]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/sfc/rx.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / net / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <net/ip.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
27
28 /* Size of buffer allocated for skb header area. */
29 #define EFX_SKB_HEADERS 64u
30
31 /*
32 * rx_alloc_method - RX buffer allocation method
33 *
34 * This driver supports two methods for allocating and using RX buffers:
35 * each RX buffer may be backed by an skb or by an order-n page.
36 *
37 * When LRO is in use then the second method has a lower overhead,
38 * since we don't have to allocate then free skbs on reassembled frames.
39 *
40 * Values:
41 * - RX_ALLOC_METHOD_AUTO = 0
42 * - RX_ALLOC_METHOD_SKB = 1
43 * - RX_ALLOC_METHOD_PAGE = 2
44 *
45 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46 * controlled by the parameters below.
47 *
48 * - Since pushing and popping descriptors are separated by the rx_queue
49 * size, so the watermarks should be ~rxd_size.
50 * - The performance win by using page-based allocation for LRO is less
51 * than the performance hit of using page-based allocation of non-LRO,
52 * so the watermarks should reflect this.
53 *
54 * Per channel we maintain a single variable, updated by each channel:
55 *
56 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57 * RX_ALLOC_FACTOR_SKB)
58 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59 * limits the hysteresis), and update the allocation strategy:
60 *
61 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
63 */
64 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
65
66 #define RX_ALLOC_LEVEL_LRO 0x2000
67 #define RX_ALLOC_LEVEL_MAX 0x3000
68 #define RX_ALLOC_FACTOR_LRO 1
69 #define RX_ALLOC_FACTOR_SKB (-2)
70
71 /* This is the percentage fill level below which new RX descriptors
72 * will be added to the RX descriptor ring.
73 */
74 static unsigned int rx_refill_threshold = 90;
75
76 /* This is the percentage fill level to which an RX queue will be refilled
77 * when the "RX refill threshold" is reached.
78 */
79 static unsigned int rx_refill_limit = 95;
80
81 /*
82 * RX maximum head room required.
83 *
84 * This must be at least 1 to prevent overflow and at least 2 to allow
85 * pipelined receives.
86 */
87 #define EFX_RXD_HEAD_ROOM 2
88
89 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
90 {
91 /* Offset is always within one page, so we don't need to consider
92 * the page order.
93 */
94 return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
95 }
96 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
97 {
98 return PAGE_SIZE << efx->rx_buffer_order;
99 }
100
101
102 /**
103 * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
104 *
105 * @rx_queue: Efx RX queue
106 * @rx_buf: RX buffer structure to populate
107 *
108 * This allocates memory for a new receive buffer, maps it for DMA,
109 * and populates a struct efx_rx_buffer with the relevant
110 * information. Return a negative error code or 0 on success.
111 */
112 static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
113 struct efx_rx_buffer *rx_buf)
114 {
115 struct efx_nic *efx = rx_queue->efx;
116 struct net_device *net_dev = efx->net_dev;
117 int skb_len = efx->rx_buffer_len;
118
119 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
120 if (unlikely(!rx_buf->skb))
121 return -ENOMEM;
122
123 /* Adjust the SKB for padding and checksum */
124 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
125 rx_buf->len = skb_len - NET_IP_ALIGN;
126 rx_buf->data = (char *)rx_buf->skb->data;
127 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
128
129 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
130 rx_buf->data, rx_buf->len,
131 PCI_DMA_FROMDEVICE);
132
133 if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) {
134 dev_kfree_skb_any(rx_buf->skb);
135 rx_buf->skb = NULL;
136 return -EIO;
137 }
138
139 return 0;
140 }
141
142 /**
143 * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
144 *
145 * @rx_queue: Efx RX queue
146 * @rx_buf: RX buffer structure to populate
147 *
148 * This allocates memory for a new receive buffer, maps it for DMA,
149 * and populates a struct efx_rx_buffer with the relevant
150 * information. Return a negative error code or 0 on success.
151 */
152 static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
153 struct efx_rx_buffer *rx_buf)
154 {
155 struct efx_nic *efx = rx_queue->efx;
156 int bytes, space, offset;
157
158 bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
159
160 /* If there is space left in the previously allocated page,
161 * then use it. Otherwise allocate a new one */
162 rx_buf->page = rx_queue->buf_page;
163 if (rx_buf->page == NULL) {
164 dma_addr_t dma_addr;
165
166 rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
167 efx->rx_buffer_order);
168 if (unlikely(rx_buf->page == NULL))
169 return -ENOMEM;
170
171 dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
172 0, efx_rx_buf_size(efx),
173 PCI_DMA_FROMDEVICE);
174
175 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
176 __free_pages(rx_buf->page, efx->rx_buffer_order);
177 rx_buf->page = NULL;
178 return -EIO;
179 }
180
181 rx_queue->buf_page = rx_buf->page;
182 rx_queue->buf_dma_addr = dma_addr;
183 rx_queue->buf_data = (page_address(rx_buf->page) +
184 EFX_PAGE_IP_ALIGN);
185 }
186
187 rx_buf->len = bytes;
188 rx_buf->data = rx_queue->buf_data;
189 offset = efx_rx_buf_offset(rx_buf);
190 rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
191
192 /* Try to pack multiple buffers per page */
193 if (efx->rx_buffer_order == 0) {
194 /* The next buffer starts on the next 512 byte boundary */
195 rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
196 offset += ((bytes + 0x1ff) & ~0x1ff);
197
198 space = efx_rx_buf_size(efx) - offset;
199 if (space >= bytes) {
200 /* Refs dropped on kernel releasing each skb */
201 get_page(rx_queue->buf_page);
202 goto out;
203 }
204 }
205
206 /* This is the final RX buffer for this page, so mark it for
207 * unmapping */
208 rx_queue->buf_page = NULL;
209 rx_buf->unmap_addr = rx_queue->buf_dma_addr;
210
211 out:
212 return 0;
213 }
214
215 /* This allocates memory for a new receive buffer, maps it for DMA,
216 * and populates a struct efx_rx_buffer with the relevant
217 * information.
218 */
219 static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
220 struct efx_rx_buffer *new_rx_buf)
221 {
222 int rc = 0;
223
224 if (rx_queue->channel->rx_alloc_push_pages) {
225 new_rx_buf->skb = NULL;
226 rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
227 rx_queue->alloc_page_count++;
228 } else {
229 new_rx_buf->page = NULL;
230 rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
231 rx_queue->alloc_skb_count++;
232 }
233
234 if (unlikely(rc < 0))
235 EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
236 rx_queue->queue, rc);
237 return rc;
238 }
239
240 static void efx_unmap_rx_buffer(struct efx_nic *efx,
241 struct efx_rx_buffer *rx_buf)
242 {
243 if (rx_buf->page) {
244 EFX_BUG_ON_PARANOID(rx_buf->skb);
245 if (rx_buf->unmap_addr) {
246 pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
247 efx_rx_buf_size(efx),
248 PCI_DMA_FROMDEVICE);
249 rx_buf->unmap_addr = 0;
250 }
251 } else if (likely(rx_buf->skb)) {
252 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
253 rx_buf->len, PCI_DMA_FROMDEVICE);
254 }
255 }
256
257 static void efx_free_rx_buffer(struct efx_nic *efx,
258 struct efx_rx_buffer *rx_buf)
259 {
260 if (rx_buf->page) {
261 __free_pages(rx_buf->page, efx->rx_buffer_order);
262 rx_buf->page = NULL;
263 } else if (likely(rx_buf->skb)) {
264 dev_kfree_skb_any(rx_buf->skb);
265 rx_buf->skb = NULL;
266 }
267 }
268
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270 struct efx_rx_buffer *rx_buf)
271 {
272 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
273 efx_free_rx_buffer(rx_queue->efx, rx_buf);
274 }
275
276 /**
277 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
278 * @rx_queue: RX descriptor queue
279 * @retry: Recheck the fill level
280 * This will aim to fill the RX descriptor queue up to
281 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
282 * memory to do so, the caller should retry.
283 */
284 static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
285 int retry)
286 {
287 struct efx_rx_buffer *rx_buf;
288 unsigned fill_level, index;
289 int i, space, rc = 0;
290
291 /* Calculate current fill level. Do this outside the lock,
292 * because most of the time we'll end up not wanting to do the
293 * fill anyway.
294 */
295 fill_level = (rx_queue->added_count - rx_queue->removed_count);
296 EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
297
298 /* Don't fill if we don't need to */
299 if (fill_level >= rx_queue->fast_fill_trigger)
300 return 0;
301
302 /* Record minimum fill level */
303 if (unlikely(fill_level < rx_queue->min_fill)) {
304 if (fill_level)
305 rx_queue->min_fill = fill_level;
306 }
307
308 /* Acquire RX add lock. If this lock is contended, then a fast
309 * fill must already be in progress (e.g. in the refill
310 * tasklet), so we don't need to do anything
311 */
312 if (!spin_trylock_bh(&rx_queue->add_lock))
313 return -1;
314
315 retry:
316 /* Recalculate current fill level now that we have the lock */
317 fill_level = (rx_queue->added_count - rx_queue->removed_count);
318 EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
319 space = rx_queue->fast_fill_limit - fill_level;
320 if (space < EFX_RX_BATCH)
321 goto out_unlock;
322
323 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
324 " level %d to level %d using %s allocation\n",
325 rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
326 rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
327
328 do {
329 for (i = 0; i < EFX_RX_BATCH; ++i) {
330 index = rx_queue->added_count & EFX_RXQ_MASK;
331 rx_buf = efx_rx_buffer(rx_queue, index);
332 rc = efx_init_rx_buffer(rx_queue, rx_buf);
333 if (unlikely(rc))
334 goto out;
335 ++rx_queue->added_count;
336 }
337 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
338
339 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
340 "to level %d\n", rx_queue->queue,
341 rx_queue->added_count - rx_queue->removed_count);
342
343 out:
344 /* Send write pointer to card. */
345 efx_nic_notify_rx_desc(rx_queue);
346
347 /* If the fast fill is running inside from the refill tasklet, then
348 * for SMP systems it may be running on a different CPU to
349 * RX event processing, which means that the fill level may now be
350 * out of date. */
351 if (unlikely(retry && (rc == 0)))
352 goto retry;
353
354 out_unlock:
355 spin_unlock_bh(&rx_queue->add_lock);
356
357 return rc;
358 }
359
360 /**
361 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
362 * @rx_queue: RX descriptor queue
363 *
364 * This will aim to fill the RX descriptor queue up to
365 * @rx_queue->@fast_fill_limit. If there is insufficient memory to do so,
366 * it will schedule a work item to immediately continue the fast fill
367 */
368 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
369 {
370 int rc;
371
372 rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
373 if (unlikely(rc)) {
374 /* Schedule the work item to run immediately. The hope is
375 * that work is immediately pending to free some memory
376 * (e.g. an RX event or TX completion)
377 */
378 efx_schedule_slow_fill(rx_queue, 0);
379 }
380 }
381
382 void efx_rx_work(struct work_struct *data)
383 {
384 struct efx_rx_queue *rx_queue;
385 int rc;
386
387 rx_queue = container_of(data, struct efx_rx_queue, work.work);
388
389 if (unlikely(!rx_queue->channel->enabled))
390 return;
391
392 EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
393 "%d\n", rx_queue->queue, raw_smp_processor_id());
394
395 ++rx_queue->slow_fill_count;
396 /* Push new RX descriptors, allowing at least 1 jiffy for
397 * the kernel to free some more memory. */
398 rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
399 if (rc)
400 efx_schedule_slow_fill(rx_queue, 1);
401 }
402
403 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
404 struct efx_rx_buffer *rx_buf,
405 int len, bool *discard,
406 bool *leak_packet)
407 {
408 struct efx_nic *efx = rx_queue->efx;
409 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
410
411 if (likely(len <= max_len))
412 return;
413
414 /* The packet must be discarded, but this is only a fatal error
415 * if the caller indicated it was
416 */
417 *discard = true;
418
419 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
420 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
421 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
422 rx_queue->queue, len, max_len,
423 efx->type->rx_buffer_padding);
424 /* If this buffer was skb-allocated, then the meta
425 * data at the end of the skb will be trashed. So
426 * we have no choice but to leak the fragment.
427 */
428 *leak_packet = (rx_buf->skb != NULL);
429 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
430 } else {
431 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
432 "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
433 }
434
435 rx_queue->channel->n_rx_overlength++;
436 }
437
438 /* Pass a received packet up through the generic LRO stack
439 *
440 * Handles driverlink veto, and passes the fragment up via
441 * the appropriate LRO method
442 */
443 static void efx_rx_packet_lro(struct efx_channel *channel,
444 struct efx_rx_buffer *rx_buf,
445 bool checksummed)
446 {
447 struct napi_struct *napi = &channel->napi_str;
448 gro_result_t gro_result;
449
450 /* Pass the skb/page into the LRO engine */
451 if (rx_buf->page) {
452 struct page *page = rx_buf->page;
453 struct sk_buff *skb;
454
455 EFX_BUG_ON_PARANOID(rx_buf->skb);
456 rx_buf->page = NULL;
457
458 skb = napi_get_frags(napi);
459 if (!skb) {
460 put_page(page);
461 return;
462 }
463
464 skb_shinfo(skb)->frags[0].page = page;
465 skb_shinfo(skb)->frags[0].page_offset =
466 efx_rx_buf_offset(rx_buf);
467 skb_shinfo(skb)->frags[0].size = rx_buf->len;
468 skb_shinfo(skb)->nr_frags = 1;
469
470 skb->len = rx_buf->len;
471 skb->data_len = rx_buf->len;
472 skb->truesize += rx_buf->len;
473 skb->ip_summed =
474 checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
475
476 skb_record_rx_queue(skb, channel->channel);
477
478 gro_result = napi_gro_frags(napi);
479 } else {
480 struct sk_buff *skb = rx_buf->skb;
481
482 EFX_BUG_ON_PARANOID(!skb);
483 EFX_BUG_ON_PARANOID(!checksummed);
484 rx_buf->skb = NULL;
485
486 gro_result = napi_gro_receive(napi, skb);
487 }
488
489 if (gro_result == GRO_NORMAL) {
490 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
491 } else if (gro_result != GRO_DROP) {
492 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
493 channel->irq_mod_score += 2;
494 }
495 }
496
497 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
498 unsigned int len, bool checksummed, bool discard)
499 {
500 struct efx_nic *efx = rx_queue->efx;
501 struct efx_rx_buffer *rx_buf;
502 bool leak_packet = false;
503
504 rx_buf = efx_rx_buffer(rx_queue, index);
505 EFX_BUG_ON_PARANOID(!rx_buf->data);
506 EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
507 EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
508
509 /* This allows the refill path to post another buffer.
510 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
511 * isn't overwritten yet.
512 */
513 rx_queue->removed_count++;
514
515 /* Validate the length encoded in the event vs the descriptor pushed */
516 efx_rx_packet__check_len(rx_queue, rx_buf, len,
517 &discard, &leak_packet);
518
519 EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
520 rx_queue->queue, index,
521 (unsigned long long)rx_buf->dma_addr, len,
522 (checksummed ? " [SUMMED]" : ""),
523 (discard ? " [DISCARD]" : ""));
524
525 /* Discard packet, if instructed to do so */
526 if (unlikely(discard)) {
527 if (unlikely(leak_packet))
528 rx_queue->channel->n_skbuff_leaks++;
529 else
530 /* We haven't called efx_unmap_rx_buffer yet,
531 * so fini the entire rx_buffer here */
532 efx_fini_rx_buffer(rx_queue, rx_buf);
533 return;
534 }
535
536 /* Release card resources - assumes all RX buffers consumed in-order
537 * per RX queue
538 */
539 efx_unmap_rx_buffer(efx, rx_buf);
540
541 /* Prefetch nice and early so data will (hopefully) be in cache by
542 * the time we look at it.
543 */
544 prefetch(rx_buf->data);
545
546 /* Pipeline receives so that we give time for packet headers to be
547 * prefetched into cache.
548 */
549 rx_buf->len = len;
550 if (rx_queue->channel->rx_pkt)
551 __efx_rx_packet(rx_queue->channel,
552 rx_queue->channel->rx_pkt,
553 rx_queue->channel->rx_pkt_csummed);
554 rx_queue->channel->rx_pkt = rx_buf;
555 rx_queue->channel->rx_pkt_csummed = checksummed;
556 }
557
558 /* Handle a received packet. Second half: Touches packet payload. */
559 void __efx_rx_packet(struct efx_channel *channel,
560 struct efx_rx_buffer *rx_buf, bool checksummed)
561 {
562 struct efx_nic *efx = channel->efx;
563 struct sk_buff *skb;
564
565 /* If we're in loopback test, then pass the packet directly to the
566 * loopback layer, and free the rx_buf here
567 */
568 if (unlikely(efx->loopback_selftest)) {
569 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
570 efx_free_rx_buffer(efx, rx_buf);
571 return;
572 }
573
574 if (rx_buf->skb) {
575 prefetch(skb_shinfo(rx_buf->skb));
576
577 skb_put(rx_buf->skb, rx_buf->len);
578
579 /* Move past the ethernet header. rx_buf->data still points
580 * at the ethernet header */
581 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
582 efx->net_dev);
583
584 skb_record_rx_queue(rx_buf->skb, channel->channel);
585 }
586
587 if (likely(checksummed || rx_buf->page)) {
588 efx_rx_packet_lro(channel, rx_buf, checksummed);
589 return;
590 }
591
592 /* We now own the SKB */
593 skb = rx_buf->skb;
594 rx_buf->skb = NULL;
595 EFX_BUG_ON_PARANOID(!skb);
596
597 /* Set the SKB flags */
598 skb->ip_summed = CHECKSUM_NONE;
599
600 /* Pass the packet up */
601 netif_receive_skb(skb);
602
603 /* Update allocation strategy method */
604 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
605 }
606
607 void efx_rx_strategy(struct efx_channel *channel)
608 {
609 enum efx_rx_alloc_method method = rx_alloc_method;
610
611 /* Only makes sense to use page based allocation if LRO is enabled */
612 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
613 method = RX_ALLOC_METHOD_SKB;
614 } else if (method == RX_ALLOC_METHOD_AUTO) {
615 /* Constrain the rx_alloc_level */
616 if (channel->rx_alloc_level < 0)
617 channel->rx_alloc_level = 0;
618 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
619 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
620
621 /* Decide on the allocation method */
622 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
623 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
624 }
625
626 /* Push the option */
627 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
628 }
629
630 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
631 {
632 struct efx_nic *efx = rx_queue->efx;
633 unsigned int rxq_size;
634 int rc;
635
636 EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
637
638 /* Allocate RX buffers */
639 rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
640 rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
641 if (!rx_queue->buffer)
642 return -ENOMEM;
643
644 rc = efx_nic_probe_rx(rx_queue);
645 if (rc) {
646 kfree(rx_queue->buffer);
647 rx_queue->buffer = NULL;
648 }
649 return rc;
650 }
651
652 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
653 {
654 unsigned int max_fill, trigger, limit;
655
656 EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
657
658 /* Initialise ptr fields */
659 rx_queue->added_count = 0;
660 rx_queue->notified_count = 0;
661 rx_queue->removed_count = 0;
662 rx_queue->min_fill = -1U;
663 rx_queue->min_overfill = -1U;
664
665 /* Initialise limit fields */
666 max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
667 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
668 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
669
670 rx_queue->max_fill = max_fill;
671 rx_queue->fast_fill_trigger = trigger;
672 rx_queue->fast_fill_limit = limit;
673
674 /* Set up RX descriptor ring */
675 efx_nic_init_rx(rx_queue);
676 }
677
678 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
679 {
680 int i;
681 struct efx_rx_buffer *rx_buf;
682
683 EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
684
685 efx_nic_fini_rx(rx_queue);
686
687 /* Release RX buffers NB start at index 0 not current HW ptr */
688 if (rx_queue->buffer) {
689 for (i = 0; i <= EFX_RXQ_MASK; i++) {
690 rx_buf = efx_rx_buffer(rx_queue, i);
691 efx_fini_rx_buffer(rx_queue, rx_buf);
692 }
693 }
694
695 /* For a page that is part-way through splitting into RX buffers */
696 if (rx_queue->buf_page != NULL) {
697 pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
698 efx_rx_buf_size(rx_queue->efx),
699 PCI_DMA_FROMDEVICE);
700 __free_pages(rx_queue->buf_page,
701 rx_queue->efx->rx_buffer_order);
702 rx_queue->buf_page = NULL;
703 }
704 }
705
706 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
707 {
708 EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
709
710 efx_nic_remove_rx(rx_queue);
711
712 kfree(rx_queue->buffer);
713 rx_queue->buffer = NULL;
714 }
715
716
717 module_param(rx_alloc_method, int, 0644);
718 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
719
720 module_param(rx_refill_threshold, uint, 0444);
721 MODULE_PARM_DESC(rx_refill_threshold,
722 "RX descriptor ring fast/slow fill threshold (%)");
723