]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/tc35815.c
Merge branch 'tip/tracing/core' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / tc35815.c
1 /*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25 #define DRV_VERSION "1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/init.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
47 #include <linux/phy.h>
48 #include <linux/workqueue.h>
49 #include <linux/platform_device.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 const char *name;
62 } chip_info[] __devinitdata = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 int speed;
79 int duplex;
80 } options;
81
82 /*
83 * Registers
84 */
85 struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117 };
118
119 /*
120 * Bit assignments
121 */
122 /* DMA_Ctl bit asign ------------------------------------------------------- */
123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124 #define DMA_RxAlign_1 0x00400000
125 #define DMA_RxAlign_2 0x00800000
126 #define DMA_RxAlign_3 0x00c00000
127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128 #define DMA_IntMask 0x00040000 /* 1:Interupt mask */
129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */
134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137 /* RxFragSize bit asign ---------------------------------------------------- */
138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141 /* MAC_Ctl bit asign ------------------------------------------------------- */
142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151 #define MAC_Reset 0x00000004 /* 1:Software Reset */
152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155 /* PROM_Ctl bit asign ------------------------------------------------------ */
156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157 #define PROM_Read 0x00004000 /*10:Read operation */
158 #define PROM_Write 0x00002000 /*01:Write operation */
159 #define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165 /* CAM_Ctl bit asign ------------------------------------------------------- */
166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173 /* CAM_Ena bit asign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176 #define CAM_Ena_Bit(index) (1 << (index))
177 #define CAM_ENTRY_DESTINATION 0
178 #define CAM_ENTRY_SOURCE 1
179 #define CAM_ENTRY_MACCTL 20
180
181 /* Tx_Ctl bit asign -------------------------------------------------------- */
182 #define Tx_En 0x00000001 /* 1:Transmit enable */
183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195 /* Tx_Stat bit asign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197 #define Tx_ExColl 0x00000010 /* Excessive Collision */
198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */
199 #define Tx_Paused 0x00000040 /* Transmit Paused */
200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201 #define Tx_Under 0x00000100 /* Underrun */
202 #define Tx_Defer 0x00000200 /* Deferral */
203 #define Tx_NCarr 0x00000400 /* No Carrier */
204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */
205 #define Tx_LateColl 0x00001000 /* Late Collision */
206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */
207 #define Tx_Comp 0x00004000 /* Completion */
208 #define Tx_Halted 0x00008000 /* Tx Halted */
209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211 /* Rx_Ctl bit asign -------------------------------------------------------- */
212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */
213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */
222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225 /* Rx_Stat bit asign ------------------------------------------------------- */
226 #define Rx_Halted 0x00008000 /* Rx Halted */
227 #define Rx_Good 0x00004000 /* Rx Good */
228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */
229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230 #define Rx_LongErr 0x00000800 /* Rx Long Error */
231 #define Rx_Over 0x00000400 /* Rx Overflow */
232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233 #define Rx_Align 0x00000100 /* Rx Alignment Error */
234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */
236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241 /* Int_En bit asign -------------------------------------------------------- */
242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256 /* Int_Src bit asign ------------------------------------------------------- */
257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273 /* MD_CA bit asign --------------------------------------------------------- */
274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */
275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279 /*
280 * Descriptors
281 */
282
283 /* Frame descripter */
284 struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289 };
290
291 /* Buffer descripter */
292 struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN 16
298
299 /* Frame Descripter bit asign ---------------------------------------------- */
300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310 #define FD_BDCnt_SHIFT 16
311
312 /* Buffer Descripter bit asign --------------------------------------------- */
313 #define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */
314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317 #define BD_RxBDID_SHIFT 16
318 #define BD_RxBDSeqN_SHIFT 24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE 32
339 #define TX_THRESHOLD 1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occured this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM 128 /* < 256 */
348 #define RX_FD_NUM 256 /* >= 32 */
349 #define TX_FD_NUM 128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT 16
361
362 struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366 };
367
368 struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[0]; /* variable length */
371 };
372
373 struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr) ioread32(addr)
380 #define tc_writel(d, addr) iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405
406 struct mii_bus *mii_bus;
407 struct phy_device *phy_dev;
408 int duplex;
409 int speed;
410 int link;
411 struct work_struct restart_work;
412
413 /*
414 * Transmitting: Batch Mode.
415 * 1 BD in 1 TxFD.
416 * Receiving: Non-Packing Mode.
417 * 1 circular FD for Free Buffer List.
418 * RX_BUF_NUM BD in Free Buffer FD.
419 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 */
421 void *fd_buf; /* for TxFD, RxFD, FrFD */
422 dma_addr_t fd_buf_dma;
423 struct TxFD *tfd_base;
424 unsigned int tfd_start;
425 unsigned int tfd_end;
426 struct RxFD *rfd_base;
427 struct RxFD *rfd_limit;
428 struct RxFD *rfd_cur;
429 struct FrFD *fbl_ptr;
430 unsigned int fbl_count;
431 struct {
432 struct sk_buff *skb;
433 dma_addr_t skb_dma;
434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 u32 msg_enable;
436 enum tc35815_chiptype chiptype;
437 };
438
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 struct pci_dev *hwdev,
451 dma_addr_t *dma_handle)
452 {
453 struct sk_buff *skb;
454 skb = dev_alloc_skb(RX_BUF_SIZE);
455 if (!skb)
456 return NULL;
457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
458 PCI_DMA_FROMDEVICE);
459 if (pci_dma_mapping_error(hwdev, *dma_handle)) {
460 dev_kfree_skb_any(skb);
461 return NULL;
462 }
463 skb_reserve(skb, 2); /* make IP header 4byte aligned */
464 return skb;
465 }
466
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
470 PCI_DMA_FROMDEVICE);
471 dev_kfree_skb_any(skb);
472 }
473
474 /* Index to functions, as function prototypes. */
475
476 static int tc35815_open(struct net_device *dev);
477 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
478 static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
479 static int tc35815_rx(struct net_device *dev, int limit);
480 static int tc35815_poll(struct napi_struct *napi, int budget);
481 static void tc35815_txdone(struct net_device *dev);
482 static int tc35815_close(struct net_device *dev);
483 static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
484 static void tc35815_set_multicast_list(struct net_device *dev);
485 static void tc35815_tx_timeout(struct net_device *dev);
486 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491
492 /* Example routines you must write ;->. */
493 static void tc35815_chip_reset(struct net_device *dev);
494 static void tc35815_chip_init(struct net_device *dev);
495
496 #ifdef DEBUG
497 static void panic_queues(struct net_device *dev);
498 #endif
499
500 static void tc35815_restart_work(struct work_struct *work);
501
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504 struct net_device *dev = bus->priv;
505 struct tc35815_regs __iomem *tr =
506 (struct tc35815_regs __iomem *)dev->base_addr;
507 unsigned long timeout = jiffies + HZ;
508
509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 udelay(12); /* it takes 32 x 400ns at least */
511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 if (time_after(jiffies, timeout))
513 return -EIO;
514 cpu_relax();
515 }
516 return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521 struct net_device *dev = bus->priv;
522 struct tc35815_regs __iomem *tr =
523 (struct tc35815_regs __iomem *)dev->base_addr;
524 unsigned long timeout = jiffies + HZ;
525
526 tc_writel(val, &tr->MD_Data);
527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 &tr->MD_CA);
529 udelay(12); /* it takes 32 x 400ns at least */
530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 if (time_after(jiffies, timeout))
532 return -EIO;
533 cpu_relax();
534 }
535 return 0;
536 }
537
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540 struct tc35815_local *lp = netdev_priv(dev);
541 struct phy_device *phydev = lp->phy_dev;
542 unsigned long flags;
543 int status_change = 0;
544
545 spin_lock_irqsave(&lp->lock, flags);
546 if (phydev->link &&
547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 struct tc35815_regs __iomem *tr =
549 (struct tc35815_regs __iomem *)dev->base_addr;
550 u32 reg;
551
552 reg = tc_readl(&tr->MAC_Ctl);
553 reg |= MAC_HaltReq;
554 tc_writel(reg, &tr->MAC_Ctl);
555 if (phydev->duplex == DUPLEX_FULL)
556 reg |= MAC_FullDup;
557 else
558 reg &= ~MAC_FullDup;
559 tc_writel(reg, &tr->MAC_Ctl);
560 reg &= ~MAC_HaltReq;
561 tc_writel(reg, &tr->MAC_Ctl);
562
563 /*
564 * TX4939 PCFG.SPEEDn bit will be changed on
565 * NETDEV_CHANGE event.
566 */
567 /*
568 * WORKAROUND: enable LostCrS only if half duplex
569 * operation.
570 * (TX4939 does not have EnLCarr)
571 */
572 if (phydev->duplex == DUPLEX_HALF &&
573 lp->chiptype != TC35815_TX4939)
574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 &tr->Tx_Ctl);
576
577 lp->speed = phydev->speed;
578 lp->duplex = phydev->duplex;
579 status_change = 1;
580 }
581
582 if (phydev->link != lp->link) {
583 if (phydev->link) {
584 /* delayed promiscuous enabling */
585 if (dev->flags & IFF_PROMISC)
586 tc35815_set_multicast_list(dev);
587 } else {
588 lp->speed = 0;
589 lp->duplex = -1;
590 }
591 lp->link = phydev->link;
592
593 status_change = 1;
594 }
595 spin_unlock_irqrestore(&lp->lock, flags);
596
597 if (status_change && netif_msg_link(lp)) {
598 phy_print_status(phydev);
599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 dev->name,
601 phy_read(phydev, MII_BMCR),
602 phy_read(phydev, MII_BMSR),
603 phy_read(phydev, MII_LPA));
604 }
605 }
606
607 static int tc_mii_probe(struct net_device *dev)
608 {
609 struct tc35815_local *lp = netdev_priv(dev);
610 struct phy_device *phydev = NULL;
611 int phy_addr;
612 u32 dropmask;
613
614 /* find the first phy */
615 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
616 if (lp->mii_bus->phy_map[phy_addr]) {
617 if (phydev) {
618 printk(KERN_ERR "%s: multiple PHYs found\n",
619 dev->name);
620 return -EINVAL;
621 }
622 phydev = lp->mii_bus->phy_map[phy_addr];
623 break;
624 }
625 }
626
627 if (!phydev) {
628 printk(KERN_ERR "%s: no PHY found\n", dev->name);
629 return -ENODEV;
630 }
631
632 /* attach the mac to the phy */
633 phydev = phy_connect(dev, dev_name(&phydev->dev),
634 &tc_handle_link_change, 0,
635 lp->chiptype == TC35815_TX4939 ?
636 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
637 if (IS_ERR(phydev)) {
638 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
639 return PTR_ERR(phydev);
640 }
641 printk(KERN_INFO "%s: attached PHY driver [%s] "
642 "(mii_bus:phy_addr=%s, id=%x)\n",
643 dev->name, phydev->drv->name, dev_name(&phydev->dev),
644 phydev->phy_id);
645
646 /* mask with MAC supported features */
647 phydev->supported &= PHY_BASIC_FEATURES;
648 dropmask = 0;
649 if (options.speed == 10)
650 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
651 else if (options.speed == 100)
652 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
653 if (options.duplex == 1)
654 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
655 else if (options.duplex == 2)
656 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
657 phydev->supported &= ~dropmask;
658 phydev->advertising = phydev->supported;
659
660 lp->link = 0;
661 lp->speed = 0;
662 lp->duplex = -1;
663 lp->phy_dev = phydev;
664
665 return 0;
666 }
667
668 static int tc_mii_init(struct net_device *dev)
669 {
670 struct tc35815_local *lp = netdev_priv(dev);
671 int err;
672 int i;
673
674 lp->mii_bus = mdiobus_alloc();
675 if (lp->mii_bus == NULL) {
676 err = -ENOMEM;
677 goto err_out;
678 }
679
680 lp->mii_bus->name = "tc35815_mii_bus";
681 lp->mii_bus->read = tc_mdio_read;
682 lp->mii_bus->write = tc_mdio_write;
683 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
684 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
685 lp->mii_bus->priv = dev;
686 lp->mii_bus->parent = &lp->pci_dev->dev;
687 lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
688 if (!lp->mii_bus->irq) {
689 err = -ENOMEM;
690 goto err_out_free_mii_bus;
691 }
692
693 for (i = 0; i < PHY_MAX_ADDR; i++)
694 lp->mii_bus->irq[i] = PHY_POLL;
695
696 err = mdiobus_register(lp->mii_bus);
697 if (err)
698 goto err_out_free_mdio_irq;
699 err = tc_mii_probe(dev);
700 if (err)
701 goto err_out_unregister_bus;
702 return 0;
703
704 err_out_unregister_bus:
705 mdiobus_unregister(lp->mii_bus);
706 err_out_free_mdio_irq:
707 kfree(lp->mii_bus->irq);
708 err_out_free_mii_bus:
709 mdiobus_free(lp->mii_bus);
710 err_out:
711 return err;
712 }
713
714 #ifdef CONFIG_CPU_TX49XX
715 /*
716 * Find a platform_device providing a MAC address. The platform code
717 * should provide a "tc35815-mac" device with a MAC address in its
718 * platform_data.
719 */
720 static int __devinit tc35815_mac_match(struct device *dev, void *data)
721 {
722 struct platform_device *plat_dev = to_platform_device(dev);
723 struct pci_dev *pci_dev = data;
724 unsigned int id = pci_dev->irq;
725 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
726 }
727
728 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
729 {
730 struct tc35815_local *lp = netdev_priv(dev);
731 struct device *pd = bus_find_device(&platform_bus_type, NULL,
732 lp->pci_dev, tc35815_mac_match);
733 if (pd) {
734 if (pd->platform_data)
735 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
736 put_device(pd);
737 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
738 }
739 return -ENODEV;
740 }
741 #else
742 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
743 {
744 return -ENODEV;
745 }
746 #endif
747
748 static int __devinit tc35815_init_dev_addr(struct net_device *dev)
749 {
750 struct tc35815_regs __iomem *tr =
751 (struct tc35815_regs __iomem *)dev->base_addr;
752 int i;
753
754 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
755 ;
756 for (i = 0; i < 6; i += 2) {
757 unsigned short data;
758 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
759 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
760 ;
761 data = tc_readl(&tr->PROM_Data);
762 dev->dev_addr[i] = data & 0xff;
763 dev->dev_addr[i+1] = data >> 8;
764 }
765 if (!is_valid_ether_addr(dev->dev_addr))
766 return tc35815_read_plat_dev_addr(dev);
767 return 0;
768 }
769
770 static const struct net_device_ops tc35815_netdev_ops = {
771 .ndo_open = tc35815_open,
772 .ndo_stop = tc35815_close,
773 .ndo_start_xmit = tc35815_send_packet,
774 .ndo_get_stats = tc35815_get_stats,
775 .ndo_set_multicast_list = tc35815_set_multicast_list,
776 .ndo_tx_timeout = tc35815_tx_timeout,
777 .ndo_do_ioctl = tc35815_ioctl,
778 .ndo_validate_addr = eth_validate_addr,
779 .ndo_change_mtu = eth_change_mtu,
780 .ndo_set_mac_address = eth_mac_addr,
781 #ifdef CONFIG_NET_POLL_CONTROLLER
782 .ndo_poll_controller = tc35815_poll_controller,
783 #endif
784 };
785
786 static int __devinit tc35815_init_one(struct pci_dev *pdev,
787 const struct pci_device_id *ent)
788 {
789 void __iomem *ioaddr = NULL;
790 struct net_device *dev;
791 struct tc35815_local *lp;
792 int rc;
793
794 static int printed_version;
795 if (!printed_version++) {
796 printk(version);
797 dev_printk(KERN_DEBUG, &pdev->dev,
798 "speed:%d duplex:%d\n",
799 options.speed, options.duplex);
800 }
801
802 if (!pdev->irq) {
803 dev_warn(&pdev->dev, "no IRQ assigned.\n");
804 return -ENODEV;
805 }
806
807 /* dev zeroed in alloc_etherdev */
808 dev = alloc_etherdev(sizeof(*lp));
809 if (dev == NULL) {
810 dev_err(&pdev->dev, "unable to alloc new ethernet\n");
811 return -ENOMEM;
812 }
813 SET_NETDEV_DEV(dev, &pdev->dev);
814 lp = netdev_priv(dev);
815 lp->dev = dev;
816
817 /* enable device (incl. PCI PM wakeup), and bus-mastering */
818 rc = pcim_enable_device(pdev);
819 if (rc)
820 goto err_out;
821 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
822 if (rc)
823 goto err_out;
824 pci_set_master(pdev);
825 ioaddr = pcim_iomap_table(pdev)[1];
826
827 /* Initialize the device structure. */
828 dev->netdev_ops = &tc35815_netdev_ops;
829 dev->ethtool_ops = &tc35815_ethtool_ops;
830 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
831 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
832
833 dev->irq = pdev->irq;
834 dev->base_addr = (unsigned long)ioaddr;
835
836 INIT_WORK(&lp->restart_work, tc35815_restart_work);
837 spin_lock_init(&lp->lock);
838 lp->pci_dev = pdev;
839 lp->chiptype = ent->driver_data;
840
841 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
842 pci_set_drvdata(pdev, dev);
843
844 /* Soft reset the chip. */
845 tc35815_chip_reset(dev);
846
847 /* Retrieve the ethernet address. */
848 if (tc35815_init_dev_addr(dev)) {
849 dev_warn(&pdev->dev, "not valid ether addr\n");
850 random_ether_addr(dev->dev_addr);
851 }
852
853 rc = register_netdev(dev);
854 if (rc)
855 goto err_out;
856
857 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
858 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
859 dev->name,
860 chip_info[ent->driver_data].name,
861 dev->base_addr,
862 dev->dev_addr,
863 dev->irq);
864
865 rc = tc_mii_init(dev);
866 if (rc)
867 goto err_out_unregister;
868
869 return 0;
870
871 err_out_unregister:
872 unregister_netdev(dev);
873 err_out:
874 free_netdev(dev);
875 return rc;
876 }
877
878
879 static void __devexit tc35815_remove_one(struct pci_dev *pdev)
880 {
881 struct net_device *dev = pci_get_drvdata(pdev);
882 struct tc35815_local *lp = netdev_priv(dev);
883
884 phy_disconnect(lp->phy_dev);
885 mdiobus_unregister(lp->mii_bus);
886 kfree(lp->mii_bus->irq);
887 mdiobus_free(lp->mii_bus);
888 unregister_netdev(dev);
889 free_netdev(dev);
890 pci_set_drvdata(pdev, NULL);
891 }
892
893 static int
894 tc35815_init_queues(struct net_device *dev)
895 {
896 struct tc35815_local *lp = netdev_priv(dev);
897 int i;
898 unsigned long fd_addr;
899
900 if (!lp->fd_buf) {
901 BUG_ON(sizeof(struct FDesc) +
902 sizeof(struct BDesc) * RX_BUF_NUM +
903 sizeof(struct FDesc) * RX_FD_NUM +
904 sizeof(struct TxFD) * TX_FD_NUM >
905 PAGE_SIZE * FD_PAGE_NUM);
906
907 lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
908 PAGE_SIZE * FD_PAGE_NUM,
909 &lp->fd_buf_dma);
910 if (!lp->fd_buf)
911 return -ENOMEM;
912 for (i = 0; i < RX_BUF_NUM; i++) {
913 lp->rx_skbs[i].skb =
914 alloc_rxbuf_skb(dev, lp->pci_dev,
915 &lp->rx_skbs[i].skb_dma);
916 if (!lp->rx_skbs[i].skb) {
917 while (--i >= 0) {
918 free_rxbuf_skb(lp->pci_dev,
919 lp->rx_skbs[i].skb,
920 lp->rx_skbs[i].skb_dma);
921 lp->rx_skbs[i].skb = NULL;
922 }
923 pci_free_consistent(lp->pci_dev,
924 PAGE_SIZE * FD_PAGE_NUM,
925 lp->fd_buf,
926 lp->fd_buf_dma);
927 lp->fd_buf = NULL;
928 return -ENOMEM;
929 }
930 }
931 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
932 dev->name, lp->fd_buf);
933 printk("\n");
934 } else {
935 for (i = 0; i < FD_PAGE_NUM; i++)
936 clear_page((void *)((unsigned long)lp->fd_buf +
937 i * PAGE_SIZE));
938 }
939 fd_addr = (unsigned long)lp->fd_buf;
940
941 /* Free Descriptors (for Receive) */
942 lp->rfd_base = (struct RxFD *)fd_addr;
943 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
944 for (i = 0; i < RX_FD_NUM; i++)
945 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
946 lp->rfd_cur = lp->rfd_base;
947 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
948
949 /* Transmit Descriptors */
950 lp->tfd_base = (struct TxFD *)fd_addr;
951 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
952 for (i = 0; i < TX_FD_NUM; i++) {
953 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
954 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
955 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
956 }
957 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
958 lp->tfd_start = 0;
959 lp->tfd_end = 0;
960
961 /* Buffer List (for Receive) */
962 lp->fbl_ptr = (struct FrFD *)fd_addr;
963 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
964 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
965 /*
966 * move all allocated skbs to head of rx_skbs[] array.
967 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
968 * tc35815_rx() had failed.
969 */
970 lp->fbl_count = 0;
971 for (i = 0; i < RX_BUF_NUM; i++) {
972 if (lp->rx_skbs[i].skb) {
973 if (i != lp->fbl_count) {
974 lp->rx_skbs[lp->fbl_count].skb =
975 lp->rx_skbs[i].skb;
976 lp->rx_skbs[lp->fbl_count].skb_dma =
977 lp->rx_skbs[i].skb_dma;
978 }
979 lp->fbl_count++;
980 }
981 }
982 for (i = 0; i < RX_BUF_NUM; i++) {
983 if (i >= lp->fbl_count) {
984 lp->fbl_ptr->bd[i].BuffData = 0;
985 lp->fbl_ptr->bd[i].BDCtl = 0;
986 continue;
987 }
988 lp->fbl_ptr->bd[i].BuffData =
989 cpu_to_le32(lp->rx_skbs[i].skb_dma);
990 /* BDID is index of FrFD.bd[] */
991 lp->fbl_ptr->bd[i].BDCtl =
992 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
993 RX_BUF_SIZE);
994 }
995
996 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
997 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
998 return 0;
999 }
1000
1001 static void
1002 tc35815_clear_queues(struct net_device *dev)
1003 {
1004 struct tc35815_local *lp = netdev_priv(dev);
1005 int i;
1006
1007 for (i = 0; i < TX_FD_NUM; i++) {
1008 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1009 struct sk_buff *skb =
1010 fdsystem != 0xffffffff ?
1011 lp->tx_skbs[fdsystem].skb : NULL;
1012 #ifdef DEBUG
1013 if (lp->tx_skbs[i].skb != skb) {
1014 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1015 panic_queues(dev);
1016 }
1017 #else
1018 BUG_ON(lp->tx_skbs[i].skb != skb);
1019 #endif
1020 if (skb) {
1021 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1022 lp->tx_skbs[i].skb = NULL;
1023 lp->tx_skbs[i].skb_dma = 0;
1024 dev_kfree_skb_any(skb);
1025 }
1026 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1027 }
1028
1029 tc35815_init_queues(dev);
1030 }
1031
1032 static void
1033 tc35815_free_queues(struct net_device *dev)
1034 {
1035 struct tc35815_local *lp = netdev_priv(dev);
1036 int i;
1037
1038 if (lp->tfd_base) {
1039 for (i = 0; i < TX_FD_NUM; i++) {
1040 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1041 struct sk_buff *skb =
1042 fdsystem != 0xffffffff ?
1043 lp->tx_skbs[fdsystem].skb : NULL;
1044 #ifdef DEBUG
1045 if (lp->tx_skbs[i].skb != skb) {
1046 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1047 panic_queues(dev);
1048 }
1049 #else
1050 BUG_ON(lp->tx_skbs[i].skb != skb);
1051 #endif
1052 if (skb) {
1053 dev_kfree_skb(skb);
1054 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1055 lp->tx_skbs[i].skb = NULL;
1056 lp->tx_skbs[i].skb_dma = 0;
1057 }
1058 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1059 }
1060 }
1061
1062 lp->rfd_base = NULL;
1063 lp->rfd_limit = NULL;
1064 lp->rfd_cur = NULL;
1065 lp->fbl_ptr = NULL;
1066
1067 for (i = 0; i < RX_BUF_NUM; i++) {
1068 if (lp->rx_skbs[i].skb) {
1069 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1070 lp->rx_skbs[i].skb_dma);
1071 lp->rx_skbs[i].skb = NULL;
1072 }
1073 }
1074 if (lp->fd_buf) {
1075 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1076 lp->fd_buf, lp->fd_buf_dma);
1077 lp->fd_buf = NULL;
1078 }
1079 }
1080
1081 static void
1082 dump_txfd(struct TxFD *fd)
1083 {
1084 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1085 le32_to_cpu(fd->fd.FDNext),
1086 le32_to_cpu(fd->fd.FDSystem),
1087 le32_to_cpu(fd->fd.FDStat),
1088 le32_to_cpu(fd->fd.FDCtl));
1089 printk("BD: ");
1090 printk(" %08x %08x",
1091 le32_to_cpu(fd->bd.BuffData),
1092 le32_to_cpu(fd->bd.BDCtl));
1093 printk("\n");
1094 }
1095
1096 static int
1097 dump_rxfd(struct RxFD *fd)
1098 {
1099 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1100 if (bd_count > 8)
1101 bd_count = 8;
1102 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1103 le32_to_cpu(fd->fd.FDNext),
1104 le32_to_cpu(fd->fd.FDSystem),
1105 le32_to_cpu(fd->fd.FDStat),
1106 le32_to_cpu(fd->fd.FDCtl));
1107 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1108 return 0;
1109 printk("BD: ");
1110 for (i = 0; i < bd_count; i++)
1111 printk(" %08x %08x",
1112 le32_to_cpu(fd->bd[i].BuffData),
1113 le32_to_cpu(fd->bd[i].BDCtl));
1114 printk("\n");
1115 return bd_count;
1116 }
1117
1118 #ifdef DEBUG
1119 static void
1120 dump_frfd(struct FrFD *fd)
1121 {
1122 int i;
1123 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1124 le32_to_cpu(fd->fd.FDNext),
1125 le32_to_cpu(fd->fd.FDSystem),
1126 le32_to_cpu(fd->fd.FDStat),
1127 le32_to_cpu(fd->fd.FDCtl));
1128 printk("BD: ");
1129 for (i = 0; i < RX_BUF_NUM; i++)
1130 printk(" %08x %08x",
1131 le32_to_cpu(fd->bd[i].BuffData),
1132 le32_to_cpu(fd->bd[i].BDCtl));
1133 printk("\n");
1134 }
1135
1136 static void
1137 panic_queues(struct net_device *dev)
1138 {
1139 struct tc35815_local *lp = netdev_priv(dev);
1140 int i;
1141
1142 printk("TxFD base %p, start %u, end %u\n",
1143 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1144 printk("RxFD base %p limit %p cur %p\n",
1145 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1146 printk("FrFD %p\n", lp->fbl_ptr);
1147 for (i = 0; i < TX_FD_NUM; i++)
1148 dump_txfd(&lp->tfd_base[i]);
1149 for (i = 0; i < RX_FD_NUM; i++) {
1150 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1151 i += (bd_count + 1) / 2; /* skip BDs */
1152 }
1153 dump_frfd(lp->fbl_ptr);
1154 panic("%s: Illegal queue state.", dev->name);
1155 }
1156 #endif
1157
1158 static void print_eth(const u8 *add)
1159 {
1160 printk(KERN_DEBUG "print_eth(%p)\n", add);
1161 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1162 add + 6, add, add[12], add[13]);
1163 }
1164
1165 static int tc35815_tx_full(struct net_device *dev)
1166 {
1167 struct tc35815_local *lp = netdev_priv(dev);
1168 return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
1169 }
1170
1171 static void tc35815_restart(struct net_device *dev)
1172 {
1173 struct tc35815_local *lp = netdev_priv(dev);
1174
1175 if (lp->phy_dev) {
1176 int timeout;
1177
1178 phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
1179 timeout = 100;
1180 while (--timeout) {
1181 if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
1182 break;
1183 udelay(1);
1184 }
1185 if (!timeout)
1186 printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
1187 }
1188
1189 spin_lock_irq(&lp->lock);
1190 tc35815_chip_reset(dev);
1191 tc35815_clear_queues(dev);
1192 tc35815_chip_init(dev);
1193 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1194 tc35815_set_multicast_list(dev);
1195 spin_unlock_irq(&lp->lock);
1196
1197 netif_wake_queue(dev);
1198 }
1199
1200 static void tc35815_restart_work(struct work_struct *work)
1201 {
1202 struct tc35815_local *lp =
1203 container_of(work, struct tc35815_local, restart_work);
1204 struct net_device *dev = lp->dev;
1205
1206 tc35815_restart(dev);
1207 }
1208
1209 static void tc35815_schedule_restart(struct net_device *dev)
1210 {
1211 struct tc35815_local *lp = netdev_priv(dev);
1212 struct tc35815_regs __iomem *tr =
1213 (struct tc35815_regs __iomem *)dev->base_addr;
1214
1215 /* disable interrupts */
1216 tc_writel(0, &tr->Int_En);
1217 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1218 schedule_work(&lp->restart_work);
1219 }
1220
1221 static void tc35815_tx_timeout(struct net_device *dev)
1222 {
1223 struct tc35815_regs __iomem *tr =
1224 (struct tc35815_regs __iomem *)dev->base_addr;
1225
1226 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1227 dev->name, tc_readl(&tr->Tx_Stat));
1228
1229 /* Try to restart the adaptor. */
1230 tc35815_schedule_restart(dev);
1231 dev->stats.tx_errors++;
1232 }
1233
1234 /*
1235 * Open/initialize the controller. This is called (in the current kernel)
1236 * sometime after booting when the 'ifconfig' program is run.
1237 *
1238 * This routine should set everything up anew at each open, even
1239 * registers that "should" only need to be set once at boot, so that
1240 * there is non-reboot way to recover if something goes wrong.
1241 */
1242 static int
1243 tc35815_open(struct net_device *dev)
1244 {
1245 struct tc35815_local *lp = netdev_priv(dev);
1246
1247 /*
1248 * This is used if the interrupt line can turned off (shared).
1249 * See 3c503.c for an example of selecting the IRQ at config-time.
1250 */
1251 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1252 dev->name, dev))
1253 return -EAGAIN;
1254
1255 tc35815_chip_reset(dev);
1256
1257 if (tc35815_init_queues(dev) != 0) {
1258 free_irq(dev->irq, dev);
1259 return -EAGAIN;
1260 }
1261
1262 napi_enable(&lp->napi);
1263
1264 /* Reset the hardware here. Don't forget to set the station address. */
1265 spin_lock_irq(&lp->lock);
1266 tc35815_chip_init(dev);
1267 spin_unlock_irq(&lp->lock);
1268
1269 netif_carrier_off(dev);
1270 /* schedule a link state check */
1271 phy_start(lp->phy_dev);
1272
1273 /* We are now ready to accept transmit requeusts from
1274 * the queueing layer of the networking.
1275 */
1276 netif_start_queue(dev);
1277
1278 return 0;
1279 }
1280
1281 /* This will only be invoked if your driver is _not_ in XOFF state.
1282 * What this means is that you need not check it, and that this
1283 * invariant will hold if you make sure that the netif_*_queue()
1284 * calls are done at the proper times.
1285 */
1286 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1287 {
1288 struct tc35815_local *lp = netdev_priv(dev);
1289 struct TxFD *txfd;
1290 unsigned long flags;
1291
1292 /* If some error occurs while trying to transmit this
1293 * packet, you should return '1' from this function.
1294 * In such a case you _may not_ do anything to the
1295 * SKB, it is still owned by the network queueing
1296 * layer when an error is returned. This means you
1297 * may not modify any SKB fields, you may not free
1298 * the SKB, etc.
1299 */
1300
1301 /* This is the most common case for modern hardware.
1302 * The spinlock protects this code from the TX complete
1303 * hardware interrupt handler. Queue flow control is
1304 * thus managed under this lock as well.
1305 */
1306 spin_lock_irqsave(&lp->lock, flags);
1307
1308 /* failsafe... (handle txdone now if half of FDs are used) */
1309 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1310 TX_FD_NUM / 2)
1311 tc35815_txdone(dev);
1312
1313 if (netif_msg_pktdata(lp))
1314 print_eth(skb->data);
1315 #ifdef DEBUG
1316 if (lp->tx_skbs[lp->tfd_start].skb) {
1317 printk("%s: tx_skbs conflict.\n", dev->name);
1318 panic_queues(dev);
1319 }
1320 #else
1321 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1322 #endif
1323 lp->tx_skbs[lp->tfd_start].skb = skb;
1324 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1325
1326 /*add to ring */
1327 txfd = &lp->tfd_base[lp->tfd_start];
1328 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1329 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1330 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1331 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1332
1333 if (lp->tfd_start == lp->tfd_end) {
1334 struct tc35815_regs __iomem *tr =
1335 (struct tc35815_regs __iomem *)dev->base_addr;
1336 /* Start DMA Transmitter. */
1337 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1338 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1339 if (netif_msg_tx_queued(lp)) {
1340 printk("%s: starting TxFD.\n", dev->name);
1341 dump_txfd(txfd);
1342 }
1343 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1344 } else {
1345 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1346 if (netif_msg_tx_queued(lp)) {
1347 printk("%s: queueing TxFD.\n", dev->name);
1348 dump_txfd(txfd);
1349 }
1350 }
1351 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1352
1353 dev->trans_start = jiffies;
1354
1355 /* If we just used up the very last entry in the
1356 * TX ring on this device, tell the queueing
1357 * layer to send no more.
1358 */
1359 if (tc35815_tx_full(dev)) {
1360 if (netif_msg_tx_queued(lp))
1361 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1362 netif_stop_queue(dev);
1363 }
1364
1365 /* When the TX completion hw interrupt arrives, this
1366 * is when the transmit statistics are updated.
1367 */
1368
1369 spin_unlock_irqrestore(&lp->lock, flags);
1370 return NETDEV_TX_OK;
1371 }
1372
1373 #define FATAL_ERROR_INT \
1374 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1375 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1376 {
1377 static int count;
1378 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1379 dev->name, status);
1380 if (status & Int_IntPCI)
1381 printk(" IntPCI");
1382 if (status & Int_DmParErr)
1383 printk(" DmParErr");
1384 if (status & Int_IntNRAbt)
1385 printk(" IntNRAbt");
1386 printk("\n");
1387 if (count++ > 100)
1388 panic("%s: Too many fatal errors.", dev->name);
1389 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1390 /* Try to restart the adaptor. */
1391 tc35815_schedule_restart(dev);
1392 }
1393
1394 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1395 {
1396 struct tc35815_local *lp = netdev_priv(dev);
1397 int ret = -1;
1398
1399 /* Fatal errors... */
1400 if (status & FATAL_ERROR_INT) {
1401 tc35815_fatal_error_interrupt(dev, status);
1402 return 0;
1403 }
1404 /* recoverable errors */
1405 if (status & Int_IntFDAEx) {
1406 if (netif_msg_rx_err(lp))
1407 dev_warn(&dev->dev,
1408 "Free Descriptor Area Exhausted (%#x).\n",
1409 status);
1410 dev->stats.rx_dropped++;
1411 ret = 0;
1412 }
1413 if (status & Int_IntBLEx) {
1414 if (netif_msg_rx_err(lp))
1415 dev_warn(&dev->dev,
1416 "Buffer List Exhausted (%#x).\n",
1417 status);
1418 dev->stats.rx_dropped++;
1419 ret = 0;
1420 }
1421 if (status & Int_IntExBD) {
1422 if (netif_msg_rx_err(lp))
1423 dev_warn(&dev->dev,
1424 "Excessive Buffer Descriptiors (%#x).\n",
1425 status);
1426 dev->stats.rx_length_errors++;
1427 ret = 0;
1428 }
1429
1430 /* normal notification */
1431 if (status & Int_IntMacRx) {
1432 /* Got a packet(s). */
1433 ret = tc35815_rx(dev, limit);
1434 lp->lstats.rx_ints++;
1435 }
1436 if (status & Int_IntMacTx) {
1437 /* Transmit complete. */
1438 lp->lstats.tx_ints++;
1439 tc35815_txdone(dev);
1440 if (ret < 0)
1441 ret = 0;
1442 }
1443 return ret;
1444 }
1445
1446 /*
1447 * The typical workload of the driver:
1448 * Handle the network interface interrupts.
1449 */
1450 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1451 {
1452 struct net_device *dev = dev_id;
1453 struct tc35815_local *lp = netdev_priv(dev);
1454 struct tc35815_regs __iomem *tr =
1455 (struct tc35815_regs __iomem *)dev->base_addr;
1456 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1457
1458 if (!(dmactl & DMA_IntMask)) {
1459 /* disable interrupts */
1460 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1461 if (napi_schedule_prep(&lp->napi))
1462 __napi_schedule(&lp->napi);
1463 else {
1464 printk(KERN_ERR "%s: interrupt taken in poll\n",
1465 dev->name);
1466 BUG();
1467 }
1468 (void)tc_readl(&tr->Int_Src); /* flush */
1469 return IRQ_HANDLED;
1470 }
1471 return IRQ_NONE;
1472 }
1473
1474 #ifdef CONFIG_NET_POLL_CONTROLLER
1475 static void tc35815_poll_controller(struct net_device *dev)
1476 {
1477 disable_irq(dev->irq);
1478 tc35815_interrupt(dev->irq, dev);
1479 enable_irq(dev->irq);
1480 }
1481 #endif
1482
1483 /* We have a good packet(s), get it/them out of the buffers. */
1484 static int
1485 tc35815_rx(struct net_device *dev, int limit)
1486 {
1487 struct tc35815_local *lp = netdev_priv(dev);
1488 unsigned int fdctl;
1489 int i;
1490 int received = 0;
1491
1492 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1493 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1494 int pkt_len = fdctl & FD_FDLength_MASK;
1495 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1496 #ifdef DEBUG
1497 struct RxFD *next_rfd;
1498 #endif
1499 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1500 pkt_len -= ETH_FCS_LEN;
1501 #endif
1502
1503 if (netif_msg_rx_status(lp))
1504 dump_rxfd(lp->rfd_cur);
1505 if (status & Rx_Good) {
1506 struct sk_buff *skb;
1507 unsigned char *data;
1508 int cur_bd;
1509
1510 if (--limit < 0)
1511 break;
1512 BUG_ON(bd_count > 1);
1513 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1514 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1515 #ifdef DEBUG
1516 if (cur_bd >= RX_BUF_NUM) {
1517 printk("%s: invalid BDID.\n", dev->name);
1518 panic_queues(dev);
1519 }
1520 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1521 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1522 if (!lp->rx_skbs[cur_bd].skb) {
1523 printk("%s: NULL skb.\n", dev->name);
1524 panic_queues(dev);
1525 }
1526 #else
1527 BUG_ON(cur_bd >= RX_BUF_NUM);
1528 #endif
1529 skb = lp->rx_skbs[cur_bd].skb;
1530 prefetch(skb->data);
1531 lp->rx_skbs[cur_bd].skb = NULL;
1532 pci_unmap_single(lp->pci_dev,
1533 lp->rx_skbs[cur_bd].skb_dma,
1534 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1535 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1536 memmove(skb->data, skb->data - NET_IP_ALIGN,
1537 pkt_len);
1538 data = skb_put(skb, pkt_len);
1539 if (netif_msg_pktdata(lp))
1540 print_eth(data);
1541 skb->protocol = eth_type_trans(skb, dev);
1542 netif_receive_skb(skb);
1543 received++;
1544 dev->stats.rx_packets++;
1545 dev->stats.rx_bytes += pkt_len;
1546 } else {
1547 dev->stats.rx_errors++;
1548 if (netif_msg_rx_err(lp))
1549 dev_info(&dev->dev, "Rx error (status %x)\n",
1550 status & Rx_Stat_Mask);
1551 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1552 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1553 status &= ~(Rx_LongErr|Rx_CRCErr);
1554 status |= Rx_Over;
1555 }
1556 if (status & Rx_LongErr)
1557 dev->stats.rx_length_errors++;
1558 if (status & Rx_Over)
1559 dev->stats.rx_fifo_errors++;
1560 if (status & Rx_CRCErr)
1561 dev->stats.rx_crc_errors++;
1562 if (status & Rx_Align)
1563 dev->stats.rx_frame_errors++;
1564 }
1565
1566 if (bd_count > 0) {
1567 /* put Free Buffer back to controller */
1568 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1569 unsigned char id =
1570 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1571 #ifdef DEBUG
1572 if (id >= RX_BUF_NUM) {
1573 printk("%s: invalid BDID.\n", dev->name);
1574 panic_queues(dev);
1575 }
1576 #else
1577 BUG_ON(id >= RX_BUF_NUM);
1578 #endif
1579 /* free old buffers */
1580 lp->fbl_count--;
1581 while (lp->fbl_count < RX_BUF_NUM)
1582 {
1583 unsigned char curid =
1584 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1585 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1586 #ifdef DEBUG
1587 bdctl = le32_to_cpu(bd->BDCtl);
1588 if (bdctl & BD_CownsBD) {
1589 printk("%s: Freeing invalid BD.\n",
1590 dev->name);
1591 panic_queues(dev);
1592 }
1593 #endif
1594 /* pass BD to controller */
1595 if (!lp->rx_skbs[curid].skb) {
1596 lp->rx_skbs[curid].skb =
1597 alloc_rxbuf_skb(dev,
1598 lp->pci_dev,
1599 &lp->rx_skbs[curid].skb_dma);
1600 if (!lp->rx_skbs[curid].skb)
1601 break; /* try on next reception */
1602 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1603 }
1604 /* Note: BDLength was modified by chip. */
1605 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1606 (curid << BD_RxBDID_SHIFT) |
1607 RX_BUF_SIZE);
1608 lp->fbl_count++;
1609 }
1610 }
1611
1612 /* put RxFD back to controller */
1613 #ifdef DEBUG
1614 next_rfd = fd_bus_to_virt(lp,
1615 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1616 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1617 printk("%s: RxFD FDNext invalid.\n", dev->name);
1618 panic_queues(dev);
1619 }
1620 #endif
1621 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1622 /* pass FD to controller */
1623 #ifdef DEBUG
1624 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1625 #else
1626 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1627 #endif
1628 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1629 lp->rfd_cur++;
1630 }
1631 if (lp->rfd_cur > lp->rfd_limit)
1632 lp->rfd_cur = lp->rfd_base;
1633 #ifdef DEBUG
1634 if (lp->rfd_cur != next_rfd)
1635 printk("rfd_cur = %p, next_rfd %p\n",
1636 lp->rfd_cur, next_rfd);
1637 #endif
1638 }
1639
1640 return received;
1641 }
1642
1643 static int tc35815_poll(struct napi_struct *napi, int budget)
1644 {
1645 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1646 struct net_device *dev = lp->dev;
1647 struct tc35815_regs __iomem *tr =
1648 (struct tc35815_regs __iomem *)dev->base_addr;
1649 int received = 0, handled;
1650 u32 status;
1651
1652 spin_lock(&lp->lock);
1653 status = tc_readl(&tr->Int_Src);
1654 do {
1655 /* BLEx, FDAEx will be cleared later */
1656 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1657 &tr->Int_Src); /* write to clear */
1658
1659 handled = tc35815_do_interrupt(dev, status, budget - received);
1660 if (status & (Int_BLEx | Int_FDAEx))
1661 tc_writel(status & (Int_BLEx | Int_FDAEx),
1662 &tr->Int_Src);
1663 if (handled >= 0) {
1664 received += handled;
1665 if (received >= budget)
1666 break;
1667 }
1668 status = tc_readl(&tr->Int_Src);
1669 } while (status);
1670 spin_unlock(&lp->lock);
1671
1672 if (received < budget) {
1673 napi_complete(napi);
1674 /* enable interrupts */
1675 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1676 }
1677 return received;
1678 }
1679
1680 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1681
1682 static void
1683 tc35815_check_tx_stat(struct net_device *dev, int status)
1684 {
1685 struct tc35815_local *lp = netdev_priv(dev);
1686 const char *msg = NULL;
1687
1688 /* count collisions */
1689 if (status & Tx_ExColl)
1690 dev->stats.collisions += 16;
1691 if (status & Tx_TxColl_MASK)
1692 dev->stats.collisions += status & Tx_TxColl_MASK;
1693
1694 /* TX4939 does not have NCarr */
1695 if (lp->chiptype == TC35815_TX4939)
1696 status &= ~Tx_NCarr;
1697 /* WORKAROUND: ignore LostCrS in full duplex operation */
1698 if (!lp->link || lp->duplex == DUPLEX_FULL)
1699 status &= ~Tx_NCarr;
1700
1701 if (!(status & TX_STA_ERR)) {
1702 /* no error. */
1703 dev->stats.tx_packets++;
1704 return;
1705 }
1706
1707 dev->stats.tx_errors++;
1708 if (status & Tx_ExColl) {
1709 dev->stats.tx_aborted_errors++;
1710 msg = "Excessive Collision.";
1711 }
1712 if (status & Tx_Under) {
1713 dev->stats.tx_fifo_errors++;
1714 msg = "Tx FIFO Underrun.";
1715 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1716 lp->lstats.tx_underrun++;
1717 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1718 struct tc35815_regs __iomem *tr =
1719 (struct tc35815_regs __iomem *)dev->base_addr;
1720 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1721 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1722 }
1723 }
1724 }
1725 if (status & Tx_Defer) {
1726 dev->stats.tx_fifo_errors++;
1727 msg = "Excessive Deferral.";
1728 }
1729 if (status & Tx_NCarr) {
1730 dev->stats.tx_carrier_errors++;
1731 msg = "Lost Carrier Sense.";
1732 }
1733 if (status & Tx_LateColl) {
1734 dev->stats.tx_aborted_errors++;
1735 msg = "Late Collision.";
1736 }
1737 if (status & Tx_TxPar) {
1738 dev->stats.tx_fifo_errors++;
1739 msg = "Transmit Parity Error.";
1740 }
1741 if (status & Tx_SQErr) {
1742 dev->stats.tx_heartbeat_errors++;
1743 msg = "Signal Quality Error.";
1744 }
1745 if (msg && netif_msg_tx_err(lp))
1746 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1747 }
1748
1749 /* This handles TX complete events posted by the device
1750 * via interrupts.
1751 */
1752 static void
1753 tc35815_txdone(struct net_device *dev)
1754 {
1755 struct tc35815_local *lp = netdev_priv(dev);
1756 struct TxFD *txfd;
1757 unsigned int fdctl;
1758
1759 txfd = &lp->tfd_base[lp->tfd_end];
1760 while (lp->tfd_start != lp->tfd_end &&
1761 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1762 int status = le32_to_cpu(txfd->fd.FDStat);
1763 struct sk_buff *skb;
1764 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1765 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1766
1767 if (netif_msg_tx_done(lp)) {
1768 printk("%s: complete TxFD.\n", dev->name);
1769 dump_txfd(txfd);
1770 }
1771 tc35815_check_tx_stat(dev, status);
1772
1773 skb = fdsystem != 0xffffffff ?
1774 lp->tx_skbs[fdsystem].skb : NULL;
1775 #ifdef DEBUG
1776 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1777 printk("%s: tx_skbs mismatch.\n", dev->name);
1778 panic_queues(dev);
1779 }
1780 #else
1781 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1782 #endif
1783 if (skb) {
1784 dev->stats.tx_bytes += skb->len;
1785 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1786 lp->tx_skbs[lp->tfd_end].skb = NULL;
1787 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1788 dev_kfree_skb_any(skb);
1789 }
1790 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1791
1792 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1793 txfd = &lp->tfd_base[lp->tfd_end];
1794 #ifdef DEBUG
1795 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1796 printk("%s: TxFD FDNext invalid.\n", dev->name);
1797 panic_queues(dev);
1798 }
1799 #endif
1800 if (fdnext & FD_Next_EOL) {
1801 /* DMA Transmitter has been stopping... */
1802 if (lp->tfd_end != lp->tfd_start) {
1803 struct tc35815_regs __iomem *tr =
1804 (struct tc35815_regs __iomem *)dev->base_addr;
1805 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1806 struct TxFD *txhead = &lp->tfd_base[head];
1807 int qlen = (lp->tfd_start + TX_FD_NUM
1808 - lp->tfd_end) % TX_FD_NUM;
1809
1810 #ifdef DEBUG
1811 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1812 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1813 panic_queues(dev);
1814 }
1815 #endif
1816 /* log max queue length */
1817 if (lp->lstats.max_tx_qlen < qlen)
1818 lp->lstats.max_tx_qlen = qlen;
1819
1820
1821 /* start DMA Transmitter again */
1822 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1823 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1824 if (netif_msg_tx_queued(lp)) {
1825 printk("%s: start TxFD on queue.\n",
1826 dev->name);
1827 dump_txfd(txfd);
1828 }
1829 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1830 }
1831 break;
1832 }
1833 }
1834
1835 /* If we had stopped the queue due to a "tx full"
1836 * condition, and space has now been made available,
1837 * wake up the queue.
1838 */
1839 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1840 netif_wake_queue(dev);
1841 }
1842
1843 /* The inverse routine to tc35815_open(). */
1844 static int
1845 tc35815_close(struct net_device *dev)
1846 {
1847 struct tc35815_local *lp = netdev_priv(dev);
1848
1849 netif_stop_queue(dev);
1850 napi_disable(&lp->napi);
1851 if (lp->phy_dev)
1852 phy_stop(lp->phy_dev);
1853 cancel_work_sync(&lp->restart_work);
1854
1855 /* Flush the Tx and disable Rx here. */
1856 tc35815_chip_reset(dev);
1857 free_irq(dev->irq, dev);
1858
1859 tc35815_free_queues(dev);
1860
1861 return 0;
1862
1863 }
1864
1865 /*
1866 * Get the current statistics.
1867 * This may be called with the card open or closed.
1868 */
1869 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1870 {
1871 struct tc35815_regs __iomem *tr =
1872 (struct tc35815_regs __iomem *)dev->base_addr;
1873 if (netif_running(dev))
1874 /* Update the statistics from the device registers. */
1875 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1876
1877 return &dev->stats;
1878 }
1879
1880 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1881 {
1882 struct tc35815_local *lp = netdev_priv(dev);
1883 struct tc35815_regs __iomem *tr =
1884 (struct tc35815_regs __iomem *)dev->base_addr;
1885 int cam_index = index * 6;
1886 u32 cam_data;
1887 u32 saved_addr;
1888
1889 saved_addr = tc_readl(&tr->CAM_Adr);
1890
1891 if (netif_msg_hw(lp))
1892 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1893 dev->name, index, addr);
1894 if (index & 1) {
1895 /* read modify write */
1896 tc_writel(cam_index - 2, &tr->CAM_Adr);
1897 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1898 cam_data |= addr[0] << 8 | addr[1];
1899 tc_writel(cam_data, &tr->CAM_Data);
1900 /* write whole word */
1901 tc_writel(cam_index + 2, &tr->CAM_Adr);
1902 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1903 tc_writel(cam_data, &tr->CAM_Data);
1904 } else {
1905 /* write whole word */
1906 tc_writel(cam_index, &tr->CAM_Adr);
1907 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1908 tc_writel(cam_data, &tr->CAM_Data);
1909 /* read modify write */
1910 tc_writel(cam_index + 4, &tr->CAM_Adr);
1911 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1912 cam_data |= addr[4] << 24 | (addr[5] << 16);
1913 tc_writel(cam_data, &tr->CAM_Data);
1914 }
1915
1916 tc_writel(saved_addr, &tr->CAM_Adr);
1917 }
1918
1919
1920 /*
1921 * Set or clear the multicast filter for this adaptor.
1922 * num_addrs == -1 Promiscuous mode, receive all packets
1923 * num_addrs == 0 Normal mode, clear multicast list
1924 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1925 * and do best-effort filtering.
1926 */
1927 static void
1928 tc35815_set_multicast_list(struct net_device *dev)
1929 {
1930 struct tc35815_regs __iomem *tr =
1931 (struct tc35815_regs __iomem *)dev->base_addr;
1932
1933 if (dev->flags & IFF_PROMISC) {
1934 /* With some (all?) 100MHalf HUB, controller will hang
1935 * if we enabled promiscuous mode before linkup... */
1936 struct tc35815_local *lp = netdev_priv(dev);
1937
1938 if (!lp->link)
1939 return;
1940 /* Enable promiscuous mode */
1941 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1942 } else if ((dev->flags & IFF_ALLMULTI) ||
1943 dev->mc_count > CAM_ENTRY_MAX - 3) {
1944 /* CAM 0, 1, 20 are reserved. */
1945 /* Disable promiscuous mode, use normal mode. */
1946 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1947 } else if (dev->mc_count) {
1948 struct dev_mc_list *cur_addr = dev->mc_list;
1949 int i;
1950 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1951
1952 tc_writel(0, &tr->CAM_Ctl);
1953 /* Walk the address list, and load the filter */
1954 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1955 if (!cur_addr)
1956 break;
1957 /* entry 0,1 is reserved. */
1958 tc35815_set_cam_entry(dev, i + 2, cur_addr->dmi_addr);
1959 ena_bits |= CAM_Ena_Bit(i + 2);
1960 }
1961 tc_writel(ena_bits, &tr->CAM_Ena);
1962 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1963 } else {
1964 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1965 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1966 }
1967 }
1968
1969 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1970 {
1971 struct tc35815_local *lp = netdev_priv(dev);
1972 strcpy(info->driver, MODNAME);
1973 strcpy(info->version, DRV_VERSION);
1974 strcpy(info->bus_info, pci_name(lp->pci_dev));
1975 }
1976
1977 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1978 {
1979 struct tc35815_local *lp = netdev_priv(dev);
1980
1981 if (!lp->phy_dev)
1982 return -ENODEV;
1983 return phy_ethtool_gset(lp->phy_dev, cmd);
1984 }
1985
1986 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1987 {
1988 struct tc35815_local *lp = netdev_priv(dev);
1989
1990 if (!lp->phy_dev)
1991 return -ENODEV;
1992 return phy_ethtool_sset(lp->phy_dev, cmd);
1993 }
1994
1995 static u32 tc35815_get_msglevel(struct net_device *dev)
1996 {
1997 struct tc35815_local *lp = netdev_priv(dev);
1998 return lp->msg_enable;
1999 }
2000
2001 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2002 {
2003 struct tc35815_local *lp = netdev_priv(dev);
2004 lp->msg_enable = datum;
2005 }
2006
2007 static int tc35815_get_sset_count(struct net_device *dev, int sset)
2008 {
2009 struct tc35815_local *lp = netdev_priv(dev);
2010
2011 switch (sset) {
2012 case ETH_SS_STATS:
2013 return sizeof(lp->lstats) / sizeof(int);
2014 default:
2015 return -EOPNOTSUPP;
2016 }
2017 }
2018
2019 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2020 {
2021 struct tc35815_local *lp = netdev_priv(dev);
2022 data[0] = lp->lstats.max_tx_qlen;
2023 data[1] = lp->lstats.tx_ints;
2024 data[2] = lp->lstats.rx_ints;
2025 data[3] = lp->lstats.tx_underrun;
2026 }
2027
2028 static struct {
2029 const char str[ETH_GSTRING_LEN];
2030 } ethtool_stats_keys[] = {
2031 { "max_tx_qlen" },
2032 { "tx_ints" },
2033 { "rx_ints" },
2034 { "tx_underrun" },
2035 };
2036
2037 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2038 {
2039 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2040 }
2041
2042 static const struct ethtool_ops tc35815_ethtool_ops = {
2043 .get_drvinfo = tc35815_get_drvinfo,
2044 .get_settings = tc35815_get_settings,
2045 .set_settings = tc35815_set_settings,
2046 .get_link = ethtool_op_get_link,
2047 .get_msglevel = tc35815_get_msglevel,
2048 .set_msglevel = tc35815_set_msglevel,
2049 .get_strings = tc35815_get_strings,
2050 .get_sset_count = tc35815_get_sset_count,
2051 .get_ethtool_stats = tc35815_get_ethtool_stats,
2052 };
2053
2054 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2055 {
2056 struct tc35815_local *lp = netdev_priv(dev);
2057
2058 if (!netif_running(dev))
2059 return -EINVAL;
2060 if (!lp->phy_dev)
2061 return -ENODEV;
2062 return phy_mii_ioctl(lp->phy_dev, if_mii(rq), cmd);
2063 }
2064
2065 static void tc35815_chip_reset(struct net_device *dev)
2066 {
2067 struct tc35815_regs __iomem *tr =
2068 (struct tc35815_regs __iomem *)dev->base_addr;
2069 int i;
2070 /* reset the controller */
2071 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2072 udelay(4); /* 3200ns */
2073 i = 0;
2074 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2075 if (i++ > 100) {
2076 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2077 break;
2078 }
2079 mdelay(1);
2080 }
2081 tc_writel(0, &tr->MAC_Ctl);
2082
2083 /* initialize registers to default value */
2084 tc_writel(0, &tr->DMA_Ctl);
2085 tc_writel(0, &tr->TxThrsh);
2086 tc_writel(0, &tr->TxPollCtr);
2087 tc_writel(0, &tr->RxFragSize);
2088 tc_writel(0, &tr->Int_En);
2089 tc_writel(0, &tr->FDA_Bas);
2090 tc_writel(0, &tr->FDA_Lim);
2091 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2092 tc_writel(0, &tr->CAM_Ctl);
2093 tc_writel(0, &tr->Tx_Ctl);
2094 tc_writel(0, &tr->Rx_Ctl);
2095 tc_writel(0, &tr->CAM_Ena);
2096 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2097
2098 /* initialize internal SRAM */
2099 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2100 for (i = 0; i < 0x1000; i += 4) {
2101 tc_writel(i, &tr->CAM_Adr);
2102 tc_writel(0, &tr->CAM_Data);
2103 }
2104 tc_writel(0, &tr->DMA_Ctl);
2105 }
2106
2107 static void tc35815_chip_init(struct net_device *dev)
2108 {
2109 struct tc35815_local *lp = netdev_priv(dev);
2110 struct tc35815_regs __iomem *tr =
2111 (struct tc35815_regs __iomem *)dev->base_addr;
2112 unsigned long txctl = TX_CTL_CMD;
2113
2114 /* load station address to CAM */
2115 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2116
2117 /* Enable CAM (broadcast and unicast) */
2118 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2119 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2120
2121 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2122 if (HAVE_DMA_RXALIGN(lp))
2123 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2124 else
2125 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2126 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2127 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2128 tc_writel(INT_EN_CMD, &tr->Int_En);
2129
2130 /* set queues */
2131 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2132 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2133 &tr->FDA_Lim);
2134 /*
2135 * Activation method:
2136 * First, enable the MAC Transmitter and the DMA Receive circuits.
2137 * Then enable the DMA Transmitter and the MAC Receive circuits.
2138 */
2139 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2140 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2141
2142 /* start MAC transmitter */
2143 /* TX4939 does not have EnLCarr */
2144 if (lp->chiptype == TC35815_TX4939)
2145 txctl &= ~Tx_EnLCarr;
2146 /* WORKAROUND: ignore LostCrS in full duplex operation */
2147 if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2148 txctl &= ~Tx_EnLCarr;
2149 tc_writel(txctl, &tr->Tx_Ctl);
2150 }
2151
2152 #ifdef CONFIG_PM
2153 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2154 {
2155 struct net_device *dev = pci_get_drvdata(pdev);
2156 struct tc35815_local *lp = netdev_priv(dev);
2157 unsigned long flags;
2158
2159 pci_save_state(pdev);
2160 if (!netif_running(dev))
2161 return 0;
2162 netif_device_detach(dev);
2163 if (lp->phy_dev)
2164 phy_stop(lp->phy_dev);
2165 spin_lock_irqsave(&lp->lock, flags);
2166 tc35815_chip_reset(dev);
2167 spin_unlock_irqrestore(&lp->lock, flags);
2168 pci_set_power_state(pdev, PCI_D3hot);
2169 return 0;
2170 }
2171
2172 static int tc35815_resume(struct pci_dev *pdev)
2173 {
2174 struct net_device *dev = pci_get_drvdata(pdev);
2175 struct tc35815_local *lp = netdev_priv(dev);
2176
2177 pci_restore_state(pdev);
2178 if (!netif_running(dev))
2179 return 0;
2180 pci_set_power_state(pdev, PCI_D0);
2181 tc35815_restart(dev);
2182 netif_carrier_off(dev);
2183 if (lp->phy_dev)
2184 phy_start(lp->phy_dev);
2185 netif_device_attach(dev);
2186 return 0;
2187 }
2188 #endif /* CONFIG_PM */
2189
2190 static struct pci_driver tc35815_pci_driver = {
2191 .name = MODNAME,
2192 .id_table = tc35815_pci_tbl,
2193 .probe = tc35815_init_one,
2194 .remove = __devexit_p(tc35815_remove_one),
2195 #ifdef CONFIG_PM
2196 .suspend = tc35815_suspend,
2197 .resume = tc35815_resume,
2198 #endif
2199 };
2200
2201 module_param_named(speed, options.speed, int, 0);
2202 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2203 module_param_named(duplex, options.duplex, int, 0);
2204 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2205
2206 static int __init tc35815_init_module(void)
2207 {
2208 return pci_register_driver(&tc35815_pci_driver);
2209 }
2210
2211 static void __exit tc35815_cleanup_module(void)
2212 {
2213 pci_unregister_driver(&tc35815_pci_driver);
2214 }
2215
2216 module_init(tc35815_init_module);
2217 module_exit(tc35815_cleanup_module);
2218
2219 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2220 MODULE_LICENSE("GPL");