]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/skge.c
[PATCH] skge: version 1.8
[mirror_ubuntu-bionic-kernel.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #include <linux/in.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/mii.h>
41 #include <asm/irq.h>
42
43 #include "skge.h"
44
45 #define DRV_NAME "skge"
46 #define DRV_VERSION "1.8"
47 #define PFX DRV_NAME " "
48
49 #define DEFAULT_TX_RING_SIZE 128
50 #define DEFAULT_RX_RING_SIZE 512
51 #define MAX_TX_RING_SIZE 1024
52 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
60 #define BLINK_MS 250
61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
66
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
87 { 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108 static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
109
110 static int skge_get_regs_len(struct net_device *dev)
111 {
112 return 0x4000;
113 }
114
115 /*
116 * Returns copy of whole control register region
117 * Note: skip RAM address register because accessing it will
118 * cause bus hangs!
119 */
120 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
121 void *p)
122 {
123 const struct skge_port *skge = netdev_priv(dev);
124 const void __iomem *io = skge->hw->regs;
125
126 regs->version = 1;
127 memset(p, 0, regs->len);
128 memcpy_fromio(p, io, B3_RAM_ADDR);
129
130 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
131 regs->len - B3_RI_WTO_R1);
132 }
133
134 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
135 static int wol_supported(const struct skge_hw *hw)
136 {
137 return !((hw->chip_id == CHIP_ID_GENESIS ||
138 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
139 }
140
141 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
142 {
143 struct skge_port *skge = netdev_priv(dev);
144
145 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
146 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
147 }
148
149 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
150 {
151 struct skge_port *skge = netdev_priv(dev);
152 struct skge_hw *hw = skge->hw;
153
154 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
155 return -EOPNOTSUPP;
156
157 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
158 return -EOPNOTSUPP;
159
160 skge->wol = wol->wolopts == WAKE_MAGIC;
161
162 if (skge->wol) {
163 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
164
165 skge_write16(hw, WOL_CTRL_STAT,
166 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
167 WOL_CTL_ENA_MAGIC_PKT_UNIT);
168 } else
169 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
170
171 return 0;
172 }
173
174 /* Determine supported/advertised modes based on hardware.
175 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
176 */
177 static u32 skge_supported_modes(const struct skge_hw *hw)
178 {
179 u32 supported;
180
181 if (hw->copper) {
182 supported = SUPPORTED_10baseT_Half
183 | SUPPORTED_10baseT_Full
184 | SUPPORTED_100baseT_Half
185 | SUPPORTED_100baseT_Full
186 | SUPPORTED_1000baseT_Half
187 | SUPPORTED_1000baseT_Full
188 | SUPPORTED_Autoneg| SUPPORTED_TP;
189
190 if (hw->chip_id == CHIP_ID_GENESIS)
191 supported &= ~(SUPPORTED_10baseT_Half
192 | SUPPORTED_10baseT_Full
193 | SUPPORTED_100baseT_Half
194 | SUPPORTED_100baseT_Full);
195
196 else if (hw->chip_id == CHIP_ID_YUKON)
197 supported &= ~SUPPORTED_1000baseT_Half;
198 } else
199 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
200 | SUPPORTED_Autoneg;
201
202 return supported;
203 }
204
205 static int skge_get_settings(struct net_device *dev,
206 struct ethtool_cmd *ecmd)
207 {
208 struct skge_port *skge = netdev_priv(dev);
209 struct skge_hw *hw = skge->hw;
210
211 ecmd->transceiver = XCVR_INTERNAL;
212 ecmd->supported = skge_supported_modes(hw);
213
214 if (hw->copper) {
215 ecmd->port = PORT_TP;
216 ecmd->phy_address = hw->phy_addr;
217 } else
218 ecmd->port = PORT_FIBRE;
219
220 ecmd->advertising = skge->advertising;
221 ecmd->autoneg = skge->autoneg;
222 ecmd->speed = skge->speed;
223 ecmd->duplex = skge->duplex;
224 return 0;
225 }
226
227 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
228 {
229 struct skge_port *skge = netdev_priv(dev);
230 const struct skge_hw *hw = skge->hw;
231 u32 supported = skge_supported_modes(hw);
232
233 if (ecmd->autoneg == AUTONEG_ENABLE) {
234 ecmd->advertising = supported;
235 skge->duplex = -1;
236 skge->speed = -1;
237 } else {
238 u32 setting;
239
240 switch (ecmd->speed) {
241 case SPEED_1000:
242 if (ecmd->duplex == DUPLEX_FULL)
243 setting = SUPPORTED_1000baseT_Full;
244 else if (ecmd->duplex == DUPLEX_HALF)
245 setting = SUPPORTED_1000baseT_Half;
246 else
247 return -EINVAL;
248 break;
249 case SPEED_100:
250 if (ecmd->duplex == DUPLEX_FULL)
251 setting = SUPPORTED_100baseT_Full;
252 else if (ecmd->duplex == DUPLEX_HALF)
253 setting = SUPPORTED_100baseT_Half;
254 else
255 return -EINVAL;
256 break;
257
258 case SPEED_10:
259 if (ecmd->duplex == DUPLEX_FULL)
260 setting = SUPPORTED_10baseT_Full;
261 else if (ecmd->duplex == DUPLEX_HALF)
262 setting = SUPPORTED_10baseT_Half;
263 else
264 return -EINVAL;
265 break;
266 default:
267 return -EINVAL;
268 }
269
270 if ((setting & supported) == 0)
271 return -EINVAL;
272
273 skge->speed = ecmd->speed;
274 skge->duplex = ecmd->duplex;
275 }
276
277 skge->autoneg = ecmd->autoneg;
278 skge->advertising = ecmd->advertising;
279
280 if (netif_running(dev))
281 skge_phy_reset(skge);
282
283 return (0);
284 }
285
286 static void skge_get_drvinfo(struct net_device *dev,
287 struct ethtool_drvinfo *info)
288 {
289 struct skge_port *skge = netdev_priv(dev);
290
291 strcpy(info->driver, DRV_NAME);
292 strcpy(info->version, DRV_VERSION);
293 strcpy(info->fw_version, "N/A");
294 strcpy(info->bus_info, pci_name(skge->hw->pdev));
295 }
296
297 static const struct skge_stat {
298 char name[ETH_GSTRING_LEN];
299 u16 xmac_offset;
300 u16 gma_offset;
301 } skge_stats[] = {
302 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
303 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
304
305 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
306 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
307 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
308 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
309 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
310 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
311 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
312 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
313
314 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
315 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
316 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
317 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
318 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
319 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
320
321 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
322 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
323 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
324 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
325 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
326 };
327
328 static int skge_get_stats_count(struct net_device *dev)
329 {
330 return ARRAY_SIZE(skge_stats);
331 }
332
333 static void skge_get_ethtool_stats(struct net_device *dev,
334 struct ethtool_stats *stats, u64 *data)
335 {
336 struct skge_port *skge = netdev_priv(dev);
337
338 if (skge->hw->chip_id == CHIP_ID_GENESIS)
339 genesis_get_stats(skge, data);
340 else
341 yukon_get_stats(skge, data);
342 }
343
344 /* Use hardware MIB variables for critical path statistics and
345 * transmit feedback not reported at interrupt.
346 * Other errors are accounted for in interrupt handler.
347 */
348 static struct net_device_stats *skge_get_stats(struct net_device *dev)
349 {
350 struct skge_port *skge = netdev_priv(dev);
351 u64 data[ARRAY_SIZE(skge_stats)];
352
353 if (skge->hw->chip_id == CHIP_ID_GENESIS)
354 genesis_get_stats(skge, data);
355 else
356 yukon_get_stats(skge, data);
357
358 skge->net_stats.tx_bytes = data[0];
359 skge->net_stats.rx_bytes = data[1];
360 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
361 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
362 skge->net_stats.multicast = data[3] + data[5];
363 skge->net_stats.collisions = data[10];
364 skge->net_stats.tx_aborted_errors = data[12];
365
366 return &skge->net_stats;
367 }
368
369 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
370 {
371 int i;
372
373 switch (stringset) {
374 case ETH_SS_STATS:
375 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
376 memcpy(data + i * ETH_GSTRING_LEN,
377 skge_stats[i].name, ETH_GSTRING_LEN);
378 break;
379 }
380 }
381
382 static void skge_get_ring_param(struct net_device *dev,
383 struct ethtool_ringparam *p)
384 {
385 struct skge_port *skge = netdev_priv(dev);
386
387 p->rx_max_pending = MAX_RX_RING_SIZE;
388 p->tx_max_pending = MAX_TX_RING_SIZE;
389 p->rx_mini_max_pending = 0;
390 p->rx_jumbo_max_pending = 0;
391
392 p->rx_pending = skge->rx_ring.count;
393 p->tx_pending = skge->tx_ring.count;
394 p->rx_mini_pending = 0;
395 p->rx_jumbo_pending = 0;
396 }
397
398 static int skge_set_ring_param(struct net_device *dev,
399 struct ethtool_ringparam *p)
400 {
401 struct skge_port *skge = netdev_priv(dev);
402 int err;
403
404 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
405 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
406 return -EINVAL;
407
408 skge->rx_ring.count = p->rx_pending;
409 skge->tx_ring.count = p->tx_pending;
410
411 if (netif_running(dev)) {
412 skge_down(dev);
413 err = skge_up(dev);
414 if (err)
415 dev_close(dev);
416 }
417
418 return 0;
419 }
420
421 static u32 skge_get_msglevel(struct net_device *netdev)
422 {
423 struct skge_port *skge = netdev_priv(netdev);
424 return skge->msg_enable;
425 }
426
427 static void skge_set_msglevel(struct net_device *netdev, u32 value)
428 {
429 struct skge_port *skge = netdev_priv(netdev);
430 skge->msg_enable = value;
431 }
432
433 static int skge_nway_reset(struct net_device *dev)
434 {
435 struct skge_port *skge = netdev_priv(dev);
436
437 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
438 return -EINVAL;
439
440 skge_phy_reset(skge);
441 return 0;
442 }
443
444 static int skge_set_sg(struct net_device *dev, u32 data)
445 {
446 struct skge_port *skge = netdev_priv(dev);
447 struct skge_hw *hw = skge->hw;
448
449 if (hw->chip_id == CHIP_ID_GENESIS && data)
450 return -EOPNOTSUPP;
451 return ethtool_op_set_sg(dev, data);
452 }
453
454 static int skge_set_tx_csum(struct net_device *dev, u32 data)
455 {
456 struct skge_port *skge = netdev_priv(dev);
457 struct skge_hw *hw = skge->hw;
458
459 if (hw->chip_id == CHIP_ID_GENESIS && data)
460 return -EOPNOTSUPP;
461
462 return ethtool_op_set_tx_csum(dev, data);
463 }
464
465 static u32 skge_get_rx_csum(struct net_device *dev)
466 {
467 struct skge_port *skge = netdev_priv(dev);
468
469 return skge->rx_csum;
470 }
471
472 /* Only Yukon supports checksum offload. */
473 static int skge_set_rx_csum(struct net_device *dev, u32 data)
474 {
475 struct skge_port *skge = netdev_priv(dev);
476
477 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
478 return -EOPNOTSUPP;
479
480 skge->rx_csum = data;
481 return 0;
482 }
483
484 static void skge_get_pauseparam(struct net_device *dev,
485 struct ethtool_pauseparam *ecmd)
486 {
487 struct skge_port *skge = netdev_priv(dev);
488
489 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
490 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
491 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
492 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
493
494 ecmd->autoneg = skge->autoneg;
495 }
496
497 static int skge_set_pauseparam(struct net_device *dev,
498 struct ethtool_pauseparam *ecmd)
499 {
500 struct skge_port *skge = netdev_priv(dev);
501
502 skge->autoneg = ecmd->autoneg;
503 if (ecmd->rx_pause && ecmd->tx_pause)
504 skge->flow_control = FLOW_MODE_SYMMETRIC;
505 else if (ecmd->rx_pause && !ecmd->tx_pause)
506 skge->flow_control = FLOW_MODE_REM_SEND;
507 else if (!ecmd->rx_pause && ecmd->tx_pause)
508 skge->flow_control = FLOW_MODE_LOC_SEND;
509 else
510 skge->flow_control = FLOW_MODE_NONE;
511
512 if (netif_running(dev))
513 skge_phy_reset(skge);
514 return 0;
515 }
516
517 /* Chip internal frequency for clock calculations */
518 static inline u32 hwkhz(const struct skge_hw *hw)
519 {
520 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
521 }
522
523 /* Chip HZ to microseconds */
524 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
525 {
526 return (ticks * 1000) / hwkhz(hw);
527 }
528
529 /* Microseconds to chip HZ */
530 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
531 {
532 return hwkhz(hw) * usec / 1000;
533 }
534
535 static int skge_get_coalesce(struct net_device *dev,
536 struct ethtool_coalesce *ecmd)
537 {
538 struct skge_port *skge = netdev_priv(dev);
539 struct skge_hw *hw = skge->hw;
540 int port = skge->port;
541
542 ecmd->rx_coalesce_usecs = 0;
543 ecmd->tx_coalesce_usecs = 0;
544
545 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
546 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
547 u32 msk = skge_read32(hw, B2_IRQM_MSK);
548
549 if (msk & rxirqmask[port])
550 ecmd->rx_coalesce_usecs = delay;
551 if (msk & txirqmask[port])
552 ecmd->tx_coalesce_usecs = delay;
553 }
554
555 return 0;
556 }
557
558 /* Note: interrupt timer is per board, but can turn on/off per port */
559 static int skge_set_coalesce(struct net_device *dev,
560 struct ethtool_coalesce *ecmd)
561 {
562 struct skge_port *skge = netdev_priv(dev);
563 struct skge_hw *hw = skge->hw;
564 int port = skge->port;
565 u32 msk = skge_read32(hw, B2_IRQM_MSK);
566 u32 delay = 25;
567
568 if (ecmd->rx_coalesce_usecs == 0)
569 msk &= ~rxirqmask[port];
570 else if (ecmd->rx_coalesce_usecs < 25 ||
571 ecmd->rx_coalesce_usecs > 33333)
572 return -EINVAL;
573 else {
574 msk |= rxirqmask[port];
575 delay = ecmd->rx_coalesce_usecs;
576 }
577
578 if (ecmd->tx_coalesce_usecs == 0)
579 msk &= ~txirqmask[port];
580 else if (ecmd->tx_coalesce_usecs < 25 ||
581 ecmd->tx_coalesce_usecs > 33333)
582 return -EINVAL;
583 else {
584 msk |= txirqmask[port];
585 delay = min(delay, ecmd->rx_coalesce_usecs);
586 }
587
588 skge_write32(hw, B2_IRQM_MSK, msk);
589 if (msk == 0)
590 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
591 else {
592 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
593 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
594 }
595 return 0;
596 }
597
598 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
599 static void skge_led(struct skge_port *skge, enum led_mode mode)
600 {
601 struct skge_hw *hw = skge->hw;
602 int port = skge->port;
603
604 mutex_lock(&hw->phy_mutex);
605 if (hw->chip_id == CHIP_ID_GENESIS) {
606 switch (mode) {
607 case LED_MODE_OFF:
608 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
609 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
610 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
611 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
612 break;
613
614 case LED_MODE_ON:
615 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
616 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
617
618 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
619 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
620
621 break;
622
623 case LED_MODE_TST:
624 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
625 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
626 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
627
628 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
629 break;
630 }
631 } else {
632 switch (mode) {
633 case LED_MODE_OFF:
634 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
635 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
636 PHY_M_LED_MO_DUP(MO_LED_OFF) |
637 PHY_M_LED_MO_10(MO_LED_OFF) |
638 PHY_M_LED_MO_100(MO_LED_OFF) |
639 PHY_M_LED_MO_1000(MO_LED_OFF) |
640 PHY_M_LED_MO_RX(MO_LED_OFF));
641 break;
642 case LED_MODE_ON:
643 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
644 PHY_M_LED_PULS_DUR(PULS_170MS) |
645 PHY_M_LED_BLINK_RT(BLINK_84MS) |
646 PHY_M_LEDC_TX_CTRL |
647 PHY_M_LEDC_DP_CTRL);
648
649 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
650 PHY_M_LED_MO_RX(MO_LED_OFF) |
651 (skge->speed == SPEED_100 ?
652 PHY_M_LED_MO_100(MO_LED_ON) : 0));
653 break;
654 case LED_MODE_TST:
655 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
656 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
657 PHY_M_LED_MO_DUP(MO_LED_ON) |
658 PHY_M_LED_MO_10(MO_LED_ON) |
659 PHY_M_LED_MO_100(MO_LED_ON) |
660 PHY_M_LED_MO_1000(MO_LED_ON) |
661 PHY_M_LED_MO_RX(MO_LED_ON));
662 }
663 }
664 mutex_unlock(&hw->phy_mutex);
665 }
666
667 /* blink LED's for finding board */
668 static int skge_phys_id(struct net_device *dev, u32 data)
669 {
670 struct skge_port *skge = netdev_priv(dev);
671 unsigned long ms;
672 enum led_mode mode = LED_MODE_TST;
673
674 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
675 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
676 else
677 ms = data * 1000;
678
679 while (ms > 0) {
680 skge_led(skge, mode);
681 mode ^= LED_MODE_TST;
682
683 if (msleep_interruptible(BLINK_MS))
684 break;
685 ms -= BLINK_MS;
686 }
687
688 /* back to regular LED state */
689 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
690
691 return 0;
692 }
693
694 static struct ethtool_ops skge_ethtool_ops = {
695 .get_settings = skge_get_settings,
696 .set_settings = skge_set_settings,
697 .get_drvinfo = skge_get_drvinfo,
698 .get_regs_len = skge_get_regs_len,
699 .get_regs = skge_get_regs,
700 .get_wol = skge_get_wol,
701 .set_wol = skge_set_wol,
702 .get_msglevel = skge_get_msglevel,
703 .set_msglevel = skge_set_msglevel,
704 .nway_reset = skge_nway_reset,
705 .get_link = ethtool_op_get_link,
706 .get_ringparam = skge_get_ring_param,
707 .set_ringparam = skge_set_ring_param,
708 .get_pauseparam = skge_get_pauseparam,
709 .set_pauseparam = skge_set_pauseparam,
710 .get_coalesce = skge_get_coalesce,
711 .set_coalesce = skge_set_coalesce,
712 .get_sg = ethtool_op_get_sg,
713 .set_sg = skge_set_sg,
714 .get_tx_csum = ethtool_op_get_tx_csum,
715 .set_tx_csum = skge_set_tx_csum,
716 .get_rx_csum = skge_get_rx_csum,
717 .set_rx_csum = skge_set_rx_csum,
718 .get_strings = skge_get_strings,
719 .phys_id = skge_phys_id,
720 .get_stats_count = skge_get_stats_count,
721 .get_ethtool_stats = skge_get_ethtool_stats,
722 .get_perm_addr = ethtool_op_get_perm_addr,
723 };
724
725 /*
726 * Allocate ring elements and chain them together
727 * One-to-one association of board descriptors with ring elements
728 */
729 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
730 {
731 struct skge_tx_desc *d;
732 struct skge_element *e;
733 int i;
734
735 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
736 if (!ring->start)
737 return -ENOMEM;
738
739 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
740 e->desc = d;
741 if (i == ring->count - 1) {
742 e->next = ring->start;
743 d->next_offset = base;
744 } else {
745 e->next = e + 1;
746 d->next_offset = base + (i+1) * sizeof(*d);
747 }
748 }
749 ring->to_use = ring->to_clean = ring->start;
750
751 return 0;
752 }
753
754 /* Allocate and setup a new buffer for receiving */
755 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
756 struct sk_buff *skb, unsigned int bufsize)
757 {
758 struct skge_rx_desc *rd = e->desc;
759 u64 map;
760
761 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
762 PCI_DMA_FROMDEVICE);
763
764 rd->dma_lo = map;
765 rd->dma_hi = map >> 32;
766 e->skb = skb;
767 rd->csum1_start = ETH_HLEN;
768 rd->csum2_start = ETH_HLEN;
769 rd->csum1 = 0;
770 rd->csum2 = 0;
771
772 wmb();
773
774 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
775 pci_unmap_addr_set(e, mapaddr, map);
776 pci_unmap_len_set(e, maplen, bufsize);
777 }
778
779 /* Resume receiving using existing skb,
780 * Note: DMA address is not changed by chip.
781 * MTU not changed while receiver active.
782 */
783 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
784 {
785 struct skge_rx_desc *rd = e->desc;
786
787 rd->csum2 = 0;
788 rd->csum2_start = ETH_HLEN;
789
790 wmb();
791
792 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
793 }
794
795
796 /* Free all buffers in receive ring, assumes receiver stopped */
797 static void skge_rx_clean(struct skge_port *skge)
798 {
799 struct skge_hw *hw = skge->hw;
800 struct skge_ring *ring = &skge->rx_ring;
801 struct skge_element *e;
802
803 e = ring->start;
804 do {
805 struct skge_rx_desc *rd = e->desc;
806 rd->control = 0;
807 if (e->skb) {
808 pci_unmap_single(hw->pdev,
809 pci_unmap_addr(e, mapaddr),
810 pci_unmap_len(e, maplen),
811 PCI_DMA_FROMDEVICE);
812 dev_kfree_skb(e->skb);
813 e->skb = NULL;
814 }
815 } while ((e = e->next) != ring->start);
816 }
817
818
819 /* Allocate buffers for receive ring
820 * For receive: to_clean is next received frame.
821 */
822 static int skge_rx_fill(struct net_device *dev)
823 {
824 struct skge_port *skge = netdev_priv(dev);
825 struct skge_ring *ring = &skge->rx_ring;
826 struct skge_element *e;
827
828 e = ring->start;
829 do {
830 struct sk_buff *skb;
831
832 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
833 GFP_KERNEL);
834 if (!skb)
835 return -ENOMEM;
836
837 skb_reserve(skb, NET_IP_ALIGN);
838 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
839 } while ( (e = e->next) != ring->start);
840
841 ring->to_clean = ring->start;
842 return 0;
843 }
844
845 static void skge_link_up(struct skge_port *skge)
846 {
847 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
848 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
849
850 netif_carrier_on(skge->netdev);
851 netif_wake_queue(skge->netdev);
852
853 if (netif_msg_link(skge))
854 printk(KERN_INFO PFX
855 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
856 skge->netdev->name, skge->speed,
857 skge->duplex == DUPLEX_FULL ? "full" : "half",
858 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
859 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
860 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
861 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
862 "unknown");
863 }
864
865 static void skge_link_down(struct skge_port *skge)
866 {
867 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
868 netif_carrier_off(skge->netdev);
869 netif_stop_queue(skge->netdev);
870
871 if (netif_msg_link(skge))
872 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
873 }
874
875 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
876 {
877 int i;
878
879 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
880 *val = xm_read16(hw, port, XM_PHY_DATA);
881
882 for (i = 0; i < PHY_RETRIES; i++) {
883 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
884 goto ready;
885 udelay(1);
886 }
887
888 return -ETIMEDOUT;
889 ready:
890 *val = xm_read16(hw, port, XM_PHY_DATA);
891
892 return 0;
893 }
894
895 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
896 {
897 u16 v = 0;
898 if (__xm_phy_read(hw, port, reg, &v))
899 printk(KERN_WARNING PFX "%s: phy read timed out\n",
900 hw->dev[port]->name);
901 return v;
902 }
903
904 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
905 {
906 int i;
907
908 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
909 for (i = 0; i < PHY_RETRIES; i++) {
910 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
911 goto ready;
912 udelay(1);
913 }
914 return -EIO;
915
916 ready:
917 xm_write16(hw, port, XM_PHY_DATA, val);
918 for (i = 0; i < PHY_RETRIES; i++) {
919 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
920 return 0;
921 udelay(1);
922 }
923 return -ETIMEDOUT;
924 }
925
926 static void genesis_init(struct skge_hw *hw)
927 {
928 /* set blink source counter */
929 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
930 skge_write8(hw, B2_BSC_CTRL, BSC_START);
931
932 /* configure mac arbiter */
933 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
934
935 /* configure mac arbiter timeout values */
936 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
937 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
938 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
939 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
940
941 skge_write8(hw, B3_MA_RCINI_RX1, 0);
942 skge_write8(hw, B3_MA_RCINI_RX2, 0);
943 skge_write8(hw, B3_MA_RCINI_TX1, 0);
944 skge_write8(hw, B3_MA_RCINI_TX2, 0);
945
946 /* configure packet arbiter timeout */
947 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
948 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
949 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
950 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
951 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
952 }
953
954 static void genesis_reset(struct skge_hw *hw, int port)
955 {
956 const u8 zero[8] = { 0 };
957
958 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
959
960 /* reset the statistics module */
961 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
962 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
963 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
964 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
965 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
966
967 /* disable Broadcom PHY IRQ */
968 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
969
970 xm_outhash(hw, port, XM_HSM, zero);
971 }
972
973
974 /* Convert mode to MII values */
975 static const u16 phy_pause_map[] = {
976 [FLOW_MODE_NONE] = 0,
977 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
978 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
979 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
980 };
981
982
983 /* Check status of Broadcom phy link */
984 static void bcom_check_link(struct skge_hw *hw, int port)
985 {
986 struct net_device *dev = hw->dev[port];
987 struct skge_port *skge = netdev_priv(dev);
988 u16 status;
989
990 /* read twice because of latch */
991 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
992 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
993
994 if ((status & PHY_ST_LSYNC) == 0) {
995 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
996 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
997 xm_write16(hw, port, XM_MMU_CMD, cmd);
998 /* dummy read to ensure writing */
999 (void) xm_read16(hw, port, XM_MMU_CMD);
1000
1001 if (netif_carrier_ok(dev))
1002 skge_link_down(skge);
1003 } else {
1004 if (skge->autoneg == AUTONEG_ENABLE &&
1005 (status & PHY_ST_AN_OVER)) {
1006 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1007 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1008
1009 if (lpa & PHY_B_AN_RF) {
1010 printk(KERN_NOTICE PFX "%s: remote fault\n",
1011 dev->name);
1012 return;
1013 }
1014
1015 /* Check Duplex mismatch */
1016 switch (aux & PHY_B_AS_AN_RES_MSK) {
1017 case PHY_B_RES_1000FD:
1018 skge->duplex = DUPLEX_FULL;
1019 break;
1020 case PHY_B_RES_1000HD:
1021 skge->duplex = DUPLEX_HALF;
1022 break;
1023 default:
1024 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1025 dev->name);
1026 return;
1027 }
1028
1029
1030 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1031 switch (aux & PHY_B_AS_PAUSE_MSK) {
1032 case PHY_B_AS_PAUSE_MSK:
1033 skge->flow_control = FLOW_MODE_SYMMETRIC;
1034 break;
1035 case PHY_B_AS_PRR:
1036 skge->flow_control = FLOW_MODE_REM_SEND;
1037 break;
1038 case PHY_B_AS_PRT:
1039 skge->flow_control = FLOW_MODE_LOC_SEND;
1040 break;
1041 default:
1042 skge->flow_control = FLOW_MODE_NONE;
1043 }
1044
1045 skge->speed = SPEED_1000;
1046 }
1047
1048 if (!netif_carrier_ok(dev))
1049 genesis_link_up(skge);
1050 }
1051 }
1052
1053 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1054 * Phy on for 100 or 10Mbit operation
1055 */
1056 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1057 {
1058 struct skge_hw *hw = skge->hw;
1059 int port = skge->port;
1060 int i;
1061 u16 id1, r, ext, ctl;
1062
1063 /* magic workaround patterns for Broadcom */
1064 static const struct {
1065 u16 reg;
1066 u16 val;
1067 } A1hack[] = {
1068 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1069 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1070 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1071 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1072 }, C0hack[] = {
1073 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1074 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1075 };
1076
1077 /* read Id from external PHY (all have the same address) */
1078 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1079
1080 /* Optimize MDIO transfer by suppressing preamble. */
1081 r = xm_read16(hw, port, XM_MMU_CMD);
1082 r |= XM_MMU_NO_PRE;
1083 xm_write16(hw, port, XM_MMU_CMD,r);
1084
1085 switch (id1) {
1086 case PHY_BCOM_ID1_C0:
1087 /*
1088 * Workaround BCOM Errata for the C0 type.
1089 * Write magic patterns to reserved registers.
1090 */
1091 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1092 xm_phy_write(hw, port,
1093 C0hack[i].reg, C0hack[i].val);
1094
1095 break;
1096 case PHY_BCOM_ID1_A1:
1097 /*
1098 * Workaround BCOM Errata for the A1 type.
1099 * Write magic patterns to reserved registers.
1100 */
1101 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1102 xm_phy_write(hw, port,
1103 A1hack[i].reg, A1hack[i].val);
1104 break;
1105 }
1106
1107 /*
1108 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1109 * Disable Power Management after reset.
1110 */
1111 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1112 r |= PHY_B_AC_DIS_PM;
1113 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1114
1115 /* Dummy read */
1116 xm_read16(hw, port, XM_ISRC);
1117
1118 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1119 ctl = PHY_CT_SP1000; /* always 1000mbit */
1120
1121 if (skge->autoneg == AUTONEG_ENABLE) {
1122 /*
1123 * Workaround BCOM Errata #1 for the C5 type.
1124 * 1000Base-T Link Acquisition Failure in Slave Mode
1125 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1126 */
1127 u16 adv = PHY_B_1000C_RD;
1128 if (skge->advertising & ADVERTISED_1000baseT_Half)
1129 adv |= PHY_B_1000C_AHD;
1130 if (skge->advertising & ADVERTISED_1000baseT_Full)
1131 adv |= PHY_B_1000C_AFD;
1132 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1133
1134 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1135 } else {
1136 if (skge->duplex == DUPLEX_FULL)
1137 ctl |= PHY_CT_DUP_MD;
1138 /* Force to slave */
1139 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1140 }
1141
1142 /* Set autonegotiation pause parameters */
1143 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1144 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1145
1146 /* Handle Jumbo frames */
1147 if (jumbo) {
1148 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1149 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1150
1151 ext |= PHY_B_PEC_HIGH_LA;
1152
1153 }
1154
1155 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1156 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1157
1158 /* Use link status change interrupt */
1159 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1160
1161 bcom_check_link(hw, port);
1162 }
1163
1164 static void genesis_mac_init(struct skge_hw *hw, int port)
1165 {
1166 struct net_device *dev = hw->dev[port];
1167 struct skge_port *skge = netdev_priv(dev);
1168 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1169 int i;
1170 u32 r;
1171 const u8 zero[6] = { 0 };
1172
1173 for (i = 0; i < 10; i++) {
1174 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1175 MFF_SET_MAC_RST);
1176 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1177 goto reset_ok;
1178 udelay(1);
1179 }
1180
1181 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1182
1183 reset_ok:
1184 /* Unreset the XMAC. */
1185 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1186
1187 /*
1188 * Perform additional initialization for external PHYs,
1189 * namely for the 1000baseTX cards that use the XMAC's
1190 * GMII mode.
1191 */
1192 /* Take external Phy out of reset */
1193 r = skge_read32(hw, B2_GP_IO);
1194 if (port == 0)
1195 r |= GP_DIR_0|GP_IO_0;
1196 else
1197 r |= GP_DIR_2|GP_IO_2;
1198
1199 skge_write32(hw, B2_GP_IO, r);
1200
1201
1202 /* Enable GMII interface */
1203 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1204
1205 bcom_phy_init(skge, jumbo);
1206
1207 /* Set Station Address */
1208 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1209
1210 /* We don't use match addresses so clear */
1211 for (i = 1; i < 16; i++)
1212 xm_outaddr(hw, port, XM_EXM(i), zero);
1213
1214 /* Clear MIB counters */
1215 xm_write16(hw, port, XM_STAT_CMD,
1216 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1217 /* Clear two times according to Errata #3 */
1218 xm_write16(hw, port, XM_STAT_CMD,
1219 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1220
1221 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1222 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1223
1224 /* We don't need the FCS appended to the packet. */
1225 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1226 if (jumbo)
1227 r |= XM_RX_BIG_PK_OK;
1228
1229 if (skge->duplex == DUPLEX_HALF) {
1230 /*
1231 * If in manual half duplex mode the other side might be in
1232 * full duplex mode, so ignore if a carrier extension is not seen
1233 * on frames received
1234 */
1235 r |= XM_RX_DIS_CEXT;
1236 }
1237 xm_write16(hw, port, XM_RX_CMD, r);
1238
1239
1240 /* We want short frames padded to 60 bytes. */
1241 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1242
1243 /*
1244 * Bump up the transmit threshold. This helps hold off transmit
1245 * underruns when we're blasting traffic from both ports at once.
1246 */
1247 xm_write16(hw, port, XM_TX_THR, 512);
1248
1249 /*
1250 * Enable the reception of all error frames. This is is
1251 * a necessary evil due to the design of the XMAC. The
1252 * XMAC's receive FIFO is only 8K in size, however jumbo
1253 * frames can be up to 9000 bytes in length. When bad
1254 * frame filtering is enabled, the XMAC's RX FIFO operates
1255 * in 'store and forward' mode. For this to work, the
1256 * entire frame has to fit into the FIFO, but that means
1257 * that jumbo frames larger than 8192 bytes will be
1258 * truncated. Disabling all bad frame filtering causes
1259 * the RX FIFO to operate in streaming mode, in which
1260 * case the XMAC will start transferring frames out of the
1261 * RX FIFO as soon as the FIFO threshold is reached.
1262 */
1263 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1264
1265
1266 /*
1267 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1268 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1269 * and 'Octets Rx OK Hi Cnt Ov'.
1270 */
1271 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1272
1273 /*
1274 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1275 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1276 * and 'Octets Tx OK Hi Cnt Ov'.
1277 */
1278 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1279
1280 /* Configure MAC arbiter */
1281 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1282
1283 /* configure timeout values */
1284 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1285 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1286 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1287 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1288
1289 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1290 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1291 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1292 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1293
1294 /* Configure Rx MAC FIFO */
1295 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1296 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1297 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1298
1299 /* Configure Tx MAC FIFO */
1300 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1301 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1302 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1303
1304 if (jumbo) {
1305 /* Enable frame flushing if jumbo frames used */
1306 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1307 } else {
1308 /* enable timeout timers if normal frames */
1309 skge_write16(hw, B3_PA_CTRL,
1310 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1311 }
1312 }
1313
1314 static void genesis_stop(struct skge_port *skge)
1315 {
1316 struct skge_hw *hw = skge->hw;
1317 int port = skge->port;
1318 u32 reg;
1319
1320 genesis_reset(hw, port);
1321
1322 /* Clear Tx packet arbiter timeout IRQ */
1323 skge_write16(hw, B3_PA_CTRL,
1324 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1325
1326 /*
1327 * If the transfer sticks at the MAC the STOP command will not
1328 * terminate if we don't flush the XMAC's transmit FIFO !
1329 */
1330 xm_write32(hw, port, XM_MODE,
1331 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1332
1333
1334 /* Reset the MAC */
1335 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1336
1337 /* For external PHYs there must be special handling */
1338 reg = skge_read32(hw, B2_GP_IO);
1339 if (port == 0) {
1340 reg |= GP_DIR_0;
1341 reg &= ~GP_IO_0;
1342 } else {
1343 reg |= GP_DIR_2;
1344 reg &= ~GP_IO_2;
1345 }
1346 skge_write32(hw, B2_GP_IO, reg);
1347 skge_read32(hw, B2_GP_IO);
1348
1349 xm_write16(hw, port, XM_MMU_CMD,
1350 xm_read16(hw, port, XM_MMU_CMD)
1351 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1352
1353 xm_read16(hw, port, XM_MMU_CMD);
1354 }
1355
1356
1357 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1358 {
1359 struct skge_hw *hw = skge->hw;
1360 int port = skge->port;
1361 int i;
1362 unsigned long timeout = jiffies + HZ;
1363
1364 xm_write16(hw, port,
1365 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1366
1367 /* wait for update to complete */
1368 while (xm_read16(hw, port, XM_STAT_CMD)
1369 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1370 if (time_after(jiffies, timeout))
1371 break;
1372 udelay(10);
1373 }
1374
1375 /* special case for 64 bit octet counter */
1376 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1377 | xm_read32(hw, port, XM_TXO_OK_LO);
1378 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1379 | xm_read32(hw, port, XM_RXO_OK_LO);
1380
1381 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1382 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1383 }
1384
1385 static void genesis_mac_intr(struct skge_hw *hw, int port)
1386 {
1387 struct skge_port *skge = netdev_priv(hw->dev[port]);
1388 u16 status = xm_read16(hw, port, XM_ISRC);
1389
1390 if (netif_msg_intr(skge))
1391 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1392 skge->netdev->name, status);
1393
1394 if (status & XM_IS_TXF_UR) {
1395 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1396 ++skge->net_stats.tx_fifo_errors;
1397 }
1398 if (status & XM_IS_RXF_OV) {
1399 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1400 ++skge->net_stats.rx_fifo_errors;
1401 }
1402 }
1403
1404 static void genesis_link_up(struct skge_port *skge)
1405 {
1406 struct skge_hw *hw = skge->hw;
1407 int port = skge->port;
1408 u16 cmd;
1409 u32 mode, msk;
1410
1411 cmd = xm_read16(hw, port, XM_MMU_CMD);
1412
1413 /*
1414 * enabling pause frame reception is required for 1000BT
1415 * because the XMAC is not reset if the link is going down
1416 */
1417 if (skge->flow_control == FLOW_MODE_NONE ||
1418 skge->flow_control == FLOW_MODE_LOC_SEND)
1419 /* Disable Pause Frame Reception */
1420 cmd |= XM_MMU_IGN_PF;
1421 else
1422 /* Enable Pause Frame Reception */
1423 cmd &= ~XM_MMU_IGN_PF;
1424
1425 xm_write16(hw, port, XM_MMU_CMD, cmd);
1426
1427 mode = xm_read32(hw, port, XM_MODE);
1428 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1429 skge->flow_control == FLOW_MODE_LOC_SEND) {
1430 /*
1431 * Configure Pause Frame Generation
1432 * Use internal and external Pause Frame Generation.
1433 * Sending pause frames is edge triggered.
1434 * Send a Pause frame with the maximum pause time if
1435 * internal oder external FIFO full condition occurs.
1436 * Send a zero pause time frame to re-start transmission.
1437 */
1438 /* XM_PAUSE_DA = '010000C28001' (default) */
1439 /* XM_MAC_PTIME = 0xffff (maximum) */
1440 /* remember this value is defined in big endian (!) */
1441 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1442
1443 mode |= XM_PAUSE_MODE;
1444 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1445 } else {
1446 /*
1447 * disable pause frame generation is required for 1000BT
1448 * because the XMAC is not reset if the link is going down
1449 */
1450 /* Disable Pause Mode in Mode Register */
1451 mode &= ~XM_PAUSE_MODE;
1452
1453 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1454 }
1455
1456 xm_write32(hw, port, XM_MODE, mode);
1457
1458 msk = XM_DEF_MSK;
1459 /* disable GP0 interrupt bit for external Phy */
1460 msk |= XM_IS_INP_ASS;
1461
1462 xm_write16(hw, port, XM_IMSK, msk);
1463 xm_read16(hw, port, XM_ISRC);
1464
1465 /* get MMU Command Reg. */
1466 cmd = xm_read16(hw, port, XM_MMU_CMD);
1467 if (skge->duplex == DUPLEX_FULL)
1468 cmd |= XM_MMU_GMII_FD;
1469
1470 /*
1471 * Workaround BCOM Errata (#10523) for all BCom Phys
1472 * Enable Power Management after link up
1473 */
1474 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1475 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1476 & ~PHY_B_AC_DIS_PM);
1477 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1478
1479 /* enable Rx/Tx */
1480 xm_write16(hw, port, XM_MMU_CMD,
1481 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1482 skge_link_up(skge);
1483 }
1484
1485
1486 static inline void bcom_phy_intr(struct skge_port *skge)
1487 {
1488 struct skge_hw *hw = skge->hw;
1489 int port = skge->port;
1490 u16 isrc;
1491
1492 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1493 if (netif_msg_intr(skge))
1494 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1495 skge->netdev->name, isrc);
1496
1497 if (isrc & PHY_B_IS_PSE)
1498 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1499 hw->dev[port]->name);
1500
1501 /* Workaround BCom Errata:
1502 * enable and disable loopback mode if "NO HCD" occurs.
1503 */
1504 if (isrc & PHY_B_IS_NO_HDCL) {
1505 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1506 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1507 ctrl | PHY_CT_LOOP);
1508 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1509 ctrl & ~PHY_CT_LOOP);
1510 }
1511
1512 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1513 bcom_check_link(hw, port);
1514
1515 }
1516
1517 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1518 {
1519 int i;
1520
1521 gma_write16(hw, port, GM_SMI_DATA, val);
1522 gma_write16(hw, port, GM_SMI_CTRL,
1523 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1524 for (i = 0; i < PHY_RETRIES; i++) {
1525 udelay(1);
1526
1527 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1528 return 0;
1529 }
1530
1531 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1532 hw->dev[port]->name);
1533 return -EIO;
1534 }
1535
1536 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1537 {
1538 int i;
1539
1540 gma_write16(hw, port, GM_SMI_CTRL,
1541 GM_SMI_CT_PHY_AD(hw->phy_addr)
1542 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1543
1544 for (i = 0; i < PHY_RETRIES; i++) {
1545 udelay(1);
1546 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1547 goto ready;
1548 }
1549
1550 return -ETIMEDOUT;
1551 ready:
1552 *val = gma_read16(hw, port, GM_SMI_DATA);
1553 return 0;
1554 }
1555
1556 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1557 {
1558 u16 v = 0;
1559 if (__gm_phy_read(hw, port, reg, &v))
1560 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1561 hw->dev[port]->name);
1562 return v;
1563 }
1564
1565 /* Marvell Phy Initialization */
1566 static void yukon_init(struct skge_hw *hw, int port)
1567 {
1568 struct skge_port *skge = netdev_priv(hw->dev[port]);
1569 u16 ctrl, ct1000, adv;
1570
1571 if (skge->autoneg == AUTONEG_ENABLE) {
1572 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1573
1574 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1575 PHY_M_EC_MAC_S_MSK);
1576 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1577
1578 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1579
1580 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1581 }
1582
1583 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1584 if (skge->autoneg == AUTONEG_DISABLE)
1585 ctrl &= ~PHY_CT_ANE;
1586
1587 ctrl |= PHY_CT_RESET;
1588 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1589
1590 ctrl = 0;
1591 ct1000 = 0;
1592 adv = PHY_AN_CSMA;
1593
1594 if (skge->autoneg == AUTONEG_ENABLE) {
1595 if (hw->copper) {
1596 if (skge->advertising & ADVERTISED_1000baseT_Full)
1597 ct1000 |= PHY_M_1000C_AFD;
1598 if (skge->advertising & ADVERTISED_1000baseT_Half)
1599 ct1000 |= PHY_M_1000C_AHD;
1600 if (skge->advertising & ADVERTISED_100baseT_Full)
1601 adv |= PHY_M_AN_100_FD;
1602 if (skge->advertising & ADVERTISED_100baseT_Half)
1603 adv |= PHY_M_AN_100_HD;
1604 if (skge->advertising & ADVERTISED_10baseT_Full)
1605 adv |= PHY_M_AN_10_FD;
1606 if (skge->advertising & ADVERTISED_10baseT_Half)
1607 adv |= PHY_M_AN_10_HD;
1608 } else /* special defines for FIBER (88E1011S only) */
1609 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1610
1611 /* Set Flow-control capabilities */
1612 adv |= phy_pause_map[skge->flow_control];
1613
1614 /* Restart Auto-negotiation */
1615 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1616 } else {
1617 /* forced speed/duplex settings */
1618 ct1000 = PHY_M_1000C_MSE;
1619
1620 if (skge->duplex == DUPLEX_FULL)
1621 ctrl |= PHY_CT_DUP_MD;
1622
1623 switch (skge->speed) {
1624 case SPEED_1000:
1625 ctrl |= PHY_CT_SP1000;
1626 break;
1627 case SPEED_100:
1628 ctrl |= PHY_CT_SP100;
1629 break;
1630 }
1631
1632 ctrl |= PHY_CT_RESET;
1633 }
1634
1635 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1636
1637 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1638 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1639
1640 /* Enable phy interrupt on autonegotiation complete (or link up) */
1641 if (skge->autoneg == AUTONEG_ENABLE)
1642 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1643 else
1644 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1645 }
1646
1647 static void yukon_reset(struct skge_hw *hw, int port)
1648 {
1649 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1650 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1651 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1652 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1653 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1654
1655 gma_write16(hw, port, GM_RX_CTRL,
1656 gma_read16(hw, port, GM_RX_CTRL)
1657 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1658 }
1659
1660 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1661 static int is_yukon_lite_a0(struct skge_hw *hw)
1662 {
1663 u32 reg;
1664 int ret;
1665
1666 if (hw->chip_id != CHIP_ID_YUKON)
1667 return 0;
1668
1669 reg = skge_read32(hw, B2_FAR);
1670 skge_write8(hw, B2_FAR + 3, 0xff);
1671 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1672 skge_write32(hw, B2_FAR, reg);
1673 return ret;
1674 }
1675
1676 static void yukon_mac_init(struct skge_hw *hw, int port)
1677 {
1678 struct skge_port *skge = netdev_priv(hw->dev[port]);
1679 int i;
1680 u32 reg;
1681 const u8 *addr = hw->dev[port]->dev_addr;
1682
1683 /* WA code for COMA mode -- set PHY reset */
1684 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1685 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1686 reg = skge_read32(hw, B2_GP_IO);
1687 reg |= GP_DIR_9 | GP_IO_9;
1688 skge_write32(hw, B2_GP_IO, reg);
1689 }
1690
1691 /* hard reset */
1692 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1693 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1694
1695 /* WA code for COMA mode -- clear PHY reset */
1696 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1697 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1698 reg = skge_read32(hw, B2_GP_IO);
1699 reg |= GP_DIR_9;
1700 reg &= ~GP_IO_9;
1701 skge_write32(hw, B2_GP_IO, reg);
1702 }
1703
1704 /* Set hardware config mode */
1705 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1706 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1707 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1708
1709 /* Clear GMC reset */
1710 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1711 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1712 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1713
1714 if (skge->autoneg == AUTONEG_DISABLE) {
1715 reg = GM_GPCR_AU_ALL_DIS;
1716 gma_write16(hw, port, GM_GP_CTRL,
1717 gma_read16(hw, port, GM_GP_CTRL) | reg);
1718
1719 switch (skge->speed) {
1720 case SPEED_1000:
1721 reg &= ~GM_GPCR_SPEED_100;
1722 reg |= GM_GPCR_SPEED_1000;
1723 break;
1724 case SPEED_100:
1725 reg &= ~GM_GPCR_SPEED_1000;
1726 reg |= GM_GPCR_SPEED_100;
1727 break;
1728 case SPEED_10:
1729 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1730 break;
1731 }
1732
1733 if (skge->duplex == DUPLEX_FULL)
1734 reg |= GM_GPCR_DUP_FULL;
1735 } else
1736 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1737
1738 switch (skge->flow_control) {
1739 case FLOW_MODE_NONE:
1740 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1741 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1742 break;
1743 case FLOW_MODE_LOC_SEND:
1744 /* disable Rx flow-control */
1745 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1746 }
1747
1748 gma_write16(hw, port, GM_GP_CTRL, reg);
1749 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1750
1751 yukon_init(hw, port);
1752
1753 /* MIB clear */
1754 reg = gma_read16(hw, port, GM_PHY_ADDR);
1755 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1756
1757 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1758 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1759 gma_write16(hw, port, GM_PHY_ADDR, reg);
1760
1761 /* transmit control */
1762 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1763
1764 /* receive control reg: unicast + multicast + no FCS */
1765 gma_write16(hw, port, GM_RX_CTRL,
1766 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1767
1768 /* transmit flow control */
1769 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1770
1771 /* transmit parameter */
1772 gma_write16(hw, port, GM_TX_PARAM,
1773 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1774 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1775 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1776
1777 /* serial mode register */
1778 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1779 if (hw->dev[port]->mtu > 1500)
1780 reg |= GM_SMOD_JUMBO_ENA;
1781
1782 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1783
1784 /* physical address: used for pause frames */
1785 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1786 /* virtual address for data */
1787 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1788
1789 /* enable interrupt mask for counter overflows */
1790 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1791 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1792 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1793
1794 /* Initialize Mac Fifo */
1795
1796 /* Configure Rx MAC FIFO */
1797 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1798 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1799
1800 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1801 if (is_yukon_lite_a0(hw))
1802 reg &= ~GMF_RX_F_FL_ON;
1803
1804 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1805 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1806 /*
1807 * because Pause Packet Truncation in GMAC is not working
1808 * we have to increase the Flush Threshold to 64 bytes
1809 * in order to flush pause packets in Rx FIFO on Yukon-1
1810 */
1811 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1812
1813 /* Configure Tx MAC FIFO */
1814 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1815 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1816 }
1817
1818 /* Go into power down mode */
1819 static void yukon_suspend(struct skge_hw *hw, int port)
1820 {
1821 u16 ctrl;
1822
1823 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1824 ctrl |= PHY_M_PC_POL_R_DIS;
1825 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1826
1827 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1828 ctrl |= PHY_CT_RESET;
1829 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1830
1831 /* switch IEEE compatible power down mode on */
1832 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1833 ctrl |= PHY_CT_PDOWN;
1834 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1835 }
1836
1837 static void yukon_stop(struct skge_port *skge)
1838 {
1839 struct skge_hw *hw = skge->hw;
1840 int port = skge->port;
1841
1842 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1843 yukon_reset(hw, port);
1844
1845 gma_write16(hw, port, GM_GP_CTRL,
1846 gma_read16(hw, port, GM_GP_CTRL)
1847 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1848 gma_read16(hw, port, GM_GP_CTRL);
1849
1850 yukon_suspend(hw, port);
1851
1852 /* set GPHY Control reset */
1853 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1854 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1855 }
1856
1857 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1858 {
1859 struct skge_hw *hw = skge->hw;
1860 int port = skge->port;
1861 int i;
1862
1863 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1864 | gma_read32(hw, port, GM_TXO_OK_LO);
1865 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1866 | gma_read32(hw, port, GM_RXO_OK_LO);
1867
1868 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1869 data[i] = gma_read32(hw, port,
1870 skge_stats[i].gma_offset);
1871 }
1872
1873 static void yukon_mac_intr(struct skge_hw *hw, int port)
1874 {
1875 struct net_device *dev = hw->dev[port];
1876 struct skge_port *skge = netdev_priv(dev);
1877 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1878
1879 if (netif_msg_intr(skge))
1880 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1881 dev->name, status);
1882
1883 if (status & GM_IS_RX_FF_OR) {
1884 ++skge->net_stats.rx_fifo_errors;
1885 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1886 }
1887
1888 if (status & GM_IS_TX_FF_UR) {
1889 ++skge->net_stats.tx_fifo_errors;
1890 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1891 }
1892
1893 }
1894
1895 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1896 {
1897 switch (aux & PHY_M_PS_SPEED_MSK) {
1898 case PHY_M_PS_SPEED_1000:
1899 return SPEED_1000;
1900 case PHY_M_PS_SPEED_100:
1901 return SPEED_100;
1902 default:
1903 return SPEED_10;
1904 }
1905 }
1906
1907 static void yukon_link_up(struct skge_port *skge)
1908 {
1909 struct skge_hw *hw = skge->hw;
1910 int port = skge->port;
1911 u16 reg;
1912
1913 /* Enable Transmit FIFO Underrun */
1914 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1915
1916 reg = gma_read16(hw, port, GM_GP_CTRL);
1917 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1918 reg |= GM_GPCR_DUP_FULL;
1919
1920 /* enable Rx/Tx */
1921 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1922 gma_write16(hw, port, GM_GP_CTRL, reg);
1923
1924 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1925 skge_link_up(skge);
1926 }
1927
1928 static void yukon_link_down(struct skge_port *skge)
1929 {
1930 struct skge_hw *hw = skge->hw;
1931 int port = skge->port;
1932 u16 ctrl;
1933
1934 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1935
1936 ctrl = gma_read16(hw, port, GM_GP_CTRL);
1937 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1938 gma_write16(hw, port, GM_GP_CTRL, ctrl);
1939
1940 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1941 /* restore Asymmetric Pause bit */
1942 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1943 gm_phy_read(hw, port,
1944 PHY_MARV_AUNE_ADV)
1945 | PHY_M_AN_ASP);
1946
1947 }
1948
1949 yukon_reset(hw, port);
1950 skge_link_down(skge);
1951
1952 yukon_init(hw, port);
1953 }
1954
1955 static void yukon_phy_intr(struct skge_port *skge)
1956 {
1957 struct skge_hw *hw = skge->hw;
1958 int port = skge->port;
1959 const char *reason = NULL;
1960 u16 istatus, phystat;
1961
1962 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1963 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1964
1965 if (netif_msg_intr(skge))
1966 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1967 skge->netdev->name, istatus, phystat);
1968
1969 if (istatus & PHY_M_IS_AN_COMPL) {
1970 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1971 & PHY_M_AN_RF) {
1972 reason = "remote fault";
1973 goto failed;
1974 }
1975
1976 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1977 reason = "master/slave fault";
1978 goto failed;
1979 }
1980
1981 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1982 reason = "speed/duplex";
1983 goto failed;
1984 }
1985
1986 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1987 ? DUPLEX_FULL : DUPLEX_HALF;
1988 skge->speed = yukon_speed(hw, phystat);
1989
1990 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1991 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1992 case PHY_M_PS_PAUSE_MSK:
1993 skge->flow_control = FLOW_MODE_SYMMETRIC;
1994 break;
1995 case PHY_M_PS_RX_P_EN:
1996 skge->flow_control = FLOW_MODE_REM_SEND;
1997 break;
1998 case PHY_M_PS_TX_P_EN:
1999 skge->flow_control = FLOW_MODE_LOC_SEND;
2000 break;
2001 default:
2002 skge->flow_control = FLOW_MODE_NONE;
2003 }
2004
2005 if (skge->flow_control == FLOW_MODE_NONE ||
2006 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2007 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2008 else
2009 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2010 yukon_link_up(skge);
2011 return;
2012 }
2013
2014 if (istatus & PHY_M_IS_LSP_CHANGE)
2015 skge->speed = yukon_speed(hw, phystat);
2016
2017 if (istatus & PHY_M_IS_DUP_CHANGE)
2018 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2019 if (istatus & PHY_M_IS_LST_CHANGE) {
2020 if (phystat & PHY_M_PS_LINK_UP)
2021 yukon_link_up(skge);
2022 else
2023 yukon_link_down(skge);
2024 }
2025 return;
2026 failed:
2027 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2028 skge->netdev->name, reason);
2029
2030 /* XXX restart autonegotiation? */
2031 }
2032
2033 static void skge_phy_reset(struct skge_port *skge)
2034 {
2035 struct skge_hw *hw = skge->hw;
2036 int port = skge->port;
2037
2038 netif_stop_queue(skge->netdev);
2039 netif_carrier_off(skge->netdev);
2040
2041 mutex_lock(&hw->phy_mutex);
2042 if (hw->chip_id == CHIP_ID_GENESIS) {
2043 genesis_reset(hw, port);
2044 genesis_mac_init(hw, port);
2045 } else {
2046 yukon_reset(hw, port);
2047 yukon_init(hw, port);
2048 }
2049 mutex_unlock(&hw->phy_mutex);
2050 }
2051
2052 /* Basic MII support */
2053 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2054 {
2055 struct mii_ioctl_data *data = if_mii(ifr);
2056 struct skge_port *skge = netdev_priv(dev);
2057 struct skge_hw *hw = skge->hw;
2058 int err = -EOPNOTSUPP;
2059
2060 if (!netif_running(dev))
2061 return -ENODEV; /* Phy still in reset */
2062
2063 switch(cmd) {
2064 case SIOCGMIIPHY:
2065 data->phy_id = hw->phy_addr;
2066
2067 /* fallthru */
2068 case SIOCGMIIREG: {
2069 u16 val = 0;
2070 mutex_lock(&hw->phy_mutex);
2071 if (hw->chip_id == CHIP_ID_GENESIS)
2072 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2073 else
2074 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2075 mutex_unlock(&hw->phy_mutex);
2076 data->val_out = val;
2077 break;
2078 }
2079
2080 case SIOCSMIIREG:
2081 if (!capable(CAP_NET_ADMIN))
2082 return -EPERM;
2083
2084 mutex_lock(&hw->phy_mutex);
2085 if (hw->chip_id == CHIP_ID_GENESIS)
2086 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2087 data->val_in);
2088 else
2089 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2090 data->val_in);
2091 mutex_unlock(&hw->phy_mutex);
2092 break;
2093 }
2094 return err;
2095 }
2096
2097 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2098 {
2099 u32 end;
2100
2101 start /= 8;
2102 len /= 8;
2103 end = start + len - 1;
2104
2105 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2106 skge_write32(hw, RB_ADDR(q, RB_START), start);
2107 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2108 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2109 skge_write32(hw, RB_ADDR(q, RB_END), end);
2110
2111 if (q == Q_R1 || q == Q_R2) {
2112 /* Set thresholds on receive queue's */
2113 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2114 start + (2*len)/3);
2115 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2116 start + (len/3));
2117 } else {
2118 /* Enable store & forward on Tx queue's because
2119 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2120 */
2121 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2122 }
2123
2124 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2125 }
2126
2127 /* Setup Bus Memory Interface */
2128 static void skge_qset(struct skge_port *skge, u16 q,
2129 const struct skge_element *e)
2130 {
2131 struct skge_hw *hw = skge->hw;
2132 u32 watermark = 0x600;
2133 u64 base = skge->dma + (e->desc - skge->mem);
2134
2135 /* optimization to reduce window on 32bit/33mhz */
2136 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2137 watermark /= 2;
2138
2139 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2140 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2141 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2142 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2143 }
2144
2145 static int skge_up(struct net_device *dev)
2146 {
2147 struct skge_port *skge = netdev_priv(dev);
2148 struct skge_hw *hw = skge->hw;
2149 int port = skge->port;
2150 u32 chunk, ram_addr;
2151 size_t rx_size, tx_size;
2152 int err;
2153
2154 if (netif_msg_ifup(skge))
2155 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2156
2157 if (dev->mtu > RX_BUF_SIZE)
2158 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2159 else
2160 skge->rx_buf_size = RX_BUF_SIZE;
2161
2162
2163 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2164 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2165 skge->mem_size = tx_size + rx_size;
2166 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2167 if (!skge->mem)
2168 return -ENOMEM;
2169
2170 BUG_ON(skge->dma & 7);
2171
2172 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2173 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2174 err = -EINVAL;
2175 goto free_pci_mem;
2176 }
2177
2178 memset(skge->mem, 0, skge->mem_size);
2179
2180 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2181 if (err)
2182 goto free_pci_mem;
2183
2184 err = skge_rx_fill(dev);
2185 if (err)
2186 goto free_rx_ring;
2187
2188 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2189 skge->dma + rx_size);
2190 if (err)
2191 goto free_rx_ring;
2192
2193 /* Initialize MAC */
2194 mutex_lock(&hw->phy_mutex);
2195 if (hw->chip_id == CHIP_ID_GENESIS)
2196 genesis_mac_init(hw, port);
2197 else
2198 yukon_mac_init(hw, port);
2199 mutex_unlock(&hw->phy_mutex);
2200
2201 /* Configure RAMbuffers */
2202 chunk = hw->ram_size / ((hw->ports + 1)*2);
2203 ram_addr = hw->ram_offset + 2 * chunk * port;
2204
2205 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2206 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2207
2208 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2209 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2210 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2211
2212 /* Start receiver BMU */
2213 wmb();
2214 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2215 skge_led(skge, LED_MODE_ON);
2216
2217 netif_poll_enable(dev);
2218 return 0;
2219
2220 free_rx_ring:
2221 skge_rx_clean(skge);
2222 kfree(skge->rx_ring.start);
2223 free_pci_mem:
2224 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2225 skge->mem = NULL;
2226
2227 return err;
2228 }
2229
2230 static int skge_down(struct net_device *dev)
2231 {
2232 struct skge_port *skge = netdev_priv(dev);
2233 struct skge_hw *hw = skge->hw;
2234 int port = skge->port;
2235
2236 if (skge->mem == NULL)
2237 return 0;
2238
2239 if (netif_msg_ifdown(skge))
2240 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2241
2242 netif_stop_queue(dev);
2243
2244 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2245 if (hw->chip_id == CHIP_ID_GENESIS)
2246 genesis_stop(skge);
2247 else
2248 yukon_stop(skge);
2249
2250 /* Stop transmitter */
2251 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2252 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2253 RB_RST_SET|RB_DIS_OP_MD);
2254
2255
2256 /* Disable Force Sync bit and Enable Alloc bit */
2257 skge_write8(hw, SK_REG(port, TXA_CTRL),
2258 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2259
2260 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2261 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2262 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2263
2264 /* Reset PCI FIFO */
2265 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2266 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2267
2268 /* Reset the RAM Buffer async Tx queue */
2269 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2270 /* stop receiver */
2271 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2272 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2273 RB_RST_SET|RB_DIS_OP_MD);
2274 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2275
2276 if (hw->chip_id == CHIP_ID_GENESIS) {
2277 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2278 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2279 } else {
2280 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2281 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2282 }
2283
2284 skge_led(skge, LED_MODE_OFF);
2285
2286 netif_poll_disable(dev);
2287 skge_tx_clean(dev);
2288 skge_rx_clean(skge);
2289
2290 kfree(skge->rx_ring.start);
2291 kfree(skge->tx_ring.start);
2292 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2293 skge->mem = NULL;
2294 return 0;
2295 }
2296
2297 static inline int skge_avail(const struct skge_ring *ring)
2298 {
2299 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2300 + (ring->to_clean - ring->to_use) - 1;
2301 }
2302
2303 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2304 {
2305 struct skge_port *skge = netdev_priv(dev);
2306 struct skge_hw *hw = skge->hw;
2307 struct skge_element *e;
2308 struct skge_tx_desc *td;
2309 int i;
2310 u32 control, len;
2311 u64 map;
2312
2313 if (skb_padto(skb, ETH_ZLEN))
2314 return NETDEV_TX_OK;
2315
2316 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2317 return NETDEV_TX_BUSY;
2318
2319 e = skge->tx_ring.to_use;
2320 td = e->desc;
2321 BUG_ON(td->control & BMU_OWN);
2322 e->skb = skb;
2323 len = skb_headlen(skb);
2324 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2325 pci_unmap_addr_set(e, mapaddr, map);
2326 pci_unmap_len_set(e, maplen, len);
2327
2328 td->dma_lo = map;
2329 td->dma_hi = map >> 32;
2330
2331 if (skb->ip_summed == CHECKSUM_HW) {
2332 int offset = skb->h.raw - skb->data;
2333
2334 /* This seems backwards, but it is what the sk98lin
2335 * does. Looks like hardware is wrong?
2336 */
2337 if (skb->h.ipiph->protocol == IPPROTO_UDP
2338 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2339 control = BMU_TCP_CHECK;
2340 else
2341 control = BMU_UDP_CHECK;
2342
2343 td->csum_offs = 0;
2344 td->csum_start = offset;
2345 td->csum_write = offset + skb->csum;
2346 } else
2347 control = BMU_CHECK;
2348
2349 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2350 control |= BMU_EOF| BMU_IRQ_EOF;
2351 else {
2352 struct skge_tx_desc *tf = td;
2353
2354 control |= BMU_STFWD;
2355 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2356 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2357
2358 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2359 frag->size, PCI_DMA_TODEVICE);
2360
2361 e = e->next;
2362 e->skb = skb;
2363 tf = e->desc;
2364 BUG_ON(tf->control & BMU_OWN);
2365
2366 tf->dma_lo = map;
2367 tf->dma_hi = (u64) map >> 32;
2368 pci_unmap_addr_set(e, mapaddr, map);
2369 pci_unmap_len_set(e, maplen, frag->size);
2370
2371 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2372 }
2373 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2374 }
2375 /* Make sure all the descriptors written */
2376 wmb();
2377 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2378 wmb();
2379
2380 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2381
2382 if (unlikely(netif_msg_tx_queued(skge)))
2383 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2384 dev->name, e - skge->tx_ring.start, skb->len);
2385
2386 skge->tx_ring.to_use = e->next;
2387 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2388 pr_debug("%s: transmit queue full\n", dev->name);
2389 netif_stop_queue(dev);
2390 }
2391
2392 dev->trans_start = jiffies;
2393
2394 return NETDEV_TX_OK;
2395 }
2396
2397
2398 /* Free resources associated with this reing element */
2399 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2400 u32 control)
2401 {
2402 struct pci_dev *pdev = skge->hw->pdev;
2403
2404 BUG_ON(!e->skb);
2405
2406 /* skb header vs. fragment */
2407 if (control & BMU_STF)
2408 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2409 pci_unmap_len(e, maplen),
2410 PCI_DMA_TODEVICE);
2411 else
2412 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2413 pci_unmap_len(e, maplen),
2414 PCI_DMA_TODEVICE);
2415
2416 if (control & BMU_EOF) {
2417 if (unlikely(netif_msg_tx_done(skge)))
2418 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2419 skge->netdev->name, e - skge->tx_ring.start);
2420
2421 dev_kfree_skb(e->skb);
2422 }
2423 e->skb = NULL;
2424 }
2425
2426 /* Free all buffers in transmit ring */
2427 static void skge_tx_clean(struct net_device *dev)
2428 {
2429 struct skge_port *skge = netdev_priv(dev);
2430 struct skge_element *e;
2431
2432 netif_tx_lock_bh(dev);
2433 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2434 struct skge_tx_desc *td = e->desc;
2435 skge_tx_free(skge, e, td->control);
2436 td->control = 0;
2437 }
2438
2439 skge->tx_ring.to_clean = e;
2440 netif_wake_queue(dev);
2441 netif_tx_unlock_bh(dev);
2442 }
2443
2444 static void skge_tx_timeout(struct net_device *dev)
2445 {
2446 struct skge_port *skge = netdev_priv(dev);
2447
2448 if (netif_msg_timer(skge))
2449 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2450
2451 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2452 skge_tx_clean(dev);
2453 }
2454
2455 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2456 {
2457 int err;
2458
2459 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2460 return -EINVAL;
2461
2462 if (!netif_running(dev)) {
2463 dev->mtu = new_mtu;
2464 return 0;
2465 }
2466
2467 skge_down(dev);
2468
2469 dev->mtu = new_mtu;
2470
2471 err = skge_up(dev);
2472 if (err)
2473 dev_close(dev);
2474
2475 return err;
2476 }
2477
2478 static void genesis_set_multicast(struct net_device *dev)
2479 {
2480 struct skge_port *skge = netdev_priv(dev);
2481 struct skge_hw *hw = skge->hw;
2482 int port = skge->port;
2483 int i, count = dev->mc_count;
2484 struct dev_mc_list *list = dev->mc_list;
2485 u32 mode;
2486 u8 filter[8];
2487
2488 mode = xm_read32(hw, port, XM_MODE);
2489 mode |= XM_MD_ENA_HASH;
2490 if (dev->flags & IFF_PROMISC)
2491 mode |= XM_MD_ENA_PROM;
2492 else
2493 mode &= ~XM_MD_ENA_PROM;
2494
2495 if (dev->flags & IFF_ALLMULTI)
2496 memset(filter, 0xff, sizeof(filter));
2497 else {
2498 memset(filter, 0, sizeof(filter));
2499 for (i = 0; list && i < count; i++, list = list->next) {
2500 u32 crc, bit;
2501 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2502 bit = ~crc & 0x3f;
2503 filter[bit/8] |= 1 << (bit%8);
2504 }
2505 }
2506
2507 xm_write32(hw, port, XM_MODE, mode);
2508 xm_outhash(hw, port, XM_HSM, filter);
2509 }
2510
2511 static void yukon_set_multicast(struct net_device *dev)
2512 {
2513 struct skge_port *skge = netdev_priv(dev);
2514 struct skge_hw *hw = skge->hw;
2515 int port = skge->port;
2516 struct dev_mc_list *list = dev->mc_list;
2517 u16 reg;
2518 u8 filter[8];
2519
2520 memset(filter, 0, sizeof(filter));
2521
2522 reg = gma_read16(hw, port, GM_RX_CTRL);
2523 reg |= GM_RXCR_UCF_ENA;
2524
2525 if (dev->flags & IFF_PROMISC) /* promiscuous */
2526 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2527 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2528 memset(filter, 0xff, sizeof(filter));
2529 else if (dev->mc_count == 0) /* no multicast */
2530 reg &= ~GM_RXCR_MCF_ENA;
2531 else {
2532 int i;
2533 reg |= GM_RXCR_MCF_ENA;
2534
2535 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2536 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2537 filter[bit/8] |= 1 << (bit%8);
2538 }
2539 }
2540
2541
2542 gma_write16(hw, port, GM_MC_ADDR_H1,
2543 (u16)filter[0] | ((u16)filter[1] << 8));
2544 gma_write16(hw, port, GM_MC_ADDR_H2,
2545 (u16)filter[2] | ((u16)filter[3] << 8));
2546 gma_write16(hw, port, GM_MC_ADDR_H3,
2547 (u16)filter[4] | ((u16)filter[5] << 8));
2548 gma_write16(hw, port, GM_MC_ADDR_H4,
2549 (u16)filter[6] | ((u16)filter[7] << 8));
2550
2551 gma_write16(hw, port, GM_RX_CTRL, reg);
2552 }
2553
2554 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2555 {
2556 if (hw->chip_id == CHIP_ID_GENESIS)
2557 return status >> XMR_FS_LEN_SHIFT;
2558 else
2559 return status >> GMR_FS_LEN_SHIFT;
2560 }
2561
2562 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2563 {
2564 if (hw->chip_id == CHIP_ID_GENESIS)
2565 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2566 else
2567 return (status & GMR_FS_ANY_ERR) ||
2568 (status & GMR_FS_RX_OK) == 0;
2569 }
2570
2571
2572 /* Get receive buffer from descriptor.
2573 * Handles copy of small buffers and reallocation failures
2574 */
2575 static struct sk_buff *skge_rx_get(struct net_device *dev,
2576 struct skge_element *e,
2577 u32 control, u32 status, u16 csum)
2578 {
2579 struct skge_port *skge = netdev_priv(dev);
2580 struct sk_buff *skb;
2581 u16 len = control & BMU_BBC;
2582
2583 if (unlikely(netif_msg_rx_status(skge)))
2584 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2585 dev->name, e - skge->rx_ring.start,
2586 status, len);
2587
2588 if (len > skge->rx_buf_size)
2589 goto error;
2590
2591 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2592 goto error;
2593
2594 if (bad_phy_status(skge->hw, status))
2595 goto error;
2596
2597 if (phy_length(skge->hw, status) != len)
2598 goto error;
2599
2600 if (len < RX_COPY_THRESHOLD) {
2601 skb = netdev_alloc_skb(dev, len + 2);
2602 if (!skb)
2603 goto resubmit;
2604
2605 skb_reserve(skb, 2);
2606 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2607 pci_unmap_addr(e, mapaddr),
2608 len, PCI_DMA_FROMDEVICE);
2609 memcpy(skb->data, e->skb->data, len);
2610 pci_dma_sync_single_for_device(skge->hw->pdev,
2611 pci_unmap_addr(e, mapaddr),
2612 len, PCI_DMA_FROMDEVICE);
2613 skge_rx_reuse(e, skge->rx_buf_size);
2614 } else {
2615 struct sk_buff *nskb;
2616 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2617 if (!nskb)
2618 goto resubmit;
2619
2620 skb_reserve(nskb, NET_IP_ALIGN);
2621 pci_unmap_single(skge->hw->pdev,
2622 pci_unmap_addr(e, mapaddr),
2623 pci_unmap_len(e, maplen),
2624 PCI_DMA_FROMDEVICE);
2625 skb = e->skb;
2626 prefetch(skb->data);
2627 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2628 }
2629
2630 skb_put(skb, len);
2631 if (skge->rx_csum) {
2632 skb->csum = csum;
2633 skb->ip_summed = CHECKSUM_HW;
2634 }
2635
2636 skb->protocol = eth_type_trans(skb, dev);
2637
2638 return skb;
2639 error:
2640
2641 if (netif_msg_rx_err(skge))
2642 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2643 dev->name, e - skge->rx_ring.start,
2644 control, status);
2645
2646 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2647 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2648 skge->net_stats.rx_length_errors++;
2649 if (status & XMR_FS_FRA_ERR)
2650 skge->net_stats.rx_frame_errors++;
2651 if (status & XMR_FS_FCS_ERR)
2652 skge->net_stats.rx_crc_errors++;
2653 } else {
2654 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2655 skge->net_stats.rx_length_errors++;
2656 if (status & GMR_FS_FRAGMENT)
2657 skge->net_stats.rx_frame_errors++;
2658 if (status & GMR_FS_CRC_ERR)
2659 skge->net_stats.rx_crc_errors++;
2660 }
2661
2662 resubmit:
2663 skge_rx_reuse(e, skge->rx_buf_size);
2664 return NULL;
2665 }
2666
2667 /* Free all buffers in Tx ring which are no longer owned by device */
2668 static void skge_tx_done(struct net_device *dev)
2669 {
2670 struct skge_port *skge = netdev_priv(dev);
2671 struct skge_ring *ring = &skge->tx_ring;
2672 struct skge_element *e;
2673
2674 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2675
2676 netif_tx_lock(dev);
2677 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2678 struct skge_tx_desc *td = e->desc;
2679
2680 if (td->control & BMU_OWN)
2681 break;
2682
2683 skge_tx_free(skge, e, td->control);
2684 }
2685 skge->tx_ring.to_clean = e;
2686
2687 if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2688 netif_wake_queue(dev);
2689
2690 netif_tx_unlock(dev);
2691 }
2692
2693 static int skge_poll(struct net_device *dev, int *budget)
2694 {
2695 struct skge_port *skge = netdev_priv(dev);
2696 struct skge_hw *hw = skge->hw;
2697 struct skge_ring *ring = &skge->rx_ring;
2698 struct skge_element *e;
2699 int to_do = min(dev->quota, *budget);
2700 int work_done = 0;
2701
2702 skge_tx_done(dev);
2703
2704 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2705
2706 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2707 struct skge_rx_desc *rd = e->desc;
2708 struct sk_buff *skb;
2709 u32 control;
2710
2711 rmb();
2712 control = rd->control;
2713 if (control & BMU_OWN)
2714 break;
2715
2716 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
2717 if (likely(skb)) {
2718 dev->last_rx = jiffies;
2719 netif_receive_skb(skb);
2720
2721 ++work_done;
2722 }
2723 }
2724 ring->to_clean = e;
2725
2726 /* restart receiver */
2727 wmb();
2728 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2729
2730 *budget -= work_done;
2731 dev->quota -= work_done;
2732
2733 if (work_done >= to_do)
2734 return 1; /* not done */
2735
2736 spin_lock_irq(&hw->hw_lock);
2737 __netif_rx_complete(dev);
2738 hw->intr_mask |= irqmask[skge->port];
2739 skge_write32(hw, B0_IMSK, hw->intr_mask);
2740 skge_read32(hw, B0_IMSK);
2741 spin_unlock_irq(&hw->hw_lock);
2742
2743 return 0;
2744 }
2745
2746 /* Parity errors seem to happen when Genesis is connected to a switch
2747 * with no other ports present. Heartbeat error??
2748 */
2749 static void skge_mac_parity(struct skge_hw *hw, int port)
2750 {
2751 struct net_device *dev = hw->dev[port];
2752
2753 if (dev) {
2754 struct skge_port *skge = netdev_priv(dev);
2755 ++skge->net_stats.tx_heartbeat_errors;
2756 }
2757
2758 if (hw->chip_id == CHIP_ID_GENESIS)
2759 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2760 MFF_CLR_PERR);
2761 else
2762 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2763 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2764 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2765 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2766 }
2767
2768 static void skge_mac_intr(struct skge_hw *hw, int port)
2769 {
2770 if (hw->chip_id == CHIP_ID_GENESIS)
2771 genesis_mac_intr(hw, port);
2772 else
2773 yukon_mac_intr(hw, port);
2774 }
2775
2776 /* Handle device specific framing and timeout interrupts */
2777 static void skge_error_irq(struct skge_hw *hw)
2778 {
2779 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2780
2781 if (hw->chip_id == CHIP_ID_GENESIS) {
2782 /* clear xmac errors */
2783 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2784 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2785 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2786 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2787 } else {
2788 /* Timestamp (unused) overflow */
2789 if (hwstatus & IS_IRQ_TIST_OV)
2790 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2791 }
2792
2793 if (hwstatus & IS_RAM_RD_PAR) {
2794 printk(KERN_ERR PFX "Ram read data parity error\n");
2795 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2796 }
2797
2798 if (hwstatus & IS_RAM_WR_PAR) {
2799 printk(KERN_ERR PFX "Ram write data parity error\n");
2800 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2801 }
2802
2803 if (hwstatus & IS_M1_PAR_ERR)
2804 skge_mac_parity(hw, 0);
2805
2806 if (hwstatus & IS_M2_PAR_ERR)
2807 skge_mac_parity(hw, 1);
2808
2809 if (hwstatus & IS_R1_PAR_ERR) {
2810 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2811 hw->dev[0]->name);
2812 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2813 }
2814
2815 if (hwstatus & IS_R2_PAR_ERR) {
2816 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2817 hw->dev[1]->name);
2818 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2819 }
2820
2821 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2822 u16 pci_status, pci_cmd;
2823
2824 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
2825 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2826
2827 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
2828 pci_name(hw->pdev), pci_cmd, pci_status);
2829
2830 /* Write the error bits back to clear them. */
2831 pci_status &= PCI_STATUS_ERROR_BITS;
2832 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2833 pci_write_config_word(hw->pdev, PCI_COMMAND,
2834 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
2835 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
2836 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2837
2838 /* if error still set then just ignore it */
2839 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2840 if (hwstatus & IS_IRQ_STAT) {
2841 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2842 hw->intr_mask &= ~IS_HW_ERR;
2843 }
2844 }
2845 }
2846
2847 /*
2848 * Interrupt from PHY are handled in work queue
2849 * because accessing phy registers requires spin wait which might
2850 * cause excess interrupt latency.
2851 */
2852 static void skge_extirq(void *arg)
2853 {
2854 struct skge_hw *hw = arg;
2855 int port;
2856
2857 mutex_lock(&hw->phy_mutex);
2858 for (port = 0; port < hw->ports; port++) {
2859 struct net_device *dev = hw->dev[port];
2860 struct skge_port *skge = netdev_priv(dev);
2861
2862 if (netif_running(dev)) {
2863 if (hw->chip_id != CHIP_ID_GENESIS)
2864 yukon_phy_intr(skge);
2865 else
2866 bcom_phy_intr(skge);
2867 }
2868 }
2869 mutex_unlock(&hw->phy_mutex);
2870
2871 spin_lock_irq(&hw->hw_lock);
2872 hw->intr_mask |= IS_EXT_REG;
2873 skge_write32(hw, B0_IMSK, hw->intr_mask);
2874 skge_read32(hw, B0_IMSK);
2875 spin_unlock_irq(&hw->hw_lock);
2876 }
2877
2878 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2879 {
2880 struct skge_hw *hw = dev_id;
2881 u32 status;
2882 int handled = 0;
2883
2884 spin_lock(&hw->hw_lock);
2885 /* Reading this register masks IRQ */
2886 status = skge_read32(hw, B0_SP_ISRC);
2887 if (status == 0)
2888 goto out;
2889
2890 handled = 1;
2891 status &= hw->intr_mask;
2892 if (status & IS_EXT_REG) {
2893 hw->intr_mask &= ~IS_EXT_REG;
2894 schedule_work(&hw->phy_work);
2895 }
2896
2897 if (status & (IS_XA1_F|IS_R1_F)) {
2898 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
2899 netif_rx_schedule(hw->dev[0]);
2900 }
2901
2902 if (status & IS_PA_TO_TX1)
2903 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2904
2905 if (status & IS_PA_TO_RX1) {
2906 struct skge_port *skge = netdev_priv(hw->dev[0]);
2907
2908 ++skge->net_stats.rx_over_errors;
2909 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2910 }
2911
2912
2913 if (status & IS_MAC1)
2914 skge_mac_intr(hw, 0);
2915
2916 if (hw->dev[1]) {
2917 if (status & (IS_XA2_F|IS_R2_F)) {
2918 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
2919 netif_rx_schedule(hw->dev[1]);
2920 }
2921
2922 if (status & IS_PA_TO_RX2) {
2923 struct skge_port *skge = netdev_priv(hw->dev[1]);
2924 ++skge->net_stats.rx_over_errors;
2925 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2926 }
2927
2928 if (status & IS_PA_TO_TX2)
2929 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2930
2931 if (status & IS_MAC2)
2932 skge_mac_intr(hw, 1);
2933 }
2934
2935 if (status & IS_HW_ERR)
2936 skge_error_irq(hw);
2937
2938 skge_write32(hw, B0_IMSK, hw->intr_mask);
2939 skge_read32(hw, B0_IMSK);
2940 out:
2941 spin_unlock(&hw->hw_lock);
2942
2943 return IRQ_RETVAL(handled);
2944 }
2945
2946 #ifdef CONFIG_NET_POLL_CONTROLLER
2947 static void skge_netpoll(struct net_device *dev)
2948 {
2949 struct skge_port *skge = netdev_priv(dev);
2950
2951 disable_irq(dev->irq);
2952 skge_intr(dev->irq, skge->hw, NULL);
2953 enable_irq(dev->irq);
2954 }
2955 #endif
2956
2957 static int skge_set_mac_address(struct net_device *dev, void *p)
2958 {
2959 struct skge_port *skge = netdev_priv(dev);
2960 struct skge_hw *hw = skge->hw;
2961 unsigned port = skge->port;
2962 const struct sockaddr *addr = p;
2963
2964 if (!is_valid_ether_addr(addr->sa_data))
2965 return -EADDRNOTAVAIL;
2966
2967 mutex_lock(&hw->phy_mutex);
2968 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2969 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2970 dev->dev_addr, ETH_ALEN);
2971 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2972 dev->dev_addr, ETH_ALEN);
2973
2974 if (hw->chip_id == CHIP_ID_GENESIS)
2975 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2976 else {
2977 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2978 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
2979 }
2980 mutex_unlock(&hw->phy_mutex);
2981
2982 return 0;
2983 }
2984
2985 static const struct {
2986 u8 id;
2987 const char *name;
2988 } skge_chips[] = {
2989 { CHIP_ID_GENESIS, "Genesis" },
2990 { CHIP_ID_YUKON, "Yukon" },
2991 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
2992 { CHIP_ID_YUKON_LP, "Yukon-LP"},
2993 };
2994
2995 static const char *skge_board_name(const struct skge_hw *hw)
2996 {
2997 int i;
2998 static char buf[16];
2999
3000 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3001 if (skge_chips[i].id == hw->chip_id)
3002 return skge_chips[i].name;
3003
3004 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3005 return buf;
3006 }
3007
3008
3009 /*
3010 * Setup the board data structure, but don't bring up
3011 * the port(s)
3012 */
3013 static int skge_reset(struct skge_hw *hw)
3014 {
3015 u32 reg;
3016 u16 ctst, pci_status;
3017 u8 t8, mac_cfg, pmd_type, phy_type;
3018 int i;
3019
3020 ctst = skge_read16(hw, B0_CTST);
3021
3022 /* do a SW reset */
3023 skge_write8(hw, B0_CTST, CS_RST_SET);
3024 skge_write8(hw, B0_CTST, CS_RST_CLR);
3025
3026 /* clear PCI errors, if any */
3027 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3028 skge_write8(hw, B2_TST_CTRL2, 0);
3029
3030 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3031 pci_write_config_word(hw->pdev, PCI_STATUS,
3032 pci_status | PCI_STATUS_ERROR_BITS);
3033 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3034 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3035
3036 /* restore CLK_RUN bits (for Yukon-Lite) */
3037 skge_write16(hw, B0_CTST,
3038 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3039
3040 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3041 phy_type = skge_read8(hw, B2_E_1) & 0xf;
3042 pmd_type = skge_read8(hw, B2_PMD_TYP);
3043 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3044
3045 switch (hw->chip_id) {
3046 case CHIP_ID_GENESIS:
3047 switch (phy_type) {
3048 case SK_PHY_BCOM:
3049 hw->phy_addr = PHY_ADDR_BCOM;
3050 break;
3051 default:
3052 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3053 pci_name(hw->pdev), phy_type);
3054 return -EOPNOTSUPP;
3055 }
3056 break;
3057
3058 case CHIP_ID_YUKON:
3059 case CHIP_ID_YUKON_LITE:
3060 case CHIP_ID_YUKON_LP:
3061 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3062 hw->copper = 1;
3063
3064 hw->phy_addr = PHY_ADDR_MARV;
3065 break;
3066
3067 default:
3068 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3069 pci_name(hw->pdev), hw->chip_id);
3070 return -EOPNOTSUPP;
3071 }
3072
3073 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3074 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3075 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3076
3077 /* read the adapters RAM size */
3078 t8 = skge_read8(hw, B2_E_0);
3079 if (hw->chip_id == CHIP_ID_GENESIS) {
3080 if (t8 == 3) {
3081 /* special case: 4 x 64k x 36, offset = 0x80000 */
3082 hw->ram_size = 0x100000;
3083 hw->ram_offset = 0x80000;
3084 } else
3085 hw->ram_size = t8 * 512;
3086 }
3087 else if (t8 == 0)
3088 hw->ram_size = 0x20000;
3089 else
3090 hw->ram_size = t8 * 4096;
3091
3092 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3093 if (hw->ports > 1)
3094 hw->intr_mask |= IS_PORT_2;
3095
3096 if (hw->chip_id == CHIP_ID_GENESIS)
3097 genesis_init(hw);
3098 else {
3099 /* switch power to VCC (WA for VAUX problem) */
3100 skge_write8(hw, B0_POWER_CTRL,
3101 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3102
3103 /* avoid boards with stuck Hardware error bits */
3104 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3105 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3106 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3107 hw->intr_mask &= ~IS_HW_ERR;
3108 }
3109
3110 /* Clear PHY COMA */
3111 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3112 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3113 reg &= ~PCI_PHY_COMA;
3114 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3115 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3116
3117
3118 for (i = 0; i < hw->ports; i++) {
3119 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3120 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3121 }
3122 }
3123
3124 /* turn off hardware timer (unused) */
3125 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3126 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3127 skge_write8(hw, B0_LED, LED_STAT_ON);
3128
3129 /* enable the Tx Arbiters */
3130 for (i = 0; i < hw->ports; i++)
3131 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3132
3133 /* Initialize ram interface */
3134 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3135
3136 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3137 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3138 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3139 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3140 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3141 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3142 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3143 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3144 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3145 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3146 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3147 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3148
3149 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3150
3151 /* Set interrupt moderation for Transmit only
3152 * Receive interrupts avoided by NAPI
3153 */
3154 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3155 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3156 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3157
3158 skge_write32(hw, B0_IMSK, hw->intr_mask);
3159
3160 mutex_lock(&hw->phy_mutex);
3161 for (i = 0; i < hw->ports; i++) {
3162 if (hw->chip_id == CHIP_ID_GENESIS)
3163 genesis_reset(hw, i);
3164 else
3165 yukon_reset(hw, i);
3166 }
3167 mutex_unlock(&hw->phy_mutex);
3168
3169 return 0;
3170 }
3171
3172 /* Initialize network device */
3173 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3174 int highmem)
3175 {
3176 struct skge_port *skge;
3177 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3178
3179 if (!dev) {
3180 printk(KERN_ERR "skge etherdev alloc failed");
3181 return NULL;
3182 }
3183
3184 SET_MODULE_OWNER(dev);
3185 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3186 dev->open = skge_up;
3187 dev->stop = skge_down;
3188 dev->do_ioctl = skge_ioctl;
3189 dev->hard_start_xmit = skge_xmit_frame;
3190 dev->get_stats = skge_get_stats;
3191 if (hw->chip_id == CHIP_ID_GENESIS)
3192 dev->set_multicast_list = genesis_set_multicast;
3193 else
3194 dev->set_multicast_list = yukon_set_multicast;
3195
3196 dev->set_mac_address = skge_set_mac_address;
3197 dev->change_mtu = skge_change_mtu;
3198 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3199 dev->tx_timeout = skge_tx_timeout;
3200 dev->watchdog_timeo = TX_WATCHDOG;
3201 dev->poll = skge_poll;
3202 dev->weight = NAPI_WEIGHT;
3203 #ifdef CONFIG_NET_POLL_CONTROLLER
3204 dev->poll_controller = skge_netpoll;
3205 #endif
3206 dev->irq = hw->pdev->irq;
3207
3208 if (highmem)
3209 dev->features |= NETIF_F_HIGHDMA;
3210
3211 skge = netdev_priv(dev);
3212 skge->netdev = dev;
3213 skge->hw = hw;
3214 skge->msg_enable = netif_msg_init(debug, default_msg);
3215 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3216 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3217
3218 /* Auto speed and flow control */
3219 skge->autoneg = AUTONEG_ENABLE;
3220 skge->flow_control = FLOW_MODE_SYMMETRIC;
3221 skge->duplex = -1;
3222 skge->speed = -1;
3223 skge->advertising = skge_supported_modes(hw);
3224
3225 hw->dev[port] = dev;
3226
3227 skge->port = port;
3228
3229 if (hw->chip_id != CHIP_ID_GENESIS) {
3230 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3231 skge->rx_csum = 1;
3232 }
3233
3234 /* read the mac address */
3235 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3236 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3237
3238 /* device is off until link detection */
3239 netif_carrier_off(dev);
3240 netif_stop_queue(dev);
3241
3242 return dev;
3243 }
3244
3245 static void __devinit skge_show_addr(struct net_device *dev)
3246 {
3247 const struct skge_port *skge = netdev_priv(dev);
3248
3249 if (netif_msg_probe(skge))
3250 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3251 dev->name,
3252 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3253 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3254 }
3255
3256 static int __devinit skge_probe(struct pci_dev *pdev,
3257 const struct pci_device_id *ent)
3258 {
3259 struct net_device *dev, *dev1;
3260 struct skge_hw *hw;
3261 int err, using_dac = 0;
3262
3263 err = pci_enable_device(pdev);
3264 if (err) {
3265 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3266 pci_name(pdev));
3267 goto err_out;
3268 }
3269
3270 err = pci_request_regions(pdev, DRV_NAME);
3271 if (err) {
3272 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3273 pci_name(pdev));
3274 goto err_out_disable_pdev;
3275 }
3276
3277 pci_set_master(pdev);
3278
3279 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3280 using_dac = 1;
3281 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3282 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3283 using_dac = 0;
3284 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3285 }
3286
3287 if (err) {
3288 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3289 pci_name(pdev));
3290 goto err_out_free_regions;
3291 }
3292
3293 #ifdef __BIG_ENDIAN
3294 /* byte swap descriptors in hardware */
3295 {
3296 u32 reg;
3297
3298 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3299 reg |= PCI_REV_DESC;
3300 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3301 }
3302 #endif
3303
3304 err = -ENOMEM;
3305 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3306 if (!hw) {
3307 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3308 pci_name(pdev));
3309 goto err_out_free_regions;
3310 }
3311
3312 hw->pdev = pdev;
3313 mutex_init(&hw->phy_mutex);
3314 INIT_WORK(&hw->phy_work, skge_extirq, hw);
3315 spin_lock_init(&hw->hw_lock);
3316
3317 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3318 if (!hw->regs) {
3319 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3320 pci_name(pdev));
3321 goto err_out_free_hw;
3322 }
3323
3324 err = skge_reset(hw);
3325 if (err)
3326 goto err_out_iounmap;
3327
3328 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3329 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3330 skge_board_name(hw), hw->chip_rev);
3331
3332 dev = skge_devinit(hw, 0, using_dac);
3333 if (!dev)
3334 goto err_out_led_off;
3335
3336 if (!is_valid_ether_addr(dev->dev_addr)) {
3337 printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
3338 pci_name(pdev));
3339 err = -EIO;
3340 goto err_out_free_netdev;
3341 }
3342
3343 err = register_netdev(dev);
3344 if (err) {
3345 printk(KERN_ERR PFX "%s: cannot register net device\n",
3346 pci_name(pdev));
3347 goto err_out_free_netdev;
3348 }
3349
3350 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3351 if (err) {
3352 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3353 dev->name, pdev->irq);
3354 goto err_out_unregister;
3355 }
3356 skge_show_addr(dev);
3357
3358 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3359 if (register_netdev(dev1) == 0)
3360 skge_show_addr(dev1);
3361 else {
3362 /* Failure to register second port need not be fatal */
3363 printk(KERN_WARNING PFX "register of second port failed\n");
3364 hw->dev[1] = NULL;
3365 free_netdev(dev1);
3366 }
3367 }
3368 pci_set_drvdata(pdev, hw);
3369
3370 return 0;
3371
3372 err_out_unregister:
3373 unregister_netdev(dev);
3374 err_out_free_netdev:
3375 free_netdev(dev);
3376 err_out_led_off:
3377 skge_write16(hw, B0_LED, LED_STAT_OFF);
3378 err_out_iounmap:
3379 iounmap(hw->regs);
3380 err_out_free_hw:
3381 kfree(hw);
3382 err_out_free_regions:
3383 pci_release_regions(pdev);
3384 err_out_disable_pdev:
3385 pci_disable_device(pdev);
3386 pci_set_drvdata(pdev, NULL);
3387 err_out:
3388 return err;
3389 }
3390
3391 static void __devexit skge_remove(struct pci_dev *pdev)
3392 {
3393 struct skge_hw *hw = pci_get_drvdata(pdev);
3394 struct net_device *dev0, *dev1;
3395
3396 if (!hw)
3397 return;
3398
3399 if ((dev1 = hw->dev[1]))
3400 unregister_netdev(dev1);
3401 dev0 = hw->dev[0];
3402 unregister_netdev(dev0);
3403
3404 spin_lock_irq(&hw->hw_lock);
3405 hw->intr_mask = 0;
3406 skge_write32(hw, B0_IMSK, 0);
3407 skge_read32(hw, B0_IMSK);
3408 spin_unlock_irq(&hw->hw_lock);
3409
3410 skge_write16(hw, B0_LED, LED_STAT_OFF);
3411 skge_write8(hw, B0_CTST, CS_RST_SET);
3412
3413 flush_scheduled_work();
3414
3415 free_irq(pdev->irq, hw);
3416 pci_release_regions(pdev);
3417 pci_disable_device(pdev);
3418 if (dev1)
3419 free_netdev(dev1);
3420 free_netdev(dev0);
3421
3422 iounmap(hw->regs);
3423 kfree(hw);
3424 pci_set_drvdata(pdev, NULL);
3425 }
3426
3427 #ifdef CONFIG_PM
3428 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3429 {
3430 struct skge_hw *hw = pci_get_drvdata(pdev);
3431 int i, wol = 0;
3432
3433 pci_save_state(pdev);
3434 for (i = 0; i < hw->ports; i++) {
3435 struct net_device *dev = hw->dev[i];
3436
3437 if (netif_running(dev)) {
3438 struct skge_port *skge = netdev_priv(dev);
3439
3440 netif_carrier_off(dev);
3441 if (skge->wol)
3442 netif_stop_queue(dev);
3443 else
3444 skge_down(dev);
3445 wol |= skge->wol;
3446 }
3447 netif_device_detach(dev);
3448 }
3449
3450 skge_write32(hw, B0_IMSK, 0);
3451 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3452 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3453
3454 return 0;
3455 }
3456
3457 static int skge_resume(struct pci_dev *pdev)
3458 {
3459 struct skge_hw *hw = pci_get_drvdata(pdev);
3460 int i, err;
3461
3462 pci_set_power_state(pdev, PCI_D0);
3463 pci_restore_state(pdev);
3464 pci_enable_wake(pdev, PCI_D0, 0);
3465
3466 err = skge_reset(hw);
3467 if (err)
3468 goto out;
3469
3470 for (i = 0; i < hw->ports; i++) {
3471 struct net_device *dev = hw->dev[i];
3472
3473 netif_device_attach(dev);
3474 if (netif_running(dev)) {
3475 err = skge_up(dev);
3476
3477 if (err) {
3478 printk(KERN_ERR PFX "%s: could not up: %d\n",
3479 dev->name, err);
3480 dev_close(dev);
3481 goto out;
3482 }
3483 }
3484 }
3485 out:
3486 return err;
3487 }
3488 #endif
3489
3490 static struct pci_driver skge_driver = {
3491 .name = DRV_NAME,
3492 .id_table = skge_id_table,
3493 .probe = skge_probe,
3494 .remove = __devexit_p(skge_remove),
3495 #ifdef CONFIG_PM
3496 .suspend = skge_suspend,
3497 .resume = skge_resume,
3498 #endif
3499 };
3500
3501 static int __init skge_init_module(void)
3502 {
3503 return pci_register_driver(&skge_driver);
3504 }
3505
3506 static void __exit skge_cleanup_module(void)
3507 {
3508 pci_unregister_driver(&skge_driver);
3509 }
3510
3511 module_init(skge_init_module);
3512 module_exit(skge_cleanup_module);