]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/skfp/skfddi.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / skfp / skfddi.c
1 /*
2 * File Name:
3 * skfddi.c
4 *
5 * Copyright Information:
6 * Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 * A Linux device driver supporting the SysKonnect FDDI PCI controller
17 * familie.
18 *
19 * Maintainers:
20 * CG Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 * DM David S. Miller
24 *
25 * Address all question to:
26 * linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 * The driver architecture is based on the DEC FDDI driver by
34 * Lawrence V. Stefani and several ethernet drivers.
35 * I also used an existing Windows NT miniport driver.
36 * All hardware dependent fuctions are handled by the SysKonnect
37 * Hardware Module.
38 * The only headerfiles that are directly related to this source
39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 * The others belong to the SysKonnect FDDI Hardware Module and
41 * should better not be changed.
42 *
43 * Modification History:
44 * Date Name Description
45 * 02-Mar-98 CG Created.
46 *
47 * 10-Mar-99 CG Support for 2.2.x added.
48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
49 * 26-Oct-99 CG Fixed compilation error on 2.2.13
50 * 12-Nov-99 CG Source code release
51 * 22-Nov-99 CG Included in kernel source.
52 * 07-May-00 DM 64 bit fixes, new dma interface
53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
54 * Daniele Bellucci <bellucda@tiscali.it>
55 * 03-Dec-03 SH Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 * DRIVERDEBUG print lots of messages to log file
59 * DUMPPACKETS print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 * - i386
63 * - sparc64
64 */
65
66 /* Version information string - should be updated prior to */
67 /* each new release!!! */
68 #define VERSION "2.07"
69
70 static const char * const boot_msg =
71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74 /* Include files */
75
76 #include <linux/capability.h>
77 #include <linux/module.h>
78 #include <linux/kernel.h>
79 #include <linux/errno.h>
80 #include <linux/ioport.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/netdevice.h>
84 #include <linux/fddidevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/bitops.h>
87 #include <linux/gfp.h>
88
89 #include <asm/byteorder.h>
90 #include <asm/io.h>
91 #include <asm/uaccess.h>
92
93 #include "h/types.h"
94 #undef ADDR // undo Linux definition
95 #include "h/skfbi.h"
96 #include "h/fddi.h"
97 #include "h/smc.h"
98 #include "h/smtstate.h"
99
100
101 // Define module-wide (static) routines
102 static int skfp_driver_init(struct net_device *dev);
103 static int skfp_open(struct net_device *dev);
104 static int skfp_close(struct net_device *dev);
105 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107 static void skfp_ctl_set_multicast_list(struct net_device *dev);
108 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112 struct net_device *dev);
113 static void send_queued_packets(struct s_smc *smc);
114 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115 static void ResetAdapter(struct s_smc *smc);
116
117
118 // Functions needed by the hardware module
119 void *mac_drv_get_space(struct s_smc *smc, u_int size);
120 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124 int flag);
125 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126 void llc_restart_tx(struct s_smc *smc);
127 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 int frag_count, int len);
129 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130 int frag_count);
131 void mac_drv_fill_rxd(struct s_smc *smc);
132 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133 int frag_count);
134 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135 int la_len);
136 void dump_data(unsigned char *Data, int length);
137
138 // External functions from the hardware module
139 extern u_int mac_drv_check_space(void);
140 extern int mac_drv_init(struct s_smc *smc);
141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 int len, int frame_status);
143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 int frame_len, int frame_status);
145 extern void fddi_isr(struct s_smc *smc);
146 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147 int len, int frame_status);
148 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151
152 static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = {
153 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154 { } /* Terminating entry */
155 };
156 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157 MODULE_LICENSE("GPL");
158 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159
160 // Define module-wide (static) variables
161
162 static int num_boards; /* total number of adapters configured */
163
164 static const struct net_device_ops skfp_netdev_ops = {
165 .ndo_open = skfp_open,
166 .ndo_stop = skfp_close,
167 .ndo_start_xmit = skfp_send_pkt,
168 .ndo_get_stats = skfp_ctl_get_stats,
169 .ndo_change_mtu = fddi_change_mtu,
170 .ndo_set_multicast_list = skfp_ctl_set_multicast_list,
171 .ndo_set_mac_address = skfp_ctl_set_mac_address,
172 .ndo_do_ioctl = skfp_ioctl,
173 };
174
175 /*
176 * =================
177 * = skfp_init_one =
178 * =================
179 *
180 * Overview:
181 * Probes for supported FDDI PCI controllers
182 *
183 * Returns:
184 * Condition code
185 *
186 * Arguments:
187 * pdev - pointer to PCI device information
188 *
189 * Functional Description:
190 * This is now called by PCI driver registration process
191 * for each board found.
192 *
193 * Return Codes:
194 * 0 - This device (fddi0, fddi1, etc) configured successfully
195 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196 * present for this device name
197 *
198 *
199 * Side Effects:
200 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
201 * initialized and the board resources are read and stored in
202 * the device structure.
203 */
204 static int skfp_init_one(struct pci_dev *pdev,
205 const struct pci_device_id *ent)
206 {
207 struct net_device *dev;
208 struct s_smc *smc; /* board pointer */
209 void __iomem *mem;
210 int err;
211
212 pr_debug(KERN_INFO "entering skfp_init_one\n");
213
214 if (num_boards == 0)
215 printk("%s\n", boot_msg);
216
217 err = pci_enable_device(pdev);
218 if (err)
219 return err;
220
221 err = pci_request_regions(pdev, "skfddi");
222 if (err)
223 goto err_out1;
224
225 pci_set_master(pdev);
226
227 #ifdef MEM_MAPPED_IO
228 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230 err = -EIO;
231 goto err_out2;
232 }
233
234 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235 #else
236 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237 printk(KERN_ERR "skfp: region is not PIO resource\n");
238 err = -EIO;
239 goto err_out2;
240 }
241
242 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243 #endif
244 if (!mem) {
245 printk(KERN_ERR "skfp: Unable to map register, "
246 "FDDI adapter will be disabled.\n");
247 err = -EIO;
248 goto err_out2;
249 }
250
251 dev = alloc_fddidev(sizeof(struct s_smc));
252 if (!dev) {
253 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254 "FDDI adapter will be disabled.\n");
255 err = -ENOMEM;
256 goto err_out3;
257 }
258
259 dev->irq = pdev->irq;
260 dev->netdev_ops = &skfp_netdev_ops;
261
262 SET_NETDEV_DEV(dev, &pdev->dev);
263
264 /* Initialize board structure with bus-specific info */
265 smc = netdev_priv(dev);
266 smc->os.dev = dev;
267 smc->os.bus_type = SK_BUS_TYPE_PCI;
268 smc->os.pdev = *pdev;
269 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271 smc->os.dev = dev;
272 smc->hw.slot = -1;
273 smc->hw.iop = mem;
274 smc->os.ResetRequested = FALSE;
275 skb_queue_head_init(&smc->os.SendSkbQueue);
276
277 dev->base_addr = (unsigned long)mem;
278
279 err = skfp_driver_init(dev);
280 if (err)
281 goto err_out4;
282
283 err = register_netdev(dev);
284 if (err)
285 goto err_out5;
286
287 ++num_boards;
288 pci_set_drvdata(pdev, dev);
289
290 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291 (pdev->subsystem_device & 0xff00) == 0x5800)
292 printk("%s: SysKonnect FDDI PCI adapter"
293 " found (SK-%04X)\n", dev->name,
294 pdev->subsystem_device);
295 else
296 printk("%s: FDDI PCI adapter found\n", dev->name);
297
298 return 0;
299 err_out5:
300 if (smc->os.SharedMemAddr)
301 pci_free_consistent(pdev, smc->os.SharedMemSize,
302 smc->os.SharedMemAddr,
303 smc->os.SharedMemDMA);
304 pci_free_consistent(pdev, MAX_FRAME_SIZE,
305 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306 err_out4:
307 free_netdev(dev);
308 err_out3:
309 #ifdef MEM_MAPPED_IO
310 iounmap(mem);
311 #else
312 ioport_unmap(mem);
313 #endif
314 err_out2:
315 pci_release_regions(pdev);
316 err_out1:
317 pci_disable_device(pdev);
318 return err;
319 }
320
321 /*
322 * Called for each adapter board from pci_unregister_driver
323 */
324 static void __devexit skfp_remove_one(struct pci_dev *pdev)
325 {
326 struct net_device *p = pci_get_drvdata(pdev);
327 struct s_smc *lp = netdev_priv(p);
328
329 unregister_netdev(p);
330
331 if (lp->os.SharedMemAddr) {
332 pci_free_consistent(&lp->os.pdev,
333 lp->os.SharedMemSize,
334 lp->os.SharedMemAddr,
335 lp->os.SharedMemDMA);
336 lp->os.SharedMemAddr = NULL;
337 }
338 if (lp->os.LocalRxBuffer) {
339 pci_free_consistent(&lp->os.pdev,
340 MAX_FRAME_SIZE,
341 lp->os.LocalRxBuffer,
342 lp->os.LocalRxBufferDMA);
343 lp->os.LocalRxBuffer = NULL;
344 }
345 #ifdef MEM_MAPPED_IO
346 iounmap(lp->hw.iop);
347 #else
348 ioport_unmap(lp->hw.iop);
349 #endif
350 pci_release_regions(pdev);
351 free_netdev(p);
352
353 pci_disable_device(pdev);
354 pci_set_drvdata(pdev, NULL);
355 }
356
357 /*
358 * ====================
359 * = skfp_driver_init =
360 * ====================
361 *
362 * Overview:
363 * Initializes remaining adapter board structure information
364 * and makes sure adapter is in a safe state prior to skfp_open().
365 *
366 * Returns:
367 * Condition code
368 *
369 * Arguments:
370 * dev - pointer to device information
371 *
372 * Functional Description:
373 * This function allocates additional resources such as the host memory
374 * blocks needed by the adapter.
375 * The adapter is also reset. The OS must call skfp_open() to open
376 * the adapter and bring it on-line.
377 *
378 * Return Codes:
379 * 0 - initialization succeeded
380 * -1 - initialization failed
381 */
382 static int skfp_driver_init(struct net_device *dev)
383 {
384 struct s_smc *smc = netdev_priv(dev);
385 skfddi_priv *bp = &smc->os;
386 int err = -EIO;
387
388 pr_debug(KERN_INFO "entering skfp_driver_init\n");
389
390 // set the io address in private structures
391 bp->base_addr = dev->base_addr;
392
393 // Get the interrupt level from the PCI Configuration Table
394 smc->hw.irq = dev->irq;
395
396 spin_lock_init(&bp->DriverLock);
397
398 // Allocate invalid frame
399 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
400 if (!bp->LocalRxBuffer) {
401 printk("could not allocate mem for ");
402 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403 goto fail;
404 }
405
406 // Determine the required size of the 'shared' memory area.
407 bp->SharedMemSize = mac_drv_check_space();
408 pr_debug(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
409 if (bp->SharedMemSize > 0) {
410 bp->SharedMemSize += 16; // for descriptor alignment
411
412 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
413 bp->SharedMemSize,
414 &bp->SharedMemDMA);
415 if (!bp->SharedMemSize) {
416 printk("could not allocate mem for ");
417 printk("hardware module: %ld byte\n",
418 bp->SharedMemSize);
419 goto fail;
420 }
421 bp->SharedMemHeap = 0; // Nothing used yet.
422
423 } else {
424 bp->SharedMemAddr = NULL;
425 bp->SharedMemHeap = 0;
426 } // SharedMemSize > 0
427
428 memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
429
430 card_stop(smc); // Reset adapter.
431
432 pr_debug(KERN_INFO "mac_drv_init()..\n");
433 if (mac_drv_init(smc) != 0) {
434 pr_debug(KERN_INFO "mac_drv_init() failed.\n");
435 goto fail;
436 }
437 read_address(smc, NULL);
438 pr_debug(KERN_INFO "HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
439 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
440
441 smt_reset_defaults(smc, 0);
442
443 return (0);
444
445 fail:
446 if (bp->SharedMemAddr) {
447 pci_free_consistent(&bp->pdev,
448 bp->SharedMemSize,
449 bp->SharedMemAddr,
450 bp->SharedMemDMA);
451 bp->SharedMemAddr = NULL;
452 }
453 if (bp->LocalRxBuffer) {
454 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
455 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
456 bp->LocalRxBuffer = NULL;
457 }
458 return err;
459 } // skfp_driver_init
460
461
462 /*
463 * =============
464 * = skfp_open =
465 * =============
466 *
467 * Overview:
468 * Opens the adapter
469 *
470 * Returns:
471 * Condition code
472 *
473 * Arguments:
474 * dev - pointer to device information
475 *
476 * Functional Description:
477 * This function brings the adapter to an operational state.
478 *
479 * Return Codes:
480 * 0 - Adapter was successfully opened
481 * -EAGAIN - Could not register IRQ
482 */
483 static int skfp_open(struct net_device *dev)
484 {
485 struct s_smc *smc = netdev_priv(dev);
486 int err;
487
488 pr_debug(KERN_INFO "entering skfp_open\n");
489 /* Register IRQ - support shared interrupts by passing device ptr */
490 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
491 dev->name, dev);
492 if (err)
493 return err;
494
495 /*
496 * Set current address to factory MAC address
497 *
498 * Note: We've already done this step in skfp_driver_init.
499 * However, it's possible that a user has set a node
500 * address override, then closed and reopened the
501 * adapter. Unless we reset the device address field
502 * now, we'll continue to use the existing modified
503 * address.
504 */
505 read_address(smc, NULL);
506 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
507
508 init_smt(smc, NULL);
509 smt_online(smc, 1);
510 STI_FBI();
511
512 /* Clear local multicast address tables */
513 mac_clear_multicast(smc);
514
515 /* Disable promiscuous filter settings */
516 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
517
518 netif_start_queue(dev);
519 return (0);
520 } // skfp_open
521
522
523 /*
524 * ==============
525 * = skfp_close =
526 * ==============
527 *
528 * Overview:
529 * Closes the device/module.
530 *
531 * Returns:
532 * Condition code
533 *
534 * Arguments:
535 * dev - pointer to device information
536 *
537 * Functional Description:
538 * This routine closes the adapter and brings it to a safe state.
539 * The interrupt service routine is deregistered with the OS.
540 * The adapter can be opened again with another call to skfp_open().
541 *
542 * Return Codes:
543 * Always return 0.
544 *
545 * Assumptions:
546 * No further requests for this adapter are made after this routine is
547 * called. skfp_open() can be called to reset and reinitialize the
548 * adapter.
549 */
550 static int skfp_close(struct net_device *dev)
551 {
552 struct s_smc *smc = netdev_priv(dev);
553 skfddi_priv *bp = &smc->os;
554
555 CLI_FBI();
556 smt_reset_defaults(smc, 1);
557 card_stop(smc);
558 mac_drv_clear_tx_queue(smc);
559 mac_drv_clear_rx_queue(smc);
560
561 netif_stop_queue(dev);
562 /* Deregister (free) IRQ */
563 free_irq(dev->irq, dev);
564
565 skb_queue_purge(&bp->SendSkbQueue);
566 bp->QueueSkb = MAX_TX_QUEUE_LEN;
567
568 return (0);
569 } // skfp_close
570
571
572 /*
573 * ==================
574 * = skfp_interrupt =
575 * ==================
576 *
577 * Overview:
578 * Interrupt processing routine
579 *
580 * Returns:
581 * None
582 *
583 * Arguments:
584 * irq - interrupt vector
585 * dev_id - pointer to device information
586 *
587 * Functional Description:
588 * This routine calls the interrupt processing routine for this adapter. It
589 * disables and reenables adapter interrupts, as appropriate. We can support
590 * shared interrupts since the incoming dev_id pointer provides our device
591 * structure context. All the real work is done in the hardware module.
592 *
593 * Return Codes:
594 * None
595 *
596 * Assumptions:
597 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
598 * on Intel-based systems) is done by the operating system outside this
599 * routine.
600 *
601 * System interrupts are enabled through this call.
602 *
603 * Side Effects:
604 * Interrupts are disabled, then reenabled at the adapter.
605 */
606
607 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
608 {
609 struct net_device *dev = dev_id;
610 struct s_smc *smc; /* private board structure pointer */
611 skfddi_priv *bp;
612
613 smc = netdev_priv(dev);
614 bp = &smc->os;
615
616 // IRQs enabled or disabled ?
617 if (inpd(ADDR(B0_IMSK)) == 0) {
618 // IRQs are disabled: must be shared interrupt
619 return IRQ_NONE;
620 }
621 // Note: At this point, IRQs are enabled.
622 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
623 // Adapter did not issue an IRQ: must be shared interrupt
624 return IRQ_NONE;
625 }
626 CLI_FBI(); // Disable IRQs from our adapter.
627 spin_lock(&bp->DriverLock);
628
629 // Call interrupt handler in hardware module (HWM).
630 fddi_isr(smc);
631
632 if (smc->os.ResetRequested) {
633 ResetAdapter(smc);
634 smc->os.ResetRequested = FALSE;
635 }
636 spin_unlock(&bp->DriverLock);
637 STI_FBI(); // Enable IRQs from our adapter.
638
639 return IRQ_HANDLED;
640 } // skfp_interrupt
641
642
643 /*
644 * ======================
645 * = skfp_ctl_get_stats =
646 * ======================
647 *
648 * Overview:
649 * Get statistics for FDDI adapter
650 *
651 * Returns:
652 * Pointer to FDDI statistics structure
653 *
654 * Arguments:
655 * dev - pointer to device information
656 *
657 * Functional Description:
658 * Gets current MIB objects from adapter, then
659 * returns FDDI statistics structure as defined
660 * in if_fddi.h.
661 *
662 * Note: Since the FDDI statistics structure is
663 * still new and the device structure doesn't
664 * have an FDDI-specific get statistics handler,
665 * we'll return the FDDI statistics structure as
666 * a pointer to an Ethernet statistics structure.
667 * That way, at least the first part of the statistics
668 * structure can be decoded properly.
669 * We'll have to pay attention to this routine as the
670 * device structure becomes more mature and LAN media
671 * independent.
672 *
673 */
674 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
675 {
676 struct s_smc *bp = netdev_priv(dev);
677
678 /* Fill the bp->stats structure with driver-maintained counters */
679
680 bp->os.MacStat.port_bs_flag[0] = 0x1234;
681 bp->os.MacStat.port_bs_flag[1] = 0x5678;
682 // goos: need to fill out fddi statistic
683 #if 0
684 /* Get FDDI SMT MIB objects */
685
686 /* Fill the bp->stats structure with the SMT MIB object values */
687
688 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
689 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
690 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
691 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
692 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
693 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
694 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
695 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
696 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
697 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
698 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
699 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
700 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
701 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
702 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
703 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
704 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
705 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
706 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
707 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
708 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
709 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
710 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
711 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
712 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
713 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
714 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
715 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
716 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
717 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
718 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
719 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
720 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
721 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
722 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
723 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
724 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
725 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
726 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
727 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
728 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
729 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
730 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
731 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
732 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
733 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
734 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
735 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
736 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
737 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
738 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
739 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
740 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
741 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
742 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
743 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
744 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
745 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
746 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
747 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
748 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
749 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
750 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
751 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
752 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
753 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
754 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
755 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
756 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
757 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
758 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
759 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
760 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
761 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
762 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
763 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
764 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
765 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
766 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
767 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
768 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
769 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
770 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
771 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
772 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
773 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
774 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
775 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
776 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
777 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
778 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
779 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
780
781
782 /* Fill the bp->stats structure with the FDDI counter values */
783
784 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
785 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
786 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
787 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
788 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
789 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
790 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
791 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
792 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
793 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
794 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
795
796 #endif
797 return ((struct net_device_stats *) &bp->os.MacStat);
798 } // ctl_get_stat
799
800
801 /*
802 * ==============================
803 * = skfp_ctl_set_multicast_list =
804 * ==============================
805 *
806 * Overview:
807 * Enable/Disable LLC frame promiscuous mode reception
808 * on the adapter and/or update multicast address table.
809 *
810 * Returns:
811 * None
812 *
813 * Arguments:
814 * dev - pointer to device information
815 *
816 * Functional Description:
817 * This function acquires the driver lock and only calls
818 * skfp_ctl_set_multicast_list_wo_lock then.
819 * This routine follows a fairly simple algorithm for setting the
820 * adapter filters and CAM:
821 *
822 * if IFF_PROMISC flag is set
823 * enable promiscuous mode
824 * else
825 * disable promiscuous mode
826 * if number of multicast addresses <= max. multicast number
827 * add mc addresses to adapter table
828 * else
829 * enable promiscuous mode
830 * update adapter filters
831 *
832 * Assumptions:
833 * Multicast addresses are presented in canonical (LSB) format.
834 *
835 * Side Effects:
836 * On-board adapter filters are updated.
837 */
838 static void skfp_ctl_set_multicast_list(struct net_device *dev)
839 {
840 struct s_smc *smc = netdev_priv(dev);
841 skfddi_priv *bp = &smc->os;
842 unsigned long Flags;
843
844 spin_lock_irqsave(&bp->DriverLock, Flags);
845 skfp_ctl_set_multicast_list_wo_lock(dev);
846 spin_unlock_irqrestore(&bp->DriverLock, Flags);
847 return;
848 } // skfp_ctl_set_multicast_list
849
850
851
852 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
853 {
854 struct s_smc *smc = netdev_priv(dev);
855 struct dev_mc_list *dmi;
856
857 /* Enable promiscuous mode, if necessary */
858 if (dev->flags & IFF_PROMISC) {
859 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
860 pr_debug(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
861 }
862 /* Else, update multicast address table */
863 else {
864 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
865 pr_debug(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
866
867 // Reset all MC addresses
868 mac_clear_multicast(smc);
869 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
870
871 if (dev->flags & IFF_ALLMULTI) {
872 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
873 pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
874 } else if (!netdev_mc_empty(dev)) {
875 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
876 /* use exact filtering */
877
878 // point to first multicast addr
879 netdev_for_each_mc_addr(dmi, dev) {
880 mac_add_multicast(smc,
881 (struct fddi_addr *)dmi->dmi_addr,
882 1);
883
884 pr_debug(KERN_INFO "ENABLE MC ADDRESS: %pMF\n",
885 dmi->dmi_addr);
886 }
887
888 } else { // more MC addresses than HW supports
889
890 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
891 pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
892 }
893 } else { // no MC addresses
894
895 pr_debug(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
896 }
897
898 /* Update adapter filters */
899 mac_update_multicast(smc);
900 }
901 return;
902 } // skfp_ctl_set_multicast_list_wo_lock
903
904
905 /*
906 * ===========================
907 * = skfp_ctl_set_mac_address =
908 * ===========================
909 *
910 * Overview:
911 * set new mac address on adapter and update dev_addr field in device table.
912 *
913 * Returns:
914 * None
915 *
916 * Arguments:
917 * dev - pointer to device information
918 * addr - pointer to sockaddr structure containing unicast address to set
919 *
920 * Assumptions:
921 * The address pointed to by addr->sa_data is a valid unicast
922 * address and is presented in canonical (LSB) format.
923 */
924 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
925 {
926 struct s_smc *smc = netdev_priv(dev);
927 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
928 skfddi_priv *bp = &smc->os;
929 unsigned long Flags;
930
931
932 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
933 spin_lock_irqsave(&bp->DriverLock, Flags);
934 ResetAdapter(smc);
935 spin_unlock_irqrestore(&bp->DriverLock, Flags);
936
937 return (0); /* always return zero */
938 } // skfp_ctl_set_mac_address
939
940
941 /*
942 * ==============
943 * = skfp_ioctl =
944 * ==============
945 *
946 * Overview:
947 *
948 * Perform IOCTL call functions here. Some are privileged operations and the
949 * effective uid is checked in those cases.
950 *
951 * Returns:
952 * status value
953 * 0 - success
954 * other - failure
955 *
956 * Arguments:
957 * dev - pointer to device information
958 * rq - pointer to ioctl request structure
959 * cmd - ?
960 *
961 */
962
963
964 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
965 {
966 struct s_smc *smc = netdev_priv(dev);
967 skfddi_priv *lp = &smc->os;
968 struct s_skfp_ioctl ioc;
969 int status = 0;
970
971 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
972 return -EFAULT;
973
974 switch (ioc.cmd) {
975 case SKFP_GET_STATS: /* Get the driver statistics */
976 ioc.len = sizeof(lp->MacStat);
977 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
978 ? -EFAULT : 0;
979 break;
980 case SKFP_CLR_STATS: /* Zero out the driver statistics */
981 if (!capable(CAP_NET_ADMIN)) {
982 status = -EPERM;
983 } else {
984 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
985 }
986 break;
987 default:
988 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
989 status = -EOPNOTSUPP;
990
991 } // switch
992
993 return status;
994 } // skfp_ioctl
995
996
997 /*
998 * =====================
999 * = skfp_send_pkt =
1000 * =====================
1001 *
1002 * Overview:
1003 * Queues a packet for transmission and try to transmit it.
1004 *
1005 * Returns:
1006 * Condition code
1007 *
1008 * Arguments:
1009 * skb - pointer to sk_buff to queue for transmission
1010 * dev - pointer to device information
1011 *
1012 * Functional Description:
1013 * Here we assume that an incoming skb transmit request
1014 * is contained in a single physically contiguous buffer
1015 * in which the virtual address of the start of packet
1016 * (skb->data) can be converted to a physical address
1017 * by using pci_map_single().
1018 *
1019 * We have an internal queue for packets we can not send
1020 * immediately. Packets in this queue can be given to the
1021 * adapter if transmit buffers are freed.
1022 *
1023 * We can't free the skb until after it's been DMA'd
1024 * out by the adapter, so we'll keep it in the driver and
1025 * return it in mac_drv_tx_complete.
1026 *
1027 * Return Codes:
1028 * 0 - driver has queued and/or sent packet
1029 * 1 - caller should requeue the sk_buff for later transmission
1030 *
1031 * Assumptions:
1032 * The entire packet is stored in one physically
1033 * contiguous buffer which is not cached and whose
1034 * 32-bit physical address can be determined.
1035 *
1036 * It's vital that this routine is NOT reentered for the
1037 * same board and that the OS is not in another section of
1038 * code (eg. skfp_interrupt) for the same board on a
1039 * different thread.
1040 *
1041 * Side Effects:
1042 * None
1043 */
1044 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1045 struct net_device *dev)
1046 {
1047 struct s_smc *smc = netdev_priv(dev);
1048 skfddi_priv *bp = &smc->os;
1049
1050 pr_debug(KERN_INFO "skfp_send_pkt\n");
1051
1052 /*
1053 * Verify that incoming transmit request is OK
1054 *
1055 * Note: The packet size check is consistent with other
1056 * Linux device drivers, although the correct packet
1057 * size should be verified before calling the
1058 * transmit routine.
1059 */
1060
1061 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1062 bp->MacStat.gen.tx_errors++; /* bump error counter */
1063 // dequeue packets from xmt queue and send them
1064 netif_start_queue(dev);
1065 dev_kfree_skb(skb);
1066 return NETDEV_TX_OK; /* return "success" */
1067 }
1068 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1069
1070 netif_stop_queue(dev);
1071 return NETDEV_TX_BUSY;
1072 }
1073 bp->QueueSkb--;
1074 skb_queue_tail(&bp->SendSkbQueue, skb);
1075 send_queued_packets(netdev_priv(dev));
1076 if (bp->QueueSkb == 0) {
1077 netif_stop_queue(dev);
1078 }
1079 dev->trans_start = jiffies;
1080 return NETDEV_TX_OK;
1081
1082 } // skfp_send_pkt
1083
1084
1085 /*
1086 * =======================
1087 * = send_queued_packets =
1088 * =======================
1089 *
1090 * Overview:
1091 * Send packets from the driver queue as long as there are some and
1092 * transmit resources are available.
1093 *
1094 * Returns:
1095 * None
1096 *
1097 * Arguments:
1098 * smc - pointer to smc (adapter) structure
1099 *
1100 * Functional Description:
1101 * Take a packet from queue if there is any. If not, then we are done.
1102 * Check if there are resources to send the packet. If not, requeue it
1103 * and exit.
1104 * Set packet descriptor flags and give packet to adapter.
1105 * Check if any send resources can be freed (we do not use the
1106 * transmit complete interrupt).
1107 */
1108 static void send_queued_packets(struct s_smc *smc)
1109 {
1110 skfddi_priv *bp = &smc->os;
1111 struct sk_buff *skb;
1112 unsigned char fc;
1113 int queue;
1114 struct s_smt_fp_txd *txd; // Current TxD.
1115 dma_addr_t dma_address;
1116 unsigned long Flags;
1117
1118 int frame_status; // HWM tx frame status.
1119
1120 pr_debug(KERN_INFO "send queued packets\n");
1121 for (;;) {
1122 // send first buffer from queue
1123 skb = skb_dequeue(&bp->SendSkbQueue);
1124
1125 if (!skb) {
1126 pr_debug(KERN_INFO "queue empty\n");
1127 return;
1128 } // queue empty !
1129
1130 spin_lock_irqsave(&bp->DriverLock, Flags);
1131 fc = skb->data[0];
1132 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1133 #ifdef ESS
1134 // Check if the frame may/must be sent as a synchronous frame.
1135
1136 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1137 // It's an LLC frame.
1138 if (!smc->ess.sync_bw_available)
1139 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1140
1141 else { // Bandwidth is available.
1142
1143 if (smc->mib.fddiESSSynchTxMode) {
1144 // Send as sync. frame.
1145 fc |= FC_SYNC_BIT;
1146 }
1147 }
1148 }
1149 #endif // ESS
1150 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1151
1152 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1153 // Unable to send the frame.
1154
1155 if ((frame_status & RING_DOWN) != 0) {
1156 // Ring is down.
1157 pr_debug("Tx attempt while ring down.\n");
1158 } else if ((frame_status & OUT_OF_TXD) != 0) {
1159 pr_debug("%s: out of TXDs.\n", bp->dev->name);
1160 } else {
1161 pr_debug("%s: out of transmit resources",
1162 bp->dev->name);
1163 }
1164
1165 // Note: We will retry the operation as soon as
1166 // transmit resources become available.
1167 skb_queue_head(&bp->SendSkbQueue, skb);
1168 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1169 return; // Packet has been queued.
1170
1171 } // if (unable to send frame)
1172
1173 bp->QueueSkb++; // one packet less in local queue
1174
1175 // source address in packet ?
1176 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1177
1178 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1179
1180 dma_address = pci_map_single(&bp->pdev, skb->data,
1181 skb->len, PCI_DMA_TODEVICE);
1182 if (frame_status & LAN_TX) {
1183 txd->txd_os.skb = skb; // save skb
1184 txd->txd_os.dma_addr = dma_address; // save dma mapping
1185 }
1186 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1187 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1188
1189 if (!(frame_status & LAN_TX)) { // local only frame
1190 pci_unmap_single(&bp->pdev, dma_address,
1191 skb->len, PCI_DMA_TODEVICE);
1192 dev_kfree_skb_irq(skb);
1193 }
1194 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1195 } // for
1196
1197 return; // never reached
1198
1199 } // send_queued_packets
1200
1201
1202 /************************
1203 *
1204 * CheckSourceAddress
1205 *
1206 * Verify if the source address is set. Insert it if necessary.
1207 *
1208 ************************/
1209 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1210 {
1211 unsigned char SRBit;
1212
1213 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1214
1215 return;
1216 if ((unsigned short) frame[1 + 10] != 0)
1217 return;
1218 SRBit = frame[1 + 6] & 0x01;
1219 memcpy(&frame[1 + 6], hw_addr, 6);
1220 frame[8] |= SRBit;
1221 } // CheckSourceAddress
1222
1223
1224 /************************
1225 *
1226 * ResetAdapter
1227 *
1228 * Reset the adapter and bring it back to operational mode.
1229 * Args
1230 * smc - A pointer to the SMT context struct.
1231 * Out
1232 * Nothing.
1233 *
1234 ************************/
1235 static void ResetAdapter(struct s_smc *smc)
1236 {
1237
1238 pr_debug(KERN_INFO "[fddi: ResetAdapter]\n");
1239
1240 // Stop the adapter.
1241
1242 card_stop(smc); // Stop all activity.
1243
1244 // Clear the transmit and receive descriptor queues.
1245 mac_drv_clear_tx_queue(smc);
1246 mac_drv_clear_rx_queue(smc);
1247
1248 // Restart the adapter.
1249
1250 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1251
1252 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1253
1254 smt_online(smc, 1); // Insert into the ring again.
1255 STI_FBI();
1256
1257 // Restore original receive mode (multicasts, promiscuous, etc.).
1258 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1259 } // ResetAdapter
1260
1261
1262 //--------------- functions called by hardware module ----------------
1263
1264 /************************
1265 *
1266 * llc_restart_tx
1267 *
1268 * The hardware driver calls this routine when the transmit complete
1269 * interrupt bits (end of frame) for the synchronous or asynchronous
1270 * queue is set.
1271 *
1272 * NOTE The hardware driver calls this function also if no packets are queued.
1273 * The routine must be able to handle this case.
1274 * Args
1275 * smc - A pointer to the SMT context struct.
1276 * Out
1277 * Nothing.
1278 *
1279 ************************/
1280 void llc_restart_tx(struct s_smc *smc)
1281 {
1282 skfddi_priv *bp = &smc->os;
1283
1284 pr_debug(KERN_INFO "[llc_restart_tx]\n");
1285
1286 // Try to send queued packets
1287 spin_unlock(&bp->DriverLock);
1288 send_queued_packets(smc);
1289 spin_lock(&bp->DriverLock);
1290 netif_start_queue(bp->dev);// system may send again if it was blocked
1291
1292 } // llc_restart_tx
1293
1294
1295 /************************
1296 *
1297 * mac_drv_get_space
1298 *
1299 * The hardware module calls this function to allocate the memory
1300 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1301 * Args
1302 * smc - A pointer to the SMT context struct.
1303 *
1304 * size - Size of memory in bytes to allocate.
1305 * Out
1306 * != 0 A pointer to the virtual address of the allocated memory.
1307 * == 0 Allocation error.
1308 *
1309 ************************/
1310 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1311 {
1312 void *virt;
1313
1314 pr_debug(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1315 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1316
1317 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1318 printk("Unexpected SMT memory size requested: %d\n", size);
1319 return (NULL);
1320 }
1321 smc->os.SharedMemHeap += size; // Move heap pointer.
1322
1323 pr_debug(KERN_INFO "mac_drv_get_space end\n");
1324 pr_debug(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1325 pr_debug(KERN_INFO "bus addr: %lx\n", (ulong)
1326 (smc->os.SharedMemDMA +
1327 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1328 return (virt);
1329 } // mac_drv_get_space
1330
1331
1332 /************************
1333 *
1334 * mac_drv_get_desc_mem
1335 *
1336 * This function is called by the hardware dependent module.
1337 * It allocates the memory for the RxD and TxD descriptors.
1338 *
1339 * This memory must be non-cached, non-movable and non-swappable.
1340 * This memory should start at a physical page boundary.
1341 * Args
1342 * smc - A pointer to the SMT context struct.
1343 *
1344 * size - Size of memory in bytes to allocate.
1345 * Out
1346 * != 0 A pointer to the virtual address of the allocated memory.
1347 * == 0 Allocation error.
1348 *
1349 ************************/
1350 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1351 {
1352
1353 char *virt;
1354
1355 pr_debug(KERN_INFO "mac_drv_get_desc_mem\n");
1356
1357 // Descriptor memory must be aligned on 16-byte boundary.
1358
1359 virt = mac_drv_get_space(smc, size);
1360
1361 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1362 size = size % 16;
1363
1364 pr_debug("Allocate %u bytes alignment gap ", size);
1365 pr_debug("for descriptor memory.\n");
1366
1367 if (!mac_drv_get_space(smc, size)) {
1368 printk("fddi: Unable to align descriptor memory.\n");
1369 return (NULL);
1370 }
1371 return (virt + size);
1372 } // mac_drv_get_desc_mem
1373
1374
1375 /************************
1376 *
1377 * mac_drv_virt2phys
1378 *
1379 * Get the physical address of a given virtual address.
1380 * Args
1381 * smc - A pointer to the SMT context struct.
1382 *
1383 * virt - A (virtual) pointer into our 'shared' memory area.
1384 * Out
1385 * Physical address of the given virtual address.
1386 *
1387 ************************/
1388 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1389 {
1390 return (smc->os.SharedMemDMA +
1391 ((char *) virt - (char *)smc->os.SharedMemAddr));
1392 } // mac_drv_virt2phys
1393
1394
1395 /************************
1396 *
1397 * dma_master
1398 *
1399 * The HWM calls this function, when the driver leads through a DMA
1400 * transfer. If the OS-specific module must prepare the system hardware
1401 * for the DMA transfer, it should do it in this function.
1402 *
1403 * The hardware module calls this dma_master if it wants to send an SMT
1404 * frame. This means that the virt address passed in here is part of
1405 * the 'shared' memory area.
1406 * Args
1407 * smc - A pointer to the SMT context struct.
1408 *
1409 * virt - The virtual address of the data.
1410 *
1411 * len - The length in bytes of the data.
1412 *
1413 * flag - Indicates the transmit direction and the buffer type:
1414 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1415 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1416 * SMT_BUF (0x80) SMT buffer
1417 *
1418 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1419 * Out
1420 * Returns the pyhsical address for the DMA transfer.
1421 *
1422 ************************/
1423 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1424 {
1425 return (smc->os.SharedMemDMA +
1426 ((char *) virt - (char *)smc->os.SharedMemAddr));
1427 } // dma_master
1428
1429
1430 /************************
1431 *
1432 * dma_complete
1433 *
1434 * The hardware module calls this routine when it has completed a DMA
1435 * transfer. If the operating system dependent module has set up the DMA
1436 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1437 * the DMA channel.
1438 * Args
1439 * smc - A pointer to the SMT context struct.
1440 *
1441 * descr - A pointer to a TxD or RxD, respectively.
1442 *
1443 * flag - Indicates the DMA transfer direction / SMT buffer:
1444 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1445 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1446 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1447 * Out
1448 * Nothing.
1449 *
1450 ************************/
1451 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1452 {
1453 /* For TX buffers, there are two cases. If it is an SMT transmit
1454 * buffer, there is nothing to do since we use consistent memory
1455 * for the 'shared' memory area. The other case is for normal
1456 * transmit packets given to us by the networking stack, and in
1457 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1458 * below.
1459 *
1460 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1461 * because the hardware module is about to potentially look at
1462 * the contents of the buffer. If we did not call the PCI DMA
1463 * unmap first, the hardware module could read inconsistent data.
1464 */
1465 if (flag & DMA_WR) {
1466 skfddi_priv *bp = &smc->os;
1467 volatile struct s_smt_fp_rxd *r = &descr->r;
1468
1469 /* If SKB is NULL, we used the local buffer. */
1470 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1471 int MaxFrameSize = bp->MaxFrameSize;
1472
1473 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1474 MaxFrameSize, PCI_DMA_FROMDEVICE);
1475 r->rxd_os.dma_addr = 0;
1476 }
1477 }
1478 } // dma_complete
1479
1480
1481 /************************
1482 *
1483 * mac_drv_tx_complete
1484 *
1485 * Transmit of a packet is complete. Release the tx staging buffer.
1486 *
1487 * Args
1488 * smc - A pointer to the SMT context struct.
1489 *
1490 * txd - A pointer to the last TxD which is used by the frame.
1491 * Out
1492 * Returns nothing.
1493 *
1494 ************************/
1495 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1496 {
1497 struct sk_buff *skb;
1498
1499 pr_debug(KERN_INFO "entering mac_drv_tx_complete\n");
1500 // Check if this TxD points to a skb
1501
1502 if (!(skb = txd->txd_os.skb)) {
1503 pr_debug("TXD with no skb assigned.\n");
1504 return;
1505 }
1506 txd->txd_os.skb = NULL;
1507
1508 // release the DMA mapping
1509 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1510 skb->len, PCI_DMA_TODEVICE);
1511 txd->txd_os.dma_addr = 0;
1512
1513 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1514 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1515
1516 // free the skb
1517 dev_kfree_skb_irq(skb);
1518
1519 pr_debug(KERN_INFO "leaving mac_drv_tx_complete\n");
1520 } // mac_drv_tx_complete
1521
1522
1523 /************************
1524 *
1525 * dump packets to logfile
1526 *
1527 ************************/
1528 #ifdef DUMPPACKETS
1529 void dump_data(unsigned char *Data, int length)
1530 {
1531 int i, j;
1532 unsigned char s[255], sh[10];
1533 if (length > 64) {
1534 length = 64;
1535 }
1536 printk(KERN_INFO "---Packet start---\n");
1537 for (i = 0, j = 0; i < length / 8; i++, j += 8)
1538 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1539 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1540 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1541 strcpy(s, "");
1542 for (i = 0; i < length % 8; i++) {
1543 sprintf(sh, "%02x ", Data[j + i]);
1544 strcat(s, sh);
1545 }
1546 printk(KERN_INFO "%s\n", s);
1547 printk(KERN_INFO "------------------\n");
1548 } // dump_data
1549 #else
1550 #define dump_data(data,len)
1551 #endif // DUMPPACKETS
1552
1553 /************************
1554 *
1555 * mac_drv_rx_complete
1556 *
1557 * The hardware module calls this function if an LLC frame is received
1558 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1559 * from the network will be passed to the LLC layer by this function
1560 * if passing is enabled.
1561 *
1562 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1563 * be received. It also fills the RxD ring with new receive buffers if
1564 * some can be queued.
1565 * Args
1566 * smc - A pointer to the SMT context struct.
1567 *
1568 * rxd - A pointer to the first RxD which is used by the receive frame.
1569 *
1570 * frag_count - Count of RxDs used by the received frame.
1571 *
1572 * len - Frame length.
1573 * Out
1574 * Nothing.
1575 *
1576 ************************/
1577 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1578 int frag_count, int len)
1579 {
1580 skfddi_priv *bp = &smc->os;
1581 struct sk_buff *skb;
1582 unsigned char *virt, *cp;
1583 unsigned short ri;
1584 u_int RifLength;
1585
1586 pr_debug(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1587 if (frag_count != 1) { // This is not allowed to happen.
1588
1589 printk("fddi: Multi-fragment receive!\n");
1590 goto RequeueRxd; // Re-use the given RXD(s).
1591
1592 }
1593 skb = rxd->rxd_os.skb;
1594 if (!skb) {
1595 pr_debug(KERN_INFO "No skb in rxd\n");
1596 smc->os.MacStat.gen.rx_errors++;
1597 goto RequeueRxd;
1598 }
1599 virt = skb->data;
1600
1601 // The DMA mapping was released in dma_complete above.
1602
1603 dump_data(skb->data, len);
1604
1605 /*
1606 * FDDI Frame format:
1607 * +-------+-------+-------+------------+--------+------------+
1608 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1609 * +-------+-------+-------+------------+--------+------------+
1610 *
1611 * FC = Frame Control
1612 * DA = Destination Address
1613 * SA = Source Address
1614 * RIF = Routing Information Field
1615 * LLC = Logical Link Control
1616 */
1617
1618 // Remove Routing Information Field (RIF), if present.
1619
1620 if ((virt[1 + 6] & FDDI_RII) == 0)
1621 RifLength = 0;
1622 else {
1623 int n;
1624 // goos: RIF removal has still to be tested
1625 pr_debug(KERN_INFO "RIF found\n");
1626 // Get RIF length from Routing Control (RC) field.
1627 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1628
1629 ri = ntohs(*((__be16 *) cp));
1630 RifLength = ri & FDDI_RCF_LEN_MASK;
1631 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1632 printk("fddi: Invalid RIF.\n");
1633 goto RequeueRxd; // Discard the frame.
1634
1635 }
1636 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1637 // regions overlap
1638
1639 virt = cp + RifLength;
1640 for (n = FDDI_MAC_HDR_LEN; n; n--)
1641 *--virt = *--cp;
1642 // adjust sbd->data pointer
1643 skb_pull(skb, RifLength);
1644 len -= RifLength;
1645 RifLength = 0;
1646 }
1647
1648 // Count statistics.
1649 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1650 // packets.
1651 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1652
1653 // virt points to header again
1654 if (virt[1] & 0x01) { // Check group (multicast) bit.
1655
1656 smc->os.MacStat.gen.multicast++;
1657 }
1658
1659 // deliver frame to system
1660 rxd->rxd_os.skb = NULL;
1661 skb_trim(skb, len);
1662 skb->protocol = fddi_type_trans(skb, bp->dev);
1663
1664 netif_rx(skb);
1665
1666 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1667 return;
1668
1669 RequeueRxd:
1670 pr_debug(KERN_INFO "Rx: re-queue RXD.\n");
1671 mac_drv_requeue_rxd(smc, rxd, frag_count);
1672 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1673 // not indicated.
1674
1675 } // mac_drv_rx_complete
1676
1677
1678 /************************
1679 *
1680 * mac_drv_requeue_rxd
1681 *
1682 * The hardware module calls this function to request the OS-specific
1683 * module to queue the receive buffer(s) represented by the pointer
1684 * to the RxD and the frag_count into the receive queue again. This
1685 * buffer was filled with an invalid frame or an SMT frame.
1686 * Args
1687 * smc - A pointer to the SMT context struct.
1688 *
1689 * rxd - A pointer to the first RxD which is used by the receive frame.
1690 *
1691 * frag_count - Count of RxDs used by the received frame.
1692 * Out
1693 * Nothing.
1694 *
1695 ************************/
1696 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1697 int frag_count)
1698 {
1699 volatile struct s_smt_fp_rxd *next_rxd;
1700 volatile struct s_smt_fp_rxd *src_rxd;
1701 struct sk_buff *skb;
1702 int MaxFrameSize;
1703 unsigned char *v_addr;
1704 dma_addr_t b_addr;
1705
1706 if (frag_count != 1) // This is not allowed to happen.
1707
1708 printk("fddi: Multi-fragment requeue!\n");
1709
1710 MaxFrameSize = smc->os.MaxFrameSize;
1711 src_rxd = rxd;
1712 for (; frag_count > 0; frag_count--) {
1713 next_rxd = src_rxd->rxd_next;
1714 rxd = HWM_GET_CURR_RXD(smc);
1715
1716 skb = src_rxd->rxd_os.skb;
1717 if (skb == NULL) { // this should not happen
1718
1719 pr_debug("Requeue with no skb in rxd!\n");
1720 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1721 if (skb) {
1722 // we got a skb
1723 rxd->rxd_os.skb = skb;
1724 skb_reserve(skb, 3);
1725 skb_put(skb, MaxFrameSize);
1726 v_addr = skb->data;
1727 b_addr = pci_map_single(&smc->os.pdev,
1728 v_addr,
1729 MaxFrameSize,
1730 PCI_DMA_FROMDEVICE);
1731 rxd->rxd_os.dma_addr = b_addr;
1732 } else {
1733 // no skb available, use local buffer
1734 pr_debug("Queueing invalid buffer!\n");
1735 rxd->rxd_os.skb = NULL;
1736 v_addr = smc->os.LocalRxBuffer;
1737 b_addr = smc->os.LocalRxBufferDMA;
1738 }
1739 } else {
1740 // we use skb from old rxd
1741 rxd->rxd_os.skb = skb;
1742 v_addr = skb->data;
1743 b_addr = pci_map_single(&smc->os.pdev,
1744 v_addr,
1745 MaxFrameSize,
1746 PCI_DMA_FROMDEVICE);
1747 rxd->rxd_os.dma_addr = b_addr;
1748 }
1749 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1750 FIRST_FRAG | LAST_FRAG);
1751
1752 src_rxd = next_rxd;
1753 }
1754 } // mac_drv_requeue_rxd
1755
1756
1757 /************************
1758 *
1759 * mac_drv_fill_rxd
1760 *
1761 * The hardware module calls this function at initialization time
1762 * to fill the RxD ring with receive buffers. It is also called by
1763 * mac_drv_rx_complete if rx_free is large enough to queue some new
1764 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1765 * receive buffers as long as enough RxDs and receive buffers are
1766 * available.
1767 * Args
1768 * smc - A pointer to the SMT context struct.
1769 * Out
1770 * Nothing.
1771 *
1772 ************************/
1773 void mac_drv_fill_rxd(struct s_smc *smc)
1774 {
1775 int MaxFrameSize;
1776 unsigned char *v_addr;
1777 unsigned long b_addr;
1778 struct sk_buff *skb;
1779 volatile struct s_smt_fp_rxd *rxd;
1780
1781 pr_debug(KERN_INFO "entering mac_drv_fill_rxd\n");
1782
1783 // Walk through the list of free receive buffers, passing receive
1784 // buffers to the HWM as long as RXDs are available.
1785
1786 MaxFrameSize = smc->os.MaxFrameSize;
1787 // Check if there is any RXD left.
1788 while (HWM_GET_RX_FREE(smc) > 0) {
1789 pr_debug(KERN_INFO ".\n");
1790
1791 rxd = HWM_GET_CURR_RXD(smc);
1792 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1793 if (skb) {
1794 // we got a skb
1795 skb_reserve(skb, 3);
1796 skb_put(skb, MaxFrameSize);
1797 v_addr = skb->data;
1798 b_addr = pci_map_single(&smc->os.pdev,
1799 v_addr,
1800 MaxFrameSize,
1801 PCI_DMA_FROMDEVICE);
1802 rxd->rxd_os.dma_addr = b_addr;
1803 } else {
1804 // no skb available, use local buffer
1805 // System has run out of buffer memory, but we want to
1806 // keep the receiver running in hope of better times.
1807 // Multiple descriptors may point to this local buffer,
1808 // so data in it must be considered invalid.
1809 pr_debug("Queueing invalid buffer!\n");
1810 v_addr = smc->os.LocalRxBuffer;
1811 b_addr = smc->os.LocalRxBufferDMA;
1812 }
1813
1814 rxd->rxd_os.skb = skb;
1815
1816 // Pass receive buffer to HWM.
1817 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1818 FIRST_FRAG | LAST_FRAG);
1819 }
1820 pr_debug(KERN_INFO "leaving mac_drv_fill_rxd\n");
1821 } // mac_drv_fill_rxd
1822
1823
1824 /************************
1825 *
1826 * mac_drv_clear_rxd
1827 *
1828 * The hardware module calls this function to release unused
1829 * receive buffers.
1830 * Args
1831 * smc - A pointer to the SMT context struct.
1832 *
1833 * rxd - A pointer to the first RxD which is used by the receive buffer.
1834 *
1835 * frag_count - Count of RxDs used by the receive buffer.
1836 * Out
1837 * Nothing.
1838 *
1839 ************************/
1840 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1841 int frag_count)
1842 {
1843
1844 struct sk_buff *skb;
1845
1846 pr_debug("entering mac_drv_clear_rxd\n");
1847
1848 if (frag_count != 1) // This is not allowed to happen.
1849
1850 printk("fddi: Multi-fragment clear!\n");
1851
1852 for (; frag_count > 0; frag_count--) {
1853 skb = rxd->rxd_os.skb;
1854 if (skb != NULL) {
1855 skfddi_priv *bp = &smc->os;
1856 int MaxFrameSize = bp->MaxFrameSize;
1857
1858 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1859 MaxFrameSize, PCI_DMA_FROMDEVICE);
1860
1861 dev_kfree_skb(skb);
1862 rxd->rxd_os.skb = NULL;
1863 }
1864 rxd = rxd->rxd_next; // Next RXD.
1865
1866 }
1867 } // mac_drv_clear_rxd
1868
1869
1870 /************************
1871 *
1872 * mac_drv_rx_init
1873 *
1874 * The hardware module calls this routine when an SMT or NSA frame of the
1875 * local SMT should be delivered to the LLC layer.
1876 *
1877 * It is necessary to have this function, because there is no other way to
1878 * copy the contents of SMT MBufs into receive buffers.
1879 *
1880 * mac_drv_rx_init allocates the required target memory for this frame,
1881 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1882 * Args
1883 * smc - A pointer to the SMT context struct.
1884 *
1885 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1886 *
1887 * fc - The Frame Control field of the received frame.
1888 *
1889 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1890 *
1891 * la_len - The length of the lookahead data stored in the lookahead
1892 * buffer (may be zero).
1893 * Out
1894 * Always returns zero (0).
1895 *
1896 ************************/
1897 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1898 char *look_ahead, int la_len)
1899 {
1900 struct sk_buff *skb;
1901
1902 pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1903
1904 // "Received" a SMT or NSA frame of the local SMT.
1905
1906 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1907 pr_debug("fddi: Discard invalid local SMT frame\n");
1908 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1909 len, la_len, (unsigned long) look_ahead);
1910 return (0);
1911 }
1912 skb = alloc_skb(len + 3, GFP_ATOMIC);
1913 if (!skb) {
1914 pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1915 return (0);
1916 }
1917 skb_reserve(skb, 3);
1918 skb_put(skb, len);
1919 skb_copy_to_linear_data(skb, look_ahead, len);
1920
1921 // deliver frame to system
1922 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1923 netif_rx(skb);
1924
1925 return (0);
1926 } // mac_drv_rx_init
1927
1928
1929 /************************
1930 *
1931 * smt_timer_poll
1932 *
1933 * This routine is called periodically by the SMT module to clean up the
1934 * driver.
1935 *
1936 * Return any queued frames back to the upper protocol layers if the ring
1937 * is down.
1938 * Args
1939 * smc - A pointer to the SMT context struct.
1940 * Out
1941 * Nothing.
1942 *
1943 ************************/
1944 void smt_timer_poll(struct s_smc *smc)
1945 {
1946 } // smt_timer_poll
1947
1948
1949 /************************
1950 *
1951 * ring_status_indication
1952 *
1953 * This function indicates a change of the ring state.
1954 * Args
1955 * smc - A pointer to the SMT context struct.
1956 *
1957 * status - The current ring status.
1958 * Out
1959 * Nothing.
1960 *
1961 ************************/
1962 void ring_status_indication(struct s_smc *smc, u_long status)
1963 {
1964 pr_debug("ring_status_indication( ");
1965 if (status & RS_RES15)
1966 pr_debug("RS_RES15 ");
1967 if (status & RS_HARDERROR)
1968 pr_debug("RS_HARDERROR ");
1969 if (status & RS_SOFTERROR)
1970 pr_debug("RS_SOFTERROR ");
1971 if (status & RS_BEACON)
1972 pr_debug("RS_BEACON ");
1973 if (status & RS_PATHTEST)
1974 pr_debug("RS_PATHTEST ");
1975 if (status & RS_SELFTEST)
1976 pr_debug("RS_SELFTEST ");
1977 if (status & RS_RES9)
1978 pr_debug("RS_RES9 ");
1979 if (status & RS_DISCONNECT)
1980 pr_debug("RS_DISCONNECT ");
1981 if (status & RS_RES7)
1982 pr_debug("RS_RES7 ");
1983 if (status & RS_DUPADDR)
1984 pr_debug("RS_DUPADDR ");
1985 if (status & RS_NORINGOP)
1986 pr_debug("RS_NORINGOP ");
1987 if (status & RS_VERSION)
1988 pr_debug("RS_VERSION ");
1989 if (status & RS_STUCKBYPASSS)
1990 pr_debug("RS_STUCKBYPASSS ");
1991 if (status & RS_EVENT)
1992 pr_debug("RS_EVENT ");
1993 if (status & RS_RINGOPCHANGE)
1994 pr_debug("RS_RINGOPCHANGE ");
1995 if (status & RS_RES0)
1996 pr_debug("RS_RES0 ");
1997 pr_debug("]\n");
1998 } // ring_status_indication
1999
2000
2001 /************************
2002 *
2003 * smt_get_time
2004 *
2005 * Gets the current time from the system.
2006 * Args
2007 * None.
2008 * Out
2009 * The current time in TICKS_PER_SECOND.
2010 *
2011 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2012 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2013 * to the time returned by smt_get_time().
2014 *
2015 ************************/
2016 unsigned long smt_get_time(void)
2017 {
2018 return jiffies;
2019 } // smt_get_time
2020
2021
2022 /************************
2023 *
2024 * smt_stat_counter
2025 *
2026 * Status counter update (ring_op, fifo full).
2027 * Args
2028 * smc - A pointer to the SMT context struct.
2029 *
2030 * stat - = 0: A ring operational change occurred.
2031 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2032 * Out
2033 * Nothing.
2034 *
2035 ************************/
2036 void smt_stat_counter(struct s_smc *smc, int stat)
2037 {
2038 // BOOLEAN RingIsUp ;
2039
2040 pr_debug(KERN_INFO "smt_stat_counter\n");
2041 switch (stat) {
2042 case 0:
2043 pr_debug(KERN_INFO "Ring operational change.\n");
2044 break;
2045 case 1:
2046 pr_debug(KERN_INFO "Receive fifo overflow.\n");
2047 smc->os.MacStat.gen.rx_errors++;
2048 break;
2049 default:
2050 pr_debug(KERN_INFO "Unknown status (%d).\n", stat);
2051 break;
2052 }
2053 } // smt_stat_counter
2054
2055
2056 /************************
2057 *
2058 * cfm_state_change
2059 *
2060 * Sets CFM state in custom statistics.
2061 * Args
2062 * smc - A pointer to the SMT context struct.
2063 *
2064 * c_state - Possible values are:
2065 *
2066 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2067 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2068 * Out
2069 * Nothing.
2070 *
2071 ************************/
2072 void cfm_state_change(struct s_smc *smc, int c_state)
2073 {
2074 #ifdef DRIVERDEBUG
2075 char *s;
2076
2077 switch (c_state) {
2078 case SC0_ISOLATED:
2079 s = "SC0_ISOLATED";
2080 break;
2081 case SC1_WRAP_A:
2082 s = "SC1_WRAP_A";
2083 break;
2084 case SC2_WRAP_B:
2085 s = "SC2_WRAP_B";
2086 break;
2087 case SC4_THRU_A:
2088 s = "SC4_THRU_A";
2089 break;
2090 case SC5_THRU_B:
2091 s = "SC5_THRU_B";
2092 break;
2093 case SC7_WRAP_S:
2094 s = "SC7_WRAP_S";
2095 break;
2096 case SC9_C_WRAP_A:
2097 s = "SC9_C_WRAP_A";
2098 break;
2099 case SC10_C_WRAP_B:
2100 s = "SC10_C_WRAP_B";
2101 break;
2102 case SC11_C_WRAP_S:
2103 s = "SC11_C_WRAP_S";
2104 break;
2105 default:
2106 pr_debug(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2107 return;
2108 }
2109 pr_debug(KERN_INFO "cfm_state_change: %s\n", s);
2110 #endif // DRIVERDEBUG
2111 } // cfm_state_change
2112
2113
2114 /************************
2115 *
2116 * ecm_state_change
2117 *
2118 * Sets ECM state in custom statistics.
2119 * Args
2120 * smc - A pointer to the SMT context struct.
2121 *
2122 * e_state - Possible values are:
2123 *
2124 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2125 * SC5_THRU_B (7), SC7_WRAP_S (8)
2126 * Out
2127 * Nothing.
2128 *
2129 ************************/
2130 void ecm_state_change(struct s_smc *smc, int e_state)
2131 {
2132 #ifdef DRIVERDEBUG
2133 char *s;
2134
2135 switch (e_state) {
2136 case EC0_OUT:
2137 s = "EC0_OUT";
2138 break;
2139 case EC1_IN:
2140 s = "EC1_IN";
2141 break;
2142 case EC2_TRACE:
2143 s = "EC2_TRACE";
2144 break;
2145 case EC3_LEAVE:
2146 s = "EC3_LEAVE";
2147 break;
2148 case EC4_PATH_TEST:
2149 s = "EC4_PATH_TEST";
2150 break;
2151 case EC5_INSERT:
2152 s = "EC5_INSERT";
2153 break;
2154 case EC6_CHECK:
2155 s = "EC6_CHECK";
2156 break;
2157 case EC7_DEINSERT:
2158 s = "EC7_DEINSERT";
2159 break;
2160 default:
2161 s = "unknown";
2162 break;
2163 }
2164 pr_debug(KERN_INFO "ecm_state_change: %s\n", s);
2165 #endif //DRIVERDEBUG
2166 } // ecm_state_change
2167
2168
2169 /************************
2170 *
2171 * rmt_state_change
2172 *
2173 * Sets RMT state in custom statistics.
2174 * Args
2175 * smc - A pointer to the SMT context struct.
2176 *
2177 * r_state - Possible values are:
2178 *
2179 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2180 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2181 * Out
2182 * Nothing.
2183 *
2184 ************************/
2185 void rmt_state_change(struct s_smc *smc, int r_state)
2186 {
2187 #ifdef DRIVERDEBUG
2188 char *s;
2189
2190 switch (r_state) {
2191 case RM0_ISOLATED:
2192 s = "RM0_ISOLATED";
2193 break;
2194 case RM1_NON_OP:
2195 s = "RM1_NON_OP - not operational";
2196 break;
2197 case RM2_RING_OP:
2198 s = "RM2_RING_OP - ring operational";
2199 break;
2200 case RM3_DETECT:
2201 s = "RM3_DETECT - detect dupl addresses";
2202 break;
2203 case RM4_NON_OP_DUP:
2204 s = "RM4_NON_OP_DUP - dupl. addr detected";
2205 break;
2206 case RM5_RING_OP_DUP:
2207 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2208 break;
2209 case RM6_DIRECTED:
2210 s = "RM6_DIRECTED - sending directed beacons";
2211 break;
2212 case RM7_TRACE:
2213 s = "RM7_TRACE - trace initiated";
2214 break;
2215 default:
2216 s = "unknown";
2217 break;
2218 }
2219 pr_debug(KERN_INFO "[rmt_state_change: %s]\n", s);
2220 #endif // DRIVERDEBUG
2221 } // rmt_state_change
2222
2223
2224 /************************
2225 *
2226 * drv_reset_indication
2227 *
2228 * This function is called by the SMT when it has detected a severe
2229 * hardware problem. The driver should perform a reset on the adapter
2230 * as soon as possible, but not from within this function.
2231 * Args
2232 * smc - A pointer to the SMT context struct.
2233 * Out
2234 * Nothing.
2235 *
2236 ************************/
2237 void drv_reset_indication(struct s_smc *smc)
2238 {
2239 pr_debug(KERN_INFO "entering drv_reset_indication\n");
2240
2241 smc->os.ResetRequested = TRUE; // Set flag.
2242
2243 } // drv_reset_indication
2244
2245 static struct pci_driver skfddi_pci_driver = {
2246 .name = "skfddi",
2247 .id_table = skfddi_pci_tbl,
2248 .probe = skfp_init_one,
2249 .remove = __devexit_p(skfp_remove_one),
2250 };
2251
2252 static int __init skfd_init(void)
2253 {
2254 return pci_register_driver(&skfddi_pci_driver);
2255 }
2256
2257 static void __exit skfd_exit(void)
2258 {
2259 pci_unregister_driver(&skfddi_pci_driver);
2260 }
2261
2262 module_init(skfd_init);
2263 module_exit(skfd_exit);