]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/sungem.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / net / sungem.c
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
3 *
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5 *
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9 *
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12 *
13 * TODO:
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
18 * though:
19 *
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
28 *
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
32 */
33
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
40 #include <linux/in.h>
41 #include <linux/sched.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
59 #include <linux/mm.h>
60 #include <linux/gfp.h>
61
62 #include <asm/system.h>
63 #include <asm/io.h>
64 #include <asm/byteorder.h>
65 #include <asm/uaccess.h>
66 #include <asm/irq.h>
67
68 #ifdef CONFIG_SPARC
69 #include <asm/idprom.h>
70 #include <asm/prom.h>
71 #endif
72
73 #ifdef CONFIG_PPC_PMAC
74 #include <asm/pci-bridge.h>
75 #include <asm/prom.h>
76 #include <asm/machdep.h>
77 #include <asm/pmac_feature.h>
78 #endif
79
80 #include "sungem_phy.h"
81 #include "sungem.h"
82
83 /* Stripping FCS is causing problems, disabled for now */
84 #undef STRIP_FCS
85
86 #define DEFAULT_MSG (NETIF_MSG_DRV | \
87 NETIF_MSG_PROBE | \
88 NETIF_MSG_LINK)
89
90 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
91 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
92 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
93 SUPPORTED_Pause | SUPPORTED_Autoneg)
94
95 #define DRV_NAME "sungem"
96 #define DRV_VERSION "0.98"
97 #define DRV_RELDATE "8/24/03"
98 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
99
100 static char version[] __devinitdata =
101 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
102
103 MODULE_AUTHOR(DRV_AUTHOR);
104 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
105 MODULE_LICENSE("GPL");
106
107 #define GEM_MODULE_NAME "gem"
108 #define PFX GEM_MODULE_NAME ": "
109
110 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
111 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113
114 /* These models only differ from the original GEM in
115 * that their tx/rx fifos are of a different size and
116 * they only support 10/100 speeds. -DaveM
117 *
118 * Apple's GMAC does support gigabit on machines with
119 * the BCM54xx PHYs. -BenH
120 */
121 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
122 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
123 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
124 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
125 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
126 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
127 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
129 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
131 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
133 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
135 {0, }
136 };
137
138 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
139
140 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
141 {
142 u32 cmd;
143 int limit = 10000;
144
145 cmd = (1 << 30);
146 cmd |= (2 << 28);
147 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
148 cmd |= (reg << 18) & MIF_FRAME_REGAD;
149 cmd |= (MIF_FRAME_TAMSB);
150 writel(cmd, gp->regs + MIF_FRAME);
151
152 while (--limit) {
153 cmd = readl(gp->regs + MIF_FRAME);
154 if (cmd & MIF_FRAME_TALSB)
155 break;
156
157 udelay(10);
158 }
159
160 if (!limit)
161 cmd = 0xffff;
162
163 return cmd & MIF_FRAME_DATA;
164 }
165
166 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
167 {
168 struct gem *gp = netdev_priv(dev);
169 return __phy_read(gp, mii_id, reg);
170 }
171
172 static inline u16 phy_read(struct gem *gp, int reg)
173 {
174 return __phy_read(gp, gp->mii_phy_addr, reg);
175 }
176
177 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
178 {
179 u32 cmd;
180 int limit = 10000;
181
182 cmd = (1 << 30);
183 cmd |= (1 << 28);
184 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
185 cmd |= (reg << 18) & MIF_FRAME_REGAD;
186 cmd |= (MIF_FRAME_TAMSB);
187 cmd |= (val & MIF_FRAME_DATA);
188 writel(cmd, gp->regs + MIF_FRAME);
189
190 while (limit--) {
191 cmd = readl(gp->regs + MIF_FRAME);
192 if (cmd & MIF_FRAME_TALSB)
193 break;
194
195 udelay(10);
196 }
197 }
198
199 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
200 {
201 struct gem *gp = netdev_priv(dev);
202 __phy_write(gp, mii_id, reg, val & 0xffff);
203 }
204
205 static inline void phy_write(struct gem *gp, int reg, u16 val)
206 {
207 __phy_write(gp, gp->mii_phy_addr, reg, val);
208 }
209
210 static inline void gem_enable_ints(struct gem *gp)
211 {
212 /* Enable all interrupts but TXDONE */
213 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
214 }
215
216 static inline void gem_disable_ints(struct gem *gp)
217 {
218 /* Disable all interrupts, including TXDONE */
219 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
220 }
221
222 static void gem_get_cell(struct gem *gp)
223 {
224 BUG_ON(gp->cell_enabled < 0);
225 gp->cell_enabled++;
226 #ifdef CONFIG_PPC_PMAC
227 if (gp->cell_enabled == 1) {
228 mb();
229 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
230 udelay(10);
231 }
232 #endif /* CONFIG_PPC_PMAC */
233 }
234
235 /* Turn off the chip's clock */
236 static void gem_put_cell(struct gem *gp)
237 {
238 BUG_ON(gp->cell_enabled <= 0);
239 gp->cell_enabled--;
240 #ifdef CONFIG_PPC_PMAC
241 if (gp->cell_enabled == 0) {
242 mb();
243 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
244 udelay(10);
245 }
246 #endif /* CONFIG_PPC_PMAC */
247 }
248
249 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 {
251 if (netif_msg_intr(gp))
252 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
253 }
254
255 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 {
257 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
258 u32 pcs_miistat;
259
260 if (netif_msg_intr(gp))
261 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
262 gp->dev->name, pcs_istat);
263
264 if (!(pcs_istat & PCS_ISTAT_LSC)) {
265 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
266 dev->name);
267 return 0;
268 }
269
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
273 */
274 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 if (!(pcs_miistat & PCS_MIISTAT_LS))
276 pcs_miistat |=
277 (readl(gp->regs + PCS_MIISTAT) &
278 PCS_MIISTAT_LS);
279
280 if (pcs_miistat & PCS_MIISTAT_ANC) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
283 */
284 if (pcs_miistat & PCS_MIISTAT_RF)
285 printk(KERN_INFO "%s: PCS AutoNEG complete, "
286 "RemoteFault\n", dev->name);
287 else
288 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
289 dev->name);
290 }
291
292 if (pcs_miistat & PCS_MIISTAT_LS) {
293 printk(KERN_INFO "%s: PCS link is now up.\n",
294 dev->name);
295 netif_carrier_on(gp->dev);
296 } else {
297 printk(KERN_INFO "%s: PCS link is now down.\n",
298 dev->name);
299 netif_carrier_off(gp->dev);
300 /* If this happens and the link timer is not running,
301 * reset so we re-negotiate.
302 */
303 if (!timer_pending(&gp->link_timer))
304 return 1;
305 }
306
307 return 0;
308 }
309
310 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
311 {
312 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
313
314 if (netif_msg_intr(gp))
315 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
316 gp->dev->name, txmac_stat);
317
318 /* Defer timer expiration is quite normal,
319 * don't even log the event.
320 */
321 if ((txmac_stat & MAC_TXSTAT_DTE) &&
322 !(txmac_stat & ~MAC_TXSTAT_DTE))
323 return 0;
324
325 if (txmac_stat & MAC_TXSTAT_URUN) {
326 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
327 dev->name);
328 gp->net_stats.tx_fifo_errors++;
329 }
330
331 if (txmac_stat & MAC_TXSTAT_MPE) {
332 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
333 dev->name);
334 gp->net_stats.tx_errors++;
335 }
336
337 /* The rest are all cases of one of the 16-bit TX
338 * counters expiring.
339 */
340 if (txmac_stat & MAC_TXSTAT_NCE)
341 gp->net_stats.collisions += 0x10000;
342
343 if (txmac_stat & MAC_TXSTAT_ECE) {
344 gp->net_stats.tx_aborted_errors += 0x10000;
345 gp->net_stats.collisions += 0x10000;
346 }
347
348 if (txmac_stat & MAC_TXSTAT_LCE) {
349 gp->net_stats.tx_aborted_errors += 0x10000;
350 gp->net_stats.collisions += 0x10000;
351 }
352
353 /* We do not keep track of MAC_TXSTAT_FCE and
354 * MAC_TXSTAT_PCE events.
355 */
356 return 0;
357 }
358
359 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
360 * so we do the following.
361 *
362 * If any part of the reset goes wrong, we return 1 and that causes the
363 * whole chip to be reset.
364 */
365 static int gem_rxmac_reset(struct gem *gp)
366 {
367 struct net_device *dev = gp->dev;
368 int limit, i;
369 u64 desc_dma;
370 u32 val;
371
372 /* First, reset & disable MAC RX. */
373 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
374 for (limit = 0; limit < 5000; limit++) {
375 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
376 break;
377 udelay(10);
378 }
379 if (limit == 5000) {
380 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
381 "chip.\n", dev->name);
382 return 1;
383 }
384
385 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
386 gp->regs + MAC_RXCFG);
387 for (limit = 0; limit < 5000; limit++) {
388 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
389 break;
390 udelay(10);
391 }
392 if (limit == 5000) {
393 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
394 "chip.\n", dev->name);
395 return 1;
396 }
397
398 /* Second, disable RX DMA. */
399 writel(0, gp->regs + RXDMA_CFG);
400 for (limit = 0; limit < 5000; limit++) {
401 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
402 break;
403 udelay(10);
404 }
405 if (limit == 5000) {
406 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
407 "chip.\n", dev->name);
408 return 1;
409 }
410
411 udelay(5000);
412
413 /* Execute RX reset command. */
414 writel(gp->swrst_base | GREG_SWRST_RXRST,
415 gp->regs + GREG_SWRST);
416 for (limit = 0; limit < 5000; limit++) {
417 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
418 break;
419 udelay(10);
420 }
421 if (limit == 5000) {
422 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
423 "whole chip.\n", dev->name);
424 return 1;
425 }
426
427 /* Refresh the RX ring. */
428 for (i = 0; i < RX_RING_SIZE; i++) {
429 struct gem_rxd *rxd = &gp->init_block->rxd[i];
430
431 if (gp->rx_skbs[i] == NULL) {
432 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
433 "whole chip.\n", dev->name);
434 return 1;
435 }
436
437 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
438 }
439 gp->rx_new = gp->rx_old = 0;
440
441 /* Now we must reprogram the rest of RX unit. */
442 desc_dma = (u64) gp->gblock_dvma;
443 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
444 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
445 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
446 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
447 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
448 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
449 writel(val, gp->regs + RXDMA_CFG);
450 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
451 writel(((5 & RXDMA_BLANK_IPKTS) |
452 ((8 << 12) & RXDMA_BLANK_ITIME)),
453 gp->regs + RXDMA_BLANK);
454 else
455 writel(((5 & RXDMA_BLANK_IPKTS) |
456 ((4 << 12) & RXDMA_BLANK_ITIME)),
457 gp->regs + RXDMA_BLANK);
458 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
459 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
460 writel(val, gp->regs + RXDMA_PTHRESH);
461 val = readl(gp->regs + RXDMA_CFG);
462 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
463 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
464 val = readl(gp->regs + MAC_RXCFG);
465 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
466
467 return 0;
468 }
469
470 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
471 {
472 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
473 int ret = 0;
474
475 if (netif_msg_intr(gp))
476 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
477 gp->dev->name, rxmac_stat);
478
479 if (rxmac_stat & MAC_RXSTAT_OFLW) {
480 u32 smac = readl(gp->regs + MAC_SMACHINE);
481
482 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
483 dev->name, smac);
484 gp->net_stats.rx_over_errors++;
485 gp->net_stats.rx_fifo_errors++;
486
487 ret = gem_rxmac_reset(gp);
488 }
489
490 if (rxmac_stat & MAC_RXSTAT_ACE)
491 gp->net_stats.rx_frame_errors += 0x10000;
492
493 if (rxmac_stat & MAC_RXSTAT_CCE)
494 gp->net_stats.rx_crc_errors += 0x10000;
495
496 if (rxmac_stat & MAC_RXSTAT_LCE)
497 gp->net_stats.rx_length_errors += 0x10000;
498
499 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
500 * events.
501 */
502 return ret;
503 }
504
505 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
506 {
507 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
508
509 if (netif_msg_intr(gp))
510 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
511 gp->dev->name, mac_cstat);
512
513 /* This interrupt is just for pause frame and pause
514 * tracking. It is useful for diagnostics and debug
515 * but probably by default we will mask these events.
516 */
517 if (mac_cstat & MAC_CSTAT_PS)
518 gp->pause_entered++;
519
520 if (mac_cstat & MAC_CSTAT_PRCV)
521 gp->pause_last_time_recvd = (mac_cstat >> 16);
522
523 return 0;
524 }
525
526 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 {
528 u32 mif_status = readl(gp->regs + MIF_STATUS);
529 u32 reg_val, changed_bits;
530
531 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
532 changed_bits = (mif_status & MIF_STATUS_STAT);
533
534 gem_handle_mif_event(gp, reg_val, changed_bits);
535
536 return 0;
537 }
538
539 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
540 {
541 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
542
543 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
544 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
545 printk(KERN_ERR "%s: PCI error [%04x] ",
546 dev->name, pci_estat);
547
548 if (pci_estat & GREG_PCIESTAT_BADACK)
549 printk("<No ACK64# during ABS64 cycle> ");
550 if (pci_estat & GREG_PCIESTAT_DTRTO)
551 printk("<Delayed transaction timeout> ");
552 if (pci_estat & GREG_PCIESTAT_OTHER)
553 printk("<other>");
554 printk("\n");
555 } else {
556 pci_estat |= GREG_PCIESTAT_OTHER;
557 printk(KERN_ERR "%s: PCI error\n", dev->name);
558 }
559
560 if (pci_estat & GREG_PCIESTAT_OTHER) {
561 u16 pci_cfg_stat;
562
563 /* Interrogate PCI config space for the
564 * true cause.
565 */
566 pci_read_config_word(gp->pdev, PCI_STATUS,
567 &pci_cfg_stat);
568 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
569 dev->name, pci_cfg_stat);
570 if (pci_cfg_stat & PCI_STATUS_PARITY)
571 printk(KERN_ERR "%s: PCI parity error detected.\n",
572 dev->name);
573 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
574 printk(KERN_ERR "%s: PCI target abort.\n",
575 dev->name);
576 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
577 printk(KERN_ERR "%s: PCI master acks target abort.\n",
578 dev->name);
579 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
580 printk(KERN_ERR "%s: PCI master abort.\n",
581 dev->name);
582 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
583 printk(KERN_ERR "%s: PCI system error SERR#.\n",
584 dev->name);
585 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
586 printk(KERN_ERR "%s: PCI parity error.\n",
587 dev->name);
588
589 /* Write the error bits back to clear them. */
590 pci_cfg_stat &= (PCI_STATUS_PARITY |
591 PCI_STATUS_SIG_TARGET_ABORT |
592 PCI_STATUS_REC_TARGET_ABORT |
593 PCI_STATUS_REC_MASTER_ABORT |
594 PCI_STATUS_SIG_SYSTEM_ERROR |
595 PCI_STATUS_DETECTED_PARITY);
596 pci_write_config_word(gp->pdev,
597 PCI_STATUS, pci_cfg_stat);
598 }
599
600 /* For all PCI errors, we should reset the chip. */
601 return 1;
602 }
603
604 /* All non-normal interrupt conditions get serviced here.
605 * Returns non-zero if we should just exit the interrupt
606 * handler right now (ie. if we reset the card which invalidates
607 * all of the other original irq status bits).
608 */
609 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
610 {
611 if (gem_status & GREG_STAT_RXNOBUF) {
612 /* Frame arrived, no free RX buffers available. */
613 if (netif_msg_rx_err(gp))
614 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
615 gp->dev->name);
616 gp->net_stats.rx_dropped++;
617 }
618
619 if (gem_status & GREG_STAT_RXTAGERR) {
620 /* corrupt RX tag framing */
621 if (netif_msg_rx_err(gp))
622 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
623 gp->dev->name);
624 gp->net_stats.rx_errors++;
625
626 goto do_reset;
627 }
628
629 if (gem_status & GREG_STAT_PCS) {
630 if (gem_pcs_interrupt(dev, gp, gem_status))
631 goto do_reset;
632 }
633
634 if (gem_status & GREG_STAT_TXMAC) {
635 if (gem_txmac_interrupt(dev, gp, gem_status))
636 goto do_reset;
637 }
638
639 if (gem_status & GREG_STAT_RXMAC) {
640 if (gem_rxmac_interrupt(dev, gp, gem_status))
641 goto do_reset;
642 }
643
644 if (gem_status & GREG_STAT_MAC) {
645 if (gem_mac_interrupt(dev, gp, gem_status))
646 goto do_reset;
647 }
648
649 if (gem_status & GREG_STAT_MIF) {
650 if (gem_mif_interrupt(dev, gp, gem_status))
651 goto do_reset;
652 }
653
654 if (gem_status & GREG_STAT_PCIERR) {
655 if (gem_pci_interrupt(dev, gp, gem_status))
656 goto do_reset;
657 }
658
659 return 0;
660
661 do_reset:
662 gp->reset_task_pending = 1;
663 schedule_work(&gp->reset_task);
664
665 return 1;
666 }
667
668 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
669 {
670 int entry, limit;
671
672 if (netif_msg_intr(gp))
673 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
674 gp->dev->name, gem_status);
675
676 entry = gp->tx_old;
677 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
678 while (entry != limit) {
679 struct sk_buff *skb;
680 struct gem_txd *txd;
681 dma_addr_t dma_addr;
682 u32 dma_len;
683 int frag;
684
685 if (netif_msg_tx_done(gp))
686 printk(KERN_DEBUG "%s: tx done, slot %d\n",
687 gp->dev->name, entry);
688 skb = gp->tx_skbs[entry];
689 if (skb_shinfo(skb)->nr_frags) {
690 int last = entry + skb_shinfo(skb)->nr_frags;
691 int walk = entry;
692 int incomplete = 0;
693
694 last &= (TX_RING_SIZE - 1);
695 for (;;) {
696 walk = NEXT_TX(walk);
697 if (walk == limit)
698 incomplete = 1;
699 if (walk == last)
700 break;
701 }
702 if (incomplete)
703 break;
704 }
705 gp->tx_skbs[entry] = NULL;
706 gp->net_stats.tx_bytes += skb->len;
707
708 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
709 txd = &gp->init_block->txd[entry];
710
711 dma_addr = le64_to_cpu(txd->buffer);
712 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
713
714 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
715 entry = NEXT_TX(entry);
716 }
717
718 gp->net_stats.tx_packets++;
719 dev_kfree_skb_irq(skb);
720 }
721 gp->tx_old = entry;
722
723 if (netif_queue_stopped(dev) &&
724 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
725 netif_wake_queue(dev);
726 }
727
728 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
729 {
730 int cluster_start, curr, count, kick;
731
732 cluster_start = curr = (gp->rx_new & ~(4 - 1));
733 count = 0;
734 kick = -1;
735 wmb();
736 while (curr != limit) {
737 curr = NEXT_RX(curr);
738 if (++count == 4) {
739 struct gem_rxd *rxd =
740 &gp->init_block->rxd[cluster_start];
741 for (;;) {
742 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
743 rxd++;
744 cluster_start = NEXT_RX(cluster_start);
745 if (cluster_start == curr)
746 break;
747 }
748 kick = curr;
749 count = 0;
750 }
751 }
752 if (kick >= 0) {
753 mb();
754 writel(kick, gp->regs + RXDMA_KICK);
755 }
756 }
757
758 static int gem_rx(struct gem *gp, int work_to_do)
759 {
760 int entry, drops, work_done = 0;
761 u32 done;
762 __sum16 csum;
763
764 if (netif_msg_rx_status(gp))
765 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
766 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
767
768 entry = gp->rx_new;
769 drops = 0;
770 done = readl(gp->regs + RXDMA_DONE);
771 for (;;) {
772 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
773 struct sk_buff *skb;
774 u64 status = le64_to_cpu(rxd->status_word);
775 dma_addr_t dma_addr;
776 int len;
777
778 if ((status & RXDCTRL_OWN) != 0)
779 break;
780
781 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
782 break;
783
784 /* When writing back RX descriptor, GEM writes status
785 * then buffer address, possibly in separate transactions.
786 * If we don't wait for the chip to write both, we could
787 * post a new buffer to this descriptor then have GEM spam
788 * on the buffer address. We sync on the RX completion
789 * register to prevent this from happening.
790 */
791 if (entry == done) {
792 done = readl(gp->regs + RXDMA_DONE);
793 if (entry == done)
794 break;
795 }
796
797 /* We can now account for the work we're about to do */
798 work_done++;
799
800 skb = gp->rx_skbs[entry];
801
802 len = (status & RXDCTRL_BUFSZ) >> 16;
803 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
804 gp->net_stats.rx_errors++;
805 if (len < ETH_ZLEN)
806 gp->net_stats.rx_length_errors++;
807 if (len & RXDCTRL_BAD)
808 gp->net_stats.rx_crc_errors++;
809
810 /* We'll just return it to GEM. */
811 drop_it:
812 gp->net_stats.rx_dropped++;
813 goto next;
814 }
815
816 dma_addr = le64_to_cpu(rxd->buffer);
817 if (len > RX_COPY_THRESHOLD) {
818 struct sk_buff *new_skb;
819
820 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
821 if (new_skb == NULL) {
822 drops++;
823 goto drop_it;
824 }
825 pci_unmap_page(gp->pdev, dma_addr,
826 RX_BUF_ALLOC_SIZE(gp),
827 PCI_DMA_FROMDEVICE);
828 gp->rx_skbs[entry] = new_skb;
829 new_skb->dev = gp->dev;
830 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
831 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
832 virt_to_page(new_skb->data),
833 offset_in_page(new_skb->data),
834 RX_BUF_ALLOC_SIZE(gp),
835 PCI_DMA_FROMDEVICE));
836 skb_reserve(new_skb, RX_OFFSET);
837
838 /* Trim the original skb for the netif. */
839 skb_trim(skb, len);
840 } else {
841 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
842
843 if (copy_skb == NULL) {
844 drops++;
845 goto drop_it;
846 }
847
848 skb_reserve(copy_skb, 2);
849 skb_put(copy_skb, len);
850 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
851 skb_copy_from_linear_data(skb, copy_skb->data, len);
852 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853
854 /* We'll reuse the original ring buffer. */
855 skb = copy_skb;
856 }
857
858 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
859 skb->csum = csum_unfold(csum);
860 skb->ip_summed = CHECKSUM_COMPLETE;
861 skb->protocol = eth_type_trans(skb, gp->dev);
862
863 netif_receive_skb(skb);
864
865 gp->net_stats.rx_packets++;
866 gp->net_stats.rx_bytes += len;
867
868 next:
869 entry = NEXT_RX(entry);
870 }
871
872 gem_post_rxds(gp, entry);
873
874 gp->rx_new = entry;
875
876 if (drops)
877 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
878 gp->dev->name);
879
880 return work_done;
881 }
882
883 static int gem_poll(struct napi_struct *napi, int budget)
884 {
885 struct gem *gp = container_of(napi, struct gem, napi);
886 struct net_device *dev = gp->dev;
887 unsigned long flags;
888 int work_done;
889
890 /*
891 * NAPI locking nightmare: See comment at head of driver
892 */
893 spin_lock_irqsave(&gp->lock, flags);
894
895 work_done = 0;
896 do {
897 /* Handle anomalies */
898 if (gp->status & GREG_STAT_ABNORMAL) {
899 if (gem_abnormal_irq(dev, gp, gp->status))
900 break;
901 }
902
903 /* Run TX completion thread */
904 spin_lock(&gp->tx_lock);
905 gem_tx(dev, gp, gp->status);
906 spin_unlock(&gp->tx_lock);
907
908 spin_unlock_irqrestore(&gp->lock, flags);
909
910 /* Run RX thread. We don't use any locking here,
911 * code willing to do bad things - like cleaning the
912 * rx ring - must call napi_disable(), which
913 * schedule_timeout()'s if polling is already disabled.
914 */
915 work_done += gem_rx(gp, budget - work_done);
916
917 if (work_done >= budget)
918 return work_done;
919
920 spin_lock_irqsave(&gp->lock, flags);
921
922 gp->status = readl(gp->regs + GREG_STAT);
923 } while (gp->status & GREG_STAT_NAPI);
924
925 __napi_complete(napi);
926 gem_enable_ints(gp);
927
928 spin_unlock_irqrestore(&gp->lock, flags);
929
930 return work_done;
931 }
932
933 static irqreturn_t gem_interrupt(int irq, void *dev_id)
934 {
935 struct net_device *dev = dev_id;
936 struct gem *gp = netdev_priv(dev);
937 unsigned long flags;
938
939 /* Swallow interrupts when shutting the chip down, though
940 * that shouldn't happen, we should have done free_irq() at
941 * this point...
942 */
943 if (!gp->running)
944 return IRQ_HANDLED;
945
946 spin_lock_irqsave(&gp->lock, flags);
947
948 if (napi_schedule_prep(&gp->napi)) {
949 u32 gem_status = readl(gp->regs + GREG_STAT);
950
951 if (gem_status == 0) {
952 napi_enable(&gp->napi);
953 spin_unlock_irqrestore(&gp->lock, flags);
954 return IRQ_NONE;
955 }
956 gp->status = gem_status;
957 gem_disable_ints(gp);
958 __napi_schedule(&gp->napi);
959 }
960
961 spin_unlock_irqrestore(&gp->lock, flags);
962
963 /* If polling was disabled at the time we received that
964 * interrupt, we may return IRQ_HANDLED here while we
965 * should return IRQ_NONE. No big deal...
966 */
967 return IRQ_HANDLED;
968 }
969
970 #ifdef CONFIG_NET_POLL_CONTROLLER
971 static void gem_poll_controller(struct net_device *dev)
972 {
973 /* gem_interrupt is safe to reentrance so no need
974 * to disable_irq here.
975 */
976 gem_interrupt(dev->irq, dev);
977 }
978 #endif
979
980 static void gem_tx_timeout(struct net_device *dev)
981 {
982 struct gem *gp = netdev_priv(dev);
983
984 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
985 if (!gp->running) {
986 printk("%s: hrm.. hw not running !\n", dev->name);
987 return;
988 }
989 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
990 dev->name,
991 readl(gp->regs + TXDMA_CFG),
992 readl(gp->regs + MAC_TXSTAT),
993 readl(gp->regs + MAC_TXCFG));
994 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
995 dev->name,
996 readl(gp->regs + RXDMA_CFG),
997 readl(gp->regs + MAC_RXSTAT),
998 readl(gp->regs + MAC_RXCFG));
999
1000 spin_lock_irq(&gp->lock);
1001 spin_lock(&gp->tx_lock);
1002
1003 gp->reset_task_pending = 1;
1004 schedule_work(&gp->reset_task);
1005
1006 spin_unlock(&gp->tx_lock);
1007 spin_unlock_irq(&gp->lock);
1008 }
1009
1010 static __inline__ int gem_intme(int entry)
1011 {
1012 /* Algorithm: IRQ every 1/2 of descriptors. */
1013 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1014 return 1;
1015
1016 return 0;
1017 }
1018
1019 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1020 struct net_device *dev)
1021 {
1022 struct gem *gp = netdev_priv(dev);
1023 int entry;
1024 u64 ctrl;
1025 unsigned long flags;
1026
1027 ctrl = 0;
1028 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1029 const u64 csum_start_off = skb_transport_offset(skb);
1030 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1031
1032 ctrl = (TXDCTRL_CENAB |
1033 (csum_start_off << 15) |
1034 (csum_stuff_off << 21));
1035 }
1036
1037 if (!spin_trylock_irqsave(&gp->tx_lock, flags)) {
1038 /* Tell upper layer to requeue */
1039 return NETDEV_TX_LOCKED;
1040 }
1041 /* We raced with gem_do_stop() */
1042 if (!gp->running) {
1043 spin_unlock_irqrestore(&gp->tx_lock, flags);
1044 return NETDEV_TX_BUSY;
1045 }
1046
1047 /* This is a hard error, log it. */
1048 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1049 netif_stop_queue(dev);
1050 spin_unlock_irqrestore(&gp->tx_lock, flags);
1051 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1052 dev->name);
1053 return NETDEV_TX_BUSY;
1054 }
1055
1056 entry = gp->tx_new;
1057 gp->tx_skbs[entry] = skb;
1058
1059 if (skb_shinfo(skb)->nr_frags == 0) {
1060 struct gem_txd *txd = &gp->init_block->txd[entry];
1061 dma_addr_t mapping;
1062 u32 len;
1063
1064 len = skb->len;
1065 mapping = pci_map_page(gp->pdev,
1066 virt_to_page(skb->data),
1067 offset_in_page(skb->data),
1068 len, PCI_DMA_TODEVICE);
1069 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1070 if (gem_intme(entry))
1071 ctrl |= TXDCTRL_INTME;
1072 txd->buffer = cpu_to_le64(mapping);
1073 wmb();
1074 txd->control_word = cpu_to_le64(ctrl);
1075 entry = NEXT_TX(entry);
1076 } else {
1077 struct gem_txd *txd;
1078 u32 first_len;
1079 u64 intme;
1080 dma_addr_t first_mapping;
1081 int frag, first_entry = entry;
1082
1083 intme = 0;
1084 if (gem_intme(entry))
1085 intme |= TXDCTRL_INTME;
1086
1087 /* We must give this initial chunk to the device last.
1088 * Otherwise we could race with the device.
1089 */
1090 first_len = skb_headlen(skb);
1091 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1092 offset_in_page(skb->data),
1093 first_len, PCI_DMA_TODEVICE);
1094 entry = NEXT_TX(entry);
1095
1096 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1097 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1098 u32 len;
1099 dma_addr_t mapping;
1100 u64 this_ctrl;
1101
1102 len = this_frag->size;
1103 mapping = pci_map_page(gp->pdev,
1104 this_frag->page,
1105 this_frag->page_offset,
1106 len, PCI_DMA_TODEVICE);
1107 this_ctrl = ctrl;
1108 if (frag == skb_shinfo(skb)->nr_frags - 1)
1109 this_ctrl |= TXDCTRL_EOF;
1110
1111 txd = &gp->init_block->txd[entry];
1112 txd->buffer = cpu_to_le64(mapping);
1113 wmb();
1114 txd->control_word = cpu_to_le64(this_ctrl | len);
1115
1116 if (gem_intme(entry))
1117 intme |= TXDCTRL_INTME;
1118
1119 entry = NEXT_TX(entry);
1120 }
1121 txd = &gp->init_block->txd[first_entry];
1122 txd->buffer = cpu_to_le64(first_mapping);
1123 wmb();
1124 txd->control_word =
1125 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1126 }
1127
1128 gp->tx_new = entry;
1129 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1130 netif_stop_queue(dev);
1131
1132 if (netif_msg_tx_queued(gp))
1133 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1134 dev->name, entry, skb->len);
1135 mb();
1136 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1137 spin_unlock_irqrestore(&gp->tx_lock, flags);
1138
1139 dev->trans_start = jiffies;
1140
1141 return NETDEV_TX_OK;
1142 }
1143
1144 static void gem_pcs_reset(struct gem *gp)
1145 {
1146 int limit;
1147 u32 val;
1148
1149 /* Reset PCS unit. */
1150 val = readl(gp->regs + PCS_MIICTRL);
1151 val |= PCS_MIICTRL_RST;
1152 writel(val, gp->regs + PCS_MIICTRL);
1153
1154 limit = 32;
1155 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1156 udelay(100);
1157 if (limit-- <= 0)
1158 break;
1159 }
1160 if (limit < 0)
1161 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1162 gp->dev->name);
1163 }
1164
1165 static void gem_pcs_reinit_adv(struct gem *gp)
1166 {
1167 u32 val;
1168
1169 /* Make sure PCS is disabled while changing advertisement
1170 * configuration.
1171 */
1172 val = readl(gp->regs + PCS_CFG);
1173 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1174 writel(val, gp->regs + PCS_CFG);
1175
1176 /* Advertise all capabilities except assymetric
1177 * pause.
1178 */
1179 val = readl(gp->regs + PCS_MIIADV);
1180 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1181 PCS_MIIADV_SP | PCS_MIIADV_AP);
1182 writel(val, gp->regs + PCS_MIIADV);
1183
1184 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1185 * and re-enable PCS.
1186 */
1187 val = readl(gp->regs + PCS_MIICTRL);
1188 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1189 val &= ~PCS_MIICTRL_WB;
1190 writel(val, gp->regs + PCS_MIICTRL);
1191
1192 val = readl(gp->regs + PCS_CFG);
1193 val |= PCS_CFG_ENABLE;
1194 writel(val, gp->regs + PCS_CFG);
1195
1196 /* Make sure serialink loopback is off. The meaning
1197 * of this bit is logically inverted based upon whether
1198 * you are in Serialink or SERDES mode.
1199 */
1200 val = readl(gp->regs + PCS_SCTRL);
1201 if (gp->phy_type == phy_serialink)
1202 val &= ~PCS_SCTRL_LOOP;
1203 else
1204 val |= PCS_SCTRL_LOOP;
1205 writel(val, gp->regs + PCS_SCTRL);
1206 }
1207
1208 #define STOP_TRIES 32
1209
1210 /* Must be invoked under gp->lock and gp->tx_lock. */
1211 static void gem_reset(struct gem *gp)
1212 {
1213 int limit;
1214 u32 val;
1215
1216 /* Make sure we won't get any more interrupts */
1217 writel(0xffffffff, gp->regs + GREG_IMASK);
1218
1219 /* Reset the chip */
1220 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1221 gp->regs + GREG_SWRST);
1222
1223 limit = STOP_TRIES;
1224
1225 do {
1226 udelay(20);
1227 val = readl(gp->regs + GREG_SWRST);
1228 if (limit-- <= 0)
1229 break;
1230 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1231
1232 if (limit < 0)
1233 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1234
1235 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1236 gem_pcs_reinit_adv(gp);
1237 }
1238
1239 /* Must be invoked under gp->lock and gp->tx_lock. */
1240 static void gem_start_dma(struct gem *gp)
1241 {
1242 u32 val;
1243
1244 /* We are ready to rock, turn everything on. */
1245 val = readl(gp->regs + TXDMA_CFG);
1246 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1247 val = readl(gp->regs + RXDMA_CFG);
1248 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1249 val = readl(gp->regs + MAC_TXCFG);
1250 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1251 val = readl(gp->regs + MAC_RXCFG);
1252 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1253
1254 (void) readl(gp->regs + MAC_RXCFG);
1255 udelay(100);
1256
1257 gem_enable_ints(gp);
1258
1259 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1260 }
1261
1262 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1263 * actually stopped before about 4ms tho ...
1264 */
1265 static void gem_stop_dma(struct gem *gp)
1266 {
1267 u32 val;
1268
1269 /* We are done rocking, turn everything off. */
1270 val = readl(gp->regs + TXDMA_CFG);
1271 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1272 val = readl(gp->regs + RXDMA_CFG);
1273 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1274 val = readl(gp->regs + MAC_TXCFG);
1275 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1276 val = readl(gp->regs + MAC_RXCFG);
1277 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1278
1279 (void) readl(gp->regs + MAC_RXCFG);
1280
1281 /* Need to wait a bit ... done by the caller */
1282 }
1283
1284
1285 /* Must be invoked under gp->lock and gp->tx_lock. */
1286 // XXX dbl check what that function should do when called on PCS PHY
1287 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1288 {
1289 u32 advertise, features;
1290 int autoneg;
1291 int speed;
1292 int duplex;
1293
1294 if (gp->phy_type != phy_mii_mdio0 &&
1295 gp->phy_type != phy_mii_mdio1)
1296 goto non_mii;
1297
1298 /* Setup advertise */
1299 if (found_mii_phy(gp))
1300 features = gp->phy_mii.def->features;
1301 else
1302 features = 0;
1303
1304 advertise = features & ADVERTISE_MASK;
1305 if (gp->phy_mii.advertising != 0)
1306 advertise &= gp->phy_mii.advertising;
1307
1308 autoneg = gp->want_autoneg;
1309 speed = gp->phy_mii.speed;
1310 duplex = gp->phy_mii.duplex;
1311
1312 /* Setup link parameters */
1313 if (!ep)
1314 goto start_aneg;
1315 if (ep->autoneg == AUTONEG_ENABLE) {
1316 advertise = ep->advertising;
1317 autoneg = 1;
1318 } else {
1319 autoneg = 0;
1320 speed = ep->speed;
1321 duplex = ep->duplex;
1322 }
1323
1324 start_aneg:
1325 /* Sanitize settings based on PHY capabilities */
1326 if ((features & SUPPORTED_Autoneg) == 0)
1327 autoneg = 0;
1328 if (speed == SPEED_1000 &&
1329 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1330 speed = SPEED_100;
1331 if (speed == SPEED_100 &&
1332 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1333 speed = SPEED_10;
1334 if (duplex == DUPLEX_FULL &&
1335 !(features & (SUPPORTED_1000baseT_Full |
1336 SUPPORTED_100baseT_Full |
1337 SUPPORTED_10baseT_Full)))
1338 duplex = DUPLEX_HALF;
1339 if (speed == 0)
1340 speed = SPEED_10;
1341
1342 /* If we are asleep, we don't try to actually setup the PHY, we
1343 * just store the settings
1344 */
1345 if (gp->asleep) {
1346 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1347 gp->phy_mii.speed = speed;
1348 gp->phy_mii.duplex = duplex;
1349 return;
1350 }
1351
1352 /* Configure PHY & start aneg */
1353 gp->want_autoneg = autoneg;
1354 if (autoneg) {
1355 if (found_mii_phy(gp))
1356 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1357 gp->lstate = link_aneg;
1358 } else {
1359 if (found_mii_phy(gp))
1360 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1361 gp->lstate = link_force_ok;
1362 }
1363
1364 non_mii:
1365 gp->timer_ticks = 0;
1366 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1367 }
1368
1369 /* A link-up condition has occurred, initialize and enable the
1370 * rest of the chip.
1371 *
1372 * Must be invoked under gp->lock and gp->tx_lock.
1373 */
1374 static int gem_set_link_modes(struct gem *gp)
1375 {
1376 u32 val;
1377 int full_duplex, speed, pause;
1378
1379 full_duplex = 0;
1380 speed = SPEED_10;
1381 pause = 0;
1382
1383 if (found_mii_phy(gp)) {
1384 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1385 return 1;
1386 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1387 speed = gp->phy_mii.speed;
1388 pause = gp->phy_mii.pause;
1389 } else if (gp->phy_type == phy_serialink ||
1390 gp->phy_type == phy_serdes) {
1391 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1392
1393 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1394 full_duplex = 1;
1395 speed = SPEED_1000;
1396 }
1397
1398 if (netif_msg_link(gp))
1399 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1400 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1401
1402 if (!gp->running)
1403 return 0;
1404
1405 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1406 if (full_duplex) {
1407 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1408 } else {
1409 /* MAC_TXCFG_NBO must be zero. */
1410 }
1411 writel(val, gp->regs + MAC_TXCFG);
1412
1413 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1414 if (!full_duplex &&
1415 (gp->phy_type == phy_mii_mdio0 ||
1416 gp->phy_type == phy_mii_mdio1)) {
1417 val |= MAC_XIFCFG_DISE;
1418 } else if (full_duplex) {
1419 val |= MAC_XIFCFG_FLED;
1420 }
1421
1422 if (speed == SPEED_1000)
1423 val |= (MAC_XIFCFG_GMII);
1424
1425 writel(val, gp->regs + MAC_XIFCFG);
1426
1427 /* If gigabit and half-duplex, enable carrier extension
1428 * mode. Else, disable it.
1429 */
1430 if (speed == SPEED_1000 && !full_duplex) {
1431 val = readl(gp->regs + MAC_TXCFG);
1432 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1433
1434 val = readl(gp->regs + MAC_RXCFG);
1435 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1436 } else {
1437 val = readl(gp->regs + MAC_TXCFG);
1438 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1439
1440 val = readl(gp->regs + MAC_RXCFG);
1441 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1442 }
1443
1444 if (gp->phy_type == phy_serialink ||
1445 gp->phy_type == phy_serdes) {
1446 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1447
1448 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1449 pause = 1;
1450 }
1451
1452 if (netif_msg_link(gp)) {
1453 if (pause) {
1454 printk(KERN_INFO "%s: Pause is enabled "
1455 "(rxfifo: %d off: %d on: %d)\n",
1456 gp->dev->name,
1457 gp->rx_fifo_sz,
1458 gp->rx_pause_off,
1459 gp->rx_pause_on);
1460 } else {
1461 printk(KERN_INFO "%s: Pause is disabled\n",
1462 gp->dev->name);
1463 }
1464 }
1465
1466 if (!full_duplex)
1467 writel(512, gp->regs + MAC_STIME);
1468 else
1469 writel(64, gp->regs + MAC_STIME);
1470 val = readl(gp->regs + MAC_MCCFG);
1471 if (pause)
1472 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1473 else
1474 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1475 writel(val, gp->regs + MAC_MCCFG);
1476
1477 gem_start_dma(gp);
1478
1479 return 0;
1480 }
1481
1482 /* Must be invoked under gp->lock and gp->tx_lock. */
1483 static int gem_mdio_link_not_up(struct gem *gp)
1484 {
1485 switch (gp->lstate) {
1486 case link_force_ret:
1487 if (netif_msg_link(gp))
1488 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1489 " forced mode\n", gp->dev->name);
1490 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1491 gp->last_forced_speed, DUPLEX_HALF);
1492 gp->timer_ticks = 5;
1493 gp->lstate = link_force_ok;
1494 return 0;
1495 case link_aneg:
1496 /* We try forced modes after a failed aneg only on PHYs that don't
1497 * have "magic_aneg" bit set, which means they internally do the
1498 * while forced-mode thingy. On these, we just restart aneg
1499 */
1500 if (gp->phy_mii.def->magic_aneg)
1501 return 1;
1502 if (netif_msg_link(gp))
1503 printk(KERN_INFO "%s: switching to forced 100bt\n",
1504 gp->dev->name);
1505 /* Try forced modes. */
1506 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1507 DUPLEX_HALF);
1508 gp->timer_ticks = 5;
1509 gp->lstate = link_force_try;
1510 return 0;
1511 case link_force_try:
1512 /* Downgrade from 100 to 10 Mbps if necessary.
1513 * If already at 10Mbps, warn user about the
1514 * situation every 10 ticks.
1515 */
1516 if (gp->phy_mii.speed == SPEED_100) {
1517 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1518 DUPLEX_HALF);
1519 gp->timer_ticks = 5;
1520 if (netif_msg_link(gp))
1521 printk(KERN_INFO "%s: switching to forced 10bt\n",
1522 gp->dev->name);
1523 return 0;
1524 } else
1525 return 1;
1526 default:
1527 return 0;
1528 }
1529 }
1530
1531 static void gem_link_timer(unsigned long data)
1532 {
1533 struct gem *gp = (struct gem *) data;
1534 int restart_aneg = 0;
1535
1536 if (gp->asleep)
1537 return;
1538
1539 spin_lock_irq(&gp->lock);
1540 spin_lock(&gp->tx_lock);
1541 gem_get_cell(gp);
1542
1543 /* If the reset task is still pending, we just
1544 * reschedule the link timer
1545 */
1546 if (gp->reset_task_pending)
1547 goto restart;
1548
1549 if (gp->phy_type == phy_serialink ||
1550 gp->phy_type == phy_serdes) {
1551 u32 val = readl(gp->regs + PCS_MIISTAT);
1552
1553 if (!(val & PCS_MIISTAT_LS))
1554 val = readl(gp->regs + PCS_MIISTAT);
1555
1556 if ((val & PCS_MIISTAT_LS) != 0) {
1557 if (gp->lstate == link_up)
1558 goto restart;
1559
1560 gp->lstate = link_up;
1561 netif_carrier_on(gp->dev);
1562 (void)gem_set_link_modes(gp);
1563 }
1564 goto restart;
1565 }
1566 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1567 /* Ok, here we got a link. If we had it due to a forced
1568 * fallback, and we were configured for autoneg, we do
1569 * retry a short autoneg pass. If you know your hub is
1570 * broken, use ethtool ;)
1571 */
1572 if (gp->lstate == link_force_try && gp->want_autoneg) {
1573 gp->lstate = link_force_ret;
1574 gp->last_forced_speed = gp->phy_mii.speed;
1575 gp->timer_ticks = 5;
1576 if (netif_msg_link(gp))
1577 printk(KERN_INFO "%s: Got link after fallback, retrying"
1578 " autoneg once...\n", gp->dev->name);
1579 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1580 } else if (gp->lstate != link_up) {
1581 gp->lstate = link_up;
1582 netif_carrier_on(gp->dev);
1583 if (gem_set_link_modes(gp))
1584 restart_aneg = 1;
1585 }
1586 } else {
1587 /* If the link was previously up, we restart the
1588 * whole process
1589 */
1590 if (gp->lstate == link_up) {
1591 gp->lstate = link_down;
1592 if (netif_msg_link(gp))
1593 printk(KERN_INFO "%s: Link down\n",
1594 gp->dev->name);
1595 netif_carrier_off(gp->dev);
1596 gp->reset_task_pending = 1;
1597 schedule_work(&gp->reset_task);
1598 restart_aneg = 1;
1599 } else if (++gp->timer_ticks > 10) {
1600 if (found_mii_phy(gp))
1601 restart_aneg = gem_mdio_link_not_up(gp);
1602 else
1603 restart_aneg = 1;
1604 }
1605 }
1606 if (restart_aneg) {
1607 gem_begin_auto_negotiation(gp, NULL);
1608 goto out_unlock;
1609 }
1610 restart:
1611 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1612 out_unlock:
1613 gem_put_cell(gp);
1614 spin_unlock(&gp->tx_lock);
1615 spin_unlock_irq(&gp->lock);
1616 }
1617
1618 /* Must be invoked under gp->lock and gp->tx_lock. */
1619 static void gem_clean_rings(struct gem *gp)
1620 {
1621 struct gem_init_block *gb = gp->init_block;
1622 struct sk_buff *skb;
1623 int i;
1624 dma_addr_t dma_addr;
1625
1626 for (i = 0; i < RX_RING_SIZE; i++) {
1627 struct gem_rxd *rxd;
1628
1629 rxd = &gb->rxd[i];
1630 if (gp->rx_skbs[i] != NULL) {
1631 skb = gp->rx_skbs[i];
1632 dma_addr = le64_to_cpu(rxd->buffer);
1633 pci_unmap_page(gp->pdev, dma_addr,
1634 RX_BUF_ALLOC_SIZE(gp),
1635 PCI_DMA_FROMDEVICE);
1636 dev_kfree_skb_any(skb);
1637 gp->rx_skbs[i] = NULL;
1638 }
1639 rxd->status_word = 0;
1640 wmb();
1641 rxd->buffer = 0;
1642 }
1643
1644 for (i = 0; i < TX_RING_SIZE; i++) {
1645 if (gp->tx_skbs[i] != NULL) {
1646 struct gem_txd *txd;
1647 int frag;
1648
1649 skb = gp->tx_skbs[i];
1650 gp->tx_skbs[i] = NULL;
1651
1652 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1653 int ent = i & (TX_RING_SIZE - 1);
1654
1655 txd = &gb->txd[ent];
1656 dma_addr = le64_to_cpu(txd->buffer);
1657 pci_unmap_page(gp->pdev, dma_addr,
1658 le64_to_cpu(txd->control_word) &
1659 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1660
1661 if (frag != skb_shinfo(skb)->nr_frags)
1662 i++;
1663 }
1664 dev_kfree_skb_any(skb);
1665 }
1666 }
1667 }
1668
1669 /* Must be invoked under gp->lock and gp->tx_lock. */
1670 static void gem_init_rings(struct gem *gp)
1671 {
1672 struct gem_init_block *gb = gp->init_block;
1673 struct net_device *dev = gp->dev;
1674 int i;
1675 dma_addr_t dma_addr;
1676
1677 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1678
1679 gem_clean_rings(gp);
1680
1681 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1682 (unsigned)VLAN_ETH_FRAME_LEN);
1683
1684 for (i = 0; i < RX_RING_SIZE; i++) {
1685 struct sk_buff *skb;
1686 struct gem_rxd *rxd = &gb->rxd[i];
1687
1688 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1689 if (!skb) {
1690 rxd->buffer = 0;
1691 rxd->status_word = 0;
1692 continue;
1693 }
1694
1695 gp->rx_skbs[i] = skb;
1696 skb->dev = dev;
1697 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1698 dma_addr = pci_map_page(gp->pdev,
1699 virt_to_page(skb->data),
1700 offset_in_page(skb->data),
1701 RX_BUF_ALLOC_SIZE(gp),
1702 PCI_DMA_FROMDEVICE);
1703 rxd->buffer = cpu_to_le64(dma_addr);
1704 wmb();
1705 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1706 skb_reserve(skb, RX_OFFSET);
1707 }
1708
1709 for (i = 0; i < TX_RING_SIZE; i++) {
1710 struct gem_txd *txd = &gb->txd[i];
1711
1712 txd->control_word = 0;
1713 wmb();
1714 txd->buffer = 0;
1715 }
1716 wmb();
1717 }
1718
1719 /* Init PHY interface and start link poll state machine */
1720 static void gem_init_phy(struct gem *gp)
1721 {
1722 u32 mifcfg;
1723
1724 /* Revert MIF CFG setting done on stop_phy */
1725 mifcfg = readl(gp->regs + MIF_CFG);
1726 mifcfg &= ~MIF_CFG_BBMODE;
1727 writel(mifcfg, gp->regs + MIF_CFG);
1728
1729 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1730 int i;
1731
1732 /* Those delay sucks, the HW seem to love them though, I'll
1733 * serisouly consider breaking some locks here to be able
1734 * to schedule instead
1735 */
1736 for (i = 0; i < 3; i++) {
1737 #ifdef CONFIG_PPC_PMAC
1738 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1739 msleep(20);
1740 #endif
1741 /* Some PHYs used by apple have problem getting back to us,
1742 * we do an additional reset here
1743 */
1744 phy_write(gp, MII_BMCR, BMCR_RESET);
1745 msleep(20);
1746 if (phy_read(gp, MII_BMCR) != 0xffff)
1747 break;
1748 if (i == 2)
1749 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1750 gp->dev->name);
1751 }
1752 }
1753
1754 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1755 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1756 u32 val;
1757
1758 /* Init datapath mode register. */
1759 if (gp->phy_type == phy_mii_mdio0 ||
1760 gp->phy_type == phy_mii_mdio1) {
1761 val = PCS_DMODE_MGM;
1762 } else if (gp->phy_type == phy_serialink) {
1763 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1764 } else {
1765 val = PCS_DMODE_ESM;
1766 }
1767
1768 writel(val, gp->regs + PCS_DMODE);
1769 }
1770
1771 if (gp->phy_type == phy_mii_mdio0 ||
1772 gp->phy_type == phy_mii_mdio1) {
1773 // XXX check for errors
1774 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1775
1776 /* Init PHY */
1777 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1778 gp->phy_mii.def->ops->init(&gp->phy_mii);
1779 } else {
1780 gem_pcs_reset(gp);
1781 gem_pcs_reinit_adv(gp);
1782 }
1783
1784 /* Default aneg parameters */
1785 gp->timer_ticks = 0;
1786 gp->lstate = link_down;
1787 netif_carrier_off(gp->dev);
1788
1789 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1790 spin_lock_irq(&gp->lock);
1791 gem_begin_auto_negotiation(gp, NULL);
1792 spin_unlock_irq(&gp->lock);
1793 }
1794
1795 /* Must be invoked under gp->lock and gp->tx_lock. */
1796 static void gem_init_dma(struct gem *gp)
1797 {
1798 u64 desc_dma = (u64) gp->gblock_dvma;
1799 u32 val;
1800
1801 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1802 writel(val, gp->regs + TXDMA_CFG);
1803
1804 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1805 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1806 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1807
1808 writel(0, gp->regs + TXDMA_KICK);
1809
1810 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1811 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1812 writel(val, gp->regs + RXDMA_CFG);
1813
1814 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1815 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1816
1817 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1818
1819 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1820 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1821 writel(val, gp->regs + RXDMA_PTHRESH);
1822
1823 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1824 writel(((5 & RXDMA_BLANK_IPKTS) |
1825 ((8 << 12) & RXDMA_BLANK_ITIME)),
1826 gp->regs + RXDMA_BLANK);
1827 else
1828 writel(((5 & RXDMA_BLANK_IPKTS) |
1829 ((4 << 12) & RXDMA_BLANK_ITIME)),
1830 gp->regs + RXDMA_BLANK);
1831 }
1832
1833 /* Must be invoked under gp->lock and gp->tx_lock. */
1834 static u32 gem_setup_multicast(struct gem *gp)
1835 {
1836 u32 rxcfg = 0;
1837 int i;
1838
1839 if ((gp->dev->flags & IFF_ALLMULTI) ||
1840 (netdev_mc_count(gp->dev) > 256)) {
1841 for (i=0; i<16; i++)
1842 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1843 rxcfg |= MAC_RXCFG_HFE;
1844 } else if (gp->dev->flags & IFF_PROMISC) {
1845 rxcfg |= MAC_RXCFG_PROM;
1846 } else {
1847 u16 hash_table[16];
1848 u32 crc;
1849 struct dev_mc_list *dmi;
1850 int i;
1851
1852 memset(hash_table, 0, sizeof(hash_table));
1853 netdev_for_each_mc_addr(dmi, gp->dev) {
1854 char *addrs = dmi->dmi_addr;
1855
1856 if (!(*addrs & 1))
1857 continue;
1858
1859 crc = ether_crc_le(6, addrs);
1860 crc >>= 24;
1861 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1862 }
1863 for (i=0; i<16; i++)
1864 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1865 rxcfg |= MAC_RXCFG_HFE;
1866 }
1867
1868 return rxcfg;
1869 }
1870
1871 /* Must be invoked under gp->lock and gp->tx_lock. */
1872 static void gem_init_mac(struct gem *gp)
1873 {
1874 unsigned char *e = &gp->dev->dev_addr[0];
1875
1876 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1877
1878 writel(0x00, gp->regs + MAC_IPG0);
1879 writel(0x08, gp->regs + MAC_IPG1);
1880 writel(0x04, gp->regs + MAC_IPG2);
1881 writel(0x40, gp->regs + MAC_STIME);
1882 writel(0x40, gp->regs + MAC_MINFSZ);
1883
1884 /* Ethernet payload + header + FCS + optional VLAN tag. */
1885 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1886
1887 writel(0x07, gp->regs + MAC_PASIZE);
1888 writel(0x04, gp->regs + MAC_JAMSIZE);
1889 writel(0x10, gp->regs + MAC_ATTLIM);
1890 writel(0x8808, gp->regs + MAC_MCTYPE);
1891
1892 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1893
1894 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1895 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1896 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1897
1898 writel(0, gp->regs + MAC_ADDR3);
1899 writel(0, gp->regs + MAC_ADDR4);
1900 writel(0, gp->regs + MAC_ADDR5);
1901
1902 writel(0x0001, gp->regs + MAC_ADDR6);
1903 writel(0xc200, gp->regs + MAC_ADDR7);
1904 writel(0x0180, gp->regs + MAC_ADDR8);
1905
1906 writel(0, gp->regs + MAC_AFILT0);
1907 writel(0, gp->regs + MAC_AFILT1);
1908 writel(0, gp->regs + MAC_AFILT2);
1909 writel(0, gp->regs + MAC_AF21MSK);
1910 writel(0, gp->regs + MAC_AF0MSK);
1911
1912 gp->mac_rx_cfg = gem_setup_multicast(gp);
1913 #ifdef STRIP_FCS
1914 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1915 #endif
1916 writel(0, gp->regs + MAC_NCOLL);
1917 writel(0, gp->regs + MAC_FASUCC);
1918 writel(0, gp->regs + MAC_ECOLL);
1919 writel(0, gp->regs + MAC_LCOLL);
1920 writel(0, gp->regs + MAC_DTIMER);
1921 writel(0, gp->regs + MAC_PATMPS);
1922 writel(0, gp->regs + MAC_RFCTR);
1923 writel(0, gp->regs + MAC_LERR);
1924 writel(0, gp->regs + MAC_AERR);
1925 writel(0, gp->regs + MAC_FCSERR);
1926 writel(0, gp->regs + MAC_RXCVERR);
1927
1928 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1929 * them once a link is established.
1930 */
1931 writel(0, gp->regs + MAC_TXCFG);
1932 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1933 writel(0, gp->regs + MAC_MCCFG);
1934 writel(0, gp->regs + MAC_XIFCFG);
1935
1936 /* Setup MAC interrupts. We want to get all of the interesting
1937 * counter expiration events, but we do not want to hear about
1938 * normal rx/tx as the DMA engine tells us that.
1939 */
1940 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1941 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1942
1943 /* Don't enable even the PAUSE interrupts for now, we
1944 * make no use of those events other than to record them.
1945 */
1946 writel(0xffffffff, gp->regs + MAC_MCMASK);
1947
1948 /* Don't enable GEM's WOL in normal operations
1949 */
1950 if (gp->has_wol)
1951 writel(0, gp->regs + WOL_WAKECSR);
1952 }
1953
1954 /* Must be invoked under gp->lock and gp->tx_lock. */
1955 static void gem_init_pause_thresholds(struct gem *gp)
1956 {
1957 u32 cfg;
1958
1959 /* Calculate pause thresholds. Setting the OFF threshold to the
1960 * full RX fifo size effectively disables PAUSE generation which
1961 * is what we do for 10/100 only GEMs which have FIFOs too small
1962 * to make real gains from PAUSE.
1963 */
1964 if (gp->rx_fifo_sz <= (2 * 1024)) {
1965 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1966 } else {
1967 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1968 int off = (gp->rx_fifo_sz - (max_frame * 2));
1969 int on = off - max_frame;
1970
1971 gp->rx_pause_off = off;
1972 gp->rx_pause_on = on;
1973 }
1974
1975
1976 /* Configure the chip "burst" DMA mode & enable some
1977 * HW bug fixes on Apple version
1978 */
1979 cfg = 0;
1980 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1981 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1982 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1983 cfg |= GREG_CFG_IBURST;
1984 #endif
1985 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1986 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1987 writel(cfg, gp->regs + GREG_CFG);
1988
1989 /* If Infinite Burst didn't stick, then use different
1990 * thresholds (and Apple bug fixes don't exist)
1991 */
1992 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1993 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1994 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1995 writel(cfg, gp->regs + GREG_CFG);
1996 }
1997 }
1998
1999 static int gem_check_invariants(struct gem *gp)
2000 {
2001 struct pci_dev *pdev = gp->pdev;
2002 u32 mif_cfg;
2003
2004 /* On Apple's sungem, we can't rely on registers as the chip
2005 * was been powered down by the firmware. The PHY is looked
2006 * up later on.
2007 */
2008 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
2009 gp->phy_type = phy_mii_mdio0;
2010 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2011 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2012 gp->swrst_base = 0;
2013
2014 mif_cfg = readl(gp->regs + MIF_CFG);
2015 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2016 mif_cfg |= MIF_CFG_MDI0;
2017 writel(mif_cfg, gp->regs + MIF_CFG);
2018 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2019 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2020
2021 /* We hard-code the PHY address so we can properly bring it out of
2022 * reset later on, we can't really probe it at this point, though
2023 * that isn't an issue.
2024 */
2025 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2026 gp->mii_phy_addr = 1;
2027 else
2028 gp->mii_phy_addr = 0;
2029
2030 return 0;
2031 }
2032
2033 mif_cfg = readl(gp->regs + MIF_CFG);
2034
2035 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2036 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2037 /* One of the MII PHYs _must_ be present
2038 * as this chip has no gigabit PHY.
2039 */
2040 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2041 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2042 mif_cfg);
2043 return -1;
2044 }
2045 }
2046
2047 /* Determine initial PHY interface type guess. MDIO1 is the
2048 * external PHY and thus takes precedence over MDIO0.
2049 */
2050
2051 if (mif_cfg & MIF_CFG_MDI1) {
2052 gp->phy_type = phy_mii_mdio1;
2053 mif_cfg |= MIF_CFG_PSELECT;
2054 writel(mif_cfg, gp->regs + MIF_CFG);
2055 } else if (mif_cfg & MIF_CFG_MDI0) {
2056 gp->phy_type = phy_mii_mdio0;
2057 mif_cfg &= ~MIF_CFG_PSELECT;
2058 writel(mif_cfg, gp->regs + MIF_CFG);
2059 } else {
2060 #ifdef CONFIG_SPARC
2061 const char *p;
2062
2063 p = of_get_property(gp->of_node, "shared-pins", NULL);
2064 if (p && !strcmp(p, "serdes"))
2065 gp->phy_type = phy_serdes;
2066 else
2067 #endif
2068 gp->phy_type = phy_serialink;
2069 }
2070 if (gp->phy_type == phy_mii_mdio1 ||
2071 gp->phy_type == phy_mii_mdio0) {
2072 int i;
2073
2074 for (i = 0; i < 32; i++) {
2075 gp->mii_phy_addr = i;
2076 if (phy_read(gp, MII_BMCR) != 0xffff)
2077 break;
2078 }
2079 if (i == 32) {
2080 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2081 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2082 return -1;
2083 }
2084 gp->phy_type = phy_serdes;
2085 }
2086 }
2087
2088 /* Fetch the FIFO configurations now too. */
2089 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2090 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2091
2092 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2093 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2094 if (gp->tx_fifo_sz != (9 * 1024) ||
2095 gp->rx_fifo_sz != (20 * 1024)) {
2096 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2097 gp->tx_fifo_sz, gp->rx_fifo_sz);
2098 return -1;
2099 }
2100 gp->swrst_base = 0;
2101 } else {
2102 if (gp->tx_fifo_sz != (2 * 1024) ||
2103 gp->rx_fifo_sz != (2 * 1024)) {
2104 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2105 gp->tx_fifo_sz, gp->rx_fifo_sz);
2106 return -1;
2107 }
2108 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2109 }
2110 }
2111
2112 return 0;
2113 }
2114
2115 /* Must be invoked under gp->lock and gp->tx_lock. */
2116 static void gem_reinit_chip(struct gem *gp)
2117 {
2118 /* Reset the chip */
2119 gem_reset(gp);
2120
2121 /* Make sure ints are disabled */
2122 gem_disable_ints(gp);
2123
2124 /* Allocate & setup ring buffers */
2125 gem_init_rings(gp);
2126
2127 /* Configure pause thresholds */
2128 gem_init_pause_thresholds(gp);
2129
2130 /* Init DMA & MAC engines */
2131 gem_init_dma(gp);
2132 gem_init_mac(gp);
2133 }
2134
2135
2136 /* Must be invoked with no lock held. */
2137 static void gem_stop_phy(struct gem *gp, int wol)
2138 {
2139 u32 mifcfg;
2140 unsigned long flags;
2141
2142 /* Let the chip settle down a bit, it seems that helps
2143 * for sleep mode on some models
2144 */
2145 msleep(10);
2146
2147 /* Make sure we aren't polling PHY status change. We
2148 * don't currently use that feature though
2149 */
2150 mifcfg = readl(gp->regs + MIF_CFG);
2151 mifcfg &= ~MIF_CFG_POLL;
2152 writel(mifcfg, gp->regs + MIF_CFG);
2153
2154 if (wol && gp->has_wol) {
2155 unsigned char *e = &gp->dev->dev_addr[0];
2156 u32 csr;
2157
2158 /* Setup wake-on-lan for MAGIC packet */
2159 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2160 gp->regs + MAC_RXCFG);
2161 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2162 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2163 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2164
2165 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2166 csr = WOL_WAKECSR_ENABLE;
2167 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2168 csr |= WOL_WAKECSR_MII;
2169 writel(csr, gp->regs + WOL_WAKECSR);
2170 } else {
2171 writel(0, gp->regs + MAC_RXCFG);
2172 (void)readl(gp->regs + MAC_RXCFG);
2173 /* Machine sleep will die in strange ways if we
2174 * dont wait a bit here, looks like the chip takes
2175 * some time to really shut down
2176 */
2177 msleep(10);
2178 }
2179
2180 writel(0, gp->regs + MAC_TXCFG);
2181 writel(0, gp->regs + MAC_XIFCFG);
2182 writel(0, gp->regs + TXDMA_CFG);
2183 writel(0, gp->regs + RXDMA_CFG);
2184
2185 if (!wol) {
2186 spin_lock_irqsave(&gp->lock, flags);
2187 spin_lock(&gp->tx_lock);
2188 gem_reset(gp);
2189 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2190 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2191 spin_unlock(&gp->tx_lock);
2192 spin_unlock_irqrestore(&gp->lock, flags);
2193
2194 /* No need to take the lock here */
2195
2196 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2197 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2198
2199 /* According to Apple, we must set the MDIO pins to this begnign
2200 * state or we may 1) eat more current, 2) damage some PHYs
2201 */
2202 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2203 writel(0, gp->regs + MIF_BBCLK);
2204 writel(0, gp->regs + MIF_BBDATA);
2205 writel(0, gp->regs + MIF_BBOENAB);
2206 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2207 (void) readl(gp->regs + MAC_XIFCFG);
2208 }
2209 }
2210
2211
2212 static int gem_do_start(struct net_device *dev)
2213 {
2214 struct gem *gp = netdev_priv(dev);
2215 unsigned long flags;
2216
2217 spin_lock_irqsave(&gp->lock, flags);
2218 spin_lock(&gp->tx_lock);
2219
2220 /* Enable the cell */
2221 gem_get_cell(gp);
2222
2223 /* Init & setup chip hardware */
2224 gem_reinit_chip(gp);
2225
2226 gp->running = 1;
2227
2228 napi_enable(&gp->napi);
2229
2230 if (gp->lstate == link_up) {
2231 netif_carrier_on(gp->dev);
2232 gem_set_link_modes(gp);
2233 }
2234
2235 netif_wake_queue(gp->dev);
2236
2237 spin_unlock(&gp->tx_lock);
2238 spin_unlock_irqrestore(&gp->lock, flags);
2239
2240 if (request_irq(gp->pdev->irq, gem_interrupt,
2241 IRQF_SHARED, dev->name, (void *)dev)) {
2242 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2243
2244 spin_lock_irqsave(&gp->lock, flags);
2245 spin_lock(&gp->tx_lock);
2246
2247 napi_disable(&gp->napi);
2248
2249 gp->running = 0;
2250 gem_reset(gp);
2251 gem_clean_rings(gp);
2252 gem_put_cell(gp);
2253
2254 spin_unlock(&gp->tx_lock);
2255 spin_unlock_irqrestore(&gp->lock, flags);
2256
2257 return -EAGAIN;
2258 }
2259
2260 return 0;
2261 }
2262
2263 static void gem_do_stop(struct net_device *dev, int wol)
2264 {
2265 struct gem *gp = netdev_priv(dev);
2266 unsigned long flags;
2267
2268 spin_lock_irqsave(&gp->lock, flags);
2269 spin_lock(&gp->tx_lock);
2270
2271 gp->running = 0;
2272
2273 /* Stop netif queue */
2274 netif_stop_queue(dev);
2275
2276 /* Make sure ints are disabled */
2277 gem_disable_ints(gp);
2278
2279 /* We can drop the lock now */
2280 spin_unlock(&gp->tx_lock);
2281 spin_unlock_irqrestore(&gp->lock, flags);
2282
2283 /* If we are going to sleep with WOL */
2284 gem_stop_dma(gp);
2285 msleep(10);
2286 if (!wol)
2287 gem_reset(gp);
2288 msleep(10);
2289
2290 /* Get rid of rings */
2291 gem_clean_rings(gp);
2292
2293 /* No irq needed anymore */
2294 free_irq(gp->pdev->irq, (void *) dev);
2295
2296 /* Cell not needed neither if no WOL */
2297 if (!wol) {
2298 spin_lock_irqsave(&gp->lock, flags);
2299 gem_put_cell(gp);
2300 spin_unlock_irqrestore(&gp->lock, flags);
2301 }
2302 }
2303
2304 static void gem_reset_task(struct work_struct *work)
2305 {
2306 struct gem *gp = container_of(work, struct gem, reset_task);
2307
2308 mutex_lock(&gp->pm_mutex);
2309
2310 if (gp->opened)
2311 napi_disable(&gp->napi);
2312
2313 spin_lock_irq(&gp->lock);
2314 spin_lock(&gp->tx_lock);
2315
2316 if (gp->running) {
2317 netif_stop_queue(gp->dev);
2318
2319 /* Reset the chip & rings */
2320 gem_reinit_chip(gp);
2321 if (gp->lstate == link_up)
2322 gem_set_link_modes(gp);
2323 netif_wake_queue(gp->dev);
2324 }
2325
2326 gp->reset_task_pending = 0;
2327
2328 spin_unlock(&gp->tx_lock);
2329 spin_unlock_irq(&gp->lock);
2330
2331 if (gp->opened)
2332 napi_enable(&gp->napi);
2333
2334 mutex_unlock(&gp->pm_mutex);
2335 }
2336
2337
2338 static int gem_open(struct net_device *dev)
2339 {
2340 struct gem *gp = netdev_priv(dev);
2341 int rc = 0;
2342
2343 mutex_lock(&gp->pm_mutex);
2344
2345 /* We need the cell enabled */
2346 if (!gp->asleep)
2347 rc = gem_do_start(dev);
2348 gp->opened = (rc == 0);
2349
2350 mutex_unlock(&gp->pm_mutex);
2351
2352 return rc;
2353 }
2354
2355 static int gem_close(struct net_device *dev)
2356 {
2357 struct gem *gp = netdev_priv(dev);
2358
2359 mutex_lock(&gp->pm_mutex);
2360
2361 napi_disable(&gp->napi);
2362
2363 gp->opened = 0;
2364 if (!gp->asleep)
2365 gem_do_stop(dev, 0);
2366
2367 mutex_unlock(&gp->pm_mutex);
2368
2369 return 0;
2370 }
2371
2372 #ifdef CONFIG_PM
2373 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2374 {
2375 struct net_device *dev = pci_get_drvdata(pdev);
2376 struct gem *gp = netdev_priv(dev);
2377 unsigned long flags;
2378
2379 mutex_lock(&gp->pm_mutex);
2380
2381 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2382 dev->name,
2383 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2384
2385 /* Keep the cell enabled during the entire operation */
2386 spin_lock_irqsave(&gp->lock, flags);
2387 spin_lock(&gp->tx_lock);
2388 gem_get_cell(gp);
2389 spin_unlock(&gp->tx_lock);
2390 spin_unlock_irqrestore(&gp->lock, flags);
2391
2392 /* If the driver is opened, we stop the MAC */
2393 if (gp->opened) {
2394 napi_disable(&gp->napi);
2395
2396 /* Stop traffic, mark us closed */
2397 netif_device_detach(dev);
2398
2399 /* Switch off MAC, remember WOL setting */
2400 gp->asleep_wol = gp->wake_on_lan;
2401 gem_do_stop(dev, gp->asleep_wol);
2402 } else
2403 gp->asleep_wol = 0;
2404
2405 /* Mark us asleep */
2406 gp->asleep = 1;
2407 wmb();
2408
2409 /* Stop the link timer */
2410 del_timer_sync(&gp->link_timer);
2411
2412 /* Now we release the mutex to not block the reset task who
2413 * can take it too. We are marked asleep, so there will be no
2414 * conflict here
2415 */
2416 mutex_unlock(&gp->pm_mutex);
2417
2418 /* Wait for a pending reset task to complete */
2419 while (gp->reset_task_pending)
2420 yield();
2421 flush_scheduled_work();
2422
2423 /* Shut the PHY down eventually and setup WOL */
2424 gem_stop_phy(gp, gp->asleep_wol);
2425
2426 /* Make sure bus master is disabled */
2427 pci_disable_device(gp->pdev);
2428
2429 /* Release the cell, no need to take a lock at this point since
2430 * nothing else can happen now
2431 */
2432 gem_put_cell(gp);
2433
2434 return 0;
2435 }
2436
2437 static int gem_resume(struct pci_dev *pdev)
2438 {
2439 struct net_device *dev = pci_get_drvdata(pdev);
2440 struct gem *gp = netdev_priv(dev);
2441 unsigned long flags;
2442
2443 printk(KERN_INFO "%s: resuming\n", dev->name);
2444
2445 mutex_lock(&gp->pm_mutex);
2446
2447 /* Keep the cell enabled during the entire operation, no need to
2448 * take a lock here tho since nothing else can happen while we are
2449 * marked asleep
2450 */
2451 gem_get_cell(gp);
2452
2453 /* Make sure PCI access and bus master are enabled */
2454 if (pci_enable_device(gp->pdev)) {
2455 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2456 dev->name);
2457 /* Put cell and forget it for now, it will be considered as
2458 * still asleep, a new sleep cycle may bring it back
2459 */
2460 gem_put_cell(gp);
2461 mutex_unlock(&gp->pm_mutex);
2462 return 0;
2463 }
2464 pci_set_master(gp->pdev);
2465
2466 /* Reset everything */
2467 gem_reset(gp);
2468
2469 /* Mark us woken up */
2470 gp->asleep = 0;
2471 wmb();
2472
2473 /* Bring the PHY back. Again, lock is useless at this point as
2474 * nothing can be happening until we restart the whole thing
2475 */
2476 gem_init_phy(gp);
2477
2478 /* If we were opened, bring everything back */
2479 if (gp->opened) {
2480 /* Restart MAC */
2481 gem_do_start(dev);
2482
2483 /* Re-attach net device */
2484 netif_device_attach(dev);
2485 }
2486
2487 spin_lock_irqsave(&gp->lock, flags);
2488 spin_lock(&gp->tx_lock);
2489
2490 /* If we had WOL enabled, the cell clock was never turned off during
2491 * sleep, so we end up beeing unbalanced. Fix that here
2492 */
2493 if (gp->asleep_wol)
2494 gem_put_cell(gp);
2495
2496 /* This function doesn't need to hold the cell, it will be held if the
2497 * driver is open by gem_do_start().
2498 */
2499 gem_put_cell(gp);
2500
2501 spin_unlock(&gp->tx_lock);
2502 spin_unlock_irqrestore(&gp->lock, flags);
2503
2504 mutex_unlock(&gp->pm_mutex);
2505
2506 return 0;
2507 }
2508 #endif /* CONFIG_PM */
2509
2510 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2511 {
2512 struct gem *gp = netdev_priv(dev);
2513 struct net_device_stats *stats = &gp->net_stats;
2514
2515 spin_lock_irq(&gp->lock);
2516 spin_lock(&gp->tx_lock);
2517
2518 /* I have seen this being called while the PM was in progress,
2519 * so we shield against this
2520 */
2521 if (gp->running) {
2522 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2523 writel(0, gp->regs + MAC_FCSERR);
2524
2525 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2526 writel(0, gp->regs + MAC_AERR);
2527
2528 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2529 writel(0, gp->regs + MAC_LERR);
2530
2531 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2532 stats->collisions +=
2533 (readl(gp->regs + MAC_ECOLL) +
2534 readl(gp->regs + MAC_LCOLL));
2535 writel(0, gp->regs + MAC_ECOLL);
2536 writel(0, gp->regs + MAC_LCOLL);
2537 }
2538
2539 spin_unlock(&gp->tx_lock);
2540 spin_unlock_irq(&gp->lock);
2541
2542 return &gp->net_stats;
2543 }
2544
2545 static int gem_set_mac_address(struct net_device *dev, void *addr)
2546 {
2547 struct sockaddr *macaddr = (struct sockaddr *) addr;
2548 struct gem *gp = netdev_priv(dev);
2549 unsigned char *e = &dev->dev_addr[0];
2550
2551 if (!is_valid_ether_addr(macaddr->sa_data))
2552 return -EADDRNOTAVAIL;
2553
2554 if (!netif_running(dev) || !netif_device_present(dev)) {
2555 /* We'll just catch it later when the
2556 * device is up'd or resumed.
2557 */
2558 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2559 return 0;
2560 }
2561
2562 mutex_lock(&gp->pm_mutex);
2563 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2564 if (gp->running) {
2565 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2566 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2567 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2568 }
2569 mutex_unlock(&gp->pm_mutex);
2570
2571 return 0;
2572 }
2573
2574 static void gem_set_multicast(struct net_device *dev)
2575 {
2576 struct gem *gp = netdev_priv(dev);
2577 u32 rxcfg, rxcfg_new;
2578 int limit = 10000;
2579
2580
2581 spin_lock_irq(&gp->lock);
2582 spin_lock(&gp->tx_lock);
2583
2584 if (!gp->running)
2585 goto bail;
2586
2587 netif_stop_queue(dev);
2588
2589 rxcfg = readl(gp->regs + MAC_RXCFG);
2590 rxcfg_new = gem_setup_multicast(gp);
2591 #ifdef STRIP_FCS
2592 rxcfg_new |= MAC_RXCFG_SFCS;
2593 #endif
2594 gp->mac_rx_cfg = rxcfg_new;
2595
2596 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2597 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2598 if (!limit--)
2599 break;
2600 udelay(10);
2601 }
2602
2603 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2604 rxcfg |= rxcfg_new;
2605
2606 writel(rxcfg, gp->regs + MAC_RXCFG);
2607
2608 netif_wake_queue(dev);
2609
2610 bail:
2611 spin_unlock(&gp->tx_lock);
2612 spin_unlock_irq(&gp->lock);
2613 }
2614
2615 /* Jumbo-grams don't seem to work :-( */
2616 #define GEM_MIN_MTU 68
2617 #if 1
2618 #define GEM_MAX_MTU 1500
2619 #else
2620 #define GEM_MAX_MTU 9000
2621 #endif
2622
2623 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2624 {
2625 struct gem *gp = netdev_priv(dev);
2626
2627 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2628 return -EINVAL;
2629
2630 if (!netif_running(dev) || !netif_device_present(dev)) {
2631 /* We'll just catch it later when the
2632 * device is up'd or resumed.
2633 */
2634 dev->mtu = new_mtu;
2635 return 0;
2636 }
2637
2638 mutex_lock(&gp->pm_mutex);
2639 spin_lock_irq(&gp->lock);
2640 spin_lock(&gp->tx_lock);
2641 dev->mtu = new_mtu;
2642 if (gp->running) {
2643 gem_reinit_chip(gp);
2644 if (gp->lstate == link_up)
2645 gem_set_link_modes(gp);
2646 }
2647 spin_unlock(&gp->tx_lock);
2648 spin_unlock_irq(&gp->lock);
2649 mutex_unlock(&gp->pm_mutex);
2650
2651 return 0;
2652 }
2653
2654 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2655 {
2656 struct gem *gp = netdev_priv(dev);
2657
2658 strcpy(info->driver, DRV_NAME);
2659 strcpy(info->version, DRV_VERSION);
2660 strcpy(info->bus_info, pci_name(gp->pdev));
2661 }
2662
2663 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2664 {
2665 struct gem *gp = netdev_priv(dev);
2666
2667 if (gp->phy_type == phy_mii_mdio0 ||
2668 gp->phy_type == phy_mii_mdio1) {
2669 if (gp->phy_mii.def)
2670 cmd->supported = gp->phy_mii.def->features;
2671 else
2672 cmd->supported = (SUPPORTED_10baseT_Half |
2673 SUPPORTED_10baseT_Full);
2674
2675 /* XXX hardcoded stuff for now */
2676 cmd->port = PORT_MII;
2677 cmd->transceiver = XCVR_EXTERNAL;
2678 cmd->phy_address = 0; /* XXX fixed PHYAD */
2679
2680 /* Return current PHY settings */
2681 spin_lock_irq(&gp->lock);
2682 cmd->autoneg = gp->want_autoneg;
2683 cmd->speed = gp->phy_mii.speed;
2684 cmd->duplex = gp->phy_mii.duplex;
2685 cmd->advertising = gp->phy_mii.advertising;
2686
2687 /* If we started with a forced mode, we don't have a default
2688 * advertise set, we need to return something sensible so
2689 * userland can re-enable autoneg properly.
2690 */
2691 if (cmd->advertising == 0)
2692 cmd->advertising = cmd->supported;
2693 spin_unlock_irq(&gp->lock);
2694 } else { // XXX PCS ?
2695 cmd->supported =
2696 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2697 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2698 SUPPORTED_Autoneg);
2699 cmd->advertising = cmd->supported;
2700 cmd->speed = 0;
2701 cmd->duplex = cmd->port = cmd->phy_address =
2702 cmd->transceiver = cmd->autoneg = 0;
2703
2704 /* serdes means usually a Fibre connector, with most fixed */
2705 if (gp->phy_type == phy_serdes) {
2706 cmd->port = PORT_FIBRE;
2707 cmd->supported = (SUPPORTED_1000baseT_Half |
2708 SUPPORTED_1000baseT_Full |
2709 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2710 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2711 cmd->advertising = cmd->supported;
2712 cmd->transceiver = XCVR_INTERNAL;
2713 if (gp->lstate == link_up)
2714 cmd->speed = SPEED_1000;
2715 cmd->duplex = DUPLEX_FULL;
2716 cmd->autoneg = 1;
2717 }
2718 }
2719 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2720
2721 return 0;
2722 }
2723
2724 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2725 {
2726 struct gem *gp = netdev_priv(dev);
2727
2728 /* Verify the settings we care about. */
2729 if (cmd->autoneg != AUTONEG_ENABLE &&
2730 cmd->autoneg != AUTONEG_DISABLE)
2731 return -EINVAL;
2732
2733 if (cmd->autoneg == AUTONEG_ENABLE &&
2734 cmd->advertising == 0)
2735 return -EINVAL;
2736
2737 if (cmd->autoneg == AUTONEG_DISABLE &&
2738 ((cmd->speed != SPEED_1000 &&
2739 cmd->speed != SPEED_100 &&
2740 cmd->speed != SPEED_10) ||
2741 (cmd->duplex != DUPLEX_HALF &&
2742 cmd->duplex != DUPLEX_FULL)))
2743 return -EINVAL;
2744
2745 /* Apply settings and restart link process. */
2746 spin_lock_irq(&gp->lock);
2747 gem_get_cell(gp);
2748 gem_begin_auto_negotiation(gp, cmd);
2749 gem_put_cell(gp);
2750 spin_unlock_irq(&gp->lock);
2751
2752 return 0;
2753 }
2754
2755 static int gem_nway_reset(struct net_device *dev)
2756 {
2757 struct gem *gp = netdev_priv(dev);
2758
2759 if (!gp->want_autoneg)
2760 return -EINVAL;
2761
2762 /* Restart link process. */
2763 spin_lock_irq(&gp->lock);
2764 gem_get_cell(gp);
2765 gem_begin_auto_negotiation(gp, NULL);
2766 gem_put_cell(gp);
2767 spin_unlock_irq(&gp->lock);
2768
2769 return 0;
2770 }
2771
2772 static u32 gem_get_msglevel(struct net_device *dev)
2773 {
2774 struct gem *gp = netdev_priv(dev);
2775 return gp->msg_enable;
2776 }
2777
2778 static void gem_set_msglevel(struct net_device *dev, u32 value)
2779 {
2780 struct gem *gp = netdev_priv(dev);
2781 gp->msg_enable = value;
2782 }
2783
2784
2785 /* Add more when I understand how to program the chip */
2786 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2787
2788 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2789
2790 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2791 {
2792 struct gem *gp = netdev_priv(dev);
2793
2794 /* Add more when I understand how to program the chip */
2795 if (gp->has_wol) {
2796 wol->supported = WOL_SUPPORTED_MASK;
2797 wol->wolopts = gp->wake_on_lan;
2798 } else {
2799 wol->supported = 0;
2800 wol->wolopts = 0;
2801 }
2802 }
2803
2804 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2805 {
2806 struct gem *gp = netdev_priv(dev);
2807
2808 if (!gp->has_wol)
2809 return -EOPNOTSUPP;
2810 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2811 return 0;
2812 }
2813
2814 static const struct ethtool_ops gem_ethtool_ops = {
2815 .get_drvinfo = gem_get_drvinfo,
2816 .get_link = ethtool_op_get_link,
2817 .get_settings = gem_get_settings,
2818 .set_settings = gem_set_settings,
2819 .nway_reset = gem_nway_reset,
2820 .get_msglevel = gem_get_msglevel,
2821 .set_msglevel = gem_set_msglevel,
2822 .get_wol = gem_get_wol,
2823 .set_wol = gem_set_wol,
2824 };
2825
2826 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2827 {
2828 struct gem *gp = netdev_priv(dev);
2829 struct mii_ioctl_data *data = if_mii(ifr);
2830 int rc = -EOPNOTSUPP;
2831 unsigned long flags;
2832
2833 /* Hold the PM mutex while doing ioctl's or we may collide
2834 * with power management.
2835 */
2836 mutex_lock(&gp->pm_mutex);
2837
2838 spin_lock_irqsave(&gp->lock, flags);
2839 gem_get_cell(gp);
2840 spin_unlock_irqrestore(&gp->lock, flags);
2841
2842 switch (cmd) {
2843 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2844 data->phy_id = gp->mii_phy_addr;
2845 /* Fallthrough... */
2846
2847 case SIOCGMIIREG: /* Read MII PHY register. */
2848 if (!gp->running)
2849 rc = -EAGAIN;
2850 else {
2851 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2852 data->reg_num & 0x1f);
2853 rc = 0;
2854 }
2855 break;
2856
2857 case SIOCSMIIREG: /* Write MII PHY register. */
2858 if (!gp->running)
2859 rc = -EAGAIN;
2860 else {
2861 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2862 data->val_in);
2863 rc = 0;
2864 }
2865 break;
2866 };
2867
2868 spin_lock_irqsave(&gp->lock, flags);
2869 gem_put_cell(gp);
2870 spin_unlock_irqrestore(&gp->lock, flags);
2871
2872 mutex_unlock(&gp->pm_mutex);
2873
2874 return rc;
2875 }
2876
2877 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2878 /* Fetch MAC address from vital product data of PCI ROM. */
2879 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2880 {
2881 int this_offset;
2882
2883 for (this_offset = 0x20; this_offset < len; this_offset++) {
2884 void __iomem *p = rom_base + this_offset;
2885 int i;
2886
2887 if (readb(p + 0) != 0x90 ||
2888 readb(p + 1) != 0x00 ||
2889 readb(p + 2) != 0x09 ||
2890 readb(p + 3) != 0x4e ||
2891 readb(p + 4) != 0x41 ||
2892 readb(p + 5) != 0x06)
2893 continue;
2894
2895 this_offset += 6;
2896 p += 6;
2897
2898 for (i = 0; i < 6; i++)
2899 dev_addr[i] = readb(p + i);
2900 return 1;
2901 }
2902 return 0;
2903 }
2904
2905 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2906 {
2907 size_t size;
2908 void __iomem *p = pci_map_rom(pdev, &size);
2909
2910 if (p) {
2911 int found;
2912
2913 found = readb(p) == 0x55 &&
2914 readb(p + 1) == 0xaa &&
2915 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2916 pci_unmap_rom(pdev, p);
2917 if (found)
2918 return;
2919 }
2920
2921 /* Sun MAC prefix then 3 random bytes. */
2922 dev_addr[0] = 0x08;
2923 dev_addr[1] = 0x00;
2924 dev_addr[2] = 0x20;
2925 get_random_bytes(dev_addr + 3, 3);
2926 return;
2927 }
2928 #endif /* not Sparc and not PPC */
2929
2930 static int __devinit gem_get_device_address(struct gem *gp)
2931 {
2932 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2933 struct net_device *dev = gp->dev;
2934 const unsigned char *addr;
2935
2936 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2937 if (addr == NULL) {
2938 #ifdef CONFIG_SPARC
2939 addr = idprom->id_ethaddr;
2940 #else
2941 printk("\n");
2942 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2943 return -1;
2944 #endif
2945 }
2946 memcpy(dev->dev_addr, addr, 6);
2947 #else
2948 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2949 #endif
2950 return 0;
2951 }
2952
2953 static void gem_remove_one(struct pci_dev *pdev)
2954 {
2955 struct net_device *dev = pci_get_drvdata(pdev);
2956
2957 if (dev) {
2958 struct gem *gp = netdev_priv(dev);
2959
2960 unregister_netdev(dev);
2961
2962 /* Stop the link timer */
2963 del_timer_sync(&gp->link_timer);
2964
2965 /* We shouldn't need any locking here */
2966 gem_get_cell(gp);
2967
2968 /* Wait for a pending reset task to complete */
2969 while (gp->reset_task_pending)
2970 yield();
2971 flush_scheduled_work();
2972
2973 /* Shut the PHY down */
2974 gem_stop_phy(gp, 0);
2975
2976 gem_put_cell(gp);
2977
2978 /* Make sure bus master is disabled */
2979 pci_disable_device(gp->pdev);
2980
2981 /* Free resources */
2982 pci_free_consistent(pdev,
2983 sizeof(struct gem_init_block),
2984 gp->init_block,
2985 gp->gblock_dvma);
2986 iounmap(gp->regs);
2987 pci_release_regions(pdev);
2988 free_netdev(dev);
2989
2990 pci_set_drvdata(pdev, NULL);
2991 }
2992 }
2993
2994 static const struct net_device_ops gem_netdev_ops = {
2995 .ndo_open = gem_open,
2996 .ndo_stop = gem_close,
2997 .ndo_start_xmit = gem_start_xmit,
2998 .ndo_get_stats = gem_get_stats,
2999 .ndo_set_multicast_list = gem_set_multicast,
3000 .ndo_do_ioctl = gem_ioctl,
3001 .ndo_tx_timeout = gem_tx_timeout,
3002 .ndo_change_mtu = gem_change_mtu,
3003 .ndo_validate_addr = eth_validate_addr,
3004 .ndo_set_mac_address = gem_set_mac_address,
3005 #ifdef CONFIG_NET_POLL_CONTROLLER
3006 .ndo_poll_controller = gem_poll_controller,
3007 #endif
3008 };
3009
3010 static int __devinit gem_init_one(struct pci_dev *pdev,
3011 const struct pci_device_id *ent)
3012 {
3013 static int gem_version_printed = 0;
3014 unsigned long gemreg_base, gemreg_len;
3015 struct net_device *dev;
3016 struct gem *gp;
3017 int err, pci_using_dac;
3018
3019 if (gem_version_printed++ == 0)
3020 printk(KERN_INFO "%s", version);
3021
3022 /* Apple gmac note: during probe, the chip is powered up by
3023 * the arch code to allow the code below to work (and to let
3024 * the chip be probed on the config space. It won't stay powered
3025 * up until the interface is brought up however, so we can't rely
3026 * on register configuration done at this point.
3027 */
3028 err = pci_enable_device(pdev);
3029 if (err) {
3030 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
3031 "aborting.\n");
3032 return err;
3033 }
3034 pci_set_master(pdev);
3035
3036 /* Configure DMA attributes. */
3037
3038 /* All of the GEM documentation states that 64-bit DMA addressing
3039 * is fully supported and should work just fine. However the
3040 * front end for RIO based GEMs is different and only supports
3041 * 32-bit addressing.
3042 *
3043 * For now we assume the various PPC GEMs are 32-bit only as well.
3044 */
3045 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
3046 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
3047 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3048 pci_using_dac = 1;
3049 } else {
3050 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3051 if (err) {
3052 printk(KERN_ERR PFX "No usable DMA configuration, "
3053 "aborting.\n");
3054 goto err_disable_device;
3055 }
3056 pci_using_dac = 0;
3057 }
3058
3059 gemreg_base = pci_resource_start(pdev, 0);
3060 gemreg_len = pci_resource_len(pdev, 0);
3061
3062 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3063 printk(KERN_ERR PFX "Cannot find proper PCI device "
3064 "base address, aborting.\n");
3065 err = -ENODEV;
3066 goto err_disable_device;
3067 }
3068
3069 dev = alloc_etherdev(sizeof(*gp));
3070 if (!dev) {
3071 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3072 err = -ENOMEM;
3073 goto err_disable_device;
3074 }
3075 SET_NETDEV_DEV(dev, &pdev->dev);
3076
3077 gp = netdev_priv(dev);
3078
3079 err = pci_request_regions(pdev, DRV_NAME);
3080 if (err) {
3081 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3082 "aborting.\n");
3083 goto err_out_free_netdev;
3084 }
3085
3086 gp->pdev = pdev;
3087 dev->base_addr = (long) pdev;
3088 gp->dev = dev;
3089
3090 gp->msg_enable = DEFAULT_MSG;
3091
3092 spin_lock_init(&gp->lock);
3093 spin_lock_init(&gp->tx_lock);
3094 mutex_init(&gp->pm_mutex);
3095
3096 init_timer(&gp->link_timer);
3097 gp->link_timer.function = gem_link_timer;
3098 gp->link_timer.data = (unsigned long) gp;
3099
3100 INIT_WORK(&gp->reset_task, gem_reset_task);
3101
3102 gp->lstate = link_down;
3103 gp->timer_ticks = 0;
3104 netif_carrier_off(dev);
3105
3106 gp->regs = ioremap(gemreg_base, gemreg_len);
3107 if (!gp->regs) {
3108 printk(KERN_ERR PFX "Cannot map device registers, "
3109 "aborting.\n");
3110 err = -EIO;
3111 goto err_out_free_res;
3112 }
3113
3114 /* On Apple, we want a reference to the Open Firmware device-tree
3115 * node. We use it for clock control.
3116 */
3117 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3118 gp->of_node = pci_device_to_OF_node(pdev);
3119 #endif
3120
3121 /* Only Apple version supports WOL afaik */
3122 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3123 gp->has_wol = 1;
3124
3125 /* Make sure cell is enabled */
3126 gem_get_cell(gp);
3127
3128 /* Make sure everything is stopped and in init state */
3129 gem_reset(gp);
3130
3131 /* Fill up the mii_phy structure (even if we won't use it) */
3132 gp->phy_mii.dev = dev;
3133 gp->phy_mii.mdio_read = _phy_read;
3134 gp->phy_mii.mdio_write = _phy_write;
3135 #ifdef CONFIG_PPC_PMAC
3136 gp->phy_mii.platform_data = gp->of_node;
3137 #endif
3138 /* By default, we start with autoneg */
3139 gp->want_autoneg = 1;
3140
3141 /* Check fifo sizes, PHY type, etc... */
3142 if (gem_check_invariants(gp)) {
3143 err = -ENODEV;
3144 goto err_out_iounmap;
3145 }
3146
3147 /* It is guaranteed that the returned buffer will be at least
3148 * PAGE_SIZE aligned.
3149 */
3150 gp->init_block = (struct gem_init_block *)
3151 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3152 &gp->gblock_dvma);
3153 if (!gp->init_block) {
3154 printk(KERN_ERR PFX "Cannot allocate init block, "
3155 "aborting.\n");
3156 err = -ENOMEM;
3157 goto err_out_iounmap;
3158 }
3159
3160 if (gem_get_device_address(gp))
3161 goto err_out_free_consistent;
3162
3163 dev->netdev_ops = &gem_netdev_ops;
3164 netif_napi_add(dev, &gp->napi, gem_poll, 64);
3165 dev->ethtool_ops = &gem_ethtool_ops;
3166 dev->watchdog_timeo = 5 * HZ;
3167 dev->irq = pdev->irq;
3168 dev->dma = 0;
3169
3170 /* Set that now, in case PM kicks in now */
3171 pci_set_drvdata(pdev, dev);
3172
3173 /* Detect & init PHY, start autoneg, we release the cell now
3174 * too, it will be managed by whoever needs it
3175 */
3176 gem_init_phy(gp);
3177
3178 spin_lock_irq(&gp->lock);
3179 gem_put_cell(gp);
3180 spin_unlock_irq(&gp->lock);
3181
3182 /* Register with kernel */
3183 if (register_netdev(dev)) {
3184 printk(KERN_ERR PFX "Cannot register net device, "
3185 "aborting.\n");
3186 err = -ENOMEM;
3187 goto err_out_free_consistent;
3188 }
3189
3190 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3191 dev->name, dev->dev_addr);
3192
3193 if (gp->phy_type == phy_mii_mdio0 ||
3194 gp->phy_type == phy_mii_mdio1)
3195 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3196 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3197
3198 /* GEM can do it all... */
3199 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3200 if (pci_using_dac)
3201 dev->features |= NETIF_F_HIGHDMA;
3202
3203 return 0;
3204
3205 err_out_free_consistent:
3206 gem_remove_one(pdev);
3207 err_out_iounmap:
3208 gem_put_cell(gp);
3209 iounmap(gp->regs);
3210
3211 err_out_free_res:
3212 pci_release_regions(pdev);
3213
3214 err_out_free_netdev:
3215 free_netdev(dev);
3216 err_disable_device:
3217 pci_disable_device(pdev);
3218 return err;
3219
3220 }
3221
3222
3223 static struct pci_driver gem_driver = {
3224 .name = GEM_MODULE_NAME,
3225 .id_table = gem_pci_tbl,
3226 .probe = gem_init_one,
3227 .remove = gem_remove_one,
3228 #ifdef CONFIG_PM
3229 .suspend = gem_suspend,
3230 .resume = gem_resume,
3231 #endif /* CONFIG_PM */
3232 };
3233
3234 static int __init gem_init(void)
3235 {
3236 return pci_register_driver(&gem_driver);
3237 }
3238
3239 static void __exit gem_cleanup(void)
3240 {
3241 pci_unregister_driver(&gem_driver);
3242 }
3243
3244 module_init(gem_init);
3245 module_exit(gem_cleanup);