efx->n_rx_queues) {
394 type = "-rx";
395 } else {
396 type = "-tx";
397 number -= efx->n_rx_queues;
398 }
399 }
400 snprintf(channel->name, sizeof(channel->name),
401 "%s%s-%d", efx->name, type, number);
402 }
403 }
404
405 /* Channels are shutdown and reinitialised whilst the NIC is running
406 * to propagate configuration changes (mtu, checksum offload), or
407 * to clear hardware error conditions
408 */
409 static void efx_init_channels(struct efx_nic *efx)
410 {
411 struct efx_tx_queue *tx_queue;
412 struct efx_rx_queue *rx_queue;
413 struct efx_channel *channel;
414
415 /* Calculate the rx buffer allocation parameters required to
416 * support the current MTU, including padding for header
417 * alignment and overruns.
418 */
419 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
420 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
421 efx->type->rx_buffer_padding);
422 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
423
424 /* Initialise the channels */
425 efx_for_each_channel(channel, efx) {
426 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
427
428 efx_init_eventq(channel);
429
430 efx_for_each_channel_tx_queue(tx_queue, channel)
431 efx_init_tx_queue(tx_queue);
432
433 /* The rx buffer allocation strategy is MTU dependent */
434 efx_rx_strategy(channel);
435
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_init_rx_queue(rx_queue);
438
439 WARN_ON(channel->rx_pkt != NULL);
440 efx_rx_strategy(channel);
441 }
442 }
443
444 /* This enables event queue processing and packet transmission.
445 *
446 * Note that this function is not allowed to fail, since that would
447 * introduce too much complexity into the suspend/resume path.
448 */
449 static void efx_start_channel(struct efx_channel *channel)
450 {
451 struct efx_rx_queue *rx_queue;
452
453 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
454
455 /* The interrupt handler for this channel may set work_pending
456 * as soon as we enable it. Make sure it's cleared before
457 * then. Similarly, make sure it sees the enabled flag set. */
458 channel->work_pending = false;
459 channel->enabled = true;
460 smp_wmb();
461
462 napi_enable(&channel->napi_str);
463
464 /* Load up RX descriptors */
465 efx_for_each_channel_rx_queue(rx_queue, channel)
466 efx_fast_push_rx_descriptors(rx_queue);
467 }
468
469 /* This disables event queue processing and packet transmission.
470 * This function does not guarantee that all queue processing
471 * (e.g. RX refill) is complete.
472 */
473 static void efx_stop_channel(struct efx_channel *channel)
474 {
475 struct efx_rx_queue *rx_queue;
476
477 if (!channel->enabled)
478 return;
479
480 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
481
482 channel->enabled = false;
483 napi_disable(&channel->napi_str);
484
485 /* Ensure that any worker threads have exited or will be no-ops */
486 efx_for_each_channel_rx_queue(rx_queue, channel) {
487 spin_lock_bh(&rx_queue->add_lock);
488 spin_unlock_bh(&rx_queue->add_lock);
489 }
490 }
491
492 static void efx_fini_channels(struct efx_nic *efx)
493 {
494 struct efx_channel *channel;
495 struct efx_tx_queue *tx_queue;
496 struct efx_rx_queue *rx_queue;
497 int rc;
498
499 EFX_ASSERT_RESET_SERIALISED(efx);
500 BUG_ON(efx->port_enabled);
501
502 rc = falcon_flush_queues(efx);
503 if (rc)
504 EFX_ERR(efx, "failed to flush queues\n");
505 else
506 EFX_LOG(efx, "successfully flushed all queues\n");
507
508 efx_for_each_channel(channel, efx) {
509 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
510
511 efx_for_each_channel_rx_queue(rx_queue, channel)
512 efx_fini_rx_queue(rx_queue);
513 efx_for_each_channel_tx_queue(tx_queue, channel)
514 efx_fini_tx_queue(tx_queue);
515 efx_fini_eventq(channel);
516 }
517 }
518
519 static void efx_remove_channel(struct efx_channel *channel)
520 {
521 struct efx_tx_queue *tx_queue;
522 struct efx_rx_queue *rx_queue;
523
524 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
525
526 efx_for_each_channel_rx_queue(rx_queue, channel)
527 efx_remove_rx_queue(rx_queue);
528 efx_for_each_channel_tx_queue(tx_queue, channel)
529 efx_remove_tx_queue(tx_queue);
530 efx_remove_eventq(channel);
531
532 channel->used_flags = 0;
533 }
534
535 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
536 {
537 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
538 }
539
540 /**************************************************************************
541 *
542 * Port handling
543 *
544 **************************************************************************/
545
546 /* This ensures that the kernel is kept informed (via
547 * netif_carrier_on/off) of the link status, and also maintains the
548 * link status's stop on the port's TX queue.
549 */
550 static void efx_link_status_changed(struct efx_nic *efx)
551 {
552 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
553 * that no events are triggered between unregister_netdev() and the
554 * driver unloading. A more general condition is that NETDEV_CHANGE
555 * can only be generated between NETDEV_UP and NETDEV_DOWN */
556 if (!netif_running(efx->net_dev))
557 return;
558
559 if (efx->port_inhibited) {
560 netif_carrier_off(efx->net_dev);
561 return;
562 }
563
564 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
565 efx->n_link_state_changes++;
566
567 if (efx->link_up)
568 netif_carrier_on(efx->net_dev);
569 else
570 netif_carrier_off(efx->net_dev);
571 }
572
573 /* Status message for kernel log */
574 if (efx->link_up) {
575 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
576 efx->link_speed, efx->link_fd ? "full" : "half",
577 efx->net_dev->mtu,
578 (efx->promiscuous ? " [PROMISC]" : ""));
579 } else {
580 EFX_INFO(efx, "link down\n");
581 }
582
583 }
584
585 static void efx_fini_port(struct efx_nic *efx);
586
587 /* This call reinitialises the MAC to pick up new PHY settings. The
588 * caller must hold the mac_lock */
589 void __efx_reconfigure_port(struct efx_nic *efx)
590 {
591 WARN_ON(!mutex_is_locked(&efx->mac_lock));
592
593 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
594 raw_smp_processor_id());
595
596 /* Serialise the promiscuous flag with efx_set_multicast_list. */
597 if (efx_dev_registered(efx)) {
598 netif_addr_lock_bh(efx->net_dev);
599 netif_addr_unlock_bh(efx->net_dev);
600 }
601
602 falcon_deconfigure_mac_wrapper(efx);
603
604 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
605 if (LOOPBACK_INTERNAL(efx))
606 efx->phy_mode |= PHY_MODE_TX_DISABLED;
607 else
608 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
609 efx->phy_op->reconfigure(efx);
610
611 if (falcon_switch_mac(efx))
612 goto fail;
613
614 efx->mac_op->reconfigure(efx);
615
616 /* Inform kernel of loss/gain of carrier */
617 efx_link_status_changed(efx);
618 return;
619
620 fail:
621 EFX_ERR(efx, "failed to reconfigure MAC\n");
622 efx->port_enabled = false;
623 efx_fini_port(efx);
624 }
625
626 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
627 * disabled. */
628 void efx_reconfigure_port(struct efx_nic *efx)
629 {
630 EFX_ASSERT_RESET_SERIALISED(efx);
631
632 mutex_lock(&efx->mac_lock);
633 __efx_reconfigure_port(efx);
634 mutex_unlock(&efx->mac_lock);
635 }
636
637 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
638 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
639 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
640 static void efx_phy_work(struct work_struct *data)
641 {
642 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
643
644 mutex_lock(&efx->mac_lock);
645 if (efx->port_enabled)
646 __efx_reconfigure_port(efx);
647 mutex_unlock(&efx->mac_lock);
648 }
649
650 static void efx_mac_work(struct work_struct *data)
651 {
652 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
653
654 mutex_lock(&efx->mac_lock);
655 if (efx->port_enabled)
656 efx->mac_op->irq(efx);
657 mutex_unlock(&efx->mac_lock);
658 }
659
660 static int efx_probe_port(struct efx_nic *efx)
661 {
662 int rc;
663
664 EFX_LOG(efx, "create port\n");
665
666 /* Connect up MAC/PHY operations table and read MAC address */
667 rc = falcon_probe_port(efx);
668 if (rc)
669 goto err;
670
671 if (phy_flash_cfg)
672 efx->phy_mode = PHY_MODE_SPECIAL;
673
674 /* Sanity check MAC address */
675 if (is_valid_ether_addr(efx->mac_address)) {
676 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
677 } else {
678 EFX_ERR(efx, "invalid MAC address %pM\n",
679 efx->mac_address);
680 if (!allow_bad_hwaddr) {
681 rc = -EINVAL;
682 goto err;
683 }
684 random_ether_addr(efx->net_dev->dev_addr);
685 EFX_INFO(efx, "using locally-generated MAC %pM\n",
686 efx->net_dev->dev_addr);
687 }
688
689 return 0;
690
691 err:
692 efx_remove_port(efx);
693 return rc;
694 }
695
696 static int efx_init_port(struct efx_nic *efx)
697 {
698 int rc;
699
700 EFX_LOG(efx, "init port\n");
701
702 rc = efx->phy_op->init(efx);
703 if (rc)
704 return rc;
705 mutex_lock(&efx->mac_lock);
706 efx->phy_op->reconfigure(efx);
707 rc = falcon_switch_mac(efx);
708 mutex_unlock(&efx->mac_lock);
709 if (rc)
710 goto fail;
711 efx->mac_op->reconfigure(efx);
712
713 efx->port_initialized = true;
714 efx_stats_enable(efx);
715 return 0;
716
717 fail:
718 efx->phy_op->fini(efx);
719 return rc;
720 }
721
722 /* Allow efx_reconfigure_port() to be scheduled, and close the window
723 * between efx_stop_port and efx_flush_all whereby a previously scheduled
724 * efx_phy_work()/efx_mac_work() may have been cancelled */
725 static void efx_start_port(struct efx_nic *efx)
726 {
727 EFX_LOG(efx, "start port\n");
728 BUG_ON(efx->port_enabled);
729
730 mutex_lock(&efx->mac_lock);
731 efx->port_enabled = true;
732 __efx_reconfigure_port(efx);
733 efx->mac_op->irq(efx);
734 mutex_unlock(&efx->mac_lock);
735 }
736
737 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
738 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
739 * and efx_mac_work may still be scheduled via NAPI processing until
740 * efx_flush_all() is called */
741 static void efx_stop_port(struct efx_nic *efx)
742 {
743 EFX_LOG(efx, "stop port\n");
744
745 mutex_lock(&efx->mac_lock);
746 efx->port_enabled = false;
747 mutex_unlock(&efx->mac_lock);
748
749 /* Serialise against efx_set_multicast_list() */
750 if (efx_dev_registered(efx)) {
751 netif_addr_lock_bh(efx->net_dev);
752 netif_addr_unlock_bh(efx->net_dev);
753 }
754 }
755
756 static void efx_fini_port(struct efx_nic *efx)
757 {
758 EFX_LOG(efx, "shut down port\n");
759
760 if (!efx->port_initialized)
761 return;
762
763 efx_stats_disable(efx);
764 efx->phy_op->fini(efx);
765 efx->port_initialized = false;
766
767 efx->link_up = false;
768 efx_link_status_changed(efx);
769 }
770
771 static void efx_remove_port(struct efx_nic *efx)
772 {
773 EFX_LOG(efx, "destroying port\n");
774
775 falcon_remove_port(efx);
776 }
777
778 /**************************************************************************
779 *
780 * NIC handling
781 *
782 **************************************************************************/
783
784 /* This configures the PCI device to enable I/O and DMA. */
785 static int efx_init_io(struct efx_nic *efx)
786 {
787 struct pci_dev *pci_dev = efx->pci_dev;
788 dma_addr_t dma_mask = efx->type->max_dma_mask;
789 int rc;
790
791 EFX_LOG(efx, "initialising I/O\n");
792
793 rc = pci_enable_device(pci_dev);
794 if (rc) {
795 EFX_ERR(efx, "failed to enable PCI device\n");
796 goto fail1;
797 }
798
799 pci_set_master(pci_dev);
800
801 /* Set the PCI DMA mask. Try all possibilities from our
802 * genuine mask down to 32 bits, because some architectures
803 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
804 * masks event though they reject 46 bit masks.
805 */
806 while (dma_mask > 0x7fffffffUL) {
807 if (pci_dma_supported(pci_dev, dma_mask) &&
808 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
809 break;
810 dma_mask >>= 1;
811 }
812 if (rc) {
813 EFX_ERR(efx, "could not find a suitable DMA mask\n");
814 goto fail2;
815 }
816 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
817 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
818 if (rc) {
819 /* pci_set_consistent_dma_mask() is not *allowed* to
820 * fail with a mask that pci_set_dma_mask() accepted,
821 * but just in case...
822 */
823 EFX_ERR(efx, "failed to set consistent DMA mask\n");
824 goto fail2;
825 }
826
827 efx->membase_phys = pci_resource_start(efx->pci_dev,
828 efx->type->mem_bar);
829 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
830 if (rc) {
831 EFX_ERR(efx, "request for memory BAR failed\n");
832 rc = -EIO;
833 goto fail3;
834 }
835 efx->membase = ioremap_nocache(efx->membase_phys,
836 efx->type->mem_map_size);
837 if (!efx->membase) {
838 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
839 efx->type->mem_bar,
840 (unsigned long long)efx->membase_phys,
841 efx->type->mem_map_size);
842 rc = -ENOMEM;
843 goto fail4;
844 }
845 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
846 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
847 efx->type->mem_map_size, efx->membase);
848
849 return 0;
850
851 fail4:
852 pci_release_region(efx->pci_dev, efx->type->mem_bar);
853 fail3:
854 efx->membase_phys = 0;
855 fail2:
856 pci_disable_device(efx->pci_dev);
857 fail1:
858 return rc;
859 }
860
861 static void efx_fini_io(struct efx_nic *efx)
862 {
863 EFX_LOG(efx, "shutting down I/O\n");
864
865 if (efx->membase) {
866 iounmap(efx->membase);
867 efx->membase = NULL;
868 }
869
870 if (efx->membase_phys) {
871 pci_release_region(efx->pci_dev, efx->type->mem_bar);
872 efx->membase_phys = 0;
873 }
874
875 pci_disable_device(efx->pci_dev);
876 }
877
878 /* Get number of RX queues wanted. Return number of online CPU
879 * packages in the expectation that an IRQ balancer will spread
880 * interrupts across them. */
881 static int efx_wanted_rx_queues(void)
882 {
883 cpumask_var_t core_mask;
884 int count;
885 int cpu;
886
887 if (unlikely(!alloc_cpumask_var(&core_mask, GFP_KERNEL))) {
888 printk(KERN_WARNING
889 "sfc: RSS disabled due to allocation failure\n");
890 return 1;
891 }
892
893 cpumask_clear(core_mask);
894 count = 0;
895 for_each_online_cpu(cpu) {
896 if (!cpumask_test_cpu(cpu, core_mask)) {
897 ++count;
898 cpumask_or(core_mask, core_mask,
899 topology_core_cpumask(cpu));
900 }
901 }
902
903 free_cpumask_var(core_mask);
904 return count;
905 }
906
907 /* Probe the number and type of interrupts we are able to obtain, and
908 * the resulting numbers of channels and RX queues.
909 */
910 static void efx_probe_interrupts(struct efx_nic *efx)
911 {
912 int max_channels =
913 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
914 int rc, i;
915
916 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
917 struct msix_entry xentries[EFX_MAX_CHANNELS];
918 int wanted_ints;
919 int rx_queues;
920
921 /* We want one RX queue and interrupt per CPU package
922 * (or as specified by the rss_cpus module parameter).
923 * We will need one channel per interrupt.
924 */
925 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
926 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
927 wanted_ints = min(wanted_ints, max_channels);
928
929 for (i = 0; i < wanted_ints; i++)
930 xentries[i].entry = i;
931 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
932 if (rc > 0) {
933 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
934 " available (%d < %d).\n", rc, wanted_ints);
935 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
936 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
937 wanted_ints = rc;
938 rc = pci_enable_msix(efx->pci_dev, xentries,
939 wanted_ints);
940 }
941
942 if (rc == 0) {
943 efx->n_rx_queues = min(rx_queues, wanted_ints);
944 efx->n_channels = wanted_ints;
945 for (i = 0; i < wanted_ints; i++)
946 efx->channel[i].irq = xentries[i].vector;
947 } else {
948 /* Fall back to single channel MSI */
949 efx->interrupt_mode = EFX_INT_MODE_MSI;
950 EFX_ERR(efx, "could not enable MSI-X\n");
951 }
952 }
953
954 /* Try single interrupt MSI */
955 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
956 efx->n_rx_queues = 1;
957 efx->n_channels = 1;
958 rc = pci_enable_msi(efx->pci_dev);
959 if (rc == 0) {
960 efx->channel[0].irq = efx->pci_dev->irq;
961 } else {
962 EFX_ERR(efx, "could not enable MSI\n");
963 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
964 }
965 }
966
967 /* Assume legacy interrupts */
968 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
969 efx->n_rx_queues = 1;
970 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
971 efx->legacy_irq = efx->pci_dev->irq;
972 }
973 }
974
975 static void efx_remove_interrupts(struct efx_nic *efx)
976 {
977 struct efx_channel *channel;
978
979 /* Remove MSI/MSI-X interrupts */
980 efx_for_each_channel(channel, efx)
981 channel->irq = 0;
982 pci_disable_msi(efx->pci_dev);
983 pci_disable_msix(efx->pci_dev);
984
985 /* Remove legacy interrupt */
986 efx->legacy_irq = 0;
987 }
988
989 static void efx_set_channels(struct efx_nic *efx)
990 {
991 struct efx_tx_queue *tx_queue;
992 struct efx_rx_queue *rx_queue;
993
994 efx_for_each_tx_queue(tx_queue, efx) {
995 if (separate_tx_channels)
996 tx_queue->channel = &efx->channel[efx->n_channels-1];
997 else
998 tx_queue->channel = &efx->channel[0];
999 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1000 }
1001
1002 efx_for_each_rx_queue(rx_queue, efx) {
1003 rx_queue->channel = &efx->channel[rx_queue->queue];
1004 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1005 }
1006 }
1007
1008 static int efx_probe_nic(struct efx_nic *efx)
1009 {
1010 int rc;
1011
1012 EFX_LOG(efx, "creating NIC\n");
1013
1014 /* Carry out hardware-type specific initialisation */
1015 rc = falcon_probe_nic(efx);
1016 if (rc)
1017 return rc;
1018
1019 /* Determine the number of channels and RX queues by trying to hook
1020 * in MSI-X interrupts. */
1021 efx_probe_interrupts(efx);
1022
1023 efx_set_channels(efx);
1024
1025 /* Initialise the interrupt moderation settings */
1026 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1027
1028 return 0;
1029 }
1030
1031 static void efx_remove_nic(struct efx_nic *efx)
1032 {
1033 EFX_LOG(efx, "destroying NIC\n");
1034
1035 efx_remove_interrupts(efx);
1036 falcon_remove_nic(efx);
1037 }
1038
1039 /**************************************************************************
1040 *
1041 * NIC startup/shutdown
1042 *
1043 *************************************************************************/
1044
1045 static int efx_probe_all(struct efx_nic *efx)
1046 {
1047 struct efx_channel *channel;
1048 int rc;
1049
1050 /* Create NIC */
1051 rc = efx_probe_nic(efx);
1052 if (rc) {
1053 EFX_ERR(efx, "failed to create NIC\n");
1054 goto fail1;
1055 }
1056
1057 /* Create port */
1058 rc = efx_probe_port(efx);
1059 if (rc) {
1060 EFX_ERR(efx, "failed to create port\n");
1061 goto fail2;
1062 }
1063
1064 /* Create channels */
1065 efx_for_each_channel(channel, efx) {
1066 rc = efx_probe_channel(channel);
1067 if (rc) {
1068 EFX_ERR(efx, "failed to create channel %d\n",
1069 channel->channel);
1070 goto fail3;
1071 }
1072 }
1073 efx_set_channel_names(efx);
1074
1075 return 0;
1076
1077 fail3:
1078 efx_for_each_channel(channel, efx)
1079 efx_remove_channel(channel);
1080 efx_remove_port(efx);
1081 fail2:
1082 efx_remove_nic(efx);
1083 fail1:
1084 return rc;
1085 }
1086
1087 /* Called after previous invocation(s) of efx_stop_all, restarts the
1088 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1089 * and ensures that the port is scheduled to be reconfigured.
1090 * This function is safe to call multiple times when the NIC is in any
1091 * state. */
1092 static void efx_start_all(struct efx_nic *efx)
1093 {
1094 struct efx_channel *channel;
1095
1096 EFX_ASSERT_RESET_SERIALISED(efx);
1097
1098 /* Check that it is appropriate to restart the interface. All
1099 * of these flags are safe to read under just the rtnl lock */
1100 if (efx->port_enabled)
1101 return;
1102 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1103 return;
1104 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1105 return;
1106
1107 /* Mark the port as enabled so port reconfigurations can start, then
1108 * restart the transmit interface early so the watchdog timer stops */
1109 efx_start_port(efx);
1110 if (efx_dev_registered(efx))
1111 efx_wake_queue(efx);
1112
1113 efx_for_each_channel(channel, efx)
1114 efx_start_channel(channel);
1115
1116 falcon_enable_interrupts(efx);
1117
1118 /* Start hardware monitor if we're in RUNNING */
1119 if (efx->state == STATE_RUNNING)
1120 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1121 efx_monitor_interval);
1122 }
1123
1124 /* Flush all delayed work. Should only be called when no more delayed work
1125 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1126 * since we're holding the rtnl_lock at this point. */
1127 static void efx_flush_all(struct efx_nic *efx)
1128 {
1129 struct efx_rx_queue *rx_queue;
1130
1131 /* Make sure the hardware monitor is stopped */
1132 cancel_delayed_work_sync(&efx->monitor_work);
1133
1134 /* Ensure that all RX slow refills are complete. */
1135 efx_for_each_rx_queue(rx_queue, efx)
1136 cancel_delayed_work_sync(&rx_queue->work);
1137
1138 /* Stop scheduled port reconfigurations */
1139 cancel_work_sync(&efx->mac_work);
1140 cancel_work_sync(&efx->phy_work);
1141
1142 }
1143
1144 /* Quiesce hardware and software without bringing the link down.
1145 * Safe to call multiple times, when the nic and interface is in any
1146 * state. The caller is guaranteed to subsequently be in a position
1147 * to modify any hardware and software state they see fit without
1148 * taking locks. */
1149 static void efx_stop_all(struct efx_nic *efx)
1150 {
1151 struct efx_channel *channel;
1152
1153 EFX_ASSERT_RESET_SERIALISED(efx);
1154
1155 /* port_enabled can be read safely under the rtnl lock */
1156 if (!efx->port_enabled)
1157 return;
1158
1159 /* Disable interrupts and wait for ISR to complete */
1160 falcon_disable_interrupts(efx);
1161 if (efx->legacy_irq)
1162 synchronize_irq(efx->legacy_irq);
1163 efx_for_each_channel(channel, efx) {
1164 if (channel->irq)
1165 synchronize_irq(channel->irq);
1166 }
1167
1168 /* Stop all NAPI processing and synchronous rx refills */
1169 efx_for_each_channel(channel, efx)
1170 efx_stop_channel(channel);
1171
1172 /* Stop all asynchronous port reconfigurations. Since all
1173 * event processing has already been stopped, there is no
1174 * window to loose phy events */
1175 efx_stop_port(efx);
1176
1177 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1178 efx_flush_all(efx);
1179
1180 /* Isolate the MAC from the TX and RX engines, so that queue
1181 * flushes will complete in a timely fashion. */
1182 falcon_deconfigure_mac_wrapper(efx);
1183 msleep(10); /* Let the Rx FIFO drain */
1184 falcon_drain_tx_fifo(efx);
1185
1186 /* Stop the kernel transmit interface late, so the watchdog
1187 * timer isn't ticking over the flush */
1188 if (efx_dev_registered(efx)) {
1189 efx_stop_queue(efx);
1190 netif_tx_lock_bh(efx->net_dev);
1191 netif_tx_unlock_bh(efx->net_dev);
1192 }
1193 }
1194
1195 static void efx_remove_all(struct efx_nic *efx)
1196 {
1197 struct efx_channel *channel;
1198
1199 efx_for_each_channel(channel, efx)
1200 efx_remove_channel(channel);
1201 efx_remove_port(efx);
1202 efx_remove_nic(efx);
1203 }
1204
1205 /* A convinience function to safely flush all the queues */
1206 void efx_flush_queues(struct efx_nic *efx)
1207 {
1208 EFX_ASSERT_RESET_SERIALISED(efx);
1209
1210 efx_stop_all(efx);
1211
1212 efx_fini_channels(efx);
1213 efx_init_channels(efx);
1214
1215 efx_start_all(efx);
1216 }
1217
1218 /**************************************************************************
1219 *
1220 * Interrupt moderation
1221 *
1222 **************************************************************************/
1223
1224 /* Set interrupt moderation parameters */
1225 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1226 bool rx_adaptive)
1227 {
1228 struct efx_tx_queue *tx_queue;
1229 struct efx_rx_queue *rx_queue;
1230
1231 EFX_ASSERT_RESET_SERIALISED(efx);
1232
1233 efx_for_each_tx_queue(tx_queue, efx)
1234 tx_queue->channel->irq_moderation = tx_usecs;
1235
1236 efx->irq_rx_adaptive = rx_adaptive;
1237 efx->irq_rx_moderation = rx_usecs;
1238 efx_for_each_rx_queue(rx_queue, efx)
1239 rx_queue->channel->irq_moderation = rx_usecs;
1240 }
1241
1242 /**************************************************************************
1243 *
1244 * Hardware monitor
1245 *
1246 **************************************************************************/
1247
1248 /* Run periodically off the general workqueue. Serialised against
1249 * efx_reconfigure_port via the mac_lock */
1250 static void efx_monitor(struct work_struct *data)
1251 {
1252 struct efx_nic *efx = container_of(data, struct efx_nic,
1253 monitor_work.work);
1254 int rc;
1255
1256 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1257 raw_smp_processor_id());
1258
1259 /* If the mac_lock is already held then it is likely a port
1260 * reconfiguration is already in place, which will likely do
1261 * most of the work of check_hw() anyway. */
1262 if (!mutex_trylock(&efx->mac_lock))
1263 goto out_requeue;
1264 if (!efx->port_enabled)
1265 goto out_unlock;
1266 rc = efx->board_info.monitor(efx);
1267 if (rc) {
1268 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1269 (rc == -ERANGE) ? "reported fault" : "failed");
1270 efx->phy_mode |= PHY_MODE_LOW_POWER;
1271 falcon_sim_phy_event(efx);
1272 }
1273 efx->phy_op->poll(efx);
1274 efx->mac_op->poll(efx);
1275
1276 out_unlock:
1277 mutex_unlock(&efx->mac_lock);
1278 out_requeue:
1279 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1280 efx_monitor_interval);
1281 }
1282
1283 /**************************************************************************
1284 *
1285 * ioctls
1286 *
1287 *************************************************************************/
1288
1289 /* Net device ioctl
1290 * Context: process, rtnl_lock() held.
1291 */
1292 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1293 {
1294 struct efx_nic *efx = netdev_priv(net_dev);
1295 struct mii_ioctl_data *data = if_mii(ifr);
1296
1297 EFX_ASSERT_RESET_SERIALISED(efx);
1298
1299 /* Convert phy_id from older PRTAD/DEVAD format */
1300 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1301 (data->phy_id & 0xfc00) == 0x0400)
1302 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1303
1304 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1305 }
1306
1307 /**************************************************************************
1308 *
1309 * NAPI interface
1310 *
1311 **************************************************************************/
1312
1313 static int efx_init_napi(struct efx_nic *efx)
1314 {
1315 struct efx_channel *channel;
1316
1317 efx_for_each_channel(channel, efx) {
1318 channel->napi_dev = efx->net_dev;
1319 netif_napi_add(channel->napi_dev, &channel->napi_str,
1320 efx_poll, napi_weight);
1321 }
1322 return 0;
1323 }
1324
1325 static void efx_fini_napi(struct efx_nic *efx)
1326 {
1327 struct efx_channel *channel;
1328
1329 efx_for_each_channel(channel, efx) {
1330 if (channel->napi_dev)
1331 netif_napi_del(&channel->napi_str);
1332 channel->napi_dev = NULL;
1333 }
1334 }
1335
1336 /**************************************************************************
1337 *
1338 * Kernel netpoll interface
1339 *
1340 *************************************************************************/
1341
1342 #ifdef CONFIG_NET_POLL_CONTROLLER
1343
1344 /* Although in the common case interrupts will be disabled, this is not
1345 * guaranteed. However, all our work happens inside the NAPI callback,
1346 * so no locking is required.
1347 */
1348 static void efx_netpoll(struct net_device *net_dev)
1349 {
1350 struct efx_nic *efx = netdev_priv(net_dev);
1351 struct efx_channel *channel;
1352
1353 efx_for_each_channel(channel, efx)
1354 efx_schedule_channel(channel);
1355 }
1356
1357 #endif
1358
1359 /**************************************************************************
1360 *
1361 * Kernel net device interface
1362 *
1363 *************************************************************************/
1364
1365 /* Context: process, rtnl_lock() held. */
1366 static int efx_net_open(struct net_device *net_dev)
1367 {
1368 struct efx_nic *efx = netdev_priv(net_dev);
1369 EFX_ASSERT_RESET_SERIALISED(efx);
1370
1371 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1372 raw_smp_processor_id());
1373
1374 if (efx->state == STATE_DISABLED)
1375 return -EIO;
1376 if (efx->phy_mode & PHY_MODE_SPECIAL)
1377 return -EBUSY;
1378
1379 efx_start_all(efx);
1380 return 0;
1381 }
1382
1383 /* Context: process, rtnl_lock() held.
1384 * Note that the kernel will ignore our return code; this method
1385 * should really be a void.
1386 */
1387 static int efx_net_stop(struct net_device *net_dev)
1388 {
1389 struct efx_nic *efx = netdev_priv(net_dev);
1390
1391 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1392 raw_smp_processor_id());
1393
1394 if (efx->state != STATE_DISABLED) {
1395 /* Stop the device and flush all the channels */
1396 efx_stop_all(efx);
1397 efx_fini_channels(efx);
1398 efx_init_channels(efx);
1399 }
1400
1401 return 0;
1402 }
1403
1404 void efx_stats_disable(struct efx_nic *efx)
1405 {
1406 spin_lock(&efx->stats_lock);
1407 ++efx->stats_disable_count;
1408 spin_unlock(&efx->stats_lock);
1409 }
1410
1411 void efx_stats_enable(struct efx_nic *efx)
1412 {
1413 spin_lock(&efx->stats_lock);
1414 --efx->stats_disable_count;
1415 spin_unlock(&efx->stats_lock);
1416 }
1417
1418 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1419 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1420 {
1421 struct efx_nic *efx = netdev_priv(net_dev);
1422 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1423 struct net_device_stats *stats = &net_dev->stats;
1424
1425 /* Update stats if possible, but do not wait if another thread
1426 * is updating them or if MAC stats fetches are temporarily
1427 * disabled; slightly stale stats are acceptable.
1428 */
1429 if (!spin_trylock(&efx->stats_lock))
1430 return stats;
1431 if (!efx->stats_disable_count) {
1432 efx->mac_op->update_stats(efx);
1433 falcon_update_nic_stats(efx);
1434 }
1435 spin_unlock(&efx->stats_lock);
1436
1437 stats->rx_packets = mac_stats->rx_packets;
1438 stats->tx_packets = mac_stats->tx_packets;
1439 stats->rx_bytes = mac_stats->rx_bytes;
1440 stats->tx_bytes = mac_stats->tx_bytes;
1441 stats->multicast = mac_stats->rx_multicast;
1442 stats->collisions = mac_stats->tx_collision;
1443 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1444 mac_stats->rx_length_error);
1445 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1446 stats->rx_crc_errors = mac_stats->rx_bad;
1447 stats->rx_frame_errors = mac_stats->rx_align_error;
1448 stats->rx_fifo_errors = mac_stats->rx_overflow;
1449 stats->rx_missed_errors = mac_stats->rx_missed;
1450 stats->tx_window_errors = mac_stats->tx_late_collision;
1451
1452 stats->rx_errors = (stats->rx_length_errors +
1453 stats->rx_over_errors +
1454 stats->rx_crc_errors +
1455 stats->rx_frame_errors +
1456 stats->rx_fifo_errors +
1457 stats->rx_missed_errors +
1458 mac_stats->rx_symbol_error);
1459 stats->tx_errors = (stats->tx_window_errors +
1460 mac_stats->tx_bad);
1461
1462 return stats;
1463 }
1464
1465 /* Context: netif_tx_lock held, BHs disabled. */
1466 static void efx_watchdog(struct net_device *net_dev)
1467 {
1468 struct efx_nic *efx = netdev_priv(net_dev);
1469
1470 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1471 " resetting channels\n",
1472 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1473
1474 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1475 }
1476
1477
1478 /* Context: process, rtnl_lock() held. */
1479 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1480 {
1481 struct efx_nic *efx = netdev_priv(net_dev);
1482 int rc = 0;
1483
1484 EFX_ASSERT_RESET_SERIALISED(efx);
1485
1486 if (new_mtu > EFX_MAX_MTU)
1487 return -EINVAL;
1488
1489 efx_stop_all(efx);
1490
1491 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1492
1493 efx_fini_channels(efx);
1494 net_dev->mtu = new_mtu;
1495 efx_init_channels(efx);
1496
1497 efx_start_all(efx);
1498 return rc;
1499 }
1500
1501 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1502 {
1503 struct efx_nic *efx = netdev_priv(net_dev);
1504 struct sockaddr *addr = data;
1505 char *new_addr = addr->sa_data;
1506
1507 EFX_ASSERT_RESET_SERIALISED(efx);
1508
1509 if (!is_valid_ether_addr(new_addr)) {
1510 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1511 new_addr);
1512 return -EINVAL;
1513 }
1514
1515 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1516
1517 /* Reconfigure the MAC */
1518 efx_reconfigure_port(efx);
1519
1520 return 0;
1521 }
1522
1523 /* Context: netif_addr_lock held, BHs disabled. */
1524 static void efx_set_multicast_list(struct net_device *net_dev)
1525 {
1526 struct efx_nic *efx = netdev_priv(net_dev);
1527 struct dev_mc_list *mc_list = net_dev->mc_list;
1528 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1529 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1530 bool changed = (efx->promiscuous != promiscuous);
1531 u32 crc;
1532 int bit;
1533 int i;
1534
1535 efx->promiscuous = promiscuous;
1536
1537 /* Build multicast hash table */
1538 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1539 memset(mc_hash, 0xff, sizeof(*mc_hash));
1540 } else {
1541 memset(mc_hash, 0x00, sizeof(*mc_hash));
1542 for (i = 0; i < net_dev->mc_count; i++) {
1543 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1544 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1545 set_bit_le(bit, mc_hash->byte);
1546 mc_list = mc_list->next;
1547 }
1548 }
1549
1550 if (!efx->port_enabled)
1551 /* Delay pushing settings until efx_start_port() */
1552 return;
1553
1554 if (changed)
1555 queue_work(efx->workqueue, &efx->phy_work);
1556
1557 /* Create and activate new global multicast hash table */
1558 falcon_set_multicast_hash(efx);
1559 }
1560
1561 static const struct net_device_ops efx_netdev_ops = {
1562 .ndo_open = efx_net_open,
1563 .ndo_stop = efx_net_stop,
1564 .ndo_get_stats = efx_net_stats,
1565 .ndo_tx_timeout = efx_watchdog,
1566 .ndo_start_xmit = efx_hard_start_xmit,
1567 .ndo_validate_addr = eth_validate_addr,
1568 .ndo_do_ioctl = efx_ioctl,
1569 .ndo_change_mtu = efx_change_mtu,
1570 .ndo_set_mac_address = efx_set_mac_address,
1571 .ndo_set_multicast_list = efx_set_multicast_list,
1572 #ifdef CONFIG_NET_POLL_CONTROLLER
1573 .ndo_poll_controller = efx_netpoll,
1574 #endif
1575 };
1576
1577 static void efx_update_name(struct efx_nic *efx)
1578 {
1579 strcpy(efx->name, efx->net_dev->name);
1580 efx_mtd_rename(efx);
1581 efx_set_channel_names(efx);
1582 }
1583
1584 static int efx_netdev_event(struct notifier_block *this,
1585 unsigned long event, void *ptr)
1586 {
1587 struct net_device *net_dev = ptr;
1588
1589 if (net_dev->netdev_ops == &efx_netdev_ops &&
1590 event == NETDEV_CHANGENAME)
1591 efx_update_name(netdev_priv(net_dev));
1592
1593 return NOTIFY_DONE;
1594 }
1595
1596 static struct notifier_block efx_netdev_notifier = {
1597 .notifier_call = efx_netdev_event,
1598 };
1599
1600 static ssize_t
1601 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1602 {
1603 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1604 return sprintf(buf, "%d\n", efx->phy_type);
1605 }
1606 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1607
1608 static int efx_register_netdev(struct efx_nic *efx)
1609 {
1610 struct net_device *net_dev = efx->net_dev;
1611 int rc;
1612
1613 net_dev->watchdog_timeo = 5 * HZ;
1614 net_dev->irq = efx->pci_dev->irq;
1615 net_dev->netdev_ops = &efx_netdev_ops;
1616 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1617 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1618
1619 /* Clear MAC statistics */
1620 efx->mac_op->update_stats(efx);
1621 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1622
1623 rtnl_lock();
1624
1625 rc = dev_alloc_name(net_dev, net_dev->name);
1626 if (rc < 0)
1627 goto fail_locked;
1628 efx_update_name(efx);
1629
1630 rc = register_netdevice(net_dev);
1631 if (rc)
1632 goto fail_locked;
1633
1634 /* Always start with carrier off; PHY events will detect the link */
1635 netif_carrier_off(efx->net_dev);
1636
1637 rtnl_unlock();
1638
1639 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1640 if (rc) {
1641 EFX_ERR(efx, "failed to init net dev attributes\n");
1642 goto fail_registered;
1643 }
1644
1645 return 0;
1646
1647 fail_locked:
1648 rtnl_unlock();
1649 EFX_ERR(efx, "could not register net dev\n");
1650 return rc;
1651
1652 fail_registered:
1653 unregister_netdev(net_dev);
1654 return rc;
1655 }
1656
1657 static void efx_unregister_netdev(struct efx_nic *efx)
1658 {
1659 struct efx_tx_queue *tx_queue;
1660
1661 if (!efx->net_dev)
1662 return;
1663
1664 BUG_ON(netdev_priv(efx->net_dev) != efx);
1665
1666 /* Free up any skbs still remaining. This has to happen before
1667 * we try to unregister the netdev as running their destructors
1668 * may be needed to get the device ref. count to 0. */
1669 efx_for_each_tx_queue(tx_queue, efx)
1670 efx_release_tx_buffers(tx_queue);
1671
1672 if (efx_dev_registered(efx)) {
1673 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1674 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1675 unregister_netdev(efx->net_dev);
1676 }
1677 }
1678
1679 /**************************************************************************
1680 *
1681 * Device reset and suspend
1682 *
1683 **************************************************************************/
1684
1685 /* Tears down the entire software state and most of the hardware state
1686 * before reset. */
1687 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1688 struct ethtool_cmd *ecmd)
1689 {
1690 EFX_ASSERT_RESET_SERIALISED(efx);
1691
1692 efx_stats_disable(efx);
1693 efx_stop_all(efx);
1694 mutex_lock(&efx->mac_lock);
1695 mutex_lock(&efx->spi_lock);
1696
1697 efx->phy_op->get_settings(efx, ecmd);
1698
1699 efx_fini_channels(efx);
1700 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1701 efx->phy_op->fini(efx);
1702 }
1703
1704 /* This function will always ensure that the locks acquired in
1705 * efx_reset_down() are released. A failure return code indicates
1706 * that we were unable to reinitialise the hardware, and the
1707 * driver should be disabled. If ok is false, then the rx and tx
1708 * engines are not restarted, pending a RESET_DISABLE. */
1709 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1710 struct ethtool_cmd *ecmd, bool ok)
1711 {
1712 int rc;
1713
1714 EFX_ASSERT_RESET_SERIALISED(efx);
1715
1716 rc = falcon_init_nic(efx);
1717 if (rc) {
1718 EFX_ERR(efx, "failed to initialise NIC\n");
1719 ok = false;
1720 }
1721
1722 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1723 if (ok) {
1724 rc = efx->phy_op->init(efx);
1725 if (rc)
1726 ok = false;
1727 }
1728 if (!ok)
1729 efx->port_initialized = false;
1730 }
1731
1732 if (ok) {
1733 efx_init_channels(efx);
1734
1735 if (efx->phy_op->set_settings(efx, ecmd))
1736 EFX_ERR(efx, "could not restore PHY settings\n");
1737 }
1738
1739 mutex_unlock(&efx->spi_lock);
1740 mutex_unlock(&efx->mac_lock);
1741
1742 if (ok) {
1743 efx_start_all(efx);
1744 efx_stats_enable(efx);
1745 }
1746 return rc;
1747 }
1748
1749 /* Reset the NIC as transparently as possible. Do not reset the PHY
1750 * Note that the reset may fail, in which case the card will be left
1751 * in a most-probably-unusable state.
1752 *
1753 * This function will sleep. You cannot reset from within an atomic
1754 * state; use efx_schedule_reset() instead.
1755 *
1756 * Grabs the rtnl_lock.
1757 */
1758 static int efx_reset(struct efx_nic *efx)
1759 {
1760 struct ethtool_cmd ecmd;
1761 enum reset_type method = efx->reset_pending;
1762 int rc = 0;
1763
1764 /* Serialise with kernel interfaces */
1765 rtnl_lock();
1766
1767 /* If we're not RUNNING then don't reset. Leave the reset_pending
1768 * flag set so that efx_pci_probe_main will be retried */
1769 if (efx->state != STATE_RUNNING) {
1770 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1771 goto out_unlock;
1772 }
1773
1774 EFX_INFO(efx, "resetting (%d)\n", method);
1775
1776 efx_reset_down(efx, method, &ecmd);
1777
1778 rc = falcon_reset_hw(efx, method);
1779 if (rc) {
1780 EFX_ERR(efx, "failed to reset hardware\n");
1781 goto out_disable;
1782 }
1783
1784 /* Allow resets to be rescheduled. */
1785 efx->reset_pending = RESET_TYPE_NONE;
1786
1787 /* Reinitialise bus-mastering, which may have been turned off before
1788 * the reset was scheduled. This is still appropriate, even in the
1789 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1790 * can respond to requests. */
1791 pci_set_master(efx->pci_dev);
1792
1793 /* Leave device stopped if necessary */
1794 if (method == RESET_TYPE_DISABLE) {
1795 efx_reset_up(efx, method, &ecmd, false);
1796 rc = -EIO;
1797 } else {
1798 rc = efx_reset_up(efx, method, &ecmd, true);
1799 }
1800
1801 out_disable:
1802 if (rc) {
1803 EFX_ERR(efx, "has been disabled\n");
1804 efx->state = STATE_DISABLED;
1805 dev_close(efx->net_dev);
1806 } else {
1807 EFX_LOG(efx, "reset complete\n");
1808 }
1809
1810 out_unlock:
1811 rtnl_unlock();
1812 return rc;
1813 }
1814
1815 /* The worker thread exists so that code that cannot sleep can
1816 * schedule a reset for later.
1817 */
1818 static void efx_reset_work(struct work_struct *data)
1819 {
1820 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1821
1822 efx_reset(nic);
1823 }
1824
1825 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1826 {
1827 enum reset_type method;
1828
1829 if (efx->reset_pending != RESET_TYPE_NONE) {
1830 EFX_INFO(efx, "quenching already scheduled reset\n");
1831 return;
1832 }
1833
1834 switch (type) {
1835 case RESET_TYPE_INVISIBLE:
1836 case RESET_TYPE_ALL:
1837 case RESET_TYPE_WORLD:
1838 case RESET_TYPE_DISABLE:
1839 method = type;
1840 break;
1841 case RESET_TYPE_RX_RECOVERY:
1842 case RESET_TYPE_RX_DESC_FETCH:
1843 case RESET_TYPE_TX_DESC_FETCH:
1844 case RESET_TYPE_TX_SKIP:
1845 method = RESET_TYPE_INVISIBLE;
1846 break;
1847 default:
1848 method = RESET_TYPE_ALL;
1849 break;
1850 }
1851
1852 if (method != type)
1853 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1854 else
1855 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1856
1857 efx->reset_pending = method;
1858
1859 queue_work(reset_workqueue, &efx->reset_work);
1860 }
1861
1862 /**************************************************************************
1863 *
1864 * List of NICs we support
1865 *
1866 **************************************************************************/
1867
1868 /* PCI device ID table */
1869 static struct pci_device_id efx_pci_table[] __devinitdata = {
1870 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1871 .driver_data = (unsigned long) &falcon_a_nic_type},
1872 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1873 .driver_data = (unsigned long) &falcon_b_nic_type},
1874 {0} /* end of list */
1875 };
1876
1877 /**************************************************************************
1878 *
1879 * Dummy PHY/MAC/Board operations
1880 *
1881 * Can be used for some unimplemented operations
1882 * Needed so all function pointers are valid and do not have to be tested
1883 * before use
1884 *
1885 **************************************************************************/
1886 int efx_port_dummy_op_int(struct efx_nic *efx)
1887 {
1888 return 0;
1889 }
1890 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1891 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1892
1893 static struct efx_mac_operations efx_dummy_mac_operations = {
1894 .reconfigure = efx_port_dummy_op_void,
1895 .poll = efx_port_dummy_op_void,
1896 .irq = efx_port_dummy_op_void,
1897 };
1898
1899 static struct efx_phy_operations efx_dummy_phy_operations = {
1900 .init = efx_port_dummy_op_int,
1901 .reconfigure = efx_port_dummy_op_void,
1902 .poll = efx_port_dummy_op_void,
1903 .fini = efx_port_dummy_op_void,
1904 .clear_interrupt = efx_port_dummy_op_void,
1905 };
1906
1907 static struct efx_board efx_dummy_board_info = {
1908 .init = efx_port_dummy_op_int,
1909 .init_leds = efx_port_dummy_op_void,
1910 .set_id_led = efx_port_dummy_op_blink,
1911 .monitor = efx_port_dummy_op_int,
1912 .blink = efx_port_dummy_op_blink,
1913 .fini = efx_port_dummy_op_void,
1914 };
1915
1916 /**************************************************************************
1917 *
1918 * Data housekeeping
1919 *
1920 **************************************************************************/
1921
1922 /* This zeroes out and then fills in the invariants in a struct
1923 * efx_nic (including all sub-structures).
1924 */
1925 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1926 struct pci_dev *pci_dev, struct net_device *net_dev)
1927 {
1928 struct efx_channel *channel;
1929 struct efx_tx_queue *tx_queue;
1930 struct efx_rx_queue *rx_queue;
1931 int i;
1932
1933 /* Initialise common structures */
1934 memset(efx, 0, sizeof(*efx));
1935 spin_lock_init(&efx->biu_lock);
1936 spin_lock_init(&efx->phy_lock);
1937 mutex_init(&efx->spi_lock);
1938 INIT_WORK(&efx->reset_work, efx_reset_work);
1939 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1940 efx->pci_dev = pci_dev;
1941 efx->state = STATE_INIT;
1942 efx->reset_pending = RESET_TYPE_NONE;
1943 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1944 efx->board_info = efx_dummy_board_info;
1945
1946 efx->net_dev = net_dev;
1947 efx->rx_checksum_enabled = true;
1948 spin_lock_init(&efx->netif_stop_lock);
1949 spin_lock_init(&efx->stats_lock);
1950 efx->stats_disable_count = 1;
1951 mutex_init(&efx->mac_lock);
1952 efx->mac_op = &efx_dummy_mac_operations;
1953 efx->phy_op = &efx_dummy_phy_operations;
1954 efx->mdio.dev = net_dev;
1955 INIT_WORK(&efx->phy_work, efx_phy_work);
1956 INIT_WORK(&efx->mac_work, efx_mac_work);
1957 atomic_set(&efx->netif_stop_count, 1);
1958
1959 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1960 channel = &efx->channel[i];
1961 channel->efx = efx;
1962 channel->channel = i;
1963 channel->work_pending = false;
1964 }
1965 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1966 tx_queue = &efx->tx_queue[i];
1967 tx_queue->efx = efx;
1968 tx_queue->queue = i;
1969 tx_queue->buffer = NULL;
1970 tx_queue->channel = &efx->channel[0]; /* for safety */
1971 tx_queue->tso_headers_free = NULL;
1972 }
1973 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1974 rx_queue = &efx->rx_queue[i];
1975 rx_queue->efx = efx;
1976 rx_queue->queue = i;
1977 rx_queue->channel = &efx->channel[0]; /* for safety */
1978 rx_queue->buffer = NULL;
1979 spin_lock_init(&rx_queue->add_lock);
1980 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1981 }
1982
1983 efx->type = type;
1984
1985 /* Sanity-check NIC type */
1986 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1987 (efx->type->txd_ring_mask + 1));
1988 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1989 (efx->type->rxd_ring_mask + 1));
1990 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1991 (efx->type->evq_size - 1));
1992 /* As close as we can get to guaranteeing that we don't overflow */
1993 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1994 (efx->type->txd_ring_mask + 1 +
1995 efx->type->rxd_ring_mask + 1));
1996 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1997
1998 /* Higher numbered interrupt modes are less capable! */
1999 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2000 interrupt_mode);
2001
2002 /* Would be good to use the net_dev name, but we're too early */
2003 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2004 pci_name(pci_dev));
2005 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2006 if (!efx->workqueue)
2007 return -ENOMEM;
2008
2009 return 0;
2010 }
2011
2012 static void efx_fini_struct(struct efx_nic *efx)
2013 {
2014 if (efx->workqueue) {
2015 destroy_workqueue(efx->workqueue);
2016 efx->workqueue = NULL;
2017 }
2018 }
2019
2020 /**************************************************************************
2021 *
2022 * PCI interface
2023 *
2024 **************************************************************************/
2025
2026 /* Main body of final NIC shutdown code
2027 * This is called only at module unload (or hotplug removal).
2028 */
2029 static void efx_pci_remove_main(struct efx_nic *efx)
2030 {
2031 EFX_ASSERT_RESET_SERIALISED(efx);
2032
2033 /* Skip everything if we never obtained a valid membase */
2034 if (!efx->membase)
2035 return;
2036
2037 efx_fini_channels(efx);
2038 efx_fini_port(efx);
2039
2040 /* Shutdown the board, then the NIC and board state */
2041 efx->board_info.fini(efx);
2042 falcon_fini_interrupt(efx);
2043
2044 efx_fini_napi(efx);
2045 efx_remove_all(efx);
2046 }
2047
2048 /* Final NIC shutdown
2049 * This is called only at module unload (or hotplug removal).
2050 */
2051 static void efx_pci_remove(struct pci_dev *pci_dev)
2052 {
2053 struct efx_nic *efx;
2054
2055 efx = pci_get_drvdata(pci_dev);
2056 if (!efx)
2057 return;
2058
2059 /* Mark the NIC as fini, then stop the interface */
2060 rtnl_lock();
2061 efx->state = STATE_FINI;
2062 dev_close(efx->net_dev);
2063
2064 /* Allow any queued efx_resets() to complete */
2065 rtnl_unlock();
2066
2067 if (efx->membase == NULL)
2068 goto out;
2069
2070 efx_unregister_netdev(efx);
2071
2072 efx_mtd_remove(efx);
2073
2074 /* Wait for any scheduled resets to complete. No more will be
2075 * scheduled from this point because efx_stop_all() has been
2076 * called, we are no longer registered with driverlink, and
2077 * the net_device's have been removed. */
2078 cancel_work_sync(&efx->reset_work);
2079
2080 efx_pci_remove_main(efx);
2081
2082 out:
2083 efx_fini_io(efx);
2084 EFX_LOG(efx, "shutdown successful\n");
2085
2086 pci_set_drvdata(pci_dev, NULL);
2087 efx_fini_struct(efx);
2088 free_netdev(efx->net_dev);
2089 };
2090
2091 /* Main body of NIC initialisation
2092 * This is called at module load (or hotplug insertion, theoretically).
2093 */
2094 static int efx_pci_probe_main(struct efx_nic *efx)
2095 {
2096 int rc;
2097
2098 /* Do start-of-day initialisation */
2099 rc = efx_probe_all(efx);
2100 if (rc)
2101 goto fail1;
2102
2103 rc = efx_init_napi(efx);
2104 if (rc)
2105 goto fail2;
2106
2107 /* Initialise the board */
2108 rc = efx->board_info.init(efx);
2109 if (rc) {
2110 EFX_ERR(efx, "failed to initialise board\n");
2111 goto fail3;
2112 }
2113
2114 rc = falcon_init_nic(efx);
2115 if (rc) {
2116 EFX_ERR(efx, "failed to initialise NIC\n");
2117 goto fail4;
2118 }
2119
2120 rc = efx_init_port(efx);
2121 if (rc) {
2122 EFX_ERR(efx, "failed to initialise port\n");
2123 goto fail5;
2124 }
2125
2126 efx_init_channels(efx);
2127
2128 rc = falcon_init_interrupt(efx);
2129 if (rc)
2130 goto fail6;
2131
2132 return 0;
2133
2134 fail6:
2135 efx_fini_channels(efx);
2136 efx_fini_port(efx);
2137 fail5:
2138 fail4:
2139 efx->board_info.fini(efx);
2140 fail3:
2141 efx_fini_napi(efx);
2142 fail2:
2143 efx_remove_all(efx);
2144 fail1:
2145 return rc;
2146 }
2147
2148 /* NIC initialisation
2149 *
2150 * This is called at module load (or hotplug insertion,
2151 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2152 * sets up and registers the network devices with the kernel and hooks
2153 * the interrupt service routine. It does not prepare the device for
2154 * transmission; this is left to the first time one of the network
2155 * interfaces is brought up (i.e. efx_net_open).
2156 */
2157 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2158 const struct pci_device_id *entry)
2159 {
2160 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2161 struct net_device *net_dev;
2162 struct efx_nic *efx;
2163 int i, rc;
2164
2165 /* Allocate and initialise a struct net_device and struct efx_nic */
2166 net_dev = alloc_etherdev(sizeof(*efx));
2167 if (!net_dev)
2168 return -ENOMEM;
2169 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2170 NETIF_F_HIGHDMA | NETIF_F_TSO |
2171 NETIF_F_GRO);
2172 /* Mask for features that also apply to VLAN devices */
2173 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2174 NETIF_F_HIGHDMA | NETIF_F_TSO);
2175 efx = netdev_priv(net_dev);
2176 pci_set_drvdata(pci_dev, efx);
2177 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2178 if (rc)
2179 goto fail1;
2180
2181 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2182
2183 /* Set up basic I/O (BAR mappings etc) */
2184 rc = efx_init_io(efx);
2185 if (rc)
2186 goto fail2;
2187
2188 /* No serialisation is required with the reset path because
2189 * we're in STATE_INIT. */
2190 for (i = 0; i < 5; i++) {
2191 rc = efx_pci_probe_main(efx);
2192
2193 /* Serialise against efx_reset(). No more resets will be
2194 * scheduled since efx_stop_all() has been called, and we
2195 * have not and never have been registered with either
2196 * the rtnetlink or driverlink layers. */
2197 cancel_work_sync(&efx->reset_work);
2198
2199 if (rc == 0) {
2200 if (efx->reset_pending != RESET_TYPE_NONE) {
2201 /* If there was a scheduled reset during
2202 * probe, the NIC is probably hosed anyway */
2203 efx_pci_remove_main(efx);
2204 rc = -EIO;
2205 } else {
2206 break;
2207 }
2208 }
2209
2210 /* Retry if a recoverably reset event has been scheduled */
2211 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2212 (efx->reset_pending != RESET_TYPE_ALL))
2213 goto fail3;
2214
2215 efx->reset_pending = RESET_TYPE_NONE;
2216 }
2217
2218 if (rc) {
2219 EFX_ERR(efx, "Could not reset NIC\n");
2220 goto fail4;
2221 }
2222
2223 /* Switch to the running state before we expose the device to
2224 * the OS. This is to ensure that the initial gathering of
2225 * MAC stats succeeds. */
2226 efx->state = STATE_RUNNING;
2227
2228 efx_mtd_probe(efx); /* allowed to fail */
2229
2230 rc = efx_register_netdev(efx);
2231 if (rc)
2232 goto fail5;
2233
2234 EFX_LOG(efx, "initialisation successful\n");
2235 return 0;
2236
2237 fail5:
2238 efx_pci_remove_main(efx);
2239 fail4:
2240 fail3:
2241 efx_fini_io(efx);
2242 fail2:
2243 efx_fini_struct(efx);
2244 fail1:
2245 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2246 free_netdev(net_dev);
2247 return rc;
2248 }
2249
2250 static struct pci_driver efx_pci_driver = {
2251 .name = EFX_DRIVER_NAME,
2252 .id_table = efx_pci_table,
2253 .probe = efx_pci_probe,
2254 .remove = efx_pci_remove,
2255 };
2256
2257 /**************************************************************************
2258 *
2259 * Kernel module interface
2260 *
2261 *************************************************************************/
2262
2263 module_param(interrupt_mode, uint, 0444);
2264 MODULE_PARM_DESC(interrupt_mode,
2265 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2266
2267 static int __init efx_init_module(void)
2268 {
2269 int rc;
2270
2271 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2272
2273 rc = register_netdevice_notifier(&efx_netdev_notifier);
2274 if (rc)
2275 goto err_notifier;
2276
2277 refill_workqueue = create_workqueue("sfc_refill");
2278 if (!refill_workqueue) {
2279 rc = -ENOMEM;
2280 goto err_refill;
2281 }
2282 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2283 if (!reset_workqueue) {
2284 rc = -ENOMEM;
2285 goto err_reset;
2286 }
2287
2288 rc = pci_register_driver(&efx_pci_driver);
2289 if (rc < 0)
2290 goto err_pci;
2291
2292 return 0;
2293
2294 err_pci:
2295 destroy_workqueue(reset_workqueue);
2296 err_reset:
2297 destroy_workqueue(refill_workqueue);
2298 err_refill:
2299 unregister_netdevice_notifier(&efx_netdev_notifier);
2300 err_notifier:
2301 return rc;
2302 }
2303
2304 static void __exit efx_exit_module(void)
2305 {
2306 printk(KERN_INFO "Solarflare NET driver unloading\n");
2307
2308 pci_unregister_driver(&efx_pci_driver);
2309 destroy_workqueue(reset_workqueue);
2310 destroy_workqueue(refill_workqueue);
2311 unregister_netdevice_notifier(&efx_netdev_notifier);
2312
2313 }
2314
2315 module_init(efx_init_module);
2316 module_exit(efx_exit_module);
2317
2318 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2319 "Solarflare Communications");
2320 MODULE_DESCRIPTION("Solarflare Communications network driver");
2321 MODULE_LICENSE("GPL");
2322 MODULE_DEVICE_TABLE(pci, efx_pci_table);