]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/skge.c
Merge trivial low-risk suspend hotkey bugzilla-5918 into release
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #include <linux/in.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/mii.h>
41 #include <asm/irq.h>
42
43 #include "skge.h"
44
45 #define DRV_NAME "skge"
46 #define DRV_VERSION "1.6"
47 #define PFX DRV_NAME " "
48
49 #define DEFAULT_TX_RING_SIZE 128
50 #define DEFAULT_RX_RING_SIZE 512
51 #define MAX_TX_RING_SIZE 1024
52 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
60 #define BLINK_MS 250
61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
66
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
87 { 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct skge_port *skge);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108
109 static int skge_get_regs_len(struct net_device *dev)
110 {
111 return 0x4000;
112 }
113
114 /*
115 * Returns copy of whole control register region
116 * Note: skip RAM address register because accessing it will
117 * cause bus hangs!
118 */
119 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
120 void *p)
121 {
122 const struct skge_port *skge = netdev_priv(dev);
123 const void __iomem *io = skge->hw->regs;
124
125 regs->version = 1;
126 memset(p, 0, regs->len);
127 memcpy_fromio(p, io, B3_RAM_ADDR);
128
129 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
130 regs->len - B3_RI_WTO_R1);
131 }
132
133 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
134 static int wol_supported(const struct skge_hw *hw)
135 {
136 return !((hw->chip_id == CHIP_ID_GENESIS ||
137 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
138 }
139
140 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
141 {
142 struct skge_port *skge = netdev_priv(dev);
143
144 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
145 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
146 }
147
148 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
149 {
150 struct skge_port *skge = netdev_priv(dev);
151 struct skge_hw *hw = skge->hw;
152
153 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
154 return -EOPNOTSUPP;
155
156 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
157 return -EOPNOTSUPP;
158
159 skge->wol = wol->wolopts == WAKE_MAGIC;
160
161 if (skge->wol) {
162 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
163
164 skge_write16(hw, WOL_CTRL_STAT,
165 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
166 WOL_CTL_ENA_MAGIC_PKT_UNIT);
167 } else
168 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
169
170 return 0;
171 }
172
173 /* Determine supported/advertised modes based on hardware.
174 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
175 */
176 static u32 skge_supported_modes(const struct skge_hw *hw)
177 {
178 u32 supported;
179
180 if (hw->copper) {
181 supported = SUPPORTED_10baseT_Half
182 | SUPPORTED_10baseT_Full
183 | SUPPORTED_100baseT_Half
184 | SUPPORTED_100baseT_Full
185 | SUPPORTED_1000baseT_Half
186 | SUPPORTED_1000baseT_Full
187 | SUPPORTED_Autoneg| SUPPORTED_TP;
188
189 if (hw->chip_id == CHIP_ID_GENESIS)
190 supported &= ~(SUPPORTED_10baseT_Half
191 | SUPPORTED_10baseT_Full
192 | SUPPORTED_100baseT_Half
193 | SUPPORTED_100baseT_Full);
194
195 else if (hw->chip_id == CHIP_ID_YUKON)
196 supported &= ~SUPPORTED_1000baseT_Half;
197 } else
198 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
199 | SUPPORTED_Autoneg;
200
201 return supported;
202 }
203
204 static int skge_get_settings(struct net_device *dev,
205 struct ethtool_cmd *ecmd)
206 {
207 struct skge_port *skge = netdev_priv(dev);
208 struct skge_hw *hw = skge->hw;
209
210 ecmd->transceiver = XCVR_INTERNAL;
211 ecmd->supported = skge_supported_modes(hw);
212
213 if (hw->copper) {
214 ecmd->port = PORT_TP;
215 ecmd->phy_address = hw->phy_addr;
216 } else
217 ecmd->port = PORT_FIBRE;
218
219 ecmd->advertising = skge->advertising;
220 ecmd->autoneg = skge->autoneg;
221 ecmd->speed = skge->speed;
222 ecmd->duplex = skge->duplex;
223 return 0;
224 }
225
226 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
227 {
228 struct skge_port *skge = netdev_priv(dev);
229 const struct skge_hw *hw = skge->hw;
230 u32 supported = skge_supported_modes(hw);
231
232 if (ecmd->autoneg == AUTONEG_ENABLE) {
233 ecmd->advertising = supported;
234 skge->duplex = -1;
235 skge->speed = -1;
236 } else {
237 u32 setting;
238
239 switch (ecmd->speed) {
240 case SPEED_1000:
241 if (ecmd->duplex == DUPLEX_FULL)
242 setting = SUPPORTED_1000baseT_Full;
243 else if (ecmd->duplex == DUPLEX_HALF)
244 setting = SUPPORTED_1000baseT_Half;
245 else
246 return -EINVAL;
247 break;
248 case SPEED_100:
249 if (ecmd->duplex == DUPLEX_FULL)
250 setting = SUPPORTED_100baseT_Full;
251 else if (ecmd->duplex == DUPLEX_HALF)
252 setting = SUPPORTED_100baseT_Half;
253 else
254 return -EINVAL;
255 break;
256
257 case SPEED_10:
258 if (ecmd->duplex == DUPLEX_FULL)
259 setting = SUPPORTED_10baseT_Full;
260 else if (ecmd->duplex == DUPLEX_HALF)
261 setting = SUPPORTED_10baseT_Half;
262 else
263 return -EINVAL;
264 break;
265 default:
266 return -EINVAL;
267 }
268
269 if ((setting & supported) == 0)
270 return -EINVAL;
271
272 skge->speed = ecmd->speed;
273 skge->duplex = ecmd->duplex;
274 }
275
276 skge->autoneg = ecmd->autoneg;
277 skge->advertising = ecmd->advertising;
278
279 if (netif_running(dev))
280 skge_phy_reset(skge);
281
282 return (0);
283 }
284
285 static void skge_get_drvinfo(struct net_device *dev,
286 struct ethtool_drvinfo *info)
287 {
288 struct skge_port *skge = netdev_priv(dev);
289
290 strcpy(info->driver, DRV_NAME);
291 strcpy(info->version, DRV_VERSION);
292 strcpy(info->fw_version, "N/A");
293 strcpy(info->bus_info, pci_name(skge->hw->pdev));
294 }
295
296 static const struct skge_stat {
297 char name[ETH_GSTRING_LEN];
298 u16 xmac_offset;
299 u16 gma_offset;
300 } skge_stats[] = {
301 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
302 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
303
304 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
305 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
306 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
307 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
308 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
309 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
310 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
311 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
312
313 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
314 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
315 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
316 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
317 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
318 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
319
320 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
321 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
322 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
323 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
324 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
325 };
326
327 static int skge_get_stats_count(struct net_device *dev)
328 {
329 return ARRAY_SIZE(skge_stats);
330 }
331
332 static void skge_get_ethtool_stats(struct net_device *dev,
333 struct ethtool_stats *stats, u64 *data)
334 {
335 struct skge_port *skge = netdev_priv(dev);
336
337 if (skge->hw->chip_id == CHIP_ID_GENESIS)
338 genesis_get_stats(skge, data);
339 else
340 yukon_get_stats(skge, data);
341 }
342
343 /* Use hardware MIB variables for critical path statistics and
344 * transmit feedback not reported at interrupt.
345 * Other errors are accounted for in interrupt handler.
346 */
347 static struct net_device_stats *skge_get_stats(struct net_device *dev)
348 {
349 struct skge_port *skge = netdev_priv(dev);
350 u64 data[ARRAY_SIZE(skge_stats)];
351
352 if (skge->hw->chip_id == CHIP_ID_GENESIS)
353 genesis_get_stats(skge, data);
354 else
355 yukon_get_stats(skge, data);
356
357 skge->net_stats.tx_bytes = data[0];
358 skge->net_stats.rx_bytes = data[1];
359 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
360 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
361 skge->net_stats.multicast = data[3] + data[5];
362 skge->net_stats.collisions = data[10];
363 skge->net_stats.tx_aborted_errors = data[12];
364
365 return &skge->net_stats;
366 }
367
368 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
369 {
370 int i;
371
372 switch (stringset) {
373 case ETH_SS_STATS:
374 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
375 memcpy(data + i * ETH_GSTRING_LEN,
376 skge_stats[i].name, ETH_GSTRING_LEN);
377 break;
378 }
379 }
380
381 static void skge_get_ring_param(struct net_device *dev,
382 struct ethtool_ringparam *p)
383 {
384 struct skge_port *skge = netdev_priv(dev);
385
386 p->rx_max_pending = MAX_RX_RING_SIZE;
387 p->tx_max_pending = MAX_TX_RING_SIZE;
388 p->rx_mini_max_pending = 0;
389 p->rx_jumbo_max_pending = 0;
390
391 p->rx_pending = skge->rx_ring.count;
392 p->tx_pending = skge->tx_ring.count;
393 p->rx_mini_pending = 0;
394 p->rx_jumbo_pending = 0;
395 }
396
397 static int skge_set_ring_param(struct net_device *dev,
398 struct ethtool_ringparam *p)
399 {
400 struct skge_port *skge = netdev_priv(dev);
401 int err;
402
403 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
404 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
405 return -EINVAL;
406
407 skge->rx_ring.count = p->rx_pending;
408 skge->tx_ring.count = p->tx_pending;
409
410 if (netif_running(dev)) {
411 skge_down(dev);
412 err = skge_up(dev);
413 if (err)
414 dev_close(dev);
415 }
416
417 return 0;
418 }
419
420 static u32 skge_get_msglevel(struct net_device *netdev)
421 {
422 struct skge_port *skge = netdev_priv(netdev);
423 return skge->msg_enable;
424 }
425
426 static void skge_set_msglevel(struct net_device *netdev, u32 value)
427 {
428 struct skge_port *skge = netdev_priv(netdev);
429 skge->msg_enable = value;
430 }
431
432 static int skge_nway_reset(struct net_device *dev)
433 {
434 struct skge_port *skge = netdev_priv(dev);
435
436 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
437 return -EINVAL;
438
439 skge_phy_reset(skge);
440 return 0;
441 }
442
443 static int skge_set_sg(struct net_device *dev, u32 data)
444 {
445 struct skge_port *skge = netdev_priv(dev);
446 struct skge_hw *hw = skge->hw;
447
448 if (hw->chip_id == CHIP_ID_GENESIS && data)
449 return -EOPNOTSUPP;
450 return ethtool_op_set_sg(dev, data);
451 }
452
453 static int skge_set_tx_csum(struct net_device *dev, u32 data)
454 {
455 struct skge_port *skge = netdev_priv(dev);
456 struct skge_hw *hw = skge->hw;
457
458 if (hw->chip_id == CHIP_ID_GENESIS && data)
459 return -EOPNOTSUPP;
460
461 return ethtool_op_set_tx_csum(dev, data);
462 }
463
464 static u32 skge_get_rx_csum(struct net_device *dev)
465 {
466 struct skge_port *skge = netdev_priv(dev);
467
468 return skge->rx_csum;
469 }
470
471 /* Only Yukon supports checksum offload. */
472 static int skge_set_rx_csum(struct net_device *dev, u32 data)
473 {
474 struct skge_port *skge = netdev_priv(dev);
475
476 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
477 return -EOPNOTSUPP;
478
479 skge->rx_csum = data;
480 return 0;
481 }
482
483 static void skge_get_pauseparam(struct net_device *dev,
484 struct ethtool_pauseparam *ecmd)
485 {
486 struct skge_port *skge = netdev_priv(dev);
487
488 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
489 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
490 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
491 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
492
493 ecmd->autoneg = skge->autoneg;
494 }
495
496 static int skge_set_pauseparam(struct net_device *dev,
497 struct ethtool_pauseparam *ecmd)
498 {
499 struct skge_port *skge = netdev_priv(dev);
500
501 skge->autoneg = ecmd->autoneg;
502 if (ecmd->rx_pause && ecmd->tx_pause)
503 skge->flow_control = FLOW_MODE_SYMMETRIC;
504 else if (ecmd->rx_pause && !ecmd->tx_pause)
505 skge->flow_control = FLOW_MODE_REM_SEND;
506 else if (!ecmd->rx_pause && ecmd->tx_pause)
507 skge->flow_control = FLOW_MODE_LOC_SEND;
508 else
509 skge->flow_control = FLOW_MODE_NONE;
510
511 if (netif_running(dev))
512 skge_phy_reset(skge);
513 return 0;
514 }
515
516 /* Chip internal frequency for clock calculations */
517 static inline u32 hwkhz(const struct skge_hw *hw)
518 {
519 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
520 }
521
522 /* Chip HZ to microseconds */
523 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
524 {
525 return (ticks * 1000) / hwkhz(hw);
526 }
527
528 /* Microseconds to chip HZ */
529 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
530 {
531 return hwkhz(hw) * usec / 1000;
532 }
533
534 static int skge_get_coalesce(struct net_device *dev,
535 struct ethtool_coalesce *ecmd)
536 {
537 struct skge_port *skge = netdev_priv(dev);
538 struct skge_hw *hw = skge->hw;
539 int port = skge->port;
540
541 ecmd->rx_coalesce_usecs = 0;
542 ecmd->tx_coalesce_usecs = 0;
543
544 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
545 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
546 u32 msk = skge_read32(hw, B2_IRQM_MSK);
547
548 if (msk & rxirqmask[port])
549 ecmd->rx_coalesce_usecs = delay;
550 if (msk & txirqmask[port])
551 ecmd->tx_coalesce_usecs = delay;
552 }
553
554 return 0;
555 }
556
557 /* Note: interrupt timer is per board, but can turn on/off per port */
558 static int skge_set_coalesce(struct net_device *dev,
559 struct ethtool_coalesce *ecmd)
560 {
561 struct skge_port *skge = netdev_priv(dev);
562 struct skge_hw *hw = skge->hw;
563 int port = skge->port;
564 u32 msk = skge_read32(hw, B2_IRQM_MSK);
565 u32 delay = 25;
566
567 if (ecmd->rx_coalesce_usecs == 0)
568 msk &= ~rxirqmask[port];
569 else if (ecmd->rx_coalesce_usecs < 25 ||
570 ecmd->rx_coalesce_usecs > 33333)
571 return -EINVAL;
572 else {
573 msk |= rxirqmask[port];
574 delay = ecmd->rx_coalesce_usecs;
575 }
576
577 if (ecmd->tx_coalesce_usecs == 0)
578 msk &= ~txirqmask[port];
579 else if (ecmd->tx_coalesce_usecs < 25 ||
580 ecmd->tx_coalesce_usecs > 33333)
581 return -EINVAL;
582 else {
583 msk |= txirqmask[port];
584 delay = min(delay, ecmd->rx_coalesce_usecs);
585 }
586
587 skge_write32(hw, B2_IRQM_MSK, msk);
588 if (msk == 0)
589 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
590 else {
591 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
592 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
593 }
594 return 0;
595 }
596
597 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
598 static void skge_led(struct skge_port *skge, enum led_mode mode)
599 {
600 struct skge_hw *hw = skge->hw;
601 int port = skge->port;
602
603 mutex_lock(&hw->phy_mutex);
604 if (hw->chip_id == CHIP_ID_GENESIS) {
605 switch (mode) {
606 case LED_MODE_OFF:
607 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
608 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
609 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
610 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
611 break;
612
613 case LED_MODE_ON:
614 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
615 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
616
617 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
618 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
619
620 break;
621
622 case LED_MODE_TST:
623 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
624 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
625 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
626
627 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
628 break;
629 }
630 } else {
631 switch (mode) {
632 case LED_MODE_OFF:
633 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
634 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
635 PHY_M_LED_MO_DUP(MO_LED_OFF) |
636 PHY_M_LED_MO_10(MO_LED_OFF) |
637 PHY_M_LED_MO_100(MO_LED_OFF) |
638 PHY_M_LED_MO_1000(MO_LED_OFF) |
639 PHY_M_LED_MO_RX(MO_LED_OFF));
640 break;
641 case LED_MODE_ON:
642 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
643 PHY_M_LED_PULS_DUR(PULS_170MS) |
644 PHY_M_LED_BLINK_RT(BLINK_84MS) |
645 PHY_M_LEDC_TX_CTRL |
646 PHY_M_LEDC_DP_CTRL);
647
648 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
649 PHY_M_LED_MO_RX(MO_LED_OFF) |
650 (skge->speed == SPEED_100 ?
651 PHY_M_LED_MO_100(MO_LED_ON) : 0));
652 break;
653 case LED_MODE_TST:
654 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
655 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
656 PHY_M_LED_MO_DUP(MO_LED_ON) |
657 PHY_M_LED_MO_10(MO_LED_ON) |
658 PHY_M_LED_MO_100(MO_LED_ON) |
659 PHY_M_LED_MO_1000(MO_LED_ON) |
660 PHY_M_LED_MO_RX(MO_LED_ON));
661 }
662 }
663 mutex_unlock(&hw->phy_mutex);
664 }
665
666 /* blink LED's for finding board */
667 static int skge_phys_id(struct net_device *dev, u32 data)
668 {
669 struct skge_port *skge = netdev_priv(dev);
670 unsigned long ms;
671 enum led_mode mode = LED_MODE_TST;
672
673 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
674 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
675 else
676 ms = data * 1000;
677
678 while (ms > 0) {
679 skge_led(skge, mode);
680 mode ^= LED_MODE_TST;
681
682 if (msleep_interruptible(BLINK_MS))
683 break;
684 ms -= BLINK_MS;
685 }
686
687 /* back to regular LED state */
688 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
689
690 return 0;
691 }
692
693 static struct ethtool_ops skge_ethtool_ops = {
694 .get_settings = skge_get_settings,
695 .set_settings = skge_set_settings,
696 .get_drvinfo = skge_get_drvinfo,
697 .get_regs_len = skge_get_regs_len,
698 .get_regs = skge_get_regs,
699 .get_wol = skge_get_wol,
700 .set_wol = skge_set_wol,
701 .get_msglevel = skge_get_msglevel,
702 .set_msglevel = skge_set_msglevel,
703 .nway_reset = skge_nway_reset,
704 .get_link = ethtool_op_get_link,
705 .get_ringparam = skge_get_ring_param,
706 .set_ringparam = skge_set_ring_param,
707 .get_pauseparam = skge_get_pauseparam,
708 .set_pauseparam = skge_set_pauseparam,
709 .get_coalesce = skge_get_coalesce,
710 .set_coalesce = skge_set_coalesce,
711 .get_sg = ethtool_op_get_sg,
712 .set_sg = skge_set_sg,
713 .get_tx_csum = ethtool_op_get_tx_csum,
714 .set_tx_csum = skge_set_tx_csum,
715 .get_rx_csum = skge_get_rx_csum,
716 .set_rx_csum = skge_set_rx_csum,
717 .get_strings = skge_get_strings,
718 .phys_id = skge_phys_id,
719 .get_stats_count = skge_get_stats_count,
720 .get_ethtool_stats = skge_get_ethtool_stats,
721 .get_perm_addr = ethtool_op_get_perm_addr,
722 };
723
724 /*
725 * Allocate ring elements and chain them together
726 * One-to-one association of board descriptors with ring elements
727 */
728 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
729 {
730 struct skge_tx_desc *d;
731 struct skge_element *e;
732 int i;
733
734 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
735 if (!ring->start)
736 return -ENOMEM;
737
738 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
739 e->desc = d;
740 if (i == ring->count - 1) {
741 e->next = ring->start;
742 d->next_offset = base;
743 } else {
744 e->next = e + 1;
745 d->next_offset = base + (i+1) * sizeof(*d);
746 }
747 }
748 ring->to_use = ring->to_clean = ring->start;
749
750 return 0;
751 }
752
753 /* Allocate and setup a new buffer for receiving */
754 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
755 struct sk_buff *skb, unsigned int bufsize)
756 {
757 struct skge_rx_desc *rd = e->desc;
758 u64 map;
759
760 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
761 PCI_DMA_FROMDEVICE);
762
763 rd->dma_lo = map;
764 rd->dma_hi = map >> 32;
765 e->skb = skb;
766 rd->csum1_start = ETH_HLEN;
767 rd->csum2_start = ETH_HLEN;
768 rd->csum1 = 0;
769 rd->csum2 = 0;
770
771 wmb();
772
773 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
774 pci_unmap_addr_set(e, mapaddr, map);
775 pci_unmap_len_set(e, maplen, bufsize);
776 }
777
778 /* Resume receiving using existing skb,
779 * Note: DMA address is not changed by chip.
780 * MTU not changed while receiver active.
781 */
782 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
783 {
784 struct skge_rx_desc *rd = e->desc;
785
786 rd->csum2 = 0;
787 rd->csum2_start = ETH_HLEN;
788
789 wmb();
790
791 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
792 }
793
794
795 /* Free all buffers in receive ring, assumes receiver stopped */
796 static void skge_rx_clean(struct skge_port *skge)
797 {
798 struct skge_hw *hw = skge->hw;
799 struct skge_ring *ring = &skge->rx_ring;
800 struct skge_element *e;
801
802 e = ring->start;
803 do {
804 struct skge_rx_desc *rd = e->desc;
805 rd->control = 0;
806 if (e->skb) {
807 pci_unmap_single(hw->pdev,
808 pci_unmap_addr(e, mapaddr),
809 pci_unmap_len(e, maplen),
810 PCI_DMA_FROMDEVICE);
811 dev_kfree_skb(e->skb);
812 e->skb = NULL;
813 }
814 } while ((e = e->next) != ring->start);
815 }
816
817
818 /* Allocate buffers for receive ring
819 * For receive: to_clean is next received frame.
820 */
821 static int skge_rx_fill(struct skge_port *skge)
822 {
823 struct skge_ring *ring = &skge->rx_ring;
824 struct skge_element *e;
825
826 e = ring->start;
827 do {
828 struct sk_buff *skb;
829
830 skb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_KERNEL);
831 if (!skb)
832 return -ENOMEM;
833
834 skb_reserve(skb, NET_IP_ALIGN);
835 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
836 } while ( (e = e->next) != ring->start);
837
838 ring->to_clean = ring->start;
839 return 0;
840 }
841
842 static void skge_link_up(struct skge_port *skge)
843 {
844 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
845 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
846
847 netif_carrier_on(skge->netdev);
848 netif_wake_queue(skge->netdev);
849
850 if (netif_msg_link(skge))
851 printk(KERN_INFO PFX
852 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
853 skge->netdev->name, skge->speed,
854 skge->duplex == DUPLEX_FULL ? "full" : "half",
855 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
856 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
857 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
858 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
859 "unknown");
860 }
861
862 static void skge_link_down(struct skge_port *skge)
863 {
864 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
865 netif_carrier_off(skge->netdev);
866 netif_stop_queue(skge->netdev);
867
868 if (netif_msg_link(skge))
869 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
870 }
871
872 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
873 {
874 int i;
875
876 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
877 *val = xm_read16(hw, port, XM_PHY_DATA);
878
879 for (i = 0; i < PHY_RETRIES; i++) {
880 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
881 goto ready;
882 udelay(1);
883 }
884
885 return -ETIMEDOUT;
886 ready:
887 *val = xm_read16(hw, port, XM_PHY_DATA);
888
889 return 0;
890 }
891
892 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
893 {
894 u16 v = 0;
895 if (__xm_phy_read(hw, port, reg, &v))
896 printk(KERN_WARNING PFX "%s: phy read timed out\n",
897 hw->dev[port]->name);
898 return v;
899 }
900
901 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
902 {
903 int i;
904
905 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
906 for (i = 0; i < PHY_RETRIES; i++) {
907 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
908 goto ready;
909 udelay(1);
910 }
911 return -EIO;
912
913 ready:
914 xm_write16(hw, port, XM_PHY_DATA, val);
915 for (i = 0; i < PHY_RETRIES; i++) {
916 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
917 return 0;
918 udelay(1);
919 }
920 return -ETIMEDOUT;
921 }
922
923 static void genesis_init(struct skge_hw *hw)
924 {
925 /* set blink source counter */
926 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
927 skge_write8(hw, B2_BSC_CTRL, BSC_START);
928
929 /* configure mac arbiter */
930 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
931
932 /* configure mac arbiter timeout values */
933 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
934 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
935 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
936 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
937
938 skge_write8(hw, B3_MA_RCINI_RX1, 0);
939 skge_write8(hw, B3_MA_RCINI_RX2, 0);
940 skge_write8(hw, B3_MA_RCINI_TX1, 0);
941 skge_write8(hw, B3_MA_RCINI_TX2, 0);
942
943 /* configure packet arbiter timeout */
944 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
945 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
946 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
947 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
948 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
949 }
950
951 static void genesis_reset(struct skge_hw *hw, int port)
952 {
953 const u8 zero[8] = { 0 };
954
955 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
956
957 /* reset the statistics module */
958 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
959 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
960 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
961 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
962 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
963
964 /* disable Broadcom PHY IRQ */
965 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
966
967 xm_outhash(hw, port, XM_HSM, zero);
968 }
969
970
971 /* Convert mode to MII values */
972 static const u16 phy_pause_map[] = {
973 [FLOW_MODE_NONE] = 0,
974 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
975 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
976 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
977 };
978
979
980 /* Check status of Broadcom phy link */
981 static void bcom_check_link(struct skge_hw *hw, int port)
982 {
983 struct net_device *dev = hw->dev[port];
984 struct skge_port *skge = netdev_priv(dev);
985 u16 status;
986
987 /* read twice because of latch */
988 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
989 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
990
991 if ((status & PHY_ST_LSYNC) == 0) {
992 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
993 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
994 xm_write16(hw, port, XM_MMU_CMD, cmd);
995 /* dummy read to ensure writing */
996 (void) xm_read16(hw, port, XM_MMU_CMD);
997
998 if (netif_carrier_ok(dev))
999 skge_link_down(skge);
1000 } else {
1001 if (skge->autoneg == AUTONEG_ENABLE &&
1002 (status & PHY_ST_AN_OVER)) {
1003 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1004 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1005
1006 if (lpa & PHY_B_AN_RF) {
1007 printk(KERN_NOTICE PFX "%s: remote fault\n",
1008 dev->name);
1009 return;
1010 }
1011
1012 /* Check Duplex mismatch */
1013 switch (aux & PHY_B_AS_AN_RES_MSK) {
1014 case PHY_B_RES_1000FD:
1015 skge->duplex = DUPLEX_FULL;
1016 break;
1017 case PHY_B_RES_1000HD:
1018 skge->duplex = DUPLEX_HALF;
1019 break;
1020 default:
1021 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1022 dev->name);
1023 return;
1024 }
1025
1026
1027 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1028 switch (aux & PHY_B_AS_PAUSE_MSK) {
1029 case PHY_B_AS_PAUSE_MSK:
1030 skge->flow_control = FLOW_MODE_SYMMETRIC;
1031 break;
1032 case PHY_B_AS_PRR:
1033 skge->flow_control = FLOW_MODE_REM_SEND;
1034 break;
1035 case PHY_B_AS_PRT:
1036 skge->flow_control = FLOW_MODE_LOC_SEND;
1037 break;
1038 default:
1039 skge->flow_control = FLOW_MODE_NONE;
1040 }
1041
1042 skge->speed = SPEED_1000;
1043 }
1044
1045 if (!netif_carrier_ok(dev))
1046 genesis_link_up(skge);
1047 }
1048 }
1049
1050 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1051 * Phy on for 100 or 10Mbit operation
1052 */
1053 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1054 {
1055 struct skge_hw *hw = skge->hw;
1056 int port = skge->port;
1057 int i;
1058 u16 id1, r, ext, ctl;
1059
1060 /* magic workaround patterns for Broadcom */
1061 static const struct {
1062 u16 reg;
1063 u16 val;
1064 } A1hack[] = {
1065 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1066 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1067 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1068 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1069 }, C0hack[] = {
1070 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1071 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1072 };
1073
1074 /* read Id from external PHY (all have the same address) */
1075 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1076
1077 /* Optimize MDIO transfer by suppressing preamble. */
1078 r = xm_read16(hw, port, XM_MMU_CMD);
1079 r |= XM_MMU_NO_PRE;
1080 xm_write16(hw, port, XM_MMU_CMD,r);
1081
1082 switch (id1) {
1083 case PHY_BCOM_ID1_C0:
1084 /*
1085 * Workaround BCOM Errata for the C0 type.
1086 * Write magic patterns to reserved registers.
1087 */
1088 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1089 xm_phy_write(hw, port,
1090 C0hack[i].reg, C0hack[i].val);
1091
1092 break;
1093 case PHY_BCOM_ID1_A1:
1094 /*
1095 * Workaround BCOM Errata for the A1 type.
1096 * Write magic patterns to reserved registers.
1097 */
1098 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1099 xm_phy_write(hw, port,
1100 A1hack[i].reg, A1hack[i].val);
1101 break;
1102 }
1103
1104 /*
1105 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1106 * Disable Power Management after reset.
1107 */
1108 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1109 r |= PHY_B_AC_DIS_PM;
1110 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1111
1112 /* Dummy read */
1113 xm_read16(hw, port, XM_ISRC);
1114
1115 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1116 ctl = PHY_CT_SP1000; /* always 1000mbit */
1117
1118 if (skge->autoneg == AUTONEG_ENABLE) {
1119 /*
1120 * Workaround BCOM Errata #1 for the C5 type.
1121 * 1000Base-T Link Acquisition Failure in Slave Mode
1122 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1123 */
1124 u16 adv = PHY_B_1000C_RD;
1125 if (skge->advertising & ADVERTISED_1000baseT_Half)
1126 adv |= PHY_B_1000C_AHD;
1127 if (skge->advertising & ADVERTISED_1000baseT_Full)
1128 adv |= PHY_B_1000C_AFD;
1129 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1130
1131 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1132 } else {
1133 if (skge->duplex == DUPLEX_FULL)
1134 ctl |= PHY_CT_DUP_MD;
1135 /* Force to slave */
1136 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1137 }
1138
1139 /* Set autonegotiation pause parameters */
1140 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1141 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1142
1143 /* Handle Jumbo frames */
1144 if (jumbo) {
1145 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1146 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1147
1148 ext |= PHY_B_PEC_HIGH_LA;
1149
1150 }
1151
1152 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1153 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1154
1155 /* Use link status change interrupt */
1156 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1157
1158 bcom_check_link(hw, port);
1159 }
1160
1161 static void genesis_mac_init(struct skge_hw *hw, int port)
1162 {
1163 struct net_device *dev = hw->dev[port];
1164 struct skge_port *skge = netdev_priv(dev);
1165 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1166 int i;
1167 u32 r;
1168 const u8 zero[6] = { 0 };
1169
1170 for (i = 0; i < 10; i++) {
1171 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1172 MFF_SET_MAC_RST);
1173 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1174 goto reset_ok;
1175 udelay(1);
1176 }
1177
1178 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1179
1180 reset_ok:
1181 /* Unreset the XMAC. */
1182 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1183
1184 /*
1185 * Perform additional initialization for external PHYs,
1186 * namely for the 1000baseTX cards that use the XMAC's
1187 * GMII mode.
1188 */
1189 /* Take external Phy out of reset */
1190 r = skge_read32(hw, B2_GP_IO);
1191 if (port == 0)
1192 r |= GP_DIR_0|GP_IO_0;
1193 else
1194 r |= GP_DIR_2|GP_IO_2;
1195
1196 skge_write32(hw, B2_GP_IO, r);
1197
1198
1199 /* Enable GMII interface */
1200 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1201
1202 bcom_phy_init(skge, jumbo);
1203
1204 /* Set Station Address */
1205 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1206
1207 /* We don't use match addresses so clear */
1208 for (i = 1; i < 16; i++)
1209 xm_outaddr(hw, port, XM_EXM(i), zero);
1210
1211 /* Clear MIB counters */
1212 xm_write16(hw, port, XM_STAT_CMD,
1213 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1214 /* Clear two times according to Errata #3 */
1215 xm_write16(hw, port, XM_STAT_CMD,
1216 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1217
1218 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1219 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1220
1221 /* We don't need the FCS appended to the packet. */
1222 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1223 if (jumbo)
1224 r |= XM_RX_BIG_PK_OK;
1225
1226 if (skge->duplex == DUPLEX_HALF) {
1227 /*
1228 * If in manual half duplex mode the other side might be in
1229 * full duplex mode, so ignore if a carrier extension is not seen
1230 * on frames received
1231 */
1232 r |= XM_RX_DIS_CEXT;
1233 }
1234 xm_write16(hw, port, XM_RX_CMD, r);
1235
1236
1237 /* We want short frames padded to 60 bytes. */
1238 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1239
1240 /*
1241 * Bump up the transmit threshold. This helps hold off transmit
1242 * underruns when we're blasting traffic from both ports at once.
1243 */
1244 xm_write16(hw, port, XM_TX_THR, 512);
1245
1246 /*
1247 * Enable the reception of all error frames. This is is
1248 * a necessary evil due to the design of the XMAC. The
1249 * XMAC's receive FIFO is only 8K in size, however jumbo
1250 * frames can be up to 9000 bytes in length. When bad
1251 * frame filtering is enabled, the XMAC's RX FIFO operates
1252 * in 'store and forward' mode. For this to work, the
1253 * entire frame has to fit into the FIFO, but that means
1254 * that jumbo frames larger than 8192 bytes will be
1255 * truncated. Disabling all bad frame filtering causes
1256 * the RX FIFO to operate in streaming mode, in which
1257 * case the XMAC will start transferring frames out of the
1258 * RX FIFO as soon as the FIFO threshold is reached.
1259 */
1260 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1261
1262
1263 /*
1264 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1265 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1266 * and 'Octets Rx OK Hi Cnt Ov'.
1267 */
1268 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1269
1270 /*
1271 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1272 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1273 * and 'Octets Tx OK Hi Cnt Ov'.
1274 */
1275 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1276
1277 /* Configure MAC arbiter */
1278 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1279
1280 /* configure timeout values */
1281 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1282 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1283 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1284 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1285
1286 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1287 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1288 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1289 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1290
1291 /* Configure Rx MAC FIFO */
1292 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1293 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1294 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1295
1296 /* Configure Tx MAC FIFO */
1297 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1298 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1299 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1300
1301 if (jumbo) {
1302 /* Enable frame flushing if jumbo frames used */
1303 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1304 } else {
1305 /* enable timeout timers if normal frames */
1306 skge_write16(hw, B3_PA_CTRL,
1307 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1308 }
1309 }
1310
1311 static void genesis_stop(struct skge_port *skge)
1312 {
1313 struct skge_hw *hw = skge->hw;
1314 int port = skge->port;
1315 u32 reg;
1316
1317 genesis_reset(hw, port);
1318
1319 /* Clear Tx packet arbiter timeout IRQ */
1320 skge_write16(hw, B3_PA_CTRL,
1321 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1322
1323 /*
1324 * If the transfer sticks at the MAC the STOP command will not
1325 * terminate if we don't flush the XMAC's transmit FIFO !
1326 */
1327 xm_write32(hw, port, XM_MODE,
1328 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1329
1330
1331 /* Reset the MAC */
1332 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1333
1334 /* For external PHYs there must be special handling */
1335 reg = skge_read32(hw, B2_GP_IO);
1336 if (port == 0) {
1337 reg |= GP_DIR_0;
1338 reg &= ~GP_IO_0;
1339 } else {
1340 reg |= GP_DIR_2;
1341 reg &= ~GP_IO_2;
1342 }
1343 skge_write32(hw, B2_GP_IO, reg);
1344 skge_read32(hw, B2_GP_IO);
1345
1346 xm_write16(hw, port, XM_MMU_CMD,
1347 xm_read16(hw, port, XM_MMU_CMD)
1348 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1349
1350 xm_read16(hw, port, XM_MMU_CMD);
1351 }
1352
1353
1354 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1355 {
1356 struct skge_hw *hw = skge->hw;
1357 int port = skge->port;
1358 int i;
1359 unsigned long timeout = jiffies + HZ;
1360
1361 xm_write16(hw, port,
1362 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1363
1364 /* wait for update to complete */
1365 while (xm_read16(hw, port, XM_STAT_CMD)
1366 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1367 if (time_after(jiffies, timeout))
1368 break;
1369 udelay(10);
1370 }
1371
1372 /* special case for 64 bit octet counter */
1373 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1374 | xm_read32(hw, port, XM_TXO_OK_LO);
1375 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1376 | xm_read32(hw, port, XM_RXO_OK_LO);
1377
1378 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1379 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1380 }
1381
1382 static void genesis_mac_intr(struct skge_hw *hw, int port)
1383 {
1384 struct skge_port *skge = netdev_priv(hw->dev[port]);
1385 u16 status = xm_read16(hw, port, XM_ISRC);
1386
1387 if (netif_msg_intr(skge))
1388 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1389 skge->netdev->name, status);
1390
1391 if (status & XM_IS_TXF_UR) {
1392 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1393 ++skge->net_stats.tx_fifo_errors;
1394 }
1395 if (status & XM_IS_RXF_OV) {
1396 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1397 ++skge->net_stats.rx_fifo_errors;
1398 }
1399 }
1400
1401 static void genesis_link_up(struct skge_port *skge)
1402 {
1403 struct skge_hw *hw = skge->hw;
1404 int port = skge->port;
1405 u16 cmd;
1406 u32 mode, msk;
1407
1408 cmd = xm_read16(hw, port, XM_MMU_CMD);
1409
1410 /*
1411 * enabling pause frame reception is required for 1000BT
1412 * because the XMAC is not reset if the link is going down
1413 */
1414 if (skge->flow_control == FLOW_MODE_NONE ||
1415 skge->flow_control == FLOW_MODE_LOC_SEND)
1416 /* Disable Pause Frame Reception */
1417 cmd |= XM_MMU_IGN_PF;
1418 else
1419 /* Enable Pause Frame Reception */
1420 cmd &= ~XM_MMU_IGN_PF;
1421
1422 xm_write16(hw, port, XM_MMU_CMD, cmd);
1423
1424 mode = xm_read32(hw, port, XM_MODE);
1425 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1426 skge->flow_control == FLOW_MODE_LOC_SEND) {
1427 /*
1428 * Configure Pause Frame Generation
1429 * Use internal and external Pause Frame Generation.
1430 * Sending pause frames is edge triggered.
1431 * Send a Pause frame with the maximum pause time if
1432 * internal oder external FIFO full condition occurs.
1433 * Send a zero pause time frame to re-start transmission.
1434 */
1435 /* XM_PAUSE_DA = '010000C28001' (default) */
1436 /* XM_MAC_PTIME = 0xffff (maximum) */
1437 /* remember this value is defined in big endian (!) */
1438 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1439
1440 mode |= XM_PAUSE_MODE;
1441 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1442 } else {
1443 /*
1444 * disable pause frame generation is required for 1000BT
1445 * because the XMAC is not reset if the link is going down
1446 */
1447 /* Disable Pause Mode in Mode Register */
1448 mode &= ~XM_PAUSE_MODE;
1449
1450 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1451 }
1452
1453 xm_write32(hw, port, XM_MODE, mode);
1454
1455 msk = XM_DEF_MSK;
1456 /* disable GP0 interrupt bit for external Phy */
1457 msk |= XM_IS_INP_ASS;
1458
1459 xm_write16(hw, port, XM_IMSK, msk);
1460 xm_read16(hw, port, XM_ISRC);
1461
1462 /* get MMU Command Reg. */
1463 cmd = xm_read16(hw, port, XM_MMU_CMD);
1464 if (skge->duplex == DUPLEX_FULL)
1465 cmd |= XM_MMU_GMII_FD;
1466
1467 /*
1468 * Workaround BCOM Errata (#10523) for all BCom Phys
1469 * Enable Power Management after link up
1470 */
1471 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1472 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1473 & ~PHY_B_AC_DIS_PM);
1474 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1475
1476 /* enable Rx/Tx */
1477 xm_write16(hw, port, XM_MMU_CMD,
1478 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1479 skge_link_up(skge);
1480 }
1481
1482
1483 static inline void bcom_phy_intr(struct skge_port *skge)
1484 {
1485 struct skge_hw *hw = skge->hw;
1486 int port = skge->port;
1487 u16 isrc;
1488
1489 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1490 if (netif_msg_intr(skge))
1491 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1492 skge->netdev->name, isrc);
1493
1494 if (isrc & PHY_B_IS_PSE)
1495 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1496 hw->dev[port]->name);
1497
1498 /* Workaround BCom Errata:
1499 * enable and disable loopback mode if "NO HCD" occurs.
1500 */
1501 if (isrc & PHY_B_IS_NO_HDCL) {
1502 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1503 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1504 ctrl | PHY_CT_LOOP);
1505 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1506 ctrl & ~PHY_CT_LOOP);
1507 }
1508
1509 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1510 bcom_check_link(hw, port);
1511
1512 }
1513
1514 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1515 {
1516 int i;
1517
1518 gma_write16(hw, port, GM_SMI_DATA, val);
1519 gma_write16(hw, port, GM_SMI_CTRL,
1520 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1521 for (i = 0; i < PHY_RETRIES; i++) {
1522 udelay(1);
1523
1524 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1525 return 0;
1526 }
1527
1528 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1529 hw->dev[port]->name);
1530 return -EIO;
1531 }
1532
1533 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1534 {
1535 int i;
1536
1537 gma_write16(hw, port, GM_SMI_CTRL,
1538 GM_SMI_CT_PHY_AD(hw->phy_addr)
1539 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1540
1541 for (i = 0; i < PHY_RETRIES; i++) {
1542 udelay(1);
1543 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1544 goto ready;
1545 }
1546
1547 return -ETIMEDOUT;
1548 ready:
1549 *val = gma_read16(hw, port, GM_SMI_DATA);
1550 return 0;
1551 }
1552
1553 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1554 {
1555 u16 v = 0;
1556 if (__gm_phy_read(hw, port, reg, &v))
1557 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1558 hw->dev[port]->name);
1559 return v;
1560 }
1561
1562 /* Marvell Phy Initialization */
1563 static void yukon_init(struct skge_hw *hw, int port)
1564 {
1565 struct skge_port *skge = netdev_priv(hw->dev[port]);
1566 u16 ctrl, ct1000, adv;
1567
1568 if (skge->autoneg == AUTONEG_ENABLE) {
1569 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1570
1571 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1572 PHY_M_EC_MAC_S_MSK);
1573 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1574
1575 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1576
1577 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1578 }
1579
1580 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1581 if (skge->autoneg == AUTONEG_DISABLE)
1582 ctrl &= ~PHY_CT_ANE;
1583
1584 ctrl |= PHY_CT_RESET;
1585 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1586
1587 ctrl = 0;
1588 ct1000 = 0;
1589 adv = PHY_AN_CSMA;
1590
1591 if (skge->autoneg == AUTONEG_ENABLE) {
1592 if (hw->copper) {
1593 if (skge->advertising & ADVERTISED_1000baseT_Full)
1594 ct1000 |= PHY_M_1000C_AFD;
1595 if (skge->advertising & ADVERTISED_1000baseT_Half)
1596 ct1000 |= PHY_M_1000C_AHD;
1597 if (skge->advertising & ADVERTISED_100baseT_Full)
1598 adv |= PHY_M_AN_100_FD;
1599 if (skge->advertising & ADVERTISED_100baseT_Half)
1600 adv |= PHY_M_AN_100_HD;
1601 if (skge->advertising & ADVERTISED_10baseT_Full)
1602 adv |= PHY_M_AN_10_FD;
1603 if (skge->advertising & ADVERTISED_10baseT_Half)
1604 adv |= PHY_M_AN_10_HD;
1605 } else /* special defines for FIBER (88E1011S only) */
1606 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1607
1608 /* Set Flow-control capabilities */
1609 adv |= phy_pause_map[skge->flow_control];
1610
1611 /* Restart Auto-negotiation */
1612 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1613 } else {
1614 /* forced speed/duplex settings */
1615 ct1000 = PHY_M_1000C_MSE;
1616
1617 if (skge->duplex == DUPLEX_FULL)
1618 ctrl |= PHY_CT_DUP_MD;
1619
1620 switch (skge->speed) {
1621 case SPEED_1000:
1622 ctrl |= PHY_CT_SP1000;
1623 break;
1624 case SPEED_100:
1625 ctrl |= PHY_CT_SP100;
1626 break;
1627 }
1628
1629 ctrl |= PHY_CT_RESET;
1630 }
1631
1632 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1633
1634 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1635 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1636
1637 /* Enable phy interrupt on autonegotiation complete (or link up) */
1638 if (skge->autoneg == AUTONEG_ENABLE)
1639 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1640 else
1641 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1642 }
1643
1644 static void yukon_reset(struct skge_hw *hw, int port)
1645 {
1646 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1647 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1648 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1649 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1650 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1651
1652 gma_write16(hw, port, GM_RX_CTRL,
1653 gma_read16(hw, port, GM_RX_CTRL)
1654 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1655 }
1656
1657 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1658 static int is_yukon_lite_a0(struct skge_hw *hw)
1659 {
1660 u32 reg;
1661 int ret;
1662
1663 if (hw->chip_id != CHIP_ID_YUKON)
1664 return 0;
1665
1666 reg = skge_read32(hw, B2_FAR);
1667 skge_write8(hw, B2_FAR + 3, 0xff);
1668 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1669 skge_write32(hw, B2_FAR, reg);
1670 return ret;
1671 }
1672
1673 static void yukon_mac_init(struct skge_hw *hw, int port)
1674 {
1675 struct skge_port *skge = netdev_priv(hw->dev[port]);
1676 int i;
1677 u32 reg;
1678 const u8 *addr = hw->dev[port]->dev_addr;
1679
1680 /* WA code for COMA mode -- set PHY reset */
1681 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1682 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1683 reg = skge_read32(hw, B2_GP_IO);
1684 reg |= GP_DIR_9 | GP_IO_9;
1685 skge_write32(hw, B2_GP_IO, reg);
1686 }
1687
1688 /* hard reset */
1689 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1690 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1691
1692 /* WA code for COMA mode -- clear PHY reset */
1693 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1694 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1695 reg = skge_read32(hw, B2_GP_IO);
1696 reg |= GP_DIR_9;
1697 reg &= ~GP_IO_9;
1698 skge_write32(hw, B2_GP_IO, reg);
1699 }
1700
1701 /* Set hardware config mode */
1702 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1703 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1704 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1705
1706 /* Clear GMC reset */
1707 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1708 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1709 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1710
1711 if (skge->autoneg == AUTONEG_DISABLE) {
1712 reg = GM_GPCR_AU_ALL_DIS;
1713 gma_write16(hw, port, GM_GP_CTRL,
1714 gma_read16(hw, port, GM_GP_CTRL) | reg);
1715
1716 switch (skge->speed) {
1717 case SPEED_1000:
1718 reg &= ~GM_GPCR_SPEED_100;
1719 reg |= GM_GPCR_SPEED_1000;
1720 break;
1721 case SPEED_100:
1722 reg &= ~GM_GPCR_SPEED_1000;
1723 reg |= GM_GPCR_SPEED_100;
1724 break;
1725 case SPEED_10:
1726 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1727 break;
1728 }
1729
1730 if (skge->duplex == DUPLEX_FULL)
1731 reg |= GM_GPCR_DUP_FULL;
1732 } else
1733 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1734
1735 switch (skge->flow_control) {
1736 case FLOW_MODE_NONE:
1737 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1738 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1739 break;
1740 case FLOW_MODE_LOC_SEND:
1741 /* disable Rx flow-control */
1742 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1743 }
1744
1745 gma_write16(hw, port, GM_GP_CTRL, reg);
1746 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1747
1748 yukon_init(hw, port);
1749
1750 /* MIB clear */
1751 reg = gma_read16(hw, port, GM_PHY_ADDR);
1752 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1753
1754 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1755 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1756 gma_write16(hw, port, GM_PHY_ADDR, reg);
1757
1758 /* transmit control */
1759 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1760
1761 /* receive control reg: unicast + multicast + no FCS */
1762 gma_write16(hw, port, GM_RX_CTRL,
1763 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1764
1765 /* transmit flow control */
1766 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1767
1768 /* transmit parameter */
1769 gma_write16(hw, port, GM_TX_PARAM,
1770 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1771 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1772 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1773
1774 /* serial mode register */
1775 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1776 if (hw->dev[port]->mtu > 1500)
1777 reg |= GM_SMOD_JUMBO_ENA;
1778
1779 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1780
1781 /* physical address: used for pause frames */
1782 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1783 /* virtual address for data */
1784 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1785
1786 /* enable interrupt mask for counter overflows */
1787 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1788 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1789 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1790
1791 /* Initialize Mac Fifo */
1792
1793 /* Configure Rx MAC FIFO */
1794 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1795 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1796
1797 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1798 if (is_yukon_lite_a0(hw))
1799 reg &= ~GMF_RX_F_FL_ON;
1800
1801 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1802 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1803 /*
1804 * because Pause Packet Truncation in GMAC is not working
1805 * we have to increase the Flush Threshold to 64 bytes
1806 * in order to flush pause packets in Rx FIFO on Yukon-1
1807 */
1808 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1809
1810 /* Configure Tx MAC FIFO */
1811 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1812 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1813 }
1814
1815 /* Go into power down mode */
1816 static void yukon_suspend(struct skge_hw *hw, int port)
1817 {
1818 u16 ctrl;
1819
1820 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1821 ctrl |= PHY_M_PC_POL_R_DIS;
1822 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1823
1824 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1825 ctrl |= PHY_CT_RESET;
1826 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1827
1828 /* switch IEEE compatible power down mode on */
1829 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1830 ctrl |= PHY_CT_PDOWN;
1831 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1832 }
1833
1834 static void yukon_stop(struct skge_port *skge)
1835 {
1836 struct skge_hw *hw = skge->hw;
1837 int port = skge->port;
1838
1839 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1840 yukon_reset(hw, port);
1841
1842 gma_write16(hw, port, GM_GP_CTRL,
1843 gma_read16(hw, port, GM_GP_CTRL)
1844 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1845 gma_read16(hw, port, GM_GP_CTRL);
1846
1847 yukon_suspend(hw, port);
1848
1849 /* set GPHY Control reset */
1850 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1851 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1852 }
1853
1854 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1855 {
1856 struct skge_hw *hw = skge->hw;
1857 int port = skge->port;
1858 int i;
1859
1860 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1861 | gma_read32(hw, port, GM_TXO_OK_LO);
1862 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1863 | gma_read32(hw, port, GM_RXO_OK_LO);
1864
1865 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1866 data[i] = gma_read32(hw, port,
1867 skge_stats[i].gma_offset);
1868 }
1869
1870 static void yukon_mac_intr(struct skge_hw *hw, int port)
1871 {
1872 struct net_device *dev = hw->dev[port];
1873 struct skge_port *skge = netdev_priv(dev);
1874 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1875
1876 if (netif_msg_intr(skge))
1877 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1878 dev->name, status);
1879
1880 if (status & GM_IS_RX_FF_OR) {
1881 ++skge->net_stats.rx_fifo_errors;
1882 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1883 }
1884
1885 if (status & GM_IS_TX_FF_UR) {
1886 ++skge->net_stats.tx_fifo_errors;
1887 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1888 }
1889
1890 }
1891
1892 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1893 {
1894 switch (aux & PHY_M_PS_SPEED_MSK) {
1895 case PHY_M_PS_SPEED_1000:
1896 return SPEED_1000;
1897 case PHY_M_PS_SPEED_100:
1898 return SPEED_100;
1899 default:
1900 return SPEED_10;
1901 }
1902 }
1903
1904 static void yukon_link_up(struct skge_port *skge)
1905 {
1906 struct skge_hw *hw = skge->hw;
1907 int port = skge->port;
1908 u16 reg;
1909
1910 /* Enable Transmit FIFO Underrun */
1911 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1912
1913 reg = gma_read16(hw, port, GM_GP_CTRL);
1914 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1915 reg |= GM_GPCR_DUP_FULL;
1916
1917 /* enable Rx/Tx */
1918 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1919 gma_write16(hw, port, GM_GP_CTRL, reg);
1920
1921 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1922 skge_link_up(skge);
1923 }
1924
1925 static void yukon_link_down(struct skge_port *skge)
1926 {
1927 struct skge_hw *hw = skge->hw;
1928 int port = skge->port;
1929 u16 ctrl;
1930
1931 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1932
1933 ctrl = gma_read16(hw, port, GM_GP_CTRL);
1934 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1935 gma_write16(hw, port, GM_GP_CTRL, ctrl);
1936
1937 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1938 /* restore Asymmetric Pause bit */
1939 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1940 gm_phy_read(hw, port,
1941 PHY_MARV_AUNE_ADV)
1942 | PHY_M_AN_ASP);
1943
1944 }
1945
1946 yukon_reset(hw, port);
1947 skge_link_down(skge);
1948
1949 yukon_init(hw, port);
1950 }
1951
1952 static void yukon_phy_intr(struct skge_port *skge)
1953 {
1954 struct skge_hw *hw = skge->hw;
1955 int port = skge->port;
1956 const char *reason = NULL;
1957 u16 istatus, phystat;
1958
1959 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1960 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1961
1962 if (netif_msg_intr(skge))
1963 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1964 skge->netdev->name, istatus, phystat);
1965
1966 if (istatus & PHY_M_IS_AN_COMPL) {
1967 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1968 & PHY_M_AN_RF) {
1969 reason = "remote fault";
1970 goto failed;
1971 }
1972
1973 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1974 reason = "master/slave fault";
1975 goto failed;
1976 }
1977
1978 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1979 reason = "speed/duplex";
1980 goto failed;
1981 }
1982
1983 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1984 ? DUPLEX_FULL : DUPLEX_HALF;
1985 skge->speed = yukon_speed(hw, phystat);
1986
1987 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1988 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1989 case PHY_M_PS_PAUSE_MSK:
1990 skge->flow_control = FLOW_MODE_SYMMETRIC;
1991 break;
1992 case PHY_M_PS_RX_P_EN:
1993 skge->flow_control = FLOW_MODE_REM_SEND;
1994 break;
1995 case PHY_M_PS_TX_P_EN:
1996 skge->flow_control = FLOW_MODE_LOC_SEND;
1997 break;
1998 default:
1999 skge->flow_control = FLOW_MODE_NONE;
2000 }
2001
2002 if (skge->flow_control == FLOW_MODE_NONE ||
2003 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2004 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2005 else
2006 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2007 yukon_link_up(skge);
2008 return;
2009 }
2010
2011 if (istatus & PHY_M_IS_LSP_CHANGE)
2012 skge->speed = yukon_speed(hw, phystat);
2013
2014 if (istatus & PHY_M_IS_DUP_CHANGE)
2015 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2016 if (istatus & PHY_M_IS_LST_CHANGE) {
2017 if (phystat & PHY_M_PS_LINK_UP)
2018 yukon_link_up(skge);
2019 else
2020 yukon_link_down(skge);
2021 }
2022 return;
2023 failed:
2024 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2025 skge->netdev->name, reason);
2026
2027 /* XXX restart autonegotiation? */
2028 }
2029
2030 static void skge_phy_reset(struct skge_port *skge)
2031 {
2032 struct skge_hw *hw = skge->hw;
2033 int port = skge->port;
2034
2035 netif_stop_queue(skge->netdev);
2036 netif_carrier_off(skge->netdev);
2037
2038 mutex_lock(&hw->phy_mutex);
2039 if (hw->chip_id == CHIP_ID_GENESIS) {
2040 genesis_reset(hw, port);
2041 genesis_mac_init(hw, port);
2042 } else {
2043 yukon_reset(hw, port);
2044 yukon_init(hw, port);
2045 }
2046 mutex_unlock(&hw->phy_mutex);
2047 }
2048
2049 /* Basic MII support */
2050 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2051 {
2052 struct mii_ioctl_data *data = if_mii(ifr);
2053 struct skge_port *skge = netdev_priv(dev);
2054 struct skge_hw *hw = skge->hw;
2055 int err = -EOPNOTSUPP;
2056
2057 if (!netif_running(dev))
2058 return -ENODEV; /* Phy still in reset */
2059
2060 switch(cmd) {
2061 case SIOCGMIIPHY:
2062 data->phy_id = hw->phy_addr;
2063
2064 /* fallthru */
2065 case SIOCGMIIREG: {
2066 u16 val = 0;
2067 mutex_lock(&hw->phy_mutex);
2068 if (hw->chip_id == CHIP_ID_GENESIS)
2069 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2070 else
2071 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2072 mutex_unlock(&hw->phy_mutex);
2073 data->val_out = val;
2074 break;
2075 }
2076
2077 case SIOCSMIIREG:
2078 if (!capable(CAP_NET_ADMIN))
2079 return -EPERM;
2080
2081 mutex_lock(&hw->phy_mutex);
2082 if (hw->chip_id == CHIP_ID_GENESIS)
2083 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2084 data->val_in);
2085 else
2086 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2087 data->val_in);
2088 mutex_unlock(&hw->phy_mutex);
2089 break;
2090 }
2091 return err;
2092 }
2093
2094 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2095 {
2096 u32 end;
2097
2098 start /= 8;
2099 len /= 8;
2100 end = start + len - 1;
2101
2102 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2103 skge_write32(hw, RB_ADDR(q, RB_START), start);
2104 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2105 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2106 skge_write32(hw, RB_ADDR(q, RB_END), end);
2107
2108 if (q == Q_R1 || q == Q_R2) {
2109 /* Set thresholds on receive queue's */
2110 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2111 start + (2*len)/3);
2112 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2113 start + (len/3));
2114 } else {
2115 /* Enable store & forward on Tx queue's because
2116 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2117 */
2118 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2119 }
2120
2121 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2122 }
2123
2124 /* Setup Bus Memory Interface */
2125 static void skge_qset(struct skge_port *skge, u16 q,
2126 const struct skge_element *e)
2127 {
2128 struct skge_hw *hw = skge->hw;
2129 u32 watermark = 0x600;
2130 u64 base = skge->dma + (e->desc - skge->mem);
2131
2132 /* optimization to reduce window on 32bit/33mhz */
2133 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2134 watermark /= 2;
2135
2136 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2137 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2138 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2139 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2140 }
2141
2142 static int skge_up(struct net_device *dev)
2143 {
2144 struct skge_port *skge = netdev_priv(dev);
2145 struct skge_hw *hw = skge->hw;
2146 int port = skge->port;
2147 u32 chunk, ram_addr;
2148 size_t rx_size, tx_size;
2149 int err;
2150
2151 if (netif_msg_ifup(skge))
2152 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2153
2154 if (dev->mtu > RX_BUF_SIZE)
2155 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2156 else
2157 skge->rx_buf_size = RX_BUF_SIZE;
2158
2159
2160 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2161 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2162 skge->mem_size = tx_size + rx_size;
2163 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2164 if (!skge->mem)
2165 return -ENOMEM;
2166
2167 BUG_ON(skge->dma & 7);
2168
2169 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2170 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2171 err = -EINVAL;
2172 goto free_pci_mem;
2173 }
2174
2175 memset(skge->mem, 0, skge->mem_size);
2176
2177 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2178 if (err)
2179 goto free_pci_mem;
2180
2181 err = skge_rx_fill(skge);
2182 if (err)
2183 goto free_rx_ring;
2184
2185 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2186 skge->dma + rx_size);
2187 if (err)
2188 goto free_rx_ring;
2189
2190 /* Initialize MAC */
2191 mutex_lock(&hw->phy_mutex);
2192 if (hw->chip_id == CHIP_ID_GENESIS)
2193 genesis_mac_init(hw, port);
2194 else
2195 yukon_mac_init(hw, port);
2196 mutex_unlock(&hw->phy_mutex);
2197
2198 /* Configure RAMbuffers */
2199 chunk = hw->ram_size / ((hw->ports + 1)*2);
2200 ram_addr = hw->ram_offset + 2 * chunk * port;
2201
2202 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2203 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2204
2205 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2206 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2207 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2208
2209 /* Start receiver BMU */
2210 wmb();
2211 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2212 skge_led(skge, LED_MODE_ON);
2213
2214 return 0;
2215
2216 free_rx_ring:
2217 skge_rx_clean(skge);
2218 kfree(skge->rx_ring.start);
2219 free_pci_mem:
2220 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2221 skge->mem = NULL;
2222
2223 return err;
2224 }
2225
2226 static int skge_down(struct net_device *dev)
2227 {
2228 struct skge_port *skge = netdev_priv(dev);
2229 struct skge_hw *hw = skge->hw;
2230 int port = skge->port;
2231
2232 if (skge->mem == NULL)
2233 return 0;
2234
2235 if (netif_msg_ifdown(skge))
2236 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2237
2238 netif_stop_queue(dev);
2239
2240 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2241 if (hw->chip_id == CHIP_ID_GENESIS)
2242 genesis_stop(skge);
2243 else
2244 yukon_stop(skge);
2245
2246 /* Stop transmitter */
2247 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2248 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2249 RB_RST_SET|RB_DIS_OP_MD);
2250
2251
2252 /* Disable Force Sync bit and Enable Alloc bit */
2253 skge_write8(hw, SK_REG(port, TXA_CTRL),
2254 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2255
2256 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2257 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2258 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2259
2260 /* Reset PCI FIFO */
2261 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2262 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2263
2264 /* Reset the RAM Buffer async Tx queue */
2265 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2266 /* stop receiver */
2267 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2268 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2269 RB_RST_SET|RB_DIS_OP_MD);
2270 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2271
2272 if (hw->chip_id == CHIP_ID_GENESIS) {
2273 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2274 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2275 } else {
2276 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2277 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2278 }
2279
2280 skge_led(skge, LED_MODE_OFF);
2281
2282 skge_tx_clean(skge);
2283 skge_rx_clean(skge);
2284
2285 kfree(skge->rx_ring.start);
2286 kfree(skge->tx_ring.start);
2287 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2288 skge->mem = NULL;
2289 return 0;
2290 }
2291
2292 static inline int skge_avail(const struct skge_ring *ring)
2293 {
2294 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2295 + (ring->to_clean - ring->to_use) - 1;
2296 }
2297
2298 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2299 {
2300 struct skge_port *skge = netdev_priv(dev);
2301 struct skge_hw *hw = skge->hw;
2302 struct skge_element *e;
2303 struct skge_tx_desc *td;
2304 int i;
2305 u32 control, len;
2306 u64 map;
2307 unsigned long flags;
2308
2309 if (skb_padto(skb, ETH_ZLEN))
2310 return NETDEV_TX_OK;
2311
2312 if (!spin_trylock_irqsave(&skge->tx_lock, flags))
2313 /* Collision - tell upper layer to requeue */
2314 return NETDEV_TX_LOCKED;
2315
2316 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
2317 if (!netif_queue_stopped(dev)) {
2318 netif_stop_queue(dev);
2319
2320 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2321 dev->name);
2322 }
2323 spin_unlock_irqrestore(&skge->tx_lock, flags);
2324 return NETDEV_TX_BUSY;
2325 }
2326
2327 e = skge->tx_ring.to_use;
2328 td = e->desc;
2329 BUG_ON(td->control & BMU_OWN);
2330 e->skb = skb;
2331 len = skb_headlen(skb);
2332 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2333 pci_unmap_addr_set(e, mapaddr, map);
2334 pci_unmap_len_set(e, maplen, len);
2335
2336 td->dma_lo = map;
2337 td->dma_hi = map >> 32;
2338
2339 if (skb->ip_summed == CHECKSUM_HW) {
2340 int offset = skb->h.raw - skb->data;
2341
2342 /* This seems backwards, but it is what the sk98lin
2343 * does. Looks like hardware is wrong?
2344 */
2345 if (skb->h.ipiph->protocol == IPPROTO_UDP
2346 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2347 control = BMU_TCP_CHECK;
2348 else
2349 control = BMU_UDP_CHECK;
2350
2351 td->csum_offs = 0;
2352 td->csum_start = offset;
2353 td->csum_write = offset + skb->csum;
2354 } else
2355 control = BMU_CHECK;
2356
2357 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2358 control |= BMU_EOF| BMU_IRQ_EOF;
2359 else {
2360 struct skge_tx_desc *tf = td;
2361
2362 control |= BMU_STFWD;
2363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2364 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2365
2366 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2367 frag->size, PCI_DMA_TODEVICE);
2368
2369 e = e->next;
2370 e->skb = skb;
2371 tf = e->desc;
2372 BUG_ON(tf->control & BMU_OWN);
2373
2374 tf->dma_lo = map;
2375 tf->dma_hi = (u64) map >> 32;
2376 pci_unmap_addr_set(e, mapaddr, map);
2377 pci_unmap_len_set(e, maplen, frag->size);
2378
2379 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2380 }
2381 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2382 }
2383 /* Make sure all the descriptors written */
2384 wmb();
2385 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2386 wmb();
2387
2388 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2389
2390 if (unlikely(netif_msg_tx_queued(skge)))
2391 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2392 dev->name, e - skge->tx_ring.start, skb->len);
2393
2394 skge->tx_ring.to_use = e->next;
2395 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2396 pr_debug("%s: transmit queue full\n", dev->name);
2397 netif_stop_queue(dev);
2398 }
2399
2400 spin_unlock_irqrestore(&skge->tx_lock, flags);
2401
2402 dev->trans_start = jiffies;
2403
2404 return NETDEV_TX_OK;
2405 }
2406
2407
2408 /* Free resources associated with this reing element */
2409 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2410 u32 control)
2411 {
2412 struct pci_dev *pdev = skge->hw->pdev;
2413
2414 BUG_ON(!e->skb);
2415
2416 /* skb header vs. fragment */
2417 if (control & BMU_STF)
2418 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2419 pci_unmap_len(e, maplen),
2420 PCI_DMA_TODEVICE);
2421 else
2422 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2423 pci_unmap_len(e, maplen),
2424 PCI_DMA_TODEVICE);
2425
2426 if (control & BMU_EOF) {
2427 if (unlikely(netif_msg_tx_done(skge)))
2428 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2429 skge->netdev->name, e - skge->tx_ring.start);
2430
2431 dev_kfree_skb_any(e->skb);
2432 }
2433 e->skb = NULL;
2434 }
2435
2436 /* Free all buffers in transmit ring */
2437 static void skge_tx_clean(struct skge_port *skge)
2438 {
2439 struct skge_element *e;
2440 unsigned long flags;
2441
2442 spin_lock_irqsave(&skge->tx_lock, flags);
2443 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2444 struct skge_tx_desc *td = e->desc;
2445 skge_tx_free(skge, e, td->control);
2446 td->control = 0;
2447 }
2448
2449 skge->tx_ring.to_clean = e;
2450 netif_wake_queue(skge->netdev);
2451 spin_unlock_irqrestore(&skge->tx_lock, flags);
2452 }
2453
2454 static void skge_tx_timeout(struct net_device *dev)
2455 {
2456 struct skge_port *skge = netdev_priv(dev);
2457
2458 if (netif_msg_timer(skge))
2459 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2460
2461 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2462 skge_tx_clean(skge);
2463 }
2464
2465 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2466 {
2467 int err;
2468
2469 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2470 return -EINVAL;
2471
2472 if (!netif_running(dev)) {
2473 dev->mtu = new_mtu;
2474 return 0;
2475 }
2476
2477 skge_down(dev);
2478
2479 dev->mtu = new_mtu;
2480
2481 err = skge_up(dev);
2482 if (err)
2483 dev_close(dev);
2484
2485 return err;
2486 }
2487
2488 static void genesis_set_multicast(struct net_device *dev)
2489 {
2490 struct skge_port *skge = netdev_priv(dev);
2491 struct skge_hw *hw = skge->hw;
2492 int port = skge->port;
2493 int i, count = dev->mc_count;
2494 struct dev_mc_list *list = dev->mc_list;
2495 u32 mode;
2496 u8 filter[8];
2497
2498 mode = xm_read32(hw, port, XM_MODE);
2499 mode |= XM_MD_ENA_HASH;
2500 if (dev->flags & IFF_PROMISC)
2501 mode |= XM_MD_ENA_PROM;
2502 else
2503 mode &= ~XM_MD_ENA_PROM;
2504
2505 if (dev->flags & IFF_ALLMULTI)
2506 memset(filter, 0xff, sizeof(filter));
2507 else {
2508 memset(filter, 0, sizeof(filter));
2509 for (i = 0; list && i < count; i++, list = list->next) {
2510 u32 crc, bit;
2511 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2512 bit = ~crc & 0x3f;
2513 filter[bit/8] |= 1 << (bit%8);
2514 }
2515 }
2516
2517 xm_write32(hw, port, XM_MODE, mode);
2518 xm_outhash(hw, port, XM_HSM, filter);
2519 }
2520
2521 static void yukon_set_multicast(struct net_device *dev)
2522 {
2523 struct skge_port *skge = netdev_priv(dev);
2524 struct skge_hw *hw = skge->hw;
2525 int port = skge->port;
2526 struct dev_mc_list *list = dev->mc_list;
2527 u16 reg;
2528 u8 filter[8];
2529
2530 memset(filter, 0, sizeof(filter));
2531
2532 reg = gma_read16(hw, port, GM_RX_CTRL);
2533 reg |= GM_RXCR_UCF_ENA;
2534
2535 if (dev->flags & IFF_PROMISC) /* promiscuous */
2536 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2537 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2538 memset(filter, 0xff, sizeof(filter));
2539 else if (dev->mc_count == 0) /* no multicast */
2540 reg &= ~GM_RXCR_MCF_ENA;
2541 else {
2542 int i;
2543 reg |= GM_RXCR_MCF_ENA;
2544
2545 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2546 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2547 filter[bit/8] |= 1 << (bit%8);
2548 }
2549 }
2550
2551
2552 gma_write16(hw, port, GM_MC_ADDR_H1,
2553 (u16)filter[0] | ((u16)filter[1] << 8));
2554 gma_write16(hw, port, GM_MC_ADDR_H2,
2555 (u16)filter[2] | ((u16)filter[3] << 8));
2556 gma_write16(hw, port, GM_MC_ADDR_H3,
2557 (u16)filter[4] | ((u16)filter[5] << 8));
2558 gma_write16(hw, port, GM_MC_ADDR_H4,
2559 (u16)filter[6] | ((u16)filter[7] << 8));
2560
2561 gma_write16(hw, port, GM_RX_CTRL, reg);
2562 }
2563
2564 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2565 {
2566 if (hw->chip_id == CHIP_ID_GENESIS)
2567 return status >> XMR_FS_LEN_SHIFT;
2568 else
2569 return status >> GMR_FS_LEN_SHIFT;
2570 }
2571
2572 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2573 {
2574 if (hw->chip_id == CHIP_ID_GENESIS)
2575 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2576 else
2577 return (status & GMR_FS_ANY_ERR) ||
2578 (status & GMR_FS_RX_OK) == 0;
2579 }
2580
2581
2582 /* Get receive buffer from descriptor.
2583 * Handles copy of small buffers and reallocation failures
2584 */
2585 static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
2586 struct skge_element *e,
2587 u32 control, u32 status, u16 csum)
2588 {
2589 struct sk_buff *skb;
2590 u16 len = control & BMU_BBC;
2591
2592 if (unlikely(netif_msg_rx_status(skge)))
2593 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2594 skge->netdev->name, e - skge->rx_ring.start,
2595 status, len);
2596
2597 if (len > skge->rx_buf_size)
2598 goto error;
2599
2600 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2601 goto error;
2602
2603 if (bad_phy_status(skge->hw, status))
2604 goto error;
2605
2606 if (phy_length(skge->hw, status) != len)
2607 goto error;
2608
2609 if (len < RX_COPY_THRESHOLD) {
2610 skb = alloc_skb(len + 2, GFP_ATOMIC);
2611 if (!skb)
2612 goto resubmit;
2613
2614 skb_reserve(skb, 2);
2615 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2616 pci_unmap_addr(e, mapaddr),
2617 len, PCI_DMA_FROMDEVICE);
2618 memcpy(skb->data, e->skb->data, len);
2619 pci_dma_sync_single_for_device(skge->hw->pdev,
2620 pci_unmap_addr(e, mapaddr),
2621 len, PCI_DMA_FROMDEVICE);
2622 skge_rx_reuse(e, skge->rx_buf_size);
2623 } else {
2624 struct sk_buff *nskb;
2625 nskb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_ATOMIC);
2626 if (!nskb)
2627 goto resubmit;
2628
2629 skb_reserve(nskb, NET_IP_ALIGN);
2630 pci_unmap_single(skge->hw->pdev,
2631 pci_unmap_addr(e, mapaddr),
2632 pci_unmap_len(e, maplen),
2633 PCI_DMA_FROMDEVICE);
2634 skb = e->skb;
2635 prefetch(skb->data);
2636 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2637 }
2638
2639 skb_put(skb, len);
2640 skb->dev = skge->netdev;
2641 if (skge->rx_csum) {
2642 skb->csum = csum;
2643 skb->ip_summed = CHECKSUM_HW;
2644 }
2645
2646 skb->protocol = eth_type_trans(skb, skge->netdev);
2647
2648 return skb;
2649 error:
2650
2651 if (netif_msg_rx_err(skge))
2652 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2653 skge->netdev->name, e - skge->rx_ring.start,
2654 control, status);
2655
2656 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2657 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2658 skge->net_stats.rx_length_errors++;
2659 if (status & XMR_FS_FRA_ERR)
2660 skge->net_stats.rx_frame_errors++;
2661 if (status & XMR_FS_FCS_ERR)
2662 skge->net_stats.rx_crc_errors++;
2663 } else {
2664 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2665 skge->net_stats.rx_length_errors++;
2666 if (status & GMR_FS_FRAGMENT)
2667 skge->net_stats.rx_frame_errors++;
2668 if (status & GMR_FS_CRC_ERR)
2669 skge->net_stats.rx_crc_errors++;
2670 }
2671
2672 resubmit:
2673 skge_rx_reuse(e, skge->rx_buf_size);
2674 return NULL;
2675 }
2676
2677 /* Free all buffers in Tx ring which are no longer owned by device */
2678 static void skge_txirq(struct net_device *dev)
2679 {
2680 struct skge_port *skge = netdev_priv(dev);
2681 struct skge_ring *ring = &skge->tx_ring;
2682 struct skge_element *e;
2683
2684 rmb();
2685
2686 spin_lock(&skge->tx_lock);
2687 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2688 struct skge_tx_desc *td = e->desc;
2689
2690 if (td->control & BMU_OWN)
2691 break;
2692
2693 skge_tx_free(skge, e, td->control);
2694 }
2695 skge->tx_ring.to_clean = e;
2696
2697 if (netif_queue_stopped(skge->netdev)
2698 && skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2699 netif_wake_queue(skge->netdev);
2700
2701 spin_unlock(&skge->tx_lock);
2702 }
2703
2704 static int skge_poll(struct net_device *dev, int *budget)
2705 {
2706 struct skge_port *skge = netdev_priv(dev);
2707 struct skge_hw *hw = skge->hw;
2708 struct skge_ring *ring = &skge->rx_ring;
2709 struct skge_element *e;
2710 int to_do = min(dev->quota, *budget);
2711 int work_done = 0;
2712
2713 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2714 struct skge_rx_desc *rd = e->desc;
2715 struct sk_buff *skb;
2716 u32 control;
2717
2718 rmb();
2719 control = rd->control;
2720 if (control & BMU_OWN)
2721 break;
2722
2723 skb = skge_rx_get(skge, e, control, rd->status, rd->csum2);
2724 if (likely(skb)) {
2725 dev->last_rx = jiffies;
2726 netif_receive_skb(skb);
2727
2728 ++work_done;
2729 }
2730 }
2731 ring->to_clean = e;
2732
2733 /* restart receiver */
2734 wmb();
2735 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2736
2737 *budget -= work_done;
2738 dev->quota -= work_done;
2739
2740 if (work_done >= to_do)
2741 return 1; /* not done */
2742
2743 netif_rx_complete(dev);
2744
2745 spin_lock_irq(&hw->hw_lock);
2746 hw->intr_mask |= rxirqmask[skge->port];
2747 skge_write32(hw, B0_IMSK, hw->intr_mask);
2748 mmiowb();
2749 spin_unlock_irq(&hw->hw_lock);
2750
2751 return 0;
2752 }
2753
2754 /* Parity errors seem to happen when Genesis is connected to a switch
2755 * with no other ports present. Heartbeat error??
2756 */
2757 static void skge_mac_parity(struct skge_hw *hw, int port)
2758 {
2759 struct net_device *dev = hw->dev[port];
2760
2761 if (dev) {
2762 struct skge_port *skge = netdev_priv(dev);
2763 ++skge->net_stats.tx_heartbeat_errors;
2764 }
2765
2766 if (hw->chip_id == CHIP_ID_GENESIS)
2767 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2768 MFF_CLR_PERR);
2769 else
2770 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2771 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2772 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2773 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2774 }
2775
2776 static void skge_mac_intr(struct skge_hw *hw, int port)
2777 {
2778 if (hw->chip_id == CHIP_ID_GENESIS)
2779 genesis_mac_intr(hw, port);
2780 else
2781 yukon_mac_intr(hw, port);
2782 }
2783
2784 /* Handle device specific framing and timeout interrupts */
2785 static void skge_error_irq(struct skge_hw *hw)
2786 {
2787 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2788
2789 if (hw->chip_id == CHIP_ID_GENESIS) {
2790 /* clear xmac errors */
2791 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2792 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2793 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2794 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2795 } else {
2796 /* Timestamp (unused) overflow */
2797 if (hwstatus & IS_IRQ_TIST_OV)
2798 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2799 }
2800
2801 if (hwstatus & IS_RAM_RD_PAR) {
2802 printk(KERN_ERR PFX "Ram read data parity error\n");
2803 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2804 }
2805
2806 if (hwstatus & IS_RAM_WR_PAR) {
2807 printk(KERN_ERR PFX "Ram write data parity error\n");
2808 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2809 }
2810
2811 if (hwstatus & IS_M1_PAR_ERR)
2812 skge_mac_parity(hw, 0);
2813
2814 if (hwstatus & IS_M2_PAR_ERR)
2815 skge_mac_parity(hw, 1);
2816
2817 if (hwstatus & IS_R1_PAR_ERR) {
2818 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2819 hw->dev[0]->name);
2820 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2821 }
2822
2823 if (hwstatus & IS_R2_PAR_ERR) {
2824 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2825 hw->dev[1]->name);
2826 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2827 }
2828
2829 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2830 u16 pci_status, pci_cmd;
2831
2832 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
2833 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2834
2835 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
2836 pci_name(hw->pdev), pci_cmd, pci_status);
2837
2838 /* Write the error bits back to clear them. */
2839 pci_status &= PCI_STATUS_ERROR_BITS;
2840 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2841 pci_write_config_word(hw->pdev, PCI_COMMAND,
2842 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
2843 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
2844 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2845
2846 /* if error still set then just ignore it */
2847 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2848 if (hwstatus & IS_IRQ_STAT) {
2849 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2850 hw->intr_mask &= ~IS_HW_ERR;
2851 }
2852 }
2853 }
2854
2855 /*
2856 * Interrupt from PHY are handled in work queue
2857 * because accessing phy registers requires spin wait which might
2858 * cause excess interrupt latency.
2859 */
2860 static void skge_extirq(void *arg)
2861 {
2862 struct skge_hw *hw = arg;
2863 int port;
2864
2865 mutex_lock(&hw->phy_mutex);
2866 for (port = 0; port < hw->ports; port++) {
2867 struct net_device *dev = hw->dev[port];
2868 struct skge_port *skge = netdev_priv(dev);
2869
2870 if (netif_running(dev)) {
2871 if (hw->chip_id != CHIP_ID_GENESIS)
2872 yukon_phy_intr(skge);
2873 else
2874 bcom_phy_intr(skge);
2875 }
2876 }
2877 mutex_unlock(&hw->phy_mutex);
2878
2879 spin_lock_irq(&hw->hw_lock);
2880 hw->intr_mask |= IS_EXT_REG;
2881 skge_write32(hw, B0_IMSK, hw->intr_mask);
2882 spin_unlock_irq(&hw->hw_lock);
2883 }
2884
2885 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2886 {
2887 struct skge_hw *hw = dev_id;
2888 u32 status;
2889
2890 /* Reading this register masks IRQ */
2891 status = skge_read32(hw, B0_SP_ISRC);
2892 if (status == 0)
2893 return IRQ_NONE;
2894
2895 spin_lock(&hw->hw_lock);
2896 status &= hw->intr_mask;
2897 if (status & IS_EXT_REG) {
2898 hw->intr_mask &= ~IS_EXT_REG;
2899 schedule_work(&hw->phy_work);
2900 }
2901
2902 if (status & IS_XA1_F) {
2903 skge_write8(hw, Q_ADDR(Q_XA1, Q_CSR), CSR_IRQ_CL_F);
2904 skge_txirq(hw->dev[0]);
2905 }
2906
2907 if (status & IS_R1_F) {
2908 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
2909 hw->intr_mask &= ~IS_R1_F;
2910 netif_rx_schedule(hw->dev[0]);
2911 }
2912
2913 if (status & IS_PA_TO_TX1)
2914 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2915
2916 if (status & IS_PA_TO_RX1) {
2917 struct skge_port *skge = netdev_priv(hw->dev[0]);
2918
2919 ++skge->net_stats.rx_over_errors;
2920 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2921 }
2922
2923
2924 if (status & IS_MAC1)
2925 skge_mac_intr(hw, 0);
2926
2927 if (hw->dev[1]) {
2928 if (status & IS_XA2_F) {
2929 skge_write8(hw, Q_ADDR(Q_XA2, Q_CSR), CSR_IRQ_CL_F);
2930 skge_txirq(hw->dev[1]);
2931 }
2932
2933 if (status & IS_R2_F) {
2934 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
2935 hw->intr_mask &= ~IS_R2_F;
2936 netif_rx_schedule(hw->dev[1]);
2937 }
2938
2939 if (status & IS_PA_TO_RX2) {
2940 struct skge_port *skge = netdev_priv(hw->dev[1]);
2941 ++skge->net_stats.rx_over_errors;
2942 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2943 }
2944
2945 if (status & IS_PA_TO_TX2)
2946 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2947
2948 if (status & IS_MAC2)
2949 skge_mac_intr(hw, 1);
2950 }
2951
2952 if (status & IS_HW_ERR)
2953 skge_error_irq(hw);
2954
2955 skge_write32(hw, B0_IMSK, hw->intr_mask);
2956 spin_unlock(&hw->hw_lock);
2957
2958 return IRQ_HANDLED;
2959 }
2960
2961 #ifdef CONFIG_NET_POLL_CONTROLLER
2962 static void skge_netpoll(struct net_device *dev)
2963 {
2964 struct skge_port *skge = netdev_priv(dev);
2965
2966 disable_irq(dev->irq);
2967 skge_intr(dev->irq, skge->hw, NULL);
2968 enable_irq(dev->irq);
2969 }
2970 #endif
2971
2972 static int skge_set_mac_address(struct net_device *dev, void *p)
2973 {
2974 struct skge_port *skge = netdev_priv(dev);
2975 struct skge_hw *hw = skge->hw;
2976 unsigned port = skge->port;
2977 const struct sockaddr *addr = p;
2978
2979 if (!is_valid_ether_addr(addr->sa_data))
2980 return -EADDRNOTAVAIL;
2981
2982 mutex_lock(&hw->phy_mutex);
2983 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2984 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2985 dev->dev_addr, ETH_ALEN);
2986 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2987 dev->dev_addr, ETH_ALEN);
2988
2989 if (hw->chip_id == CHIP_ID_GENESIS)
2990 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2991 else {
2992 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2993 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
2994 }
2995 mutex_unlock(&hw->phy_mutex);
2996
2997 return 0;
2998 }
2999
3000 static const struct {
3001 u8 id;
3002 const char *name;
3003 } skge_chips[] = {
3004 { CHIP_ID_GENESIS, "Genesis" },
3005 { CHIP_ID_YUKON, "Yukon" },
3006 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3007 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3008 };
3009
3010 static const char *skge_board_name(const struct skge_hw *hw)
3011 {
3012 int i;
3013 static char buf[16];
3014
3015 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3016 if (skge_chips[i].id == hw->chip_id)
3017 return skge_chips[i].name;
3018
3019 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3020 return buf;
3021 }
3022
3023
3024 /*
3025 * Setup the board data structure, but don't bring up
3026 * the port(s)
3027 */
3028 static int skge_reset(struct skge_hw *hw)
3029 {
3030 u32 reg;
3031 u16 ctst, pci_status;
3032 u8 t8, mac_cfg, pmd_type, phy_type;
3033 int i;
3034
3035 ctst = skge_read16(hw, B0_CTST);
3036
3037 /* do a SW reset */
3038 skge_write8(hw, B0_CTST, CS_RST_SET);
3039 skge_write8(hw, B0_CTST, CS_RST_CLR);
3040
3041 /* clear PCI errors, if any */
3042 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3043 skge_write8(hw, B2_TST_CTRL2, 0);
3044
3045 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3046 pci_write_config_word(hw->pdev, PCI_STATUS,
3047 pci_status | PCI_STATUS_ERROR_BITS);
3048 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3049 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3050
3051 /* restore CLK_RUN bits (for Yukon-Lite) */
3052 skge_write16(hw, B0_CTST,
3053 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3054
3055 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3056 phy_type = skge_read8(hw, B2_E_1) & 0xf;
3057 pmd_type = skge_read8(hw, B2_PMD_TYP);
3058 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3059
3060 switch (hw->chip_id) {
3061 case CHIP_ID_GENESIS:
3062 switch (phy_type) {
3063 case SK_PHY_BCOM:
3064 hw->phy_addr = PHY_ADDR_BCOM;
3065 break;
3066 default:
3067 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3068 pci_name(hw->pdev), phy_type);
3069 return -EOPNOTSUPP;
3070 }
3071 break;
3072
3073 case CHIP_ID_YUKON:
3074 case CHIP_ID_YUKON_LITE:
3075 case CHIP_ID_YUKON_LP:
3076 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3077 hw->copper = 1;
3078
3079 hw->phy_addr = PHY_ADDR_MARV;
3080 break;
3081
3082 default:
3083 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3084 pci_name(hw->pdev), hw->chip_id);
3085 return -EOPNOTSUPP;
3086 }
3087
3088 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3089 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3090 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3091
3092 /* read the adapters RAM size */
3093 t8 = skge_read8(hw, B2_E_0);
3094 if (hw->chip_id == CHIP_ID_GENESIS) {
3095 if (t8 == 3) {
3096 /* special case: 4 x 64k x 36, offset = 0x80000 */
3097 hw->ram_size = 0x100000;
3098 hw->ram_offset = 0x80000;
3099 } else
3100 hw->ram_size = t8 * 512;
3101 }
3102 else if (t8 == 0)
3103 hw->ram_size = 0x20000;
3104 else
3105 hw->ram_size = t8 * 4096;
3106
3107 spin_lock_init(&hw->hw_lock);
3108 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3109 if (hw->ports > 1)
3110 hw->intr_mask |= IS_PORT_2;
3111
3112 if (hw->chip_id == CHIP_ID_GENESIS)
3113 genesis_init(hw);
3114 else {
3115 /* switch power to VCC (WA for VAUX problem) */
3116 skge_write8(hw, B0_POWER_CTRL,
3117 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3118
3119 /* avoid boards with stuck Hardware error bits */
3120 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3121 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3122 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3123 hw->intr_mask &= ~IS_HW_ERR;
3124 }
3125
3126 /* Clear PHY COMA */
3127 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3128 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3129 reg &= ~PCI_PHY_COMA;
3130 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3131 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3132
3133
3134 for (i = 0; i < hw->ports; i++) {
3135 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3136 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3137 }
3138 }
3139
3140 /* turn off hardware timer (unused) */
3141 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3142 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3143 skge_write8(hw, B0_LED, LED_STAT_ON);
3144
3145 /* enable the Tx Arbiters */
3146 for (i = 0; i < hw->ports; i++)
3147 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3148
3149 /* Initialize ram interface */
3150 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3151
3152 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3153 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3154 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3155 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3156 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3157 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3158 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3159 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3160 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3161 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3162 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3163 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3164
3165 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3166
3167 /* Set interrupt moderation for Transmit only
3168 * Receive interrupts avoided by NAPI
3169 */
3170 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3171 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3172 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3173
3174 skge_write32(hw, B0_IMSK, hw->intr_mask);
3175
3176 mutex_lock(&hw->phy_mutex);
3177 for (i = 0; i < hw->ports; i++) {
3178 if (hw->chip_id == CHIP_ID_GENESIS)
3179 genesis_reset(hw, i);
3180 else
3181 yukon_reset(hw, i);
3182 }
3183 mutex_unlock(&hw->phy_mutex);
3184
3185 return 0;
3186 }
3187
3188 /* Initialize network device */
3189 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3190 int highmem)
3191 {
3192 struct skge_port *skge;
3193 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3194
3195 if (!dev) {
3196 printk(KERN_ERR "skge etherdev alloc failed");
3197 return NULL;
3198 }
3199
3200 SET_MODULE_OWNER(dev);
3201 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3202 dev->open = skge_up;
3203 dev->stop = skge_down;
3204 dev->do_ioctl = skge_ioctl;
3205 dev->hard_start_xmit = skge_xmit_frame;
3206 dev->get_stats = skge_get_stats;
3207 if (hw->chip_id == CHIP_ID_GENESIS)
3208 dev->set_multicast_list = genesis_set_multicast;
3209 else
3210 dev->set_multicast_list = yukon_set_multicast;
3211
3212 dev->set_mac_address = skge_set_mac_address;
3213 dev->change_mtu = skge_change_mtu;
3214 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3215 dev->tx_timeout = skge_tx_timeout;
3216 dev->watchdog_timeo = TX_WATCHDOG;
3217 dev->poll = skge_poll;
3218 dev->weight = NAPI_WEIGHT;
3219 #ifdef CONFIG_NET_POLL_CONTROLLER
3220 dev->poll_controller = skge_netpoll;
3221 #endif
3222 dev->irq = hw->pdev->irq;
3223 dev->features = NETIF_F_LLTX;
3224 if (highmem)
3225 dev->features |= NETIF_F_HIGHDMA;
3226
3227 skge = netdev_priv(dev);
3228 skge->netdev = dev;
3229 skge->hw = hw;
3230 skge->msg_enable = netif_msg_init(debug, default_msg);
3231 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3232 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3233
3234 /* Auto speed and flow control */
3235 skge->autoneg = AUTONEG_ENABLE;
3236 skge->flow_control = FLOW_MODE_SYMMETRIC;
3237 skge->duplex = -1;
3238 skge->speed = -1;
3239 skge->advertising = skge_supported_modes(hw);
3240
3241 hw->dev[port] = dev;
3242
3243 skge->port = port;
3244
3245 spin_lock_init(&skge->tx_lock);
3246
3247 if (hw->chip_id != CHIP_ID_GENESIS) {
3248 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3249 skge->rx_csum = 1;
3250 }
3251
3252 /* read the mac address */
3253 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3254 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3255
3256 /* device is off until link detection */
3257 netif_carrier_off(dev);
3258 netif_stop_queue(dev);
3259
3260 return dev;
3261 }
3262
3263 static void __devinit skge_show_addr(struct net_device *dev)
3264 {
3265 const struct skge_port *skge = netdev_priv(dev);
3266
3267 if (netif_msg_probe(skge))
3268 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3269 dev->name,
3270 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3271 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3272 }
3273
3274 static int __devinit skge_probe(struct pci_dev *pdev,
3275 const struct pci_device_id *ent)
3276 {
3277 struct net_device *dev, *dev1;
3278 struct skge_hw *hw;
3279 int err, using_dac = 0;
3280
3281 err = pci_enable_device(pdev);
3282 if (err) {
3283 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3284 pci_name(pdev));
3285 goto err_out;
3286 }
3287
3288 err = pci_request_regions(pdev, DRV_NAME);
3289 if (err) {
3290 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3291 pci_name(pdev));
3292 goto err_out_disable_pdev;
3293 }
3294
3295 pci_set_master(pdev);
3296
3297 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3298 using_dac = 1;
3299 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3300 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3301 using_dac = 0;
3302 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3303 }
3304
3305 if (err) {
3306 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3307 pci_name(pdev));
3308 goto err_out_free_regions;
3309 }
3310
3311 #ifdef __BIG_ENDIAN
3312 /* byte swap descriptors in hardware */
3313 {
3314 u32 reg;
3315
3316 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3317 reg |= PCI_REV_DESC;
3318 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3319 }
3320 #endif
3321
3322 err = -ENOMEM;
3323 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3324 if (!hw) {
3325 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3326 pci_name(pdev));
3327 goto err_out_free_regions;
3328 }
3329
3330 hw->pdev = pdev;
3331 mutex_init(&hw->phy_mutex);
3332 INIT_WORK(&hw->phy_work, skge_extirq, hw);
3333
3334 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3335 if (!hw->regs) {
3336 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3337 pci_name(pdev));
3338 goto err_out_free_hw;
3339 }
3340
3341 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, DRV_NAME, hw);
3342 if (err) {
3343 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3344 pci_name(pdev), pdev->irq);
3345 goto err_out_iounmap;
3346 }
3347 pci_set_drvdata(pdev, hw);
3348
3349 err = skge_reset(hw);
3350 if (err)
3351 goto err_out_free_irq;
3352
3353 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3354 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3355 skge_board_name(hw), hw->chip_rev);
3356
3357 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3358 goto err_out_led_off;
3359
3360 if (!is_valid_ether_addr(dev->dev_addr)) {
3361 printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
3362 pci_name(pdev));
3363 err = -EIO;
3364 goto err_out_free_netdev;
3365 }
3366
3367
3368 err = register_netdev(dev);
3369 if (err) {
3370 printk(KERN_ERR PFX "%s: cannot register net device\n",
3371 pci_name(pdev));
3372 goto err_out_free_netdev;
3373 }
3374
3375 skge_show_addr(dev);
3376
3377 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3378 if (register_netdev(dev1) == 0)
3379 skge_show_addr(dev1);
3380 else {
3381 /* Failure to register second port need not be fatal */
3382 printk(KERN_WARNING PFX "register of second port failed\n");
3383 hw->dev[1] = NULL;
3384 free_netdev(dev1);
3385 }
3386 }
3387
3388 return 0;
3389
3390 err_out_free_netdev:
3391 free_netdev(dev);
3392 err_out_led_off:
3393 skge_write16(hw, B0_LED, LED_STAT_OFF);
3394 err_out_free_irq:
3395 free_irq(pdev->irq, hw);
3396 err_out_iounmap:
3397 iounmap(hw->regs);
3398 err_out_free_hw:
3399 kfree(hw);
3400 err_out_free_regions:
3401 pci_release_regions(pdev);
3402 err_out_disable_pdev:
3403 pci_disable_device(pdev);
3404 pci_set_drvdata(pdev, NULL);
3405 err_out:
3406 return err;
3407 }
3408
3409 static void __devexit skge_remove(struct pci_dev *pdev)
3410 {
3411 struct skge_hw *hw = pci_get_drvdata(pdev);
3412 struct net_device *dev0, *dev1;
3413
3414 if (!hw)
3415 return;
3416
3417 if ((dev1 = hw->dev[1]))
3418 unregister_netdev(dev1);
3419 dev0 = hw->dev[0];
3420 unregister_netdev(dev0);
3421
3422 spin_lock_irq(&hw->hw_lock);
3423 hw->intr_mask = 0;
3424 skge_write32(hw, B0_IMSK, 0);
3425 spin_unlock_irq(&hw->hw_lock);
3426
3427 skge_write16(hw, B0_LED, LED_STAT_OFF);
3428 skge_write8(hw, B0_CTST, CS_RST_SET);
3429
3430 flush_scheduled_work();
3431
3432 free_irq(pdev->irq, hw);
3433 pci_release_regions(pdev);
3434 pci_disable_device(pdev);
3435 if (dev1)
3436 free_netdev(dev1);
3437 free_netdev(dev0);
3438
3439 iounmap(hw->regs);
3440 kfree(hw);
3441 pci_set_drvdata(pdev, NULL);
3442 }
3443
3444 #ifdef CONFIG_PM
3445 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3446 {
3447 struct skge_hw *hw = pci_get_drvdata(pdev);
3448 int i, wol = 0;
3449
3450 for (i = 0; i < 2; i++) {
3451 struct net_device *dev = hw->dev[i];
3452
3453 if (dev) {
3454 struct skge_port *skge = netdev_priv(dev);
3455 if (netif_running(dev)) {
3456 netif_carrier_off(dev);
3457 if (skge->wol)
3458 netif_stop_queue(dev);
3459 else
3460 skge_down(dev);
3461 }
3462 netif_device_detach(dev);
3463 wol |= skge->wol;
3464 }
3465 }
3466
3467 pci_save_state(pdev);
3468 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3469 pci_disable_device(pdev);
3470 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3471
3472 return 0;
3473 }
3474
3475 static int skge_resume(struct pci_dev *pdev)
3476 {
3477 struct skge_hw *hw = pci_get_drvdata(pdev);
3478 int i;
3479
3480 pci_set_power_state(pdev, PCI_D0);
3481 pci_restore_state(pdev);
3482 pci_enable_wake(pdev, PCI_D0, 0);
3483
3484 skge_reset(hw);
3485
3486 for (i = 0; i < 2; i++) {
3487 struct net_device *dev = hw->dev[i];
3488 if (dev) {
3489 netif_device_attach(dev);
3490 if (netif_running(dev) && skge_up(dev))
3491 dev_close(dev);
3492 }
3493 }
3494 return 0;
3495 }
3496 #endif
3497
3498 static struct pci_driver skge_driver = {
3499 .name = DRV_NAME,
3500 .id_table = skge_id_table,
3501 .probe = skge_probe,
3502 .remove = __devexit_p(skge_remove),
3503 #ifdef CONFIG_PM
3504 .suspend = skge_suspend,
3505 .resume = skge_resume,
3506 #endif
3507 };
3508
3509 static int __init skge_init_module(void)
3510 {
3511 return pci_module_init(&skge_driver);
3512 }
3513
3514 static void __exit skge_cleanup_module(void)
3515 {
3516 pci_unregister_driver(&skge_driver);
3517 }
3518
3519 module_init(skge_init_module);
3520 module_exit(skge_cleanup_module);