]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/sungem_phy.c
Merge tag 'efi-urgent-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / sungem_phy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PHY drivers for the sungem ethernet driver.
4 *
5 * This file could be shared with other drivers.
6 *
7 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 *
9 * TODO:
10 * - Add support for PHYs that provide an IRQ line
11 * - Eventually moved the entire polling state machine in
12 * there (out of the eth driver), so that it can easily be
13 * skipped on PHYs that implement it in hardware.
14 * - On LXT971 & BCM5201, Apple uses some chip specific regs
15 * to read the link status. Figure out why and if it makes
16 * sense to do the same (magic aneg ?)
17 * - Apple has some additional power management code for some
18 * Broadcom PHYs that they "hide" from the OpenSource version
19 * of darwin, still need to reverse engineer that
20 */
21
22
23 #include <linux/module.h>
24
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/delay.h>
32
33 #ifdef CONFIG_PPC_PMAC
34 #include <asm/prom.h>
35 #endif
36
37 #include <linux/sungem_phy.h>
38
39 /* Link modes of the BCM5400 PHY */
40 static const int phy_BCM5400_link_table[8][3] = {
41 { 0, 0, 0 }, /* No link */
42 { 0, 0, 0 }, /* 10BT Half Duplex */
43 { 1, 0, 0 }, /* 10BT Full Duplex */
44 { 0, 1, 0 }, /* 100BT Half Duplex */
45 { 0, 1, 0 }, /* 100BT Half Duplex */
46 { 1, 1, 0 }, /* 100BT Full Duplex*/
47 { 1, 0, 1 }, /* 1000BT */
48 { 1, 0, 1 }, /* 1000BT */
49 };
50
51 static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
52 {
53 return phy->mdio_read(phy->dev, id, reg);
54 }
55
56 static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
57 {
58 phy->mdio_write(phy->dev, id, reg, val);
59 }
60
61 static inline int sungem_phy_read(struct mii_phy* phy, int reg)
62 {
63 return phy->mdio_read(phy->dev, phy->mii_id, reg);
64 }
65
66 static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
67 {
68 phy->mdio_write(phy->dev, phy->mii_id, reg, val);
69 }
70
71 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
72 {
73 u16 val;
74 int limit = 10000;
75
76 val = __sungem_phy_read(phy, phy_id, MII_BMCR);
77 val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
78 val |= BMCR_RESET;
79 __sungem_phy_write(phy, phy_id, MII_BMCR, val);
80
81 udelay(100);
82
83 while (--limit) {
84 val = __sungem_phy_read(phy, phy_id, MII_BMCR);
85 if ((val & BMCR_RESET) == 0)
86 break;
87 udelay(10);
88 }
89 if ((val & BMCR_ISOLATE) && limit > 0)
90 __sungem_phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
91
92 return limit <= 0;
93 }
94
95 static int bcm5201_init(struct mii_phy* phy)
96 {
97 u16 data;
98
99 data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
100 data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
101 sungem_phy_write(phy, MII_BCM5201_MULTIPHY, data);
102
103 sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
104
105 return 0;
106 }
107
108 static int bcm5201_suspend(struct mii_phy* phy)
109 {
110 sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
111 sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
112
113 return 0;
114 }
115
116 static int bcm5221_init(struct mii_phy* phy)
117 {
118 u16 data;
119
120 data = sungem_phy_read(phy, MII_BCM5221_TEST);
121 sungem_phy_write(phy, MII_BCM5221_TEST,
122 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
123
124 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
125 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
126 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
127
128 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
129 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
130 data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
131
132 data = sungem_phy_read(phy, MII_BCM5221_TEST);
133 sungem_phy_write(phy, MII_BCM5221_TEST,
134 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
135
136 return 0;
137 }
138
139 static int bcm5221_suspend(struct mii_phy* phy)
140 {
141 u16 data;
142
143 data = sungem_phy_read(phy, MII_BCM5221_TEST);
144 sungem_phy_write(phy, MII_BCM5221_TEST,
145 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
146
147 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
148 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
149 data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
150
151 return 0;
152 }
153
154 static int bcm5241_init(struct mii_phy* phy)
155 {
156 u16 data;
157
158 data = sungem_phy_read(phy, MII_BCM5221_TEST);
159 sungem_phy_write(phy, MII_BCM5221_TEST,
160 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
161
162 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
163 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
164 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
165
166 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
167 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
168 data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
169
170 data = sungem_phy_read(phy, MII_BCM5221_TEST);
171 sungem_phy_write(phy, MII_BCM5221_TEST,
172 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
173
174 return 0;
175 }
176
177 static int bcm5241_suspend(struct mii_phy* phy)
178 {
179 u16 data;
180
181 data = sungem_phy_read(phy, MII_BCM5221_TEST);
182 sungem_phy_write(phy, MII_BCM5221_TEST,
183 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
184
185 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
186 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
187 data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
188
189 return 0;
190 }
191
192 static int bcm5400_init(struct mii_phy* phy)
193 {
194 u16 data;
195
196 /* Configure for gigabit full duplex */
197 data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
198 data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
199 sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
200
201 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
202 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
203 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
204
205 udelay(100);
206
207 /* Reset and configure cascaded 10/100 PHY */
208 (void)reset_one_mii_phy(phy, 0x1f);
209
210 data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
211 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
212 __sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
213
214 data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
215 data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
216 sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
217
218 return 0;
219 }
220
221 static int bcm5400_suspend(struct mii_phy* phy)
222 {
223 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
224 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
225 #endif
226 return 0;
227 }
228
229 static int bcm5401_init(struct mii_phy* phy)
230 {
231 u16 data;
232 int rev;
233
234 rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
235 if (rev == 0 || rev == 3) {
236 /* Some revisions of 5401 appear to need this
237 * initialisation sequence to disable, according
238 * to OF, "tap power management"
239 *
240 * WARNING ! OF and Darwin don't agree on the
241 * register addresses. OF seem to interpret the
242 * register numbers below as decimal
243 *
244 * Note: This should (and does) match tg3_init_5401phy_dsp
245 * in the tg3.c driver. -DaveM
246 */
247 sungem_phy_write(phy, 0x18, 0x0c20);
248 sungem_phy_write(phy, 0x17, 0x0012);
249 sungem_phy_write(phy, 0x15, 0x1804);
250 sungem_phy_write(phy, 0x17, 0x0013);
251 sungem_phy_write(phy, 0x15, 0x1204);
252 sungem_phy_write(phy, 0x17, 0x8006);
253 sungem_phy_write(phy, 0x15, 0x0132);
254 sungem_phy_write(phy, 0x17, 0x8006);
255 sungem_phy_write(phy, 0x15, 0x0232);
256 sungem_phy_write(phy, 0x17, 0x201f);
257 sungem_phy_write(phy, 0x15, 0x0a20);
258 }
259
260 /* Configure for gigabit full duplex */
261 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
262 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
263 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
264
265 udelay(10);
266
267 /* Reset and configure cascaded 10/100 PHY */
268 (void)reset_one_mii_phy(phy, 0x1f);
269
270 data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
271 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
272 __sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
273
274 return 0;
275 }
276
277 static int bcm5401_suspend(struct mii_phy* phy)
278 {
279 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
280 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
281 #endif
282 return 0;
283 }
284
285 static int bcm5411_init(struct mii_phy* phy)
286 {
287 u16 data;
288
289 /* Here's some more Apple black magic to setup
290 * some voltage stuffs.
291 */
292 sungem_phy_write(phy, 0x1c, 0x8c23);
293 sungem_phy_write(phy, 0x1c, 0x8ca3);
294 sungem_phy_write(phy, 0x1c, 0x8c23);
295
296 /* Here, Apple seems to want to reset it, do
297 * it as well
298 */
299 sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
300 sungem_phy_write(phy, MII_BMCR, 0x1340);
301
302 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
303 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
304 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
305
306 udelay(10);
307
308 /* Reset and configure cascaded 10/100 PHY */
309 (void)reset_one_mii_phy(phy, 0x1f);
310
311 return 0;
312 }
313
314 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
315 {
316 u16 ctl, adv;
317
318 phy->autoneg = 1;
319 phy->speed = SPEED_10;
320 phy->duplex = DUPLEX_HALF;
321 phy->pause = 0;
322 phy->advertising = advertise;
323
324 /* Setup standard advertise */
325 adv = sungem_phy_read(phy, MII_ADVERTISE);
326 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
327 if (advertise & ADVERTISED_10baseT_Half)
328 adv |= ADVERTISE_10HALF;
329 if (advertise & ADVERTISED_10baseT_Full)
330 adv |= ADVERTISE_10FULL;
331 if (advertise & ADVERTISED_100baseT_Half)
332 adv |= ADVERTISE_100HALF;
333 if (advertise & ADVERTISED_100baseT_Full)
334 adv |= ADVERTISE_100FULL;
335 sungem_phy_write(phy, MII_ADVERTISE, adv);
336
337 /* Start/Restart aneg */
338 ctl = sungem_phy_read(phy, MII_BMCR);
339 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
340 sungem_phy_write(phy, MII_BMCR, ctl);
341
342 return 0;
343 }
344
345 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
346 {
347 u16 ctl;
348
349 phy->autoneg = 0;
350 phy->speed = speed;
351 phy->duplex = fd;
352 phy->pause = 0;
353
354 ctl = sungem_phy_read(phy, MII_BMCR);
355 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
356
357 /* First reset the PHY */
358 sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
359
360 /* Select speed & duplex */
361 switch(speed) {
362 case SPEED_10:
363 break;
364 case SPEED_100:
365 ctl |= BMCR_SPEED100;
366 break;
367 case SPEED_1000:
368 default:
369 return -EINVAL;
370 }
371 if (fd == DUPLEX_FULL)
372 ctl |= BMCR_FULLDPLX;
373 sungem_phy_write(phy, MII_BMCR, ctl);
374
375 return 0;
376 }
377
378 static int genmii_poll_link(struct mii_phy *phy)
379 {
380 u16 status;
381
382 (void)sungem_phy_read(phy, MII_BMSR);
383 status = sungem_phy_read(phy, MII_BMSR);
384 if ((status & BMSR_LSTATUS) == 0)
385 return 0;
386 if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
387 return 0;
388 return 1;
389 }
390
391 static int genmii_read_link(struct mii_phy *phy)
392 {
393 u16 lpa;
394
395 if (phy->autoneg) {
396 lpa = sungem_phy_read(phy, MII_LPA);
397
398 if (lpa & (LPA_10FULL | LPA_100FULL))
399 phy->duplex = DUPLEX_FULL;
400 else
401 phy->duplex = DUPLEX_HALF;
402 if (lpa & (LPA_100FULL | LPA_100HALF))
403 phy->speed = SPEED_100;
404 else
405 phy->speed = SPEED_10;
406 phy->pause = 0;
407 }
408 /* On non-aneg, we assume what we put in BMCR is the speed,
409 * though magic-aneg shouldn't prevent this case from occurring
410 */
411
412 return 0;
413 }
414
415 static int generic_suspend(struct mii_phy* phy)
416 {
417 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
418
419 return 0;
420 }
421
422 static int bcm5421_init(struct mii_phy* phy)
423 {
424 u16 data;
425 unsigned int id;
426
427 id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
428
429 /* Revision 0 of 5421 needs some fixups */
430 if (id == 0x002060e0) {
431 /* This is borrowed from MacOS
432 */
433 sungem_phy_write(phy, 0x18, 0x1007);
434 data = sungem_phy_read(phy, 0x18);
435 sungem_phy_write(phy, 0x18, data | 0x0400);
436 sungem_phy_write(phy, 0x18, 0x0007);
437 data = sungem_phy_read(phy, 0x18);
438 sungem_phy_write(phy, 0x18, data | 0x0800);
439 sungem_phy_write(phy, 0x17, 0x000a);
440 data = sungem_phy_read(phy, 0x15);
441 sungem_phy_write(phy, 0x15, data | 0x0200);
442 }
443
444 /* Pick up some init code from OF for K2 version */
445 if ((id & 0xfffffff0) == 0x002062e0) {
446 sungem_phy_write(phy, 4, 0x01e1);
447 sungem_phy_write(phy, 9, 0x0300);
448 }
449
450 /* Check if we can enable automatic low power */
451 #ifdef CONFIG_PPC_PMAC
452 if (phy->platform_data) {
453 struct device_node *np = of_get_parent(phy->platform_data);
454 int can_low_power = 1;
455 if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
456 can_low_power = 0;
457 if (can_low_power) {
458 /* Enable automatic low-power */
459 sungem_phy_write(phy, 0x1c, 0x9002);
460 sungem_phy_write(phy, 0x1c, 0xa821);
461 sungem_phy_write(phy, 0x1c, 0x941d);
462 }
463 }
464 #endif /* CONFIG_PPC_PMAC */
465
466 return 0;
467 }
468
469 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
470 {
471 u16 ctl, adv;
472
473 phy->autoneg = 1;
474 phy->speed = SPEED_10;
475 phy->duplex = DUPLEX_HALF;
476 phy->pause = 0;
477 phy->advertising = advertise;
478
479 /* Setup standard advertise */
480 adv = sungem_phy_read(phy, MII_ADVERTISE);
481 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
482 if (advertise & ADVERTISED_10baseT_Half)
483 adv |= ADVERTISE_10HALF;
484 if (advertise & ADVERTISED_10baseT_Full)
485 adv |= ADVERTISE_10FULL;
486 if (advertise & ADVERTISED_100baseT_Half)
487 adv |= ADVERTISE_100HALF;
488 if (advertise & ADVERTISED_100baseT_Full)
489 adv |= ADVERTISE_100FULL;
490 if (advertise & ADVERTISED_Pause)
491 adv |= ADVERTISE_PAUSE_CAP;
492 if (advertise & ADVERTISED_Asym_Pause)
493 adv |= ADVERTISE_PAUSE_ASYM;
494 sungem_phy_write(phy, MII_ADVERTISE, adv);
495
496 /* Setup 1000BT advertise */
497 adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
498 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
499 if (advertise & SUPPORTED_1000baseT_Half)
500 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
501 if (advertise & SUPPORTED_1000baseT_Full)
502 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
503 sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
504
505 /* Start/Restart aneg */
506 ctl = sungem_phy_read(phy, MII_BMCR);
507 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
508 sungem_phy_write(phy, MII_BMCR, ctl);
509
510 return 0;
511 }
512
513 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
514 {
515 u16 ctl;
516
517 phy->autoneg = 0;
518 phy->speed = speed;
519 phy->duplex = fd;
520 phy->pause = 0;
521
522 ctl = sungem_phy_read(phy, MII_BMCR);
523 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
524
525 /* First reset the PHY */
526 sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
527
528 /* Select speed & duplex */
529 switch(speed) {
530 case SPEED_10:
531 break;
532 case SPEED_100:
533 ctl |= BMCR_SPEED100;
534 break;
535 case SPEED_1000:
536 ctl |= BMCR_SPD2;
537 }
538 if (fd == DUPLEX_FULL)
539 ctl |= BMCR_FULLDPLX;
540
541 // XXX Should we set the sungem to GII now on 1000BT ?
542
543 sungem_phy_write(phy, MII_BMCR, ctl);
544
545 return 0;
546 }
547
548 static int bcm54xx_read_link(struct mii_phy *phy)
549 {
550 int link_mode;
551 u16 val;
552
553 if (phy->autoneg) {
554 val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
555 link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
556 MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
557 phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
558 DUPLEX_FULL : DUPLEX_HALF;
559 phy->speed = phy_BCM5400_link_table[link_mode][2] ?
560 SPEED_1000 :
561 (phy_BCM5400_link_table[link_mode][1] ?
562 SPEED_100 : SPEED_10);
563 val = sungem_phy_read(phy, MII_LPA);
564 phy->pause = (phy->duplex == DUPLEX_FULL) &&
565 ((val & LPA_PAUSE) != 0);
566 }
567 /* On non-aneg, we assume what we put in BMCR is the speed,
568 * though magic-aneg shouldn't prevent this case from occurring
569 */
570
571 return 0;
572 }
573
574 static int marvell88e1111_init(struct mii_phy* phy)
575 {
576 u16 rev;
577
578 /* magic init sequence for rev 0 */
579 rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
580 if (rev == 0) {
581 sungem_phy_write(phy, 0x1d, 0x000a);
582 sungem_phy_write(phy, 0x1e, 0x0821);
583
584 sungem_phy_write(phy, 0x1d, 0x0006);
585 sungem_phy_write(phy, 0x1e, 0x8600);
586
587 sungem_phy_write(phy, 0x1d, 0x000b);
588 sungem_phy_write(phy, 0x1e, 0x0100);
589
590 sungem_phy_write(phy, 0x1d, 0x0004);
591 sungem_phy_write(phy, 0x1e, 0x4850);
592 }
593 return 0;
594 }
595
596 #define BCM5421_MODE_MASK (1 << 5)
597
598 static int bcm5421_poll_link(struct mii_phy* phy)
599 {
600 u32 phy_reg;
601 int mode;
602
603 /* find out in what mode we are */
604 sungem_phy_write(phy, MII_NCONFIG, 0x1000);
605 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
606
607 mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
608
609 if ( mode == BCM54XX_COPPER)
610 return genmii_poll_link(phy);
611
612 /* try to find out whether we have a link */
613 sungem_phy_write(phy, MII_NCONFIG, 0x2000);
614 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
615
616 if (phy_reg & 0x0020)
617 return 0;
618 else
619 return 1;
620 }
621
622 static int bcm5421_read_link(struct mii_phy* phy)
623 {
624 u32 phy_reg;
625 int mode;
626
627 /* find out in what mode we are */
628 sungem_phy_write(phy, MII_NCONFIG, 0x1000);
629 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
630
631 mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
632
633 if ( mode == BCM54XX_COPPER)
634 return bcm54xx_read_link(phy);
635
636 phy->speed = SPEED_1000;
637
638 /* find out whether we are running half- or full duplex */
639 sungem_phy_write(phy, MII_NCONFIG, 0x2000);
640 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
641
642 if ( (phy_reg & 0x0080) >> 7)
643 phy->duplex |= DUPLEX_HALF;
644 else
645 phy->duplex |= DUPLEX_FULL;
646
647 return 0;
648 }
649
650 static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
651 {
652 /* enable fiber mode */
653 sungem_phy_write(phy, MII_NCONFIG, 0x9020);
654 /* LEDs active in both modes, autosense prio = fiber */
655 sungem_phy_write(phy, MII_NCONFIG, 0x945f);
656
657 if (!autoneg) {
658 /* switch off fibre autoneg */
659 sungem_phy_write(phy, MII_NCONFIG, 0xfc01);
660 sungem_phy_write(phy, 0x0b, 0x0004);
661 }
662
663 phy->autoneg = autoneg;
664
665 return 0;
666 }
667
668 #define BCM5461_FIBER_LINK (1 << 2)
669 #define BCM5461_MODE_MASK (3 << 1)
670
671 static int bcm5461_poll_link(struct mii_phy* phy)
672 {
673 u32 phy_reg;
674 int mode;
675
676 /* find out in what mode we are */
677 sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
678 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
679
680 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
681
682 if ( mode == BCM54XX_COPPER)
683 return genmii_poll_link(phy);
684
685 /* find out whether we have a link */
686 sungem_phy_write(phy, MII_NCONFIG, 0x7000);
687 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
688
689 if (phy_reg & BCM5461_FIBER_LINK)
690 return 1;
691 else
692 return 0;
693 }
694
695 #define BCM5461_FIBER_DUPLEX (1 << 3)
696
697 static int bcm5461_read_link(struct mii_phy* phy)
698 {
699 u32 phy_reg;
700 int mode;
701
702 /* find out in what mode we are */
703 sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
704 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
705
706 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
707
708 if ( mode == BCM54XX_COPPER) {
709 return bcm54xx_read_link(phy);
710 }
711
712 phy->speed = SPEED_1000;
713
714 /* find out whether we are running half- or full duplex */
715 sungem_phy_write(phy, MII_NCONFIG, 0x7000);
716 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
717
718 if (phy_reg & BCM5461_FIBER_DUPLEX)
719 phy->duplex |= DUPLEX_FULL;
720 else
721 phy->duplex |= DUPLEX_HALF;
722
723 return 0;
724 }
725
726 static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
727 {
728 /* select fiber mode, enable 1000 base-X registers */
729 sungem_phy_write(phy, MII_NCONFIG, 0xfc0b);
730
731 if (autoneg) {
732 /* enable fiber with no autonegotiation */
733 sungem_phy_write(phy, MII_ADVERTISE, 0x01e0);
734 sungem_phy_write(phy, MII_BMCR, 0x1140);
735 } else {
736 /* enable fiber with autonegotiation */
737 sungem_phy_write(phy, MII_BMCR, 0x0140);
738 }
739
740 phy->autoneg = autoneg;
741
742 return 0;
743 }
744
745 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
746 {
747 u16 ctl, adv;
748
749 phy->autoneg = 1;
750 phy->speed = SPEED_10;
751 phy->duplex = DUPLEX_HALF;
752 phy->pause = 0;
753 phy->advertising = advertise;
754
755 /* Setup standard advertise */
756 adv = sungem_phy_read(phy, MII_ADVERTISE);
757 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
758 if (advertise & ADVERTISED_10baseT_Half)
759 adv |= ADVERTISE_10HALF;
760 if (advertise & ADVERTISED_10baseT_Full)
761 adv |= ADVERTISE_10FULL;
762 if (advertise & ADVERTISED_100baseT_Half)
763 adv |= ADVERTISE_100HALF;
764 if (advertise & ADVERTISED_100baseT_Full)
765 adv |= ADVERTISE_100FULL;
766 if (advertise & ADVERTISED_Pause)
767 adv |= ADVERTISE_PAUSE_CAP;
768 if (advertise & ADVERTISED_Asym_Pause)
769 adv |= ADVERTISE_PAUSE_ASYM;
770 sungem_phy_write(phy, MII_ADVERTISE, adv);
771
772 /* Setup 1000BT advertise & enable crossover detect
773 * XXX How do we advertise 1000BT ? Darwin source is
774 * confusing here, they read from specific control and
775 * write to control... Someone has specs for those
776 * beasts ?
777 */
778 adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
779 adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
780 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
781 MII_1000BASETCONTROL_HALFDUPLEXCAP);
782 if (advertise & SUPPORTED_1000baseT_Half)
783 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
784 if (advertise & SUPPORTED_1000baseT_Full)
785 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
786 sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
787
788 /* Start/Restart aneg */
789 ctl = sungem_phy_read(phy, MII_BMCR);
790 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
791 sungem_phy_write(phy, MII_BMCR, ctl);
792
793 return 0;
794 }
795
796 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
797 {
798 u16 ctl, ctl2;
799
800 phy->autoneg = 0;
801 phy->speed = speed;
802 phy->duplex = fd;
803 phy->pause = 0;
804
805 ctl = sungem_phy_read(phy, MII_BMCR);
806 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
807 ctl |= BMCR_RESET;
808
809 /* Select speed & duplex */
810 switch(speed) {
811 case SPEED_10:
812 break;
813 case SPEED_100:
814 ctl |= BMCR_SPEED100;
815 break;
816 /* I'm not sure about the one below, again, Darwin source is
817 * quite confusing and I lack chip specs
818 */
819 case SPEED_1000:
820 ctl |= BMCR_SPD2;
821 }
822 if (fd == DUPLEX_FULL)
823 ctl |= BMCR_FULLDPLX;
824
825 /* Disable crossover. Again, the way Apple does it is strange,
826 * though I don't assume they are wrong ;)
827 */
828 ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
829 ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
830 MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
831 MII_1000BASETCONTROL_FULLDUPLEXCAP |
832 MII_1000BASETCONTROL_HALFDUPLEXCAP);
833 if (speed == SPEED_1000)
834 ctl2 |= (fd == DUPLEX_FULL) ?
835 MII_1000BASETCONTROL_FULLDUPLEXCAP :
836 MII_1000BASETCONTROL_HALFDUPLEXCAP;
837 sungem_phy_write(phy, MII_1000BASETCONTROL, ctl2);
838
839 // XXX Should we set the sungem to GII now on 1000BT ?
840
841 sungem_phy_write(phy, MII_BMCR, ctl);
842
843 return 0;
844 }
845
846 static int marvell_read_link(struct mii_phy *phy)
847 {
848 u16 status, pmask;
849
850 if (phy->autoneg) {
851 status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
852 if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
853 return -EAGAIN;
854 if (status & MII_M1011_PHY_SPEC_STATUS_1000)
855 phy->speed = SPEED_1000;
856 else if (status & MII_M1011_PHY_SPEC_STATUS_100)
857 phy->speed = SPEED_100;
858 else
859 phy->speed = SPEED_10;
860 if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
861 phy->duplex = DUPLEX_FULL;
862 else
863 phy->duplex = DUPLEX_HALF;
864 pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
865 MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
866 phy->pause = (status & pmask) == pmask;
867 }
868 /* On non-aneg, we assume what we put in BMCR is the speed,
869 * though magic-aneg shouldn't prevent this case from occurring
870 */
871
872 return 0;
873 }
874
875 #define MII_BASIC_FEATURES \
876 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
877 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
878 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII | \
879 SUPPORTED_Pause)
880
881 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
882 * support for now as I'm not sure it's supported and Darwin doesn't do
883 * it neither. --BenH.
884 */
885 #define MII_GBIT_FEATURES \
886 (MII_BASIC_FEATURES | \
887 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
888
889 /* Broadcom BCM 5201 */
890 static const struct mii_phy_ops bcm5201_phy_ops = {
891 .init = bcm5201_init,
892 .suspend = bcm5201_suspend,
893 .setup_aneg = genmii_setup_aneg,
894 .setup_forced = genmii_setup_forced,
895 .poll_link = genmii_poll_link,
896 .read_link = genmii_read_link,
897 };
898
899 static struct mii_phy_def bcm5201_phy_def = {
900 .phy_id = 0x00406210,
901 .phy_id_mask = 0xfffffff0,
902 .name = "BCM5201",
903 .features = MII_BASIC_FEATURES,
904 .magic_aneg = 1,
905 .ops = &bcm5201_phy_ops
906 };
907
908 /* Broadcom BCM 5221 */
909 static const struct mii_phy_ops bcm5221_phy_ops = {
910 .suspend = bcm5221_suspend,
911 .init = bcm5221_init,
912 .setup_aneg = genmii_setup_aneg,
913 .setup_forced = genmii_setup_forced,
914 .poll_link = genmii_poll_link,
915 .read_link = genmii_read_link,
916 };
917
918 static struct mii_phy_def bcm5221_phy_def = {
919 .phy_id = 0x004061e0,
920 .phy_id_mask = 0xfffffff0,
921 .name = "BCM5221",
922 .features = MII_BASIC_FEATURES,
923 .magic_aneg = 1,
924 .ops = &bcm5221_phy_ops
925 };
926
927 /* Broadcom BCM 5241 */
928 static const struct mii_phy_ops bcm5241_phy_ops = {
929 .suspend = bcm5241_suspend,
930 .init = bcm5241_init,
931 .setup_aneg = genmii_setup_aneg,
932 .setup_forced = genmii_setup_forced,
933 .poll_link = genmii_poll_link,
934 .read_link = genmii_read_link,
935 };
936 static struct mii_phy_def bcm5241_phy_def = {
937 .phy_id = 0x0143bc30,
938 .phy_id_mask = 0xfffffff0,
939 .name = "BCM5241",
940 .features = MII_BASIC_FEATURES,
941 .magic_aneg = 1,
942 .ops = &bcm5241_phy_ops
943 };
944
945 /* Broadcom BCM 5400 */
946 static const struct mii_phy_ops bcm5400_phy_ops = {
947 .init = bcm5400_init,
948 .suspend = bcm5400_suspend,
949 .setup_aneg = bcm54xx_setup_aneg,
950 .setup_forced = bcm54xx_setup_forced,
951 .poll_link = genmii_poll_link,
952 .read_link = bcm54xx_read_link,
953 };
954
955 static struct mii_phy_def bcm5400_phy_def = {
956 .phy_id = 0x00206040,
957 .phy_id_mask = 0xfffffff0,
958 .name = "BCM5400",
959 .features = MII_GBIT_FEATURES,
960 .magic_aneg = 1,
961 .ops = &bcm5400_phy_ops
962 };
963
964 /* Broadcom BCM 5401 */
965 static const struct mii_phy_ops bcm5401_phy_ops = {
966 .init = bcm5401_init,
967 .suspend = bcm5401_suspend,
968 .setup_aneg = bcm54xx_setup_aneg,
969 .setup_forced = bcm54xx_setup_forced,
970 .poll_link = genmii_poll_link,
971 .read_link = bcm54xx_read_link,
972 };
973
974 static struct mii_phy_def bcm5401_phy_def = {
975 .phy_id = 0x00206050,
976 .phy_id_mask = 0xfffffff0,
977 .name = "BCM5401",
978 .features = MII_GBIT_FEATURES,
979 .magic_aneg = 1,
980 .ops = &bcm5401_phy_ops
981 };
982
983 /* Broadcom BCM 5411 */
984 static const struct mii_phy_ops bcm5411_phy_ops = {
985 .init = bcm5411_init,
986 .suspend = generic_suspend,
987 .setup_aneg = bcm54xx_setup_aneg,
988 .setup_forced = bcm54xx_setup_forced,
989 .poll_link = genmii_poll_link,
990 .read_link = bcm54xx_read_link,
991 };
992
993 static struct mii_phy_def bcm5411_phy_def = {
994 .phy_id = 0x00206070,
995 .phy_id_mask = 0xfffffff0,
996 .name = "BCM5411",
997 .features = MII_GBIT_FEATURES,
998 .magic_aneg = 1,
999 .ops = &bcm5411_phy_ops
1000 };
1001
1002 /* Broadcom BCM 5421 */
1003 static const struct mii_phy_ops bcm5421_phy_ops = {
1004 .init = bcm5421_init,
1005 .suspend = generic_suspend,
1006 .setup_aneg = bcm54xx_setup_aneg,
1007 .setup_forced = bcm54xx_setup_forced,
1008 .poll_link = bcm5421_poll_link,
1009 .read_link = bcm5421_read_link,
1010 .enable_fiber = bcm5421_enable_fiber,
1011 };
1012
1013 static struct mii_phy_def bcm5421_phy_def = {
1014 .phy_id = 0x002060e0,
1015 .phy_id_mask = 0xfffffff0,
1016 .name = "BCM5421",
1017 .features = MII_GBIT_FEATURES,
1018 .magic_aneg = 1,
1019 .ops = &bcm5421_phy_ops
1020 };
1021
1022 /* Broadcom BCM 5421 built-in K2 */
1023 static const struct mii_phy_ops bcm5421k2_phy_ops = {
1024 .init = bcm5421_init,
1025 .suspend = generic_suspend,
1026 .setup_aneg = bcm54xx_setup_aneg,
1027 .setup_forced = bcm54xx_setup_forced,
1028 .poll_link = genmii_poll_link,
1029 .read_link = bcm54xx_read_link,
1030 };
1031
1032 static struct mii_phy_def bcm5421k2_phy_def = {
1033 .phy_id = 0x002062e0,
1034 .phy_id_mask = 0xfffffff0,
1035 .name = "BCM5421-K2",
1036 .features = MII_GBIT_FEATURES,
1037 .magic_aneg = 1,
1038 .ops = &bcm5421k2_phy_ops
1039 };
1040
1041 static const struct mii_phy_ops bcm5461_phy_ops = {
1042 .init = bcm5421_init,
1043 .suspend = generic_suspend,
1044 .setup_aneg = bcm54xx_setup_aneg,
1045 .setup_forced = bcm54xx_setup_forced,
1046 .poll_link = bcm5461_poll_link,
1047 .read_link = bcm5461_read_link,
1048 .enable_fiber = bcm5461_enable_fiber,
1049 };
1050
1051 static struct mii_phy_def bcm5461_phy_def = {
1052 .phy_id = 0x002060c0,
1053 .phy_id_mask = 0xfffffff0,
1054 .name = "BCM5461",
1055 .features = MII_GBIT_FEATURES,
1056 .magic_aneg = 1,
1057 .ops = &bcm5461_phy_ops
1058 };
1059
1060 /* Broadcom BCM 5462 built-in Vesta */
1061 static const struct mii_phy_ops bcm5462V_phy_ops = {
1062 .init = bcm5421_init,
1063 .suspend = generic_suspend,
1064 .setup_aneg = bcm54xx_setup_aneg,
1065 .setup_forced = bcm54xx_setup_forced,
1066 .poll_link = genmii_poll_link,
1067 .read_link = bcm54xx_read_link,
1068 };
1069
1070 static struct mii_phy_def bcm5462V_phy_def = {
1071 .phy_id = 0x002060d0,
1072 .phy_id_mask = 0xfffffff0,
1073 .name = "BCM5462-Vesta",
1074 .features = MII_GBIT_FEATURES,
1075 .magic_aneg = 1,
1076 .ops = &bcm5462V_phy_ops
1077 };
1078
1079 /* Marvell 88E1101 amd 88E1111 */
1080 static const struct mii_phy_ops marvell88e1101_phy_ops = {
1081 .suspend = generic_suspend,
1082 .setup_aneg = marvell_setup_aneg,
1083 .setup_forced = marvell_setup_forced,
1084 .poll_link = genmii_poll_link,
1085 .read_link = marvell_read_link
1086 };
1087
1088 static const struct mii_phy_ops marvell88e1111_phy_ops = {
1089 .init = marvell88e1111_init,
1090 .suspend = generic_suspend,
1091 .setup_aneg = marvell_setup_aneg,
1092 .setup_forced = marvell_setup_forced,
1093 .poll_link = genmii_poll_link,
1094 .read_link = marvell_read_link
1095 };
1096
1097 /* two revs in darwin for the 88e1101 ... I could use a datasheet
1098 * to get the proper names...
1099 */
1100 static struct mii_phy_def marvell88e1101v1_phy_def = {
1101 .phy_id = 0x01410c20,
1102 .phy_id_mask = 0xfffffff0,
1103 .name = "Marvell 88E1101v1",
1104 .features = MII_GBIT_FEATURES,
1105 .magic_aneg = 1,
1106 .ops = &marvell88e1101_phy_ops
1107 };
1108 static struct mii_phy_def marvell88e1101v2_phy_def = {
1109 .phy_id = 0x01410c60,
1110 .phy_id_mask = 0xfffffff0,
1111 .name = "Marvell 88E1101v2",
1112 .features = MII_GBIT_FEATURES,
1113 .magic_aneg = 1,
1114 .ops = &marvell88e1101_phy_ops
1115 };
1116 static struct mii_phy_def marvell88e1111_phy_def = {
1117 .phy_id = 0x01410cc0,
1118 .phy_id_mask = 0xfffffff0,
1119 .name = "Marvell 88E1111",
1120 .features = MII_GBIT_FEATURES,
1121 .magic_aneg = 1,
1122 .ops = &marvell88e1111_phy_ops
1123 };
1124
1125 /* Generic implementation for most 10/100 PHYs */
1126 static const struct mii_phy_ops generic_phy_ops = {
1127 .setup_aneg = genmii_setup_aneg,
1128 .setup_forced = genmii_setup_forced,
1129 .poll_link = genmii_poll_link,
1130 .read_link = genmii_read_link
1131 };
1132
1133 static struct mii_phy_def genmii_phy_def = {
1134 .phy_id = 0x00000000,
1135 .phy_id_mask = 0x00000000,
1136 .name = "Generic MII",
1137 .features = MII_BASIC_FEATURES,
1138 .magic_aneg = 0,
1139 .ops = &generic_phy_ops
1140 };
1141
1142 static struct mii_phy_def* mii_phy_table[] = {
1143 &bcm5201_phy_def,
1144 &bcm5221_phy_def,
1145 &bcm5241_phy_def,
1146 &bcm5400_phy_def,
1147 &bcm5401_phy_def,
1148 &bcm5411_phy_def,
1149 &bcm5421_phy_def,
1150 &bcm5421k2_phy_def,
1151 &bcm5461_phy_def,
1152 &bcm5462V_phy_def,
1153 &marvell88e1101v1_phy_def,
1154 &marvell88e1101v2_phy_def,
1155 &marvell88e1111_phy_def,
1156 &genmii_phy_def,
1157 NULL
1158 };
1159
1160 int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1161 {
1162 int rc;
1163 u32 id;
1164 struct mii_phy_def* def;
1165 int i;
1166
1167 /* We do not reset the mii_phy structure as the driver
1168 * may re-probe the PHY regulary
1169 */
1170 phy->mii_id = mii_id;
1171
1172 /* Take PHY out of isloate mode and reset it. */
1173 rc = reset_one_mii_phy(phy, mii_id);
1174 if (rc)
1175 goto fail;
1176
1177 /* Read ID and find matching entry */
1178 id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
1179 printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1180 id, mii_id);
1181 for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1182 if ((id & def->phy_id_mask) == def->phy_id)
1183 break;
1184 /* Should never be NULL (we have a generic entry), but... */
1185 if (def == NULL)
1186 goto fail;
1187
1188 phy->def = def;
1189
1190 return 0;
1191 fail:
1192 phy->speed = 0;
1193 phy->duplex = 0;
1194 phy->pause = 0;
1195 phy->advertising = 0;
1196 return -ENODEV;
1197 }
1198
1199 EXPORT_SYMBOL(sungem_phy_probe);
1200 MODULE_LICENSE("GPL");