]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/thunderbolt.c
net: thunderbolt: fix memory leak in tbnet_open()
[mirror_ubuntu-jammy-kernel.git] / drivers / net / thunderbolt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Networking over Thunderbolt cable using Apple ThunderboltIP protocol
4 *
5 * Copyright (C) 2017, Intel Corporation
6 * Authors: Amir Levy <amir.jer.levy@intel.com>
7 * Michael Jamet <michael.jamet@intel.com>
8 * Mika Westerberg <mika.westerberg@linux.intel.com>
9 */
10
11 #include <linux/atomic.h>
12 #include <linux/highmem.h>
13 #include <linux/if_vlan.h>
14 #include <linux/jhash.h>
15 #include <linux/module.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/sizes.h>
19 #include <linux/thunderbolt.h>
20 #include <linux/uuid.h>
21 #include <linux/workqueue.h>
22
23 #include <net/ip6_checksum.h>
24
25 /* Protocol timeouts in ms */
26 #define TBNET_LOGIN_DELAY 4500
27 #define TBNET_LOGIN_TIMEOUT 500
28 #define TBNET_LOGOUT_TIMEOUT 1000
29
30 #define TBNET_RING_SIZE 256
31 #define TBNET_LOGIN_RETRIES 60
32 #define TBNET_LOGOUT_RETRIES 10
33 #define TBNET_MATCH_FRAGS_ID BIT(1)
34 #define TBNET_64K_FRAMES BIT(2)
35 #define TBNET_MAX_MTU SZ_64K
36 #define TBNET_FRAME_SIZE SZ_4K
37 #define TBNET_MAX_PAYLOAD_SIZE \
38 (TBNET_FRAME_SIZE - sizeof(struct thunderbolt_ip_frame_header))
39 /* Rx packets need to hold space for skb_shared_info */
40 #define TBNET_RX_MAX_SIZE \
41 (TBNET_FRAME_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define TBNET_RX_PAGE_ORDER get_order(TBNET_RX_MAX_SIZE)
43 #define TBNET_RX_PAGE_SIZE (PAGE_SIZE << TBNET_RX_PAGE_ORDER)
44
45 #define TBNET_L0_PORT_NUM(route) ((route) & GENMASK(5, 0))
46
47 /**
48 * struct thunderbolt_ip_frame_header - Header for each Thunderbolt frame
49 * @frame_size: size of the data with the frame
50 * @frame_index: running index on the frames
51 * @frame_id: ID of the frame to match frames to specific packet
52 * @frame_count: how many frames assembles a full packet
53 *
54 * Each data frame passed to the high-speed DMA ring has this header. If
55 * the XDomain network directory announces that %TBNET_MATCH_FRAGS_ID is
56 * supported then @frame_id is filled, otherwise it stays %0.
57 */
58 struct thunderbolt_ip_frame_header {
59 u32 frame_size;
60 u16 frame_index;
61 u16 frame_id;
62 u32 frame_count;
63 };
64
65 enum thunderbolt_ip_frame_pdf {
66 TBIP_PDF_FRAME_START = 1,
67 TBIP_PDF_FRAME_END,
68 };
69
70 enum thunderbolt_ip_type {
71 TBIP_LOGIN,
72 TBIP_LOGIN_RESPONSE,
73 TBIP_LOGOUT,
74 TBIP_STATUS,
75 };
76
77 struct thunderbolt_ip_header {
78 u32 route_hi;
79 u32 route_lo;
80 u32 length_sn;
81 uuid_t uuid;
82 uuid_t initiator_uuid;
83 uuid_t target_uuid;
84 u32 type;
85 u32 command_id;
86 };
87
88 #define TBIP_HDR_LENGTH_MASK GENMASK(5, 0)
89 #define TBIP_HDR_SN_MASK GENMASK(28, 27)
90 #define TBIP_HDR_SN_SHIFT 27
91
92 struct thunderbolt_ip_login {
93 struct thunderbolt_ip_header hdr;
94 u32 proto_version;
95 u32 transmit_path;
96 u32 reserved[4];
97 };
98
99 #define TBIP_LOGIN_PROTO_VERSION 1
100
101 struct thunderbolt_ip_login_response {
102 struct thunderbolt_ip_header hdr;
103 u32 status;
104 u32 receiver_mac[2];
105 u32 receiver_mac_len;
106 u32 reserved[4];
107 };
108
109 struct thunderbolt_ip_logout {
110 struct thunderbolt_ip_header hdr;
111 };
112
113 struct thunderbolt_ip_status {
114 struct thunderbolt_ip_header hdr;
115 u32 status;
116 };
117
118 struct tbnet_stats {
119 u64 tx_packets;
120 u64 rx_packets;
121 u64 tx_bytes;
122 u64 rx_bytes;
123 u64 rx_errors;
124 u64 tx_errors;
125 u64 rx_length_errors;
126 u64 rx_over_errors;
127 u64 rx_crc_errors;
128 u64 rx_missed_errors;
129 };
130
131 struct tbnet_frame {
132 struct net_device *dev;
133 struct page *page;
134 struct ring_frame frame;
135 };
136
137 struct tbnet_ring {
138 struct tbnet_frame frames[TBNET_RING_SIZE];
139 unsigned int cons;
140 unsigned int prod;
141 struct tb_ring *ring;
142 };
143
144 /**
145 * struct tbnet - ThunderboltIP network driver private data
146 * @svc: XDomain service the driver is bound to
147 * @xd: XDomain the service blongs to
148 * @handler: ThunderboltIP configuration protocol handler
149 * @dev: Networking device
150 * @napi: NAPI structure for Rx polling
151 * @stats: Network statistics
152 * @skb: Network packet that is currently processed on Rx path
153 * @command_id: ID used for next configuration protocol packet
154 * @login_sent: ThunderboltIP login message successfully sent
155 * @login_received: ThunderboltIP login message received from the remote
156 * host
157 * @local_transmit_path: HopID we are using to send out packets
158 * @remote_transmit_path: HopID the other end is using to send packets to us
159 * @connection_lock: Lock serializing access to @login_sent,
160 * @login_received and @transmit_path.
161 * @login_retries: Number of login retries currently done
162 * @login_work: Worker to send ThunderboltIP login packets
163 * @connected_work: Worker that finalizes the ThunderboltIP connection
164 * setup and enables DMA paths for high speed data
165 * transfers
166 * @disconnect_work: Worker that handles tearing down the ThunderboltIP
167 * connection
168 * @rx_hdr: Copy of the currently processed Rx frame. Used when a
169 * network packet consists of multiple Thunderbolt frames.
170 * In host byte order.
171 * @rx_ring: Software ring holding Rx frames
172 * @frame_id: Frame ID use for next Tx packet
173 * (if %TBNET_MATCH_FRAGS_ID is supported in both ends)
174 * @tx_ring: Software ring holding Tx frames
175 */
176 struct tbnet {
177 const struct tb_service *svc;
178 struct tb_xdomain *xd;
179 struct tb_protocol_handler handler;
180 struct net_device *dev;
181 struct napi_struct napi;
182 struct tbnet_stats stats;
183 struct sk_buff *skb;
184 atomic_t command_id;
185 bool login_sent;
186 bool login_received;
187 int local_transmit_path;
188 int remote_transmit_path;
189 struct mutex connection_lock;
190 int login_retries;
191 struct delayed_work login_work;
192 struct work_struct connected_work;
193 struct work_struct disconnect_work;
194 struct thunderbolt_ip_frame_header rx_hdr;
195 struct tbnet_ring rx_ring;
196 atomic_t frame_id;
197 struct tbnet_ring tx_ring;
198 };
199
200 /* Network property directory UUID: c66189ca-1cce-4195-bdb8-49592e5f5a4f */
201 static const uuid_t tbnet_dir_uuid =
202 UUID_INIT(0xc66189ca, 0x1cce, 0x4195,
203 0xbd, 0xb8, 0x49, 0x59, 0x2e, 0x5f, 0x5a, 0x4f);
204
205 /* ThunderboltIP protocol UUID: 798f589e-3616-8a47-97c6-5664a920c8dd */
206 static const uuid_t tbnet_svc_uuid =
207 UUID_INIT(0x798f589e, 0x3616, 0x8a47,
208 0x97, 0xc6, 0x56, 0x64, 0xa9, 0x20, 0xc8, 0xdd);
209
210 static struct tb_property_dir *tbnet_dir;
211
212 static void tbnet_fill_header(struct thunderbolt_ip_header *hdr, u64 route,
213 u8 sequence, const uuid_t *initiator_uuid, const uuid_t *target_uuid,
214 enum thunderbolt_ip_type type, size_t size, u32 command_id)
215 {
216 u32 length_sn;
217
218 /* Length does not include route_hi/lo and length_sn fields */
219 length_sn = (size - 3 * 4) / 4;
220 length_sn |= (sequence << TBIP_HDR_SN_SHIFT) & TBIP_HDR_SN_MASK;
221
222 hdr->route_hi = upper_32_bits(route);
223 hdr->route_lo = lower_32_bits(route);
224 hdr->length_sn = length_sn;
225 uuid_copy(&hdr->uuid, &tbnet_svc_uuid);
226 uuid_copy(&hdr->initiator_uuid, initiator_uuid);
227 uuid_copy(&hdr->target_uuid, target_uuid);
228 hdr->type = type;
229 hdr->command_id = command_id;
230 }
231
232 static int tbnet_login_response(struct tbnet *net, u64 route, u8 sequence,
233 u32 command_id)
234 {
235 struct thunderbolt_ip_login_response reply;
236 struct tb_xdomain *xd = net->xd;
237
238 memset(&reply, 0, sizeof(reply));
239 tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid,
240 xd->remote_uuid, TBIP_LOGIN_RESPONSE, sizeof(reply),
241 command_id);
242 memcpy(reply.receiver_mac, net->dev->dev_addr, ETH_ALEN);
243 reply.receiver_mac_len = ETH_ALEN;
244
245 return tb_xdomain_response(xd, &reply, sizeof(reply),
246 TB_CFG_PKG_XDOMAIN_RESP);
247 }
248
249 static int tbnet_login_request(struct tbnet *net, u8 sequence)
250 {
251 struct thunderbolt_ip_login_response reply;
252 struct thunderbolt_ip_login request;
253 struct tb_xdomain *xd = net->xd;
254
255 memset(&request, 0, sizeof(request));
256 tbnet_fill_header(&request.hdr, xd->route, sequence, xd->local_uuid,
257 xd->remote_uuid, TBIP_LOGIN, sizeof(request),
258 atomic_inc_return(&net->command_id));
259
260 request.proto_version = TBIP_LOGIN_PROTO_VERSION;
261 request.transmit_path = net->local_transmit_path;
262
263 return tb_xdomain_request(xd, &request, sizeof(request),
264 TB_CFG_PKG_XDOMAIN_RESP, &reply,
265 sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP,
266 TBNET_LOGIN_TIMEOUT);
267 }
268
269 static int tbnet_logout_response(struct tbnet *net, u64 route, u8 sequence,
270 u32 command_id)
271 {
272 struct thunderbolt_ip_status reply;
273 struct tb_xdomain *xd = net->xd;
274
275 memset(&reply, 0, sizeof(reply));
276 tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid,
277 xd->remote_uuid, TBIP_STATUS, sizeof(reply),
278 atomic_inc_return(&net->command_id));
279 return tb_xdomain_response(xd, &reply, sizeof(reply),
280 TB_CFG_PKG_XDOMAIN_RESP);
281 }
282
283 static int tbnet_logout_request(struct tbnet *net)
284 {
285 struct thunderbolt_ip_logout request;
286 struct thunderbolt_ip_status reply;
287 struct tb_xdomain *xd = net->xd;
288
289 memset(&request, 0, sizeof(request));
290 tbnet_fill_header(&request.hdr, xd->route, 0, xd->local_uuid,
291 xd->remote_uuid, TBIP_LOGOUT, sizeof(request),
292 atomic_inc_return(&net->command_id));
293
294 return tb_xdomain_request(xd, &request, sizeof(request),
295 TB_CFG_PKG_XDOMAIN_RESP, &reply,
296 sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP,
297 TBNET_LOGOUT_TIMEOUT);
298 }
299
300 static void start_login(struct tbnet *net)
301 {
302 mutex_lock(&net->connection_lock);
303 net->login_sent = false;
304 net->login_received = false;
305 mutex_unlock(&net->connection_lock);
306
307 queue_delayed_work(system_long_wq, &net->login_work,
308 msecs_to_jiffies(1000));
309 }
310
311 static void stop_login(struct tbnet *net)
312 {
313 cancel_delayed_work_sync(&net->login_work);
314 cancel_work_sync(&net->connected_work);
315 }
316
317 static inline unsigned int tbnet_frame_size(const struct tbnet_frame *tf)
318 {
319 return tf->frame.size ? : TBNET_FRAME_SIZE;
320 }
321
322 static void tbnet_free_buffers(struct tbnet_ring *ring)
323 {
324 unsigned int i;
325
326 for (i = 0; i < TBNET_RING_SIZE; i++) {
327 struct device *dma_dev = tb_ring_dma_device(ring->ring);
328 struct tbnet_frame *tf = &ring->frames[i];
329 enum dma_data_direction dir;
330 unsigned int order;
331 size_t size;
332
333 if (!tf->page)
334 continue;
335
336 if (ring->ring->is_tx) {
337 dir = DMA_TO_DEVICE;
338 order = 0;
339 size = TBNET_FRAME_SIZE;
340 } else {
341 dir = DMA_FROM_DEVICE;
342 order = TBNET_RX_PAGE_ORDER;
343 size = TBNET_RX_PAGE_SIZE;
344 }
345
346 if (tf->frame.buffer_phy)
347 dma_unmap_page(dma_dev, tf->frame.buffer_phy, size,
348 dir);
349
350 __free_pages(tf->page, order);
351 tf->page = NULL;
352 }
353
354 ring->cons = 0;
355 ring->prod = 0;
356 }
357
358 static void tbnet_tear_down(struct tbnet *net, bool send_logout)
359 {
360 netif_carrier_off(net->dev);
361 netif_stop_queue(net->dev);
362
363 stop_login(net);
364
365 mutex_lock(&net->connection_lock);
366
367 if (net->login_sent && net->login_received) {
368 int ret, retries = TBNET_LOGOUT_RETRIES;
369
370 while (send_logout && retries-- > 0) {
371 ret = tbnet_logout_request(net);
372 if (ret != -ETIMEDOUT)
373 break;
374 }
375
376 tb_ring_stop(net->rx_ring.ring);
377 tb_ring_stop(net->tx_ring.ring);
378 tbnet_free_buffers(&net->rx_ring);
379 tbnet_free_buffers(&net->tx_ring);
380
381 ret = tb_xdomain_disable_paths(net->xd,
382 net->local_transmit_path,
383 net->rx_ring.ring->hop,
384 net->remote_transmit_path,
385 net->tx_ring.ring->hop);
386 if (ret)
387 netdev_warn(net->dev, "failed to disable DMA paths\n");
388
389 tb_xdomain_release_in_hopid(net->xd, net->remote_transmit_path);
390 net->remote_transmit_path = 0;
391 }
392
393 net->login_retries = 0;
394 net->login_sent = false;
395 net->login_received = false;
396
397 mutex_unlock(&net->connection_lock);
398 }
399
400 static int tbnet_handle_packet(const void *buf, size_t size, void *data)
401 {
402 const struct thunderbolt_ip_login *pkg = buf;
403 struct tbnet *net = data;
404 u32 command_id;
405 int ret = 0;
406 u32 sequence;
407 u64 route;
408
409 /* Make sure the packet is for us */
410 if (size < sizeof(struct thunderbolt_ip_header))
411 return 0;
412 if (!uuid_equal(&pkg->hdr.initiator_uuid, net->xd->remote_uuid))
413 return 0;
414 if (!uuid_equal(&pkg->hdr.target_uuid, net->xd->local_uuid))
415 return 0;
416
417 route = ((u64)pkg->hdr.route_hi << 32) | pkg->hdr.route_lo;
418 route &= ~BIT_ULL(63);
419 if (route != net->xd->route)
420 return 0;
421
422 sequence = pkg->hdr.length_sn & TBIP_HDR_SN_MASK;
423 sequence >>= TBIP_HDR_SN_SHIFT;
424 command_id = pkg->hdr.command_id;
425
426 switch (pkg->hdr.type) {
427 case TBIP_LOGIN:
428 if (!netif_running(net->dev))
429 break;
430
431 ret = tbnet_login_response(net, route, sequence,
432 pkg->hdr.command_id);
433 if (!ret) {
434 mutex_lock(&net->connection_lock);
435 net->login_received = true;
436 net->remote_transmit_path = pkg->transmit_path;
437
438 /* If we reached the number of max retries or
439 * previous logout, schedule another round of
440 * login retries
441 */
442 if (net->login_retries >= TBNET_LOGIN_RETRIES ||
443 !net->login_sent) {
444 net->login_retries = 0;
445 queue_delayed_work(system_long_wq,
446 &net->login_work, 0);
447 }
448 mutex_unlock(&net->connection_lock);
449
450 queue_work(system_long_wq, &net->connected_work);
451 }
452 break;
453
454 case TBIP_LOGOUT:
455 ret = tbnet_logout_response(net, route, sequence, command_id);
456 if (!ret)
457 queue_work(system_long_wq, &net->disconnect_work);
458 break;
459
460 default:
461 return 0;
462 }
463
464 if (ret)
465 netdev_warn(net->dev, "failed to send ThunderboltIP response\n");
466
467 return 1;
468 }
469
470 static unsigned int tbnet_available_buffers(const struct tbnet_ring *ring)
471 {
472 return ring->prod - ring->cons;
473 }
474
475 static int tbnet_alloc_rx_buffers(struct tbnet *net, unsigned int nbuffers)
476 {
477 struct tbnet_ring *ring = &net->rx_ring;
478 int ret;
479
480 while (nbuffers--) {
481 struct device *dma_dev = tb_ring_dma_device(ring->ring);
482 unsigned int index = ring->prod & (TBNET_RING_SIZE - 1);
483 struct tbnet_frame *tf = &ring->frames[index];
484 dma_addr_t dma_addr;
485
486 if (tf->page)
487 break;
488
489 /* Allocate page (order > 0) so that it can hold maximum
490 * ThunderboltIP frame (4kB) and the additional room for
491 * SKB shared info required by build_skb().
492 */
493 tf->page = dev_alloc_pages(TBNET_RX_PAGE_ORDER);
494 if (!tf->page) {
495 ret = -ENOMEM;
496 goto err_free;
497 }
498
499 dma_addr = dma_map_page(dma_dev, tf->page, 0,
500 TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE);
501 if (dma_mapping_error(dma_dev, dma_addr)) {
502 ret = -ENOMEM;
503 goto err_free;
504 }
505
506 tf->frame.buffer_phy = dma_addr;
507 tf->dev = net->dev;
508
509 tb_ring_rx(ring->ring, &tf->frame);
510
511 ring->prod++;
512 }
513
514 return 0;
515
516 err_free:
517 tbnet_free_buffers(ring);
518 return ret;
519 }
520
521 static struct tbnet_frame *tbnet_get_tx_buffer(struct tbnet *net)
522 {
523 struct tbnet_ring *ring = &net->tx_ring;
524 struct device *dma_dev = tb_ring_dma_device(ring->ring);
525 struct tbnet_frame *tf;
526 unsigned int index;
527
528 if (!tbnet_available_buffers(ring))
529 return NULL;
530
531 index = ring->cons++ & (TBNET_RING_SIZE - 1);
532
533 tf = &ring->frames[index];
534 tf->frame.size = 0;
535
536 dma_sync_single_for_cpu(dma_dev, tf->frame.buffer_phy,
537 tbnet_frame_size(tf), DMA_TO_DEVICE);
538
539 return tf;
540 }
541
542 static void tbnet_tx_callback(struct tb_ring *ring, struct ring_frame *frame,
543 bool canceled)
544 {
545 struct tbnet_frame *tf = container_of(frame, typeof(*tf), frame);
546 struct tbnet *net = netdev_priv(tf->dev);
547
548 /* Return buffer to the ring */
549 net->tx_ring.prod++;
550
551 if (tbnet_available_buffers(&net->tx_ring) >= TBNET_RING_SIZE / 2)
552 netif_wake_queue(net->dev);
553 }
554
555 static int tbnet_alloc_tx_buffers(struct tbnet *net)
556 {
557 struct tbnet_ring *ring = &net->tx_ring;
558 struct device *dma_dev = tb_ring_dma_device(ring->ring);
559 unsigned int i;
560
561 for (i = 0; i < TBNET_RING_SIZE; i++) {
562 struct tbnet_frame *tf = &ring->frames[i];
563 dma_addr_t dma_addr;
564
565 tf->page = alloc_page(GFP_KERNEL);
566 if (!tf->page) {
567 tbnet_free_buffers(ring);
568 return -ENOMEM;
569 }
570
571 dma_addr = dma_map_page(dma_dev, tf->page, 0, TBNET_FRAME_SIZE,
572 DMA_TO_DEVICE);
573 if (dma_mapping_error(dma_dev, dma_addr)) {
574 __free_page(tf->page);
575 tf->page = NULL;
576 tbnet_free_buffers(ring);
577 return -ENOMEM;
578 }
579
580 tf->dev = net->dev;
581 tf->frame.buffer_phy = dma_addr;
582 tf->frame.callback = tbnet_tx_callback;
583 tf->frame.sof = TBIP_PDF_FRAME_START;
584 tf->frame.eof = TBIP_PDF_FRAME_END;
585 }
586
587 ring->cons = 0;
588 ring->prod = TBNET_RING_SIZE - 1;
589
590 return 0;
591 }
592
593 static void tbnet_connected_work(struct work_struct *work)
594 {
595 struct tbnet *net = container_of(work, typeof(*net), connected_work);
596 bool connected;
597 int ret;
598
599 if (netif_carrier_ok(net->dev))
600 return;
601
602 mutex_lock(&net->connection_lock);
603 connected = net->login_sent && net->login_received;
604 mutex_unlock(&net->connection_lock);
605
606 if (!connected)
607 return;
608
609 ret = tb_xdomain_alloc_in_hopid(net->xd, net->remote_transmit_path);
610 if (ret != net->remote_transmit_path) {
611 netdev_err(net->dev, "failed to allocate Rx HopID\n");
612 return;
613 }
614
615 /* Both logins successful so enable the rings, high-speed DMA
616 * paths and start the network device queue.
617 *
618 * Note we enable the DMA paths last to make sure we have primed
619 * the Rx ring before any incoming packets are allowed to
620 * arrive.
621 */
622 tb_ring_start(net->tx_ring.ring);
623 tb_ring_start(net->rx_ring.ring);
624
625 ret = tbnet_alloc_rx_buffers(net, TBNET_RING_SIZE);
626 if (ret)
627 goto err_stop_rings;
628
629 ret = tbnet_alloc_tx_buffers(net);
630 if (ret)
631 goto err_free_rx_buffers;
632
633 ret = tb_xdomain_enable_paths(net->xd, net->local_transmit_path,
634 net->rx_ring.ring->hop,
635 net->remote_transmit_path,
636 net->tx_ring.ring->hop);
637 if (ret) {
638 netdev_err(net->dev, "failed to enable DMA paths\n");
639 goto err_free_tx_buffers;
640 }
641
642 netif_carrier_on(net->dev);
643 netif_start_queue(net->dev);
644 return;
645
646 err_free_tx_buffers:
647 tbnet_free_buffers(&net->tx_ring);
648 err_free_rx_buffers:
649 tbnet_free_buffers(&net->rx_ring);
650 err_stop_rings:
651 tb_ring_stop(net->rx_ring.ring);
652 tb_ring_stop(net->tx_ring.ring);
653 tb_xdomain_release_in_hopid(net->xd, net->remote_transmit_path);
654 }
655
656 static void tbnet_login_work(struct work_struct *work)
657 {
658 struct tbnet *net = container_of(work, typeof(*net), login_work.work);
659 unsigned long delay = msecs_to_jiffies(TBNET_LOGIN_DELAY);
660 int ret;
661
662 if (netif_carrier_ok(net->dev))
663 return;
664
665 ret = tbnet_login_request(net, net->login_retries % 4);
666 if (ret) {
667 if (net->login_retries++ < TBNET_LOGIN_RETRIES) {
668 queue_delayed_work(system_long_wq, &net->login_work,
669 delay);
670 } else {
671 netdev_info(net->dev, "ThunderboltIP login timed out\n");
672 }
673 } else {
674 net->login_retries = 0;
675
676 mutex_lock(&net->connection_lock);
677 net->login_sent = true;
678 mutex_unlock(&net->connection_lock);
679
680 queue_work(system_long_wq, &net->connected_work);
681 }
682 }
683
684 static void tbnet_disconnect_work(struct work_struct *work)
685 {
686 struct tbnet *net = container_of(work, typeof(*net), disconnect_work);
687
688 tbnet_tear_down(net, false);
689 }
690
691 static bool tbnet_check_frame(struct tbnet *net, const struct tbnet_frame *tf,
692 const struct thunderbolt_ip_frame_header *hdr)
693 {
694 u32 frame_id, frame_count, frame_size, frame_index;
695 unsigned int size;
696
697 if (tf->frame.flags & RING_DESC_CRC_ERROR) {
698 net->stats.rx_crc_errors++;
699 return false;
700 } else if (tf->frame.flags & RING_DESC_BUFFER_OVERRUN) {
701 net->stats.rx_over_errors++;
702 return false;
703 }
704
705 /* Should be greater than just header i.e. contains data */
706 size = tbnet_frame_size(tf);
707 if (size <= sizeof(*hdr)) {
708 net->stats.rx_length_errors++;
709 return false;
710 }
711
712 frame_count = le32_to_cpu(hdr->frame_count);
713 frame_size = le32_to_cpu(hdr->frame_size);
714 frame_index = le16_to_cpu(hdr->frame_index);
715 frame_id = le16_to_cpu(hdr->frame_id);
716
717 if ((frame_size > size - sizeof(*hdr)) || !frame_size) {
718 net->stats.rx_length_errors++;
719 return false;
720 }
721
722 /* In case we're in the middle of packet, validate the frame
723 * header based on first fragment of the packet.
724 */
725 if (net->skb && net->rx_hdr.frame_count) {
726 /* Check the frame count fits the count field */
727 if (frame_count != net->rx_hdr.frame_count) {
728 net->stats.rx_length_errors++;
729 return false;
730 }
731
732 /* Check the frame identifiers are incremented correctly,
733 * and id is matching.
734 */
735 if (frame_index != net->rx_hdr.frame_index + 1 ||
736 frame_id != net->rx_hdr.frame_id) {
737 net->stats.rx_missed_errors++;
738 return false;
739 }
740
741 if (net->skb->len + frame_size > TBNET_MAX_MTU) {
742 net->stats.rx_length_errors++;
743 return false;
744 }
745
746 return true;
747 }
748
749 /* Start of packet, validate the frame header */
750 if (frame_count == 0 || frame_count > TBNET_RING_SIZE / 4) {
751 net->stats.rx_length_errors++;
752 return false;
753 }
754 if (frame_index != 0) {
755 net->stats.rx_missed_errors++;
756 return false;
757 }
758
759 return true;
760 }
761
762 static int tbnet_poll(struct napi_struct *napi, int budget)
763 {
764 struct tbnet *net = container_of(napi, struct tbnet, napi);
765 unsigned int cleaned_count = tbnet_available_buffers(&net->rx_ring);
766 struct device *dma_dev = tb_ring_dma_device(net->rx_ring.ring);
767 unsigned int rx_packets = 0;
768
769 while (rx_packets < budget) {
770 const struct thunderbolt_ip_frame_header *hdr;
771 unsigned int hdr_size = sizeof(*hdr);
772 struct sk_buff *skb = NULL;
773 struct ring_frame *frame;
774 struct tbnet_frame *tf;
775 struct page *page;
776 bool last = true;
777 u32 frame_size;
778
779 /* Return some buffers to hardware, one at a time is too
780 * slow so allocate MAX_SKB_FRAGS buffers at the same
781 * time.
782 */
783 if (cleaned_count >= MAX_SKB_FRAGS) {
784 tbnet_alloc_rx_buffers(net, cleaned_count);
785 cleaned_count = 0;
786 }
787
788 frame = tb_ring_poll(net->rx_ring.ring);
789 if (!frame)
790 break;
791
792 dma_unmap_page(dma_dev, frame->buffer_phy,
793 TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE);
794
795 tf = container_of(frame, typeof(*tf), frame);
796
797 page = tf->page;
798 tf->page = NULL;
799 net->rx_ring.cons++;
800 cleaned_count++;
801
802 hdr = page_address(page);
803 if (!tbnet_check_frame(net, tf, hdr)) {
804 __free_pages(page, TBNET_RX_PAGE_ORDER);
805 dev_kfree_skb_any(net->skb);
806 net->skb = NULL;
807 continue;
808 }
809
810 frame_size = le32_to_cpu(hdr->frame_size);
811
812 skb = net->skb;
813 if (!skb) {
814 skb = build_skb(page_address(page),
815 TBNET_RX_PAGE_SIZE);
816 if (!skb) {
817 __free_pages(page, TBNET_RX_PAGE_ORDER);
818 net->stats.rx_errors++;
819 break;
820 }
821
822 skb_reserve(skb, hdr_size);
823 skb_put(skb, frame_size);
824
825 net->skb = skb;
826 } else {
827 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
828 page, hdr_size, frame_size,
829 TBNET_RX_PAGE_SIZE - hdr_size);
830 }
831
832 net->rx_hdr.frame_size = frame_size;
833 net->rx_hdr.frame_count = le32_to_cpu(hdr->frame_count);
834 net->rx_hdr.frame_index = le16_to_cpu(hdr->frame_index);
835 net->rx_hdr.frame_id = le16_to_cpu(hdr->frame_id);
836 last = net->rx_hdr.frame_index == net->rx_hdr.frame_count - 1;
837
838 rx_packets++;
839 net->stats.rx_bytes += frame_size;
840
841 if (last) {
842 skb->protocol = eth_type_trans(skb, net->dev);
843 napi_gro_receive(&net->napi, skb);
844 net->skb = NULL;
845 }
846 }
847
848 net->stats.rx_packets += rx_packets;
849
850 if (cleaned_count)
851 tbnet_alloc_rx_buffers(net, cleaned_count);
852
853 if (rx_packets >= budget)
854 return budget;
855
856 napi_complete_done(napi, rx_packets);
857 /* Re-enable the ring interrupt */
858 tb_ring_poll_complete(net->rx_ring.ring);
859
860 return rx_packets;
861 }
862
863 static void tbnet_start_poll(void *data)
864 {
865 struct tbnet *net = data;
866
867 napi_schedule(&net->napi);
868 }
869
870 static int tbnet_open(struct net_device *dev)
871 {
872 struct tbnet *net = netdev_priv(dev);
873 struct tb_xdomain *xd = net->xd;
874 u16 sof_mask, eof_mask;
875 struct tb_ring *ring;
876 int hopid;
877
878 netif_carrier_off(dev);
879
880 ring = tb_ring_alloc_tx(xd->tb->nhi, -1, TBNET_RING_SIZE,
881 RING_FLAG_FRAME);
882 if (!ring) {
883 netdev_err(dev, "failed to allocate Tx ring\n");
884 return -ENOMEM;
885 }
886 net->tx_ring.ring = ring;
887
888 hopid = tb_xdomain_alloc_out_hopid(xd, -1);
889 if (hopid < 0) {
890 netdev_err(dev, "failed to allocate Tx HopID\n");
891 tb_ring_free(net->tx_ring.ring);
892 net->tx_ring.ring = NULL;
893 return hopid;
894 }
895 net->local_transmit_path = hopid;
896
897 sof_mask = BIT(TBIP_PDF_FRAME_START);
898 eof_mask = BIT(TBIP_PDF_FRAME_END);
899
900 ring = tb_ring_alloc_rx(xd->tb->nhi, -1, TBNET_RING_SIZE,
901 RING_FLAG_FRAME, 0, sof_mask, eof_mask,
902 tbnet_start_poll, net);
903 if (!ring) {
904 netdev_err(dev, "failed to allocate Rx ring\n");
905 tb_xdomain_release_out_hopid(xd, hopid);
906 tb_ring_free(net->tx_ring.ring);
907 net->tx_ring.ring = NULL;
908 return -ENOMEM;
909 }
910 net->rx_ring.ring = ring;
911
912 napi_enable(&net->napi);
913 start_login(net);
914
915 return 0;
916 }
917
918 static int tbnet_stop(struct net_device *dev)
919 {
920 struct tbnet *net = netdev_priv(dev);
921
922 napi_disable(&net->napi);
923
924 cancel_work_sync(&net->disconnect_work);
925 tbnet_tear_down(net, true);
926
927 tb_ring_free(net->rx_ring.ring);
928 net->rx_ring.ring = NULL;
929
930 tb_xdomain_release_out_hopid(net->xd, net->local_transmit_path);
931 tb_ring_free(net->tx_ring.ring);
932 net->tx_ring.ring = NULL;
933
934 return 0;
935 }
936
937 static bool tbnet_xmit_csum_and_map(struct tbnet *net, struct sk_buff *skb,
938 struct tbnet_frame **frames, u32 frame_count)
939 {
940 struct thunderbolt_ip_frame_header *hdr = page_address(frames[0]->page);
941 struct device *dma_dev = tb_ring_dma_device(net->tx_ring.ring);
942 __wsum wsum = htonl(skb->len - skb_transport_offset(skb));
943 unsigned int i, len, offset = skb_transport_offset(skb);
944 __be16 protocol = skb->protocol;
945 void *data = skb->data;
946 void *dest = hdr + 1;
947 __sum16 *tucso;
948
949 if (skb->ip_summed != CHECKSUM_PARTIAL) {
950 /* No need to calculate checksum so we just update the
951 * total frame count and sync the frames for DMA.
952 */
953 for (i = 0; i < frame_count; i++) {
954 hdr = page_address(frames[i]->page);
955 hdr->frame_count = cpu_to_le32(frame_count);
956 dma_sync_single_for_device(dma_dev,
957 frames[i]->frame.buffer_phy,
958 tbnet_frame_size(frames[i]), DMA_TO_DEVICE);
959 }
960
961 return true;
962 }
963
964 if (protocol == htons(ETH_P_8021Q)) {
965 struct vlan_hdr *vhdr, vh;
966
967 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(vh), &vh);
968 if (!vhdr)
969 return false;
970
971 protocol = vhdr->h_vlan_encapsulated_proto;
972 }
973
974 /* Data points on the beginning of packet.
975 * Check is the checksum absolute place in the packet.
976 * ipcso will update IP checksum.
977 * tucso will update TCP/UPD checksum.
978 */
979 if (protocol == htons(ETH_P_IP)) {
980 __sum16 *ipcso = dest + ((void *)&(ip_hdr(skb)->check) - data);
981
982 *ipcso = 0;
983 *ipcso = ip_fast_csum(dest + skb_network_offset(skb),
984 ip_hdr(skb)->ihl);
985
986 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
987 tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data);
988 else if (ip_hdr(skb)->protocol == IPPROTO_UDP)
989 tucso = dest + ((void *)&(udp_hdr(skb)->check) - data);
990 else
991 return false;
992
993 *tucso = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
994 ip_hdr(skb)->daddr, 0,
995 ip_hdr(skb)->protocol, 0);
996 } else if (skb_is_gso_v6(skb)) {
997 tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data);
998 *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
999 &ipv6_hdr(skb)->daddr, 0,
1000 IPPROTO_TCP, 0);
1001 return false;
1002 } else if (protocol == htons(ETH_P_IPV6)) {
1003 tucso = dest + skb_checksum_start_offset(skb) + skb->csum_offset;
1004 *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1005 &ipv6_hdr(skb)->daddr, 0,
1006 ipv6_hdr(skb)->nexthdr, 0);
1007 } else {
1008 return false;
1009 }
1010
1011 /* First frame was headers, rest of the frames contain data.
1012 * Calculate checksum over each frame.
1013 */
1014 for (i = 0; i < frame_count; i++) {
1015 hdr = page_address(frames[i]->page);
1016 dest = (void *)(hdr + 1) + offset;
1017 len = le32_to_cpu(hdr->frame_size) - offset;
1018 wsum = csum_partial(dest, len, wsum);
1019 hdr->frame_count = cpu_to_le32(frame_count);
1020
1021 offset = 0;
1022 }
1023
1024 *tucso = csum_fold(wsum);
1025
1026 /* Checksum is finally calculated and we don't touch the memory
1027 * anymore, so DMA sync the frames now.
1028 */
1029 for (i = 0; i < frame_count; i++) {
1030 dma_sync_single_for_device(dma_dev, frames[i]->frame.buffer_phy,
1031 tbnet_frame_size(frames[i]), DMA_TO_DEVICE);
1032 }
1033
1034 return true;
1035 }
1036
1037 static void *tbnet_kmap_frag(struct sk_buff *skb, unsigned int frag_num,
1038 unsigned int *len)
1039 {
1040 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1041
1042 *len = skb_frag_size(frag);
1043 return kmap_atomic(skb_frag_page(frag)) + skb_frag_off(frag);
1044 }
1045
1046 static netdev_tx_t tbnet_start_xmit(struct sk_buff *skb,
1047 struct net_device *dev)
1048 {
1049 struct tbnet *net = netdev_priv(dev);
1050 struct tbnet_frame *frames[MAX_SKB_FRAGS];
1051 u16 frame_id = atomic_read(&net->frame_id);
1052 struct thunderbolt_ip_frame_header *hdr;
1053 unsigned int len = skb_headlen(skb);
1054 unsigned int data_len = skb->len;
1055 unsigned int nframes, i;
1056 unsigned int frag = 0;
1057 void *src = skb->data;
1058 u32 frame_index = 0;
1059 bool unmap = false;
1060 void *dest;
1061
1062 nframes = DIV_ROUND_UP(data_len, TBNET_MAX_PAYLOAD_SIZE);
1063 if (tbnet_available_buffers(&net->tx_ring) < nframes) {
1064 netif_stop_queue(net->dev);
1065 return NETDEV_TX_BUSY;
1066 }
1067
1068 frames[frame_index] = tbnet_get_tx_buffer(net);
1069 if (!frames[frame_index])
1070 goto err_drop;
1071
1072 hdr = page_address(frames[frame_index]->page);
1073 dest = hdr + 1;
1074
1075 /* If overall packet is bigger than the frame data size */
1076 while (data_len > TBNET_MAX_PAYLOAD_SIZE) {
1077 unsigned int size_left = TBNET_MAX_PAYLOAD_SIZE;
1078
1079 hdr->frame_size = cpu_to_le32(TBNET_MAX_PAYLOAD_SIZE);
1080 hdr->frame_index = cpu_to_le16(frame_index);
1081 hdr->frame_id = cpu_to_le16(frame_id);
1082
1083 do {
1084 if (len > size_left) {
1085 /* Copy data onto Tx buffer data with
1086 * full frame size then break and go to
1087 * next frame
1088 */
1089 memcpy(dest, src, size_left);
1090 len -= size_left;
1091 dest += size_left;
1092 src += size_left;
1093 break;
1094 }
1095
1096 memcpy(dest, src, len);
1097 size_left -= len;
1098 dest += len;
1099
1100 if (unmap) {
1101 kunmap_atomic(src);
1102 unmap = false;
1103 }
1104
1105 /* Ensure all fragments have been processed */
1106 if (frag < skb_shinfo(skb)->nr_frags) {
1107 /* Map and then unmap quickly */
1108 src = tbnet_kmap_frag(skb, frag++, &len);
1109 unmap = true;
1110 } else if (unlikely(size_left > 0)) {
1111 goto err_drop;
1112 }
1113 } while (size_left > 0);
1114
1115 data_len -= TBNET_MAX_PAYLOAD_SIZE;
1116 frame_index++;
1117
1118 frames[frame_index] = tbnet_get_tx_buffer(net);
1119 if (!frames[frame_index])
1120 goto err_drop;
1121
1122 hdr = page_address(frames[frame_index]->page);
1123 dest = hdr + 1;
1124 }
1125
1126 hdr->frame_size = cpu_to_le32(data_len);
1127 hdr->frame_index = cpu_to_le16(frame_index);
1128 hdr->frame_id = cpu_to_le16(frame_id);
1129
1130 frames[frame_index]->frame.size = data_len + sizeof(*hdr);
1131
1132 /* In case the remaining data_len is smaller than a frame */
1133 while (len < data_len) {
1134 memcpy(dest, src, len);
1135 data_len -= len;
1136 dest += len;
1137
1138 if (unmap) {
1139 kunmap_atomic(src);
1140 unmap = false;
1141 }
1142
1143 if (frag < skb_shinfo(skb)->nr_frags) {
1144 src = tbnet_kmap_frag(skb, frag++, &len);
1145 unmap = true;
1146 } else if (unlikely(data_len > 0)) {
1147 goto err_drop;
1148 }
1149 }
1150
1151 memcpy(dest, src, data_len);
1152
1153 if (unmap)
1154 kunmap_atomic(src);
1155
1156 if (!tbnet_xmit_csum_and_map(net, skb, frames, frame_index + 1))
1157 goto err_drop;
1158
1159 for (i = 0; i < frame_index + 1; i++)
1160 tb_ring_tx(net->tx_ring.ring, &frames[i]->frame);
1161
1162 if (net->svc->prtcstns & TBNET_MATCH_FRAGS_ID)
1163 atomic_inc(&net->frame_id);
1164
1165 net->stats.tx_packets++;
1166 net->stats.tx_bytes += skb->len;
1167
1168 dev_consume_skb_any(skb);
1169
1170 return NETDEV_TX_OK;
1171
1172 err_drop:
1173 /* We can re-use the buffers */
1174 net->tx_ring.cons -= frame_index;
1175
1176 dev_kfree_skb_any(skb);
1177 net->stats.tx_errors++;
1178
1179 return NETDEV_TX_OK;
1180 }
1181
1182 static void tbnet_get_stats64(struct net_device *dev,
1183 struct rtnl_link_stats64 *stats)
1184 {
1185 struct tbnet *net = netdev_priv(dev);
1186
1187 stats->tx_packets = net->stats.tx_packets;
1188 stats->rx_packets = net->stats.rx_packets;
1189 stats->tx_bytes = net->stats.tx_bytes;
1190 stats->rx_bytes = net->stats.rx_bytes;
1191 stats->rx_errors = net->stats.rx_errors + net->stats.rx_length_errors +
1192 net->stats.rx_over_errors + net->stats.rx_crc_errors +
1193 net->stats.rx_missed_errors;
1194 stats->tx_errors = net->stats.tx_errors;
1195 stats->rx_length_errors = net->stats.rx_length_errors;
1196 stats->rx_over_errors = net->stats.rx_over_errors;
1197 stats->rx_crc_errors = net->stats.rx_crc_errors;
1198 stats->rx_missed_errors = net->stats.rx_missed_errors;
1199 }
1200
1201 static const struct net_device_ops tbnet_netdev_ops = {
1202 .ndo_open = tbnet_open,
1203 .ndo_stop = tbnet_stop,
1204 .ndo_start_xmit = tbnet_start_xmit,
1205 .ndo_get_stats64 = tbnet_get_stats64,
1206 };
1207
1208 static void tbnet_generate_mac(struct net_device *dev)
1209 {
1210 const struct tbnet *net = netdev_priv(dev);
1211 const struct tb_xdomain *xd = net->xd;
1212 u8 phy_port;
1213 u32 hash;
1214
1215 phy_port = tb_phy_port_from_link(TBNET_L0_PORT_NUM(xd->route));
1216
1217 /* Unicast and locally administered MAC */
1218 dev->dev_addr[0] = phy_port << 4 | 0x02;
1219 hash = jhash2((u32 *)xd->local_uuid, 4, 0);
1220 memcpy(dev->dev_addr + 1, &hash, sizeof(hash));
1221 hash = jhash2((u32 *)xd->local_uuid, 4, hash);
1222 dev->dev_addr[5] = hash & 0xff;
1223 }
1224
1225 static int tbnet_probe(struct tb_service *svc, const struct tb_service_id *id)
1226 {
1227 struct tb_xdomain *xd = tb_service_parent(svc);
1228 struct net_device *dev;
1229 struct tbnet *net;
1230 int ret;
1231
1232 dev = alloc_etherdev(sizeof(*net));
1233 if (!dev)
1234 return -ENOMEM;
1235
1236 SET_NETDEV_DEV(dev, &svc->dev);
1237
1238 net = netdev_priv(dev);
1239 INIT_DELAYED_WORK(&net->login_work, tbnet_login_work);
1240 INIT_WORK(&net->connected_work, tbnet_connected_work);
1241 INIT_WORK(&net->disconnect_work, tbnet_disconnect_work);
1242 mutex_init(&net->connection_lock);
1243 atomic_set(&net->command_id, 0);
1244 atomic_set(&net->frame_id, 0);
1245 net->svc = svc;
1246 net->dev = dev;
1247 net->xd = xd;
1248
1249 tbnet_generate_mac(dev);
1250
1251 strcpy(dev->name, "thunderbolt%d");
1252 dev->netdev_ops = &tbnet_netdev_ops;
1253
1254 /* ThunderboltIP takes advantage of TSO packets but instead of
1255 * segmenting them we just split the packet into Thunderbolt
1256 * frames (maximum payload size of each frame is 4084 bytes) and
1257 * calculate checksum over the whole packet here.
1258 *
1259 * The receiving side does the opposite if the host OS supports
1260 * LRO, otherwise it needs to split the large packet into MTU
1261 * sized smaller packets.
1262 *
1263 * In order to receive large packets from the networking stack,
1264 * we need to announce support for most of the offloading
1265 * features here.
1266 */
1267 dev->hw_features = NETIF_F_SG | NETIF_F_ALL_TSO | NETIF_F_GRO |
1268 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1269 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1270 dev->hard_header_len += sizeof(struct thunderbolt_ip_frame_header);
1271
1272 netif_napi_add(dev, &net->napi, tbnet_poll, NAPI_POLL_WEIGHT);
1273
1274 /* MTU range: 68 - 65522 */
1275 dev->min_mtu = ETH_MIN_MTU;
1276 dev->max_mtu = TBNET_MAX_MTU - ETH_HLEN;
1277
1278 net->handler.uuid = &tbnet_svc_uuid;
1279 net->handler.callback = tbnet_handle_packet;
1280 net->handler.data = net;
1281 tb_register_protocol_handler(&net->handler);
1282
1283 tb_service_set_drvdata(svc, net);
1284
1285 ret = register_netdev(dev);
1286 if (ret) {
1287 tb_unregister_protocol_handler(&net->handler);
1288 free_netdev(dev);
1289 return ret;
1290 }
1291
1292 return 0;
1293 }
1294
1295 static void tbnet_remove(struct tb_service *svc)
1296 {
1297 struct tbnet *net = tb_service_get_drvdata(svc);
1298
1299 unregister_netdev(net->dev);
1300 tb_unregister_protocol_handler(&net->handler);
1301 free_netdev(net->dev);
1302 }
1303
1304 static void tbnet_shutdown(struct tb_service *svc)
1305 {
1306 tbnet_tear_down(tb_service_get_drvdata(svc), true);
1307 }
1308
1309 static int __maybe_unused tbnet_suspend(struct device *dev)
1310 {
1311 struct tb_service *svc = tb_to_service(dev);
1312 struct tbnet *net = tb_service_get_drvdata(svc);
1313
1314 stop_login(net);
1315 if (netif_running(net->dev)) {
1316 netif_device_detach(net->dev);
1317 tbnet_tear_down(net, true);
1318 }
1319
1320 tb_unregister_protocol_handler(&net->handler);
1321 return 0;
1322 }
1323
1324 static int __maybe_unused tbnet_resume(struct device *dev)
1325 {
1326 struct tb_service *svc = tb_to_service(dev);
1327 struct tbnet *net = tb_service_get_drvdata(svc);
1328
1329 tb_register_protocol_handler(&net->handler);
1330
1331 netif_carrier_off(net->dev);
1332 if (netif_running(net->dev)) {
1333 netif_device_attach(net->dev);
1334 start_login(net);
1335 }
1336
1337 return 0;
1338 }
1339
1340 static const struct dev_pm_ops tbnet_pm_ops = {
1341 SET_SYSTEM_SLEEP_PM_OPS(tbnet_suspend, tbnet_resume)
1342 };
1343
1344 static const struct tb_service_id tbnet_ids[] = {
1345 { TB_SERVICE("network", 1) },
1346 { },
1347 };
1348 MODULE_DEVICE_TABLE(tbsvc, tbnet_ids);
1349
1350 static struct tb_service_driver tbnet_driver = {
1351 .driver = {
1352 .owner = THIS_MODULE,
1353 .name = "thunderbolt-net",
1354 .pm = &tbnet_pm_ops,
1355 },
1356 .probe = tbnet_probe,
1357 .remove = tbnet_remove,
1358 .shutdown = tbnet_shutdown,
1359 .id_table = tbnet_ids,
1360 };
1361
1362 static int __init tbnet_init(void)
1363 {
1364 int ret;
1365
1366 tbnet_dir = tb_property_create_dir(&tbnet_dir_uuid);
1367 if (!tbnet_dir)
1368 return -ENOMEM;
1369
1370 tb_property_add_immediate(tbnet_dir, "prtcid", 1);
1371 tb_property_add_immediate(tbnet_dir, "prtcvers", 1);
1372 tb_property_add_immediate(tbnet_dir, "prtcrevs", 1);
1373 /* Currently only announce support for match frags ID (bit 1). Bit 0
1374 * is reserved for full E2E flow control which we do not support at
1375 * the moment.
1376 */
1377 tb_property_add_immediate(tbnet_dir, "prtcstns",
1378 TBNET_MATCH_FRAGS_ID | TBNET_64K_FRAMES);
1379
1380 ret = tb_register_property_dir("network", tbnet_dir);
1381 if (ret)
1382 goto err_free_dir;
1383
1384 ret = tb_register_service_driver(&tbnet_driver);
1385 if (ret)
1386 goto err_unregister;
1387
1388 return 0;
1389
1390 err_unregister:
1391 tb_unregister_property_dir("network", tbnet_dir);
1392 err_free_dir:
1393 tb_property_free_dir(tbnet_dir);
1394
1395 return ret;
1396 }
1397 module_init(tbnet_init);
1398
1399 static void __exit tbnet_exit(void)
1400 {
1401 tb_unregister_service_driver(&tbnet_driver);
1402 tb_unregister_property_dir("network", tbnet_dir);
1403 tb_property_free_dir(tbnet_dir);
1404 }
1405 module_exit(tbnet_exit);
1406
1407 MODULE_AUTHOR("Amir Levy <amir.jer.levy@intel.com>");
1408 MODULE_AUTHOR("Michael Jamet <michael.jamet@intel.com>");
1409 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1410 MODULE_DESCRIPTION("Thunderbolt network driver");
1411 MODULE_LICENSE("GPL v2");