]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/sungem_phy.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / sungem_phy.c
1 /*
2 * PHY drivers for the sungem ethernet driver.
3 *
4 * This file could be shared with other drivers.
5 *
6 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
7 *
8 * TODO:
9 * - Add support for PHYs that provide an IRQ line
10 * - Eventually moved the entire polling state machine in
11 * there (out of the eth driver), so that it can easily be
12 * skipped on PHYs that implement it in hardware.
13 * - On LXT971 & BCM5201, Apple uses some chip specific regs
14 * to read the link status. Figure out why and if it makes
15 * sense to do the same (magic aneg ?)
16 * - Apple has some additional power management code for some
17 * Broadcom PHYs that they "hide" from the OpenSource version
18 * of darwin, still need to reverse engineer that
19 */
20
21
22 #include <linux/module.h>
23
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/delay.h>
31
32 #ifdef CONFIG_PPC_PMAC
33 #include <asm/prom.h>
34 #endif
35
36 #include "sungem_phy.h"
37
38 /* Link modes of the BCM5400 PHY */
39 static const int phy_BCM5400_link_table[8][3] = {
40 { 0, 0, 0 }, /* No link */
41 { 0, 0, 0 }, /* 10BT Half Duplex */
42 { 1, 0, 0 }, /* 10BT Full Duplex */
43 { 0, 1, 0 }, /* 100BT Half Duplex */
44 { 0, 1, 0 }, /* 100BT Half Duplex */
45 { 1, 1, 0 }, /* 100BT Full Duplex*/
46 { 1, 0, 1 }, /* 1000BT */
47 { 1, 0, 1 }, /* 1000BT */
48 };
49
50 static inline int __phy_read(struct mii_phy* phy, int id, int reg)
51 {
52 return phy->mdio_read(phy->dev, id, reg);
53 }
54
55 static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
56 {
57 phy->mdio_write(phy->dev, id, reg, val);
58 }
59
60 static inline int phy_read(struct mii_phy* phy, int reg)
61 {
62 return phy->mdio_read(phy->dev, phy->mii_id, reg);
63 }
64
65 static inline void phy_write(struct mii_phy* phy, int reg, int val)
66 {
67 phy->mdio_write(phy->dev, phy->mii_id, reg, val);
68 }
69
70 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
71 {
72 u16 val;
73 int limit = 10000;
74
75 val = __phy_read(phy, phy_id, MII_BMCR);
76 val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
77 val |= BMCR_RESET;
78 __phy_write(phy, phy_id, MII_BMCR, val);
79
80 udelay(100);
81
82 while (limit--) {
83 val = __phy_read(phy, phy_id, MII_BMCR);
84 if ((val & BMCR_RESET) == 0)
85 break;
86 udelay(10);
87 }
88 if ((val & BMCR_ISOLATE) && limit > 0)
89 __phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
90
91 return (limit <= 0);
92 }
93
94 static int bcm5201_init(struct mii_phy* phy)
95 {
96 u16 data;
97
98 data = phy_read(phy, MII_BCM5201_MULTIPHY);
99 data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
100 phy_write(phy, MII_BCM5201_MULTIPHY, data);
101
102 phy_write(phy, MII_BCM5201_INTERRUPT, 0);
103
104 return 0;
105 }
106
107 static int bcm5201_suspend(struct mii_phy* phy)
108 {
109 phy_write(phy, MII_BCM5201_INTERRUPT, 0);
110 phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
111
112 return 0;
113 }
114
115 static int bcm5221_init(struct mii_phy* phy)
116 {
117 u16 data;
118
119 data = phy_read(phy, MII_BCM5221_TEST);
120 phy_write(phy, MII_BCM5221_TEST,
121 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
122
123 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
124 phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
125 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
126
127 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
128 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
129 data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
130
131 data = phy_read(phy, MII_BCM5221_TEST);
132 phy_write(phy, MII_BCM5221_TEST,
133 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
134
135 return 0;
136 }
137
138 static int bcm5221_suspend(struct mii_phy* phy)
139 {
140 u16 data;
141
142 data = phy_read(phy, MII_BCM5221_TEST);
143 phy_write(phy, MII_BCM5221_TEST,
144 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
145
146 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
147 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
148 data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
149
150 return 0;
151 }
152
153 static int bcm5241_init(struct mii_phy* phy)
154 {
155 u16 data;
156
157 data = phy_read(phy, MII_BCM5221_TEST);
158 phy_write(phy, MII_BCM5221_TEST,
159 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
160
161 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
162 phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
163 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
164
165 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
166 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
167 data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
168
169 data = phy_read(phy, MII_BCM5221_TEST);
170 phy_write(phy, MII_BCM5221_TEST,
171 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
172
173 return 0;
174 }
175
176 static int bcm5241_suspend(struct mii_phy* phy)
177 {
178 u16 data;
179
180 data = phy_read(phy, MII_BCM5221_TEST);
181 phy_write(phy, MII_BCM5221_TEST,
182 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
183
184 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
185 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
186 data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
187
188 return 0;
189 }
190
191 static int bcm5400_init(struct mii_phy* phy)
192 {
193 u16 data;
194
195 /* Configure for gigabit full duplex */
196 data = phy_read(phy, MII_BCM5400_AUXCONTROL);
197 data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
198 phy_write(phy, MII_BCM5400_AUXCONTROL, data);
199
200 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
201 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
202 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
203
204 udelay(100);
205
206 /* Reset and configure cascaded 10/100 PHY */
207 (void)reset_one_mii_phy(phy, 0x1f);
208
209 data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
210 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
211 __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
212
213 data = phy_read(phy, MII_BCM5400_AUXCONTROL);
214 data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
215 phy_write(phy, MII_BCM5400_AUXCONTROL, data);
216
217 return 0;
218 }
219
220 static int bcm5400_suspend(struct mii_phy* phy)
221 {
222 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
223 phy_write(phy, MII_BMCR, BMCR_PDOWN);
224 #endif
225 return 0;
226 }
227
228 static int bcm5401_init(struct mii_phy* phy)
229 {
230 u16 data;
231 int rev;
232
233 rev = phy_read(phy, MII_PHYSID2) & 0x000f;
234 if (rev == 0 || rev == 3) {
235 /* Some revisions of 5401 appear to need this
236 * initialisation sequence to disable, according
237 * to OF, "tap power management"
238 *
239 * WARNING ! OF and Darwin don't agree on the
240 * register addresses. OF seem to interpret the
241 * register numbers below as decimal
242 *
243 * Note: This should (and does) match tg3_init_5401phy_dsp
244 * in the tg3.c driver. -DaveM
245 */
246 phy_write(phy, 0x18, 0x0c20);
247 phy_write(phy, 0x17, 0x0012);
248 phy_write(phy, 0x15, 0x1804);
249 phy_write(phy, 0x17, 0x0013);
250 phy_write(phy, 0x15, 0x1204);
251 phy_write(phy, 0x17, 0x8006);
252 phy_write(phy, 0x15, 0x0132);
253 phy_write(phy, 0x17, 0x8006);
254 phy_write(phy, 0x15, 0x0232);
255 phy_write(phy, 0x17, 0x201f);
256 phy_write(phy, 0x15, 0x0a20);
257 }
258
259 /* Configure for gigabit full duplex */
260 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
261 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
262 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
263
264 udelay(10);
265
266 /* Reset and configure cascaded 10/100 PHY */
267 (void)reset_one_mii_phy(phy, 0x1f);
268
269 data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
270 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
271 __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
272
273 return 0;
274 }
275
276 static int bcm5401_suspend(struct mii_phy* phy)
277 {
278 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
279 phy_write(phy, MII_BMCR, BMCR_PDOWN);
280 #endif
281 return 0;
282 }
283
284 static int bcm5411_init(struct mii_phy* phy)
285 {
286 u16 data;
287
288 /* Here's some more Apple black magic to setup
289 * some voltage stuffs.
290 */
291 phy_write(phy, 0x1c, 0x8c23);
292 phy_write(phy, 0x1c, 0x8ca3);
293 phy_write(phy, 0x1c, 0x8c23);
294
295 /* Here, Apple seems to want to reset it, do
296 * it as well
297 */
298 phy_write(phy, MII_BMCR, BMCR_RESET);
299 phy_write(phy, MII_BMCR, 0x1340);
300
301 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
302 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
303 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
304
305 udelay(10);
306
307 /* Reset and configure cascaded 10/100 PHY */
308 (void)reset_one_mii_phy(phy, 0x1f);
309
310 return 0;
311 }
312
313 static int generic_suspend(struct mii_phy* phy)
314 {
315 phy_write(phy, MII_BMCR, BMCR_PDOWN);
316
317 return 0;
318 }
319
320 static int bcm5421_init(struct mii_phy* phy)
321 {
322 u16 data;
323 unsigned int id;
324
325 id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
326
327 /* Revision 0 of 5421 needs some fixups */
328 if (id == 0x002060e0) {
329 /* This is borrowed from MacOS
330 */
331 phy_write(phy, 0x18, 0x1007);
332 data = phy_read(phy, 0x18);
333 phy_write(phy, 0x18, data | 0x0400);
334 phy_write(phy, 0x18, 0x0007);
335 data = phy_read(phy, 0x18);
336 phy_write(phy, 0x18, data | 0x0800);
337 phy_write(phy, 0x17, 0x000a);
338 data = phy_read(phy, 0x15);
339 phy_write(phy, 0x15, data | 0x0200);
340 }
341
342 /* Pick up some init code from OF for K2 version */
343 if ((id & 0xfffffff0) == 0x002062e0) {
344 phy_write(phy, 4, 0x01e1);
345 phy_write(phy, 9, 0x0300);
346 }
347
348 /* Check if we can enable automatic low power */
349 #ifdef CONFIG_PPC_PMAC
350 if (phy->platform_data) {
351 struct device_node *np = of_get_parent(phy->platform_data);
352 int can_low_power = 1;
353 if (np == NULL || get_property(np, "no-autolowpower", NULL))
354 can_low_power = 0;
355 if (can_low_power) {
356 /* Enable automatic low-power */
357 phy_write(phy, 0x1c, 0x9002);
358 phy_write(phy, 0x1c, 0xa821);
359 phy_write(phy, 0x1c, 0x941d);
360 }
361 }
362 #endif /* CONFIG_PPC_PMAC */
363
364 return 0;
365 }
366
367 static int bcm5421_enable_fiber(struct mii_phy* phy)
368 {
369 /* enable fiber mode */
370 phy_write(phy, MII_NCONFIG, 0x9020);
371 /* LEDs active in both modes, autosense prio = fiber */
372 phy_write(phy, MII_NCONFIG, 0x945f);
373
374 /* switch off fibre autoneg */
375 phy_write(phy, MII_NCONFIG, 0xfc01);
376 phy_write(phy, 0x0b, 0x0004);
377
378 return 0;
379 }
380
381 static int bcm5461_enable_fiber(struct mii_phy* phy)
382 {
383 phy_write(phy, MII_NCONFIG, 0xfc0c);
384 phy_write(phy, MII_BMCR, 0x4140);
385 phy_write(phy, MII_NCONFIG, 0xfc0b);
386 phy_write(phy, MII_BMCR, 0x0140);
387
388 return 0;
389 }
390
391 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
392 {
393 u16 ctl, adv;
394
395 phy->autoneg = 1;
396 phy->speed = SPEED_10;
397 phy->duplex = DUPLEX_HALF;
398 phy->pause = 0;
399 phy->advertising = advertise;
400
401 /* Setup standard advertise */
402 adv = phy_read(phy, MII_ADVERTISE);
403 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
404 if (advertise & ADVERTISED_10baseT_Half)
405 adv |= ADVERTISE_10HALF;
406 if (advertise & ADVERTISED_10baseT_Full)
407 adv |= ADVERTISE_10FULL;
408 if (advertise & ADVERTISED_100baseT_Half)
409 adv |= ADVERTISE_100HALF;
410 if (advertise & ADVERTISED_100baseT_Full)
411 adv |= ADVERTISE_100FULL;
412 if (advertise & ADVERTISED_Pause)
413 adv |= ADVERTISE_PAUSE_CAP;
414 if (advertise & ADVERTISED_Asym_Pause)
415 adv |= ADVERTISE_PAUSE_ASYM;
416 phy_write(phy, MII_ADVERTISE, adv);
417
418 /* Setup 1000BT advertise */
419 adv = phy_read(phy, MII_1000BASETCONTROL);
420 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
421 if (advertise & SUPPORTED_1000baseT_Half)
422 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
423 if (advertise & SUPPORTED_1000baseT_Full)
424 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
425 phy_write(phy, MII_1000BASETCONTROL, adv);
426
427 /* Start/Restart aneg */
428 ctl = phy_read(phy, MII_BMCR);
429 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
430 phy_write(phy, MII_BMCR, ctl);
431
432 return 0;
433 }
434
435 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
436 {
437 u16 ctl;
438
439 phy->autoneg = 0;
440 phy->speed = speed;
441 phy->duplex = fd;
442 phy->pause = 0;
443
444 ctl = phy_read(phy, MII_BMCR);
445 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
446
447 /* First reset the PHY */
448 phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
449
450 /* Select speed & duplex */
451 switch(speed) {
452 case SPEED_10:
453 break;
454 case SPEED_100:
455 ctl |= BMCR_SPEED100;
456 break;
457 case SPEED_1000:
458 ctl |= BMCR_SPD2;
459 }
460 if (fd == DUPLEX_FULL)
461 ctl |= BMCR_FULLDPLX;
462
463 // XXX Should we set the sungem to GII now on 1000BT ?
464
465 phy_write(phy, MII_BMCR, ctl);
466
467 return 0;
468 }
469
470 static int bcm54xx_read_link(struct mii_phy *phy)
471 {
472 int link_mode;
473 u16 val;
474
475 if (phy->autoneg) {
476 val = phy_read(phy, MII_BCM5400_AUXSTATUS);
477 link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
478 MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
479 phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
480 DUPLEX_FULL : DUPLEX_HALF;
481 phy->speed = phy_BCM5400_link_table[link_mode][2] ?
482 SPEED_1000 :
483 (phy_BCM5400_link_table[link_mode][1] ?
484 SPEED_100 : SPEED_10);
485 val = phy_read(phy, MII_LPA);
486 phy->pause = (phy->duplex == DUPLEX_FULL) &&
487 ((val & LPA_PAUSE) != 0);
488 }
489 /* On non-aneg, we assume what we put in BMCR is the speed,
490 * though magic-aneg shouldn't prevent this case from occurring
491 */
492
493 return 0;
494 }
495
496 static int marvell88e1111_init(struct mii_phy* phy)
497 {
498 u16 rev;
499
500 /* magic init sequence for rev 0 */
501 rev = phy_read(phy, MII_PHYSID2) & 0x000f;
502 if (rev == 0) {
503 phy_write(phy, 0x1d, 0x000a);
504 phy_write(phy, 0x1e, 0x0821);
505
506 phy_write(phy, 0x1d, 0x0006);
507 phy_write(phy, 0x1e, 0x8600);
508
509 phy_write(phy, 0x1d, 0x000b);
510 phy_write(phy, 0x1e, 0x0100);
511
512 phy_write(phy, 0x1d, 0x0004);
513 phy_write(phy, 0x1e, 0x4850);
514 }
515 return 0;
516 }
517
518 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
519 {
520 u16 ctl, adv;
521
522 phy->autoneg = 1;
523 phy->speed = SPEED_10;
524 phy->duplex = DUPLEX_HALF;
525 phy->pause = 0;
526 phy->advertising = advertise;
527
528 /* Setup standard advertise */
529 adv = phy_read(phy, MII_ADVERTISE);
530 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
531 if (advertise & ADVERTISED_10baseT_Half)
532 adv |= ADVERTISE_10HALF;
533 if (advertise & ADVERTISED_10baseT_Full)
534 adv |= ADVERTISE_10FULL;
535 if (advertise & ADVERTISED_100baseT_Half)
536 adv |= ADVERTISE_100HALF;
537 if (advertise & ADVERTISED_100baseT_Full)
538 adv |= ADVERTISE_100FULL;
539 if (advertise & ADVERTISED_Pause)
540 adv |= ADVERTISE_PAUSE_CAP;
541 if (advertise & ADVERTISED_Asym_Pause)
542 adv |= ADVERTISE_PAUSE_ASYM;
543 phy_write(phy, MII_ADVERTISE, adv);
544
545 /* Setup 1000BT advertise & enable crossover detect
546 * XXX How do we advertise 1000BT ? Darwin source is
547 * confusing here, they read from specific control and
548 * write to control... Someone has specs for those
549 * beasts ?
550 */
551 adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
552 adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
553 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
554 MII_1000BASETCONTROL_HALFDUPLEXCAP);
555 if (advertise & SUPPORTED_1000baseT_Half)
556 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
557 if (advertise & SUPPORTED_1000baseT_Full)
558 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
559 phy_write(phy, MII_1000BASETCONTROL, adv);
560
561 /* Start/Restart aneg */
562 ctl = phy_read(phy, MII_BMCR);
563 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
564 phy_write(phy, MII_BMCR, ctl);
565
566 return 0;
567 }
568
569 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
570 {
571 u16 ctl, ctl2;
572
573 phy->autoneg = 0;
574 phy->speed = speed;
575 phy->duplex = fd;
576 phy->pause = 0;
577
578 ctl = phy_read(phy, MII_BMCR);
579 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
580 ctl |= BMCR_RESET;
581
582 /* Select speed & duplex */
583 switch(speed) {
584 case SPEED_10:
585 break;
586 case SPEED_100:
587 ctl |= BMCR_SPEED100;
588 break;
589 /* I'm not sure about the one below, again, Darwin source is
590 * quite confusing and I lack chip specs
591 */
592 case SPEED_1000:
593 ctl |= BMCR_SPD2;
594 }
595 if (fd == DUPLEX_FULL)
596 ctl |= BMCR_FULLDPLX;
597
598 /* Disable crossover. Again, the way Apple does it is strange,
599 * though I don't assume they are wrong ;)
600 */
601 ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
602 ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
603 MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
604 MII_1000BASETCONTROL_FULLDUPLEXCAP |
605 MII_1000BASETCONTROL_HALFDUPLEXCAP);
606 if (speed == SPEED_1000)
607 ctl2 |= (fd == DUPLEX_FULL) ?
608 MII_1000BASETCONTROL_FULLDUPLEXCAP :
609 MII_1000BASETCONTROL_HALFDUPLEXCAP;
610 phy_write(phy, MII_1000BASETCONTROL, ctl2);
611
612 // XXX Should we set the sungem to GII now on 1000BT ?
613
614 phy_write(phy, MII_BMCR, ctl);
615
616 return 0;
617 }
618
619 static int marvell_read_link(struct mii_phy *phy)
620 {
621 u16 status, pmask;
622
623 if (phy->autoneg) {
624 status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
625 if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
626 return -EAGAIN;
627 if (status & MII_M1011_PHY_SPEC_STATUS_1000)
628 phy->speed = SPEED_1000;
629 else if (status & MII_M1011_PHY_SPEC_STATUS_100)
630 phy->speed = SPEED_100;
631 else
632 phy->speed = SPEED_10;
633 if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
634 phy->duplex = DUPLEX_FULL;
635 else
636 phy->duplex = DUPLEX_HALF;
637 pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
638 MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
639 phy->pause = (status & pmask) == pmask;
640 }
641 /* On non-aneg, we assume what we put in BMCR is the speed,
642 * though magic-aneg shouldn't prevent this case from occurring
643 */
644
645 return 0;
646 }
647
648 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
649 {
650 u16 ctl, adv;
651
652 phy->autoneg = 1;
653 phy->speed = SPEED_10;
654 phy->duplex = DUPLEX_HALF;
655 phy->pause = 0;
656 phy->advertising = advertise;
657
658 /* Setup standard advertise */
659 adv = phy_read(phy, MII_ADVERTISE);
660 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
661 if (advertise & ADVERTISED_10baseT_Half)
662 adv |= ADVERTISE_10HALF;
663 if (advertise & ADVERTISED_10baseT_Full)
664 adv |= ADVERTISE_10FULL;
665 if (advertise & ADVERTISED_100baseT_Half)
666 adv |= ADVERTISE_100HALF;
667 if (advertise & ADVERTISED_100baseT_Full)
668 adv |= ADVERTISE_100FULL;
669 if (advertise & ADVERTISED_Pause)
670 adv |= ADVERTISE_PAUSE_CAP;
671 if (advertise & ADVERTISED_Asym_Pause)
672 adv |= ADVERTISE_PAUSE_ASYM;
673 phy_write(phy, MII_ADVERTISE, adv);
674
675 /* Start/Restart aneg */
676 ctl = phy_read(phy, MII_BMCR);
677 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
678 phy_write(phy, MII_BMCR, ctl);
679
680 return 0;
681 }
682
683 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
684 {
685 u16 ctl;
686
687 phy->autoneg = 0;
688 phy->speed = speed;
689 phy->duplex = fd;
690 phy->pause = 0;
691
692 ctl = phy_read(phy, MII_BMCR);
693 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
694
695 /* First reset the PHY */
696 phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
697
698 /* Select speed & duplex */
699 switch(speed) {
700 case SPEED_10:
701 break;
702 case SPEED_100:
703 ctl |= BMCR_SPEED100;
704 break;
705 case SPEED_1000:
706 default:
707 return -EINVAL;
708 }
709 if (fd == DUPLEX_FULL)
710 ctl |= BMCR_FULLDPLX;
711 phy_write(phy, MII_BMCR, ctl);
712
713 return 0;
714 }
715
716 static int genmii_poll_link(struct mii_phy *phy)
717 {
718 u16 status;
719
720 (void)phy_read(phy, MII_BMSR);
721 status = phy_read(phy, MII_BMSR);
722 if ((status & BMSR_LSTATUS) == 0)
723 return 0;
724 if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
725 return 0;
726 return 1;
727 }
728
729 static int genmii_read_link(struct mii_phy *phy)
730 {
731 u16 lpa;
732
733 if (phy->autoneg) {
734 lpa = phy_read(phy, MII_LPA);
735
736 if (lpa & (LPA_10FULL | LPA_100FULL))
737 phy->duplex = DUPLEX_FULL;
738 else
739 phy->duplex = DUPLEX_HALF;
740 if (lpa & (LPA_100FULL | LPA_100HALF))
741 phy->speed = SPEED_100;
742 else
743 phy->speed = SPEED_10;
744 phy->pause = (phy->duplex == DUPLEX_FULL) &&
745 ((lpa & LPA_PAUSE) != 0);
746 }
747 /* On non-aneg, we assume what we put in BMCR is the speed,
748 * though magic-aneg shouldn't prevent this case from occurring
749 */
750
751 return 0;
752 }
753
754
755 #define MII_BASIC_FEATURES \
756 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
757 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
758 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII | \
759 SUPPORTED_Pause)
760
761 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
762 * support for now as I'm not sure it's supported and Darwin doesn't do
763 * it neither. --BenH.
764 */
765 #define MII_GBIT_FEATURES \
766 (MII_BASIC_FEATURES | \
767 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
768
769 /* Broadcom BCM 5201 */
770 static struct mii_phy_ops bcm5201_phy_ops = {
771 .init = bcm5201_init,
772 .suspend = bcm5201_suspend,
773 .setup_aneg = genmii_setup_aneg,
774 .setup_forced = genmii_setup_forced,
775 .poll_link = genmii_poll_link,
776 .read_link = genmii_read_link,
777 };
778
779 static struct mii_phy_def bcm5201_phy_def = {
780 .phy_id = 0x00406210,
781 .phy_id_mask = 0xfffffff0,
782 .name = "BCM5201",
783 .features = MII_BASIC_FEATURES,
784 .magic_aneg = 1,
785 .ops = &bcm5201_phy_ops
786 };
787
788 /* Broadcom BCM 5221 */
789 static struct mii_phy_ops bcm5221_phy_ops = {
790 .suspend = bcm5221_suspend,
791 .init = bcm5221_init,
792 .setup_aneg = genmii_setup_aneg,
793 .setup_forced = genmii_setup_forced,
794 .poll_link = genmii_poll_link,
795 .read_link = genmii_read_link,
796 };
797
798 static struct mii_phy_def bcm5221_phy_def = {
799 .phy_id = 0x004061e0,
800 .phy_id_mask = 0xfffffff0,
801 .name = "BCM5221",
802 .features = MII_BASIC_FEATURES,
803 .magic_aneg = 1,
804 .ops = &bcm5221_phy_ops
805 };
806
807 /* Broadcom BCM 5241 */
808 static struct mii_phy_ops bcm5241_phy_ops = {
809 .suspend = bcm5241_suspend,
810 .init = bcm5241_init,
811 .setup_aneg = genmii_setup_aneg,
812 .setup_forced = genmii_setup_forced,
813 .poll_link = genmii_poll_link,
814 .read_link = genmii_read_link,
815 };
816 static struct mii_phy_def bcm5241_phy_def = {
817 .phy_id = 0x0143bc30,
818 .phy_id_mask = 0xfffffff0,
819 .name = "BCM5241",
820 .features = MII_BASIC_FEATURES,
821 .magic_aneg = 1,
822 .ops = &bcm5241_phy_ops
823 };
824
825 /* Broadcom BCM 5400 */
826 static struct mii_phy_ops bcm5400_phy_ops = {
827 .init = bcm5400_init,
828 .suspend = bcm5400_suspend,
829 .setup_aneg = bcm54xx_setup_aneg,
830 .setup_forced = bcm54xx_setup_forced,
831 .poll_link = genmii_poll_link,
832 .read_link = bcm54xx_read_link,
833 };
834
835 static struct mii_phy_def bcm5400_phy_def = {
836 .phy_id = 0x00206040,
837 .phy_id_mask = 0xfffffff0,
838 .name = "BCM5400",
839 .features = MII_GBIT_FEATURES,
840 .magic_aneg = 1,
841 .ops = &bcm5400_phy_ops
842 };
843
844 /* Broadcom BCM 5401 */
845 static struct mii_phy_ops bcm5401_phy_ops = {
846 .init = bcm5401_init,
847 .suspend = bcm5401_suspend,
848 .setup_aneg = bcm54xx_setup_aneg,
849 .setup_forced = bcm54xx_setup_forced,
850 .poll_link = genmii_poll_link,
851 .read_link = bcm54xx_read_link,
852 };
853
854 static struct mii_phy_def bcm5401_phy_def = {
855 .phy_id = 0x00206050,
856 .phy_id_mask = 0xfffffff0,
857 .name = "BCM5401",
858 .features = MII_GBIT_FEATURES,
859 .magic_aneg = 1,
860 .ops = &bcm5401_phy_ops
861 };
862
863 /* Broadcom BCM 5411 */
864 static struct mii_phy_ops bcm5411_phy_ops = {
865 .init = bcm5411_init,
866 .suspend = generic_suspend,
867 .setup_aneg = bcm54xx_setup_aneg,
868 .setup_forced = bcm54xx_setup_forced,
869 .poll_link = genmii_poll_link,
870 .read_link = bcm54xx_read_link,
871 };
872
873 static struct mii_phy_def bcm5411_phy_def = {
874 .phy_id = 0x00206070,
875 .phy_id_mask = 0xfffffff0,
876 .name = "BCM5411",
877 .features = MII_GBIT_FEATURES,
878 .magic_aneg = 1,
879 .ops = &bcm5411_phy_ops
880 };
881
882 /* Broadcom BCM 5421 */
883 static struct mii_phy_ops bcm5421_phy_ops = {
884 .init = bcm5421_init,
885 .suspend = generic_suspend,
886 .setup_aneg = bcm54xx_setup_aneg,
887 .setup_forced = bcm54xx_setup_forced,
888 .poll_link = genmii_poll_link,
889 .read_link = bcm54xx_read_link,
890 .enable_fiber = bcm5421_enable_fiber,
891 };
892
893 static struct mii_phy_def bcm5421_phy_def = {
894 .phy_id = 0x002060e0,
895 .phy_id_mask = 0xfffffff0,
896 .name = "BCM5421",
897 .features = MII_GBIT_FEATURES,
898 .magic_aneg = 1,
899 .ops = &bcm5421_phy_ops
900 };
901
902 /* Broadcom BCM 5421 built-in K2 */
903 static struct mii_phy_ops bcm5421k2_phy_ops = {
904 .init = bcm5421_init,
905 .suspend = generic_suspend,
906 .setup_aneg = bcm54xx_setup_aneg,
907 .setup_forced = bcm54xx_setup_forced,
908 .poll_link = genmii_poll_link,
909 .read_link = bcm54xx_read_link,
910 };
911
912 static struct mii_phy_def bcm5421k2_phy_def = {
913 .phy_id = 0x002062e0,
914 .phy_id_mask = 0xfffffff0,
915 .name = "BCM5421-K2",
916 .features = MII_GBIT_FEATURES,
917 .magic_aneg = 1,
918 .ops = &bcm5421k2_phy_ops
919 };
920
921 static struct mii_phy_ops bcm5461_phy_ops = {
922 .init = bcm5421_init,
923 .suspend = generic_suspend,
924 .setup_aneg = bcm54xx_setup_aneg,
925 .setup_forced = bcm54xx_setup_forced,
926 .poll_link = genmii_poll_link,
927 .read_link = bcm54xx_read_link,
928 .enable_fiber = bcm5461_enable_fiber,
929 };
930
931 static struct mii_phy_def bcm5461_phy_def = {
932 .phy_id = 0x002060c0,
933 .phy_id_mask = 0xfffffff0,
934 .name = "BCM5461",
935 .features = MII_GBIT_FEATURES,
936 .magic_aneg = 1,
937 .ops = &bcm5461_phy_ops
938 };
939
940 /* Broadcom BCM 5462 built-in Vesta */
941 static struct mii_phy_ops bcm5462V_phy_ops = {
942 .init = bcm5421_init,
943 .suspend = generic_suspend,
944 .setup_aneg = bcm54xx_setup_aneg,
945 .setup_forced = bcm54xx_setup_forced,
946 .poll_link = genmii_poll_link,
947 .read_link = bcm54xx_read_link,
948 };
949
950 static struct mii_phy_def bcm5462V_phy_def = {
951 .phy_id = 0x002060d0,
952 .phy_id_mask = 0xfffffff0,
953 .name = "BCM5462-Vesta",
954 .features = MII_GBIT_FEATURES,
955 .magic_aneg = 1,
956 .ops = &bcm5462V_phy_ops
957 };
958
959 /* Marvell 88E1101 amd 88E1111 */
960 static struct mii_phy_ops marvell88e1101_phy_ops = {
961 .suspend = generic_suspend,
962 .setup_aneg = marvell_setup_aneg,
963 .setup_forced = marvell_setup_forced,
964 .poll_link = genmii_poll_link,
965 .read_link = marvell_read_link
966 };
967
968 static struct mii_phy_ops marvell88e1111_phy_ops = {
969 .init = marvell88e1111_init,
970 .suspend = generic_suspend,
971 .setup_aneg = marvell_setup_aneg,
972 .setup_forced = marvell_setup_forced,
973 .poll_link = genmii_poll_link,
974 .read_link = marvell_read_link
975 };
976
977 /* two revs in darwin for the 88e1101 ... I could use a datasheet
978 * to get the proper names...
979 */
980 static struct mii_phy_def marvell88e1101v1_phy_def = {
981 .phy_id = 0x01410c20,
982 .phy_id_mask = 0xfffffff0,
983 .name = "Marvell 88E1101v1",
984 .features = MII_GBIT_FEATURES,
985 .magic_aneg = 1,
986 .ops = &marvell88e1101_phy_ops
987 };
988 static struct mii_phy_def marvell88e1101v2_phy_def = {
989 .phy_id = 0x01410c60,
990 .phy_id_mask = 0xfffffff0,
991 .name = "Marvell 88E1101v2",
992 .features = MII_GBIT_FEATURES,
993 .magic_aneg = 1,
994 .ops = &marvell88e1101_phy_ops
995 };
996 static struct mii_phy_def marvell88e1111_phy_def = {
997 .phy_id = 0x01410cc0,
998 .phy_id_mask = 0xfffffff0,
999 .name = "Marvell 88E1111",
1000 .features = MII_GBIT_FEATURES,
1001 .magic_aneg = 1,
1002 .ops = &marvell88e1111_phy_ops
1003 };
1004
1005 /* Generic implementation for most 10/100 PHYs */
1006 static struct mii_phy_ops generic_phy_ops = {
1007 .setup_aneg = genmii_setup_aneg,
1008 .setup_forced = genmii_setup_forced,
1009 .poll_link = genmii_poll_link,
1010 .read_link = genmii_read_link
1011 };
1012
1013 static struct mii_phy_def genmii_phy_def = {
1014 .phy_id = 0x00000000,
1015 .phy_id_mask = 0x00000000,
1016 .name = "Generic MII",
1017 .features = MII_BASIC_FEATURES,
1018 .magic_aneg = 0,
1019 .ops = &generic_phy_ops
1020 };
1021
1022 static struct mii_phy_def* mii_phy_table[] = {
1023 &bcm5201_phy_def,
1024 &bcm5221_phy_def,
1025 &bcm5241_phy_def,
1026 &bcm5400_phy_def,
1027 &bcm5401_phy_def,
1028 &bcm5411_phy_def,
1029 &bcm5421_phy_def,
1030 &bcm5421k2_phy_def,
1031 &bcm5461_phy_def,
1032 &bcm5462V_phy_def,
1033 &marvell88e1101v1_phy_def,
1034 &marvell88e1101v2_phy_def,
1035 &marvell88e1111_phy_def,
1036 &genmii_phy_def,
1037 NULL
1038 };
1039
1040 int mii_phy_probe(struct mii_phy *phy, int mii_id)
1041 {
1042 int rc;
1043 u32 id;
1044 struct mii_phy_def* def;
1045 int i;
1046
1047 /* We do not reset the mii_phy structure as the driver
1048 * may re-probe the PHY regulary
1049 */
1050 phy->mii_id = mii_id;
1051
1052 /* Take PHY out of isloate mode and reset it. */
1053 rc = reset_one_mii_phy(phy, mii_id);
1054 if (rc)
1055 goto fail;
1056
1057 /* Read ID and find matching entry */
1058 id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
1059 printk(KERN_DEBUG "PHY ID: %x, addr: %x\n", id, mii_id);
1060 for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1061 if ((id & def->phy_id_mask) == def->phy_id)
1062 break;
1063 /* Should never be NULL (we have a generic entry), but... */
1064 if (def == NULL)
1065 goto fail;
1066
1067 phy->def = def;
1068
1069 return 0;
1070 fail:
1071 phy->speed = 0;
1072 phy->duplex = 0;
1073 phy->pause = 0;
1074 phy->advertising = 0;
1075 return -ENODEV;
1076 }
1077
1078 EXPORT_SYMBOL(mii_phy_probe);
1079 MODULE_LICENSE("GPL");
1080