]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/tsi108_eth.c
KVM: Portability: Introduce kvm_vcpu_arch
[mirror_ubuntu-jammy-kernel.git] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50
51 #include <asm/system.h>
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000 /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN 256
60
61 /* NOTE: The driver currently does not support receiving packets
62 * larger than the buffer size, so don't decrease this (unless you
63 * want to add such support).
64 */
65 #define TSI108_RXBUF_SIZE 1536
66
67 #define TSI108_TXRING_LEN 256
68
69 #define TSI108_TX_INT_FREQ 64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78 void __iomem *regs; /* Base of normal regs */
79 void __iomem *phyregs; /* Base of register bank used for PHY access */
80
81 struct net_device *dev;
82 struct napi_struct napi;
83
84 unsigned int phy; /* Index of PHY for this interface */
85 unsigned int irq_num;
86 unsigned int id;
87 unsigned int phy_type;
88
89 struct timer_list timer;/* Timer that triggers the check phy function */
90 unsigned int rxtail; /* Next entry in rxring to read */
91 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
92 unsigned int rxfree; /* Number of free, allocated RX buffers */
93
94 unsigned int rxpending; /* Non-zero if there are still descriptors
95 * to be processed from a previous descriptor
96 * interrupt condition that has been cleared */
97
98 unsigned int txtail; /* Next TX descriptor to check status on */
99 unsigned int txhead; /* Next TX descriptor to use */
100
101 /* Number of free TX descriptors. This could be calculated from
102 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 * full and empty conditions, but it's simpler to just keep track
104 * explicitly. */
105
106 unsigned int txfree;
107
108 unsigned int phy_ok; /* The PHY is currently powered on. */
109
110 /* PHY status (duplex is 1 for half, 2 for full,
111 * so that the default 0 indicates that neither has
112 * yet been configured). */
113
114 unsigned int link_up;
115 unsigned int speed;
116 unsigned int duplex;
117
118 tx_desc *txring;
119 rx_desc *rxring;
120 struct sk_buff *txskbs[TSI108_TXRING_LEN];
121 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123 dma_addr_t txdma, rxdma;
124
125 /* txlock nests in misclock and phy_lock */
126
127 spinlock_t txlock, misclock;
128
129 /* stats is used to hold the upper bits of each hardware counter,
130 * and tmpstats is used to hold the full values for returning
131 * to the caller of get_stats(). They must be separate in case
132 * an overflow interrupt occurs before the stats are consumed.
133 */
134
135 struct net_device_stats stats;
136 struct net_device_stats tmpstats;
137
138 /* These stats are kept separate in hardware, thus require individual
139 * fields for handling carry. They are combined in get_stats.
140 */
141
142 unsigned long rx_fcs; /* Add to rx_frame_errors */
143 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
144 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
145 unsigned long rx_underruns; /* Add to rx_length_errors */
146 unsigned long rx_overruns; /* Add to rx_length_errors */
147
148 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
149 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
150
151 unsigned long mc_hash[16];
152 u32 msg_enable; /* debug message level */
153 struct mii_if_info mii_if;
154 unsigned int init_media;
155 };
156
157 /* Structure for a device driver */
158
159 static struct platform_driver tsi_eth_driver = {
160 .probe = tsi108_init_one,
161 .remove = tsi108_ether_remove,
162 .driver = {
163 .name = "tsi-ethernet",
164 },
165 };
166
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168
169 static void dump_eth_one(struct net_device *dev)
170 {
171 struct tsi108_prv_data *data = netdev_priv(dev);
172
173 printk("Dumping %s...\n", dev->name);
174 printk("intstat %x intmask %x phy_ok %d"
175 " link %d speed %d duplex %d\n",
176 TSI_READ(TSI108_EC_INTSTAT),
177 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
178 data->link_up, data->speed, data->duplex);
179
180 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
181 data->txhead, data->txtail, data->txfree,
182 TSI_READ(TSI108_EC_TXSTAT),
183 TSI_READ(TSI108_EC_TXESTAT),
184 TSI_READ(TSI108_EC_TXERR));
185
186 printk("RX: head %d, tail %d, free %d, stat %x,"
187 " estat %x, err %x, pending %d\n\n",
188 data->rxhead, data->rxtail, data->rxfree,
189 TSI_READ(TSI108_EC_RXSTAT),
190 TSI_READ(TSI108_EC_RXESTAT),
191 TSI_READ(TSI108_EC_RXERR), data->rxpending);
192 }
193
194 /* Synchronization is needed between the thread and up/down events.
195 * Note that the PHY is accessed through the same registers for both
196 * interfaces, so this can't be made interface-specific.
197 */
198
199 static DEFINE_SPINLOCK(phy_lock);
200
201 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
202 {
203 unsigned i;
204
205 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
206 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
207 (reg << TSI108_MAC_MII_ADDR_REG));
208 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
209 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
210 for (i = 0; i < 100; i++) {
211 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
213 break;
214 udelay(10);
215 }
216
217 if (i == 100)
218 return 0xffff;
219 else
220 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
221 }
222
223 static void tsi108_write_mii(struct tsi108_prv_data *data,
224 int reg, u16 val)
225 {
226 unsigned i = 100;
227 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
228 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
229 (reg << TSI108_MAC_MII_ADDR_REG));
230 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
231 while (i--) {
232 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
233 TSI108_MAC_MII_IND_BUSY))
234 break;
235 udelay(10);
236 }
237 }
238
239 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
240 {
241 struct tsi108_prv_data *data = netdev_priv(dev);
242 return tsi108_read_mii(data, reg);
243 }
244
245 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
246 {
247 struct tsi108_prv_data *data = netdev_priv(dev);
248 tsi108_write_mii(data, reg, val);
249 }
250
251 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
252 int reg, u16 val)
253 {
254 unsigned i = 1000;
255 TSI_WRITE(TSI108_MAC_MII_ADDR,
256 (0x1e << TSI108_MAC_MII_ADDR_PHY)
257 | (reg << TSI108_MAC_MII_ADDR_REG));
258 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
259 while(i--) {
260 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
261 return;
262 udelay(10);
263 }
264 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
265 }
266
267 static int mii_speed(struct mii_if_info *mii)
268 {
269 int advert, lpa, val, media;
270 int lpa2 = 0;
271 int speed;
272
273 if (!mii_link_ok(mii))
274 return 0;
275
276 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
277 if ((val & BMSR_ANEGCOMPLETE) == 0)
278 return 0;
279
280 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
281 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
282 media = mii_nway_result(advert & lpa);
283
284 if (mii->supports_gmii)
285 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
286
287 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
288 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
289 return speed;
290 }
291
292 static void tsi108_check_phy(struct net_device *dev)
293 {
294 struct tsi108_prv_data *data = netdev_priv(dev);
295 u32 mac_cfg2_reg, portctrl_reg;
296 u32 duplex;
297 u32 speed;
298 unsigned long flags;
299
300 /* Do a dummy read, as for some reason the first read
301 * after a link becomes up returns link down, even if
302 * it's been a while since the link came up.
303 */
304
305 spin_lock_irqsave(&phy_lock, flags);
306
307 if (!data->phy_ok)
308 goto out;
309
310 tsi108_read_mii(data, MII_BMSR);
311
312 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
313 data->init_media = 0;
314
315 if (netif_carrier_ok(dev)) {
316
317 speed = mii_speed(&data->mii_if);
318
319 if ((speed != data->speed) || duplex) {
320
321 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
322 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
323
324 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
325
326 if (speed == 1000) {
327 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
328 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
329 } else {
330 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
331 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
332 }
333
334 data->speed = speed;
335
336 if (data->mii_if.full_duplex) {
337 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
338 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
339 data->duplex = 2;
340 } else {
341 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
342 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
343 data->duplex = 1;
344 }
345
346 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
347 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
348
349 if (data->link_up == 0) {
350 /* The manual says it can take 3-4 usecs for the speed change
351 * to take effect.
352 */
353 udelay(5);
354
355 spin_lock(&data->txlock);
356 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
357 netif_wake_queue(dev);
358
359 data->link_up = 1;
360 spin_unlock(&data->txlock);
361 }
362 }
363
364 } else {
365 if (data->link_up == 1) {
366 netif_stop_queue(dev);
367 data->link_up = 0;
368 printk(KERN_NOTICE "%s : link is down\n", dev->name);
369 }
370
371 goto out;
372 }
373
374
375 out:
376 spin_unlock_irqrestore(&phy_lock, flags);
377 }
378
379 static inline void
380 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
381 unsigned long *upper)
382 {
383 if (carry & carry_bit)
384 *upper += carry_shift;
385 }
386
387 static void tsi108_stat_carry(struct net_device *dev)
388 {
389 struct tsi108_prv_data *data = netdev_priv(dev);
390 u32 carry1, carry2;
391
392 spin_lock_irq(&data->misclock);
393
394 carry1 = TSI_READ(TSI108_STAT_CARRY1);
395 carry2 = TSI_READ(TSI108_STAT_CARRY2);
396
397 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
398 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
399
400 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
401 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
402
403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
404 TSI108_STAT_RXPKTS_CARRY,
405 &data->stats.rx_packets);
406
407 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
408 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
409
410 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
411 TSI108_STAT_RXMCAST_CARRY,
412 &data->stats.multicast);
413
414 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
415 TSI108_STAT_RXALIGN_CARRY,
416 &data->stats.rx_frame_errors);
417
418 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
419 TSI108_STAT_RXLENGTH_CARRY,
420 &data->stats.rx_length_errors);
421
422 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
423 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
424
425 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
426 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
427
428 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
429 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
430
431 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
432 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
433
434 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
435 TSI108_STAT_RXDROP_CARRY,
436 &data->stats.rx_missed_errors);
437
438 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
439 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
440
441 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
442 TSI108_STAT_TXPKTS_CARRY,
443 &data->stats.tx_packets);
444
445 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
446 TSI108_STAT_TXEXDEF_CARRY,
447 &data->stats.tx_aborted_errors);
448
449 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
450 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
451
452 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
453 TSI108_STAT_TXTCOL_CARRY,
454 &data->stats.collisions);
455
456 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
457 TSI108_STAT_TXPAUSEDROP_CARRY,
458 &data->tx_pause_drop);
459
460 spin_unlock_irq(&data->misclock);
461 }
462
463 /* Read a stat counter atomically with respect to carries.
464 * data->misclock must be held.
465 */
466 static inline unsigned long
467 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
468 int carry_shift, unsigned long *upper)
469 {
470 int carryreg;
471 unsigned long val;
472
473 if (reg < 0xb0)
474 carryreg = TSI108_STAT_CARRY1;
475 else
476 carryreg = TSI108_STAT_CARRY2;
477
478 again:
479 val = TSI_READ(reg) | *upper;
480
481 /* Check to see if it overflowed, but the interrupt hasn't
482 * been serviced yet. If so, handle the carry here, and
483 * try again.
484 */
485
486 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
487 *upper += carry_shift;
488 TSI_WRITE(carryreg, carry_bit);
489 goto again;
490 }
491
492 return val;
493 }
494
495 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
496 {
497 unsigned long excol;
498
499 struct tsi108_prv_data *data = netdev_priv(dev);
500 spin_lock_irq(&data->misclock);
501
502 data->tmpstats.rx_packets =
503 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
504 TSI108_STAT_CARRY1_RXPKTS,
505 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
506
507 data->tmpstats.tx_packets =
508 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
509 TSI108_STAT_CARRY2_TXPKTS,
510 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
511
512 data->tmpstats.rx_bytes =
513 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
514 TSI108_STAT_CARRY1_RXBYTES,
515 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
516
517 data->tmpstats.tx_bytes =
518 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
519 TSI108_STAT_CARRY2_TXBYTES,
520 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
521
522 data->tmpstats.multicast =
523 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
524 TSI108_STAT_CARRY1_RXMCAST,
525 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
526
527 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
528 TSI108_STAT_CARRY2_TXEXCOL,
529 TSI108_STAT_TXEXCOL_CARRY,
530 &data->tx_coll_abort);
531
532 data->tmpstats.collisions =
533 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
534 TSI108_STAT_CARRY2_TXTCOL,
535 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
536
537 data->tmpstats.collisions += excol;
538
539 data->tmpstats.rx_length_errors =
540 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
541 TSI108_STAT_CARRY1_RXLENGTH,
542 TSI108_STAT_RXLENGTH_CARRY,
543 &data->stats.rx_length_errors);
544
545 data->tmpstats.rx_length_errors +=
546 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
547 TSI108_STAT_CARRY1_RXRUNT,
548 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
549
550 data->tmpstats.rx_length_errors +=
551 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
552 TSI108_STAT_CARRY1_RXJUMBO,
553 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
554
555 data->tmpstats.rx_frame_errors =
556 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
557 TSI108_STAT_CARRY1_RXALIGN,
558 TSI108_STAT_RXALIGN_CARRY,
559 &data->stats.rx_frame_errors);
560
561 data->tmpstats.rx_frame_errors +=
562 tsi108_read_stat(data, TSI108_STAT_RXFCS,
563 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
564 &data->rx_fcs);
565
566 data->tmpstats.rx_frame_errors +=
567 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
568 TSI108_STAT_CARRY1_RXFRAG,
569 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
570
571 data->tmpstats.rx_missed_errors =
572 tsi108_read_stat(data, TSI108_STAT_RXDROP,
573 TSI108_STAT_CARRY1_RXDROP,
574 TSI108_STAT_RXDROP_CARRY,
575 &data->stats.rx_missed_errors);
576
577 /* These three are maintained by software. */
578 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
579 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
580
581 data->tmpstats.tx_aborted_errors =
582 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
583 TSI108_STAT_CARRY2_TXEXDEF,
584 TSI108_STAT_TXEXDEF_CARRY,
585 &data->stats.tx_aborted_errors);
586
587 data->tmpstats.tx_aborted_errors +=
588 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
589 TSI108_STAT_CARRY2_TXPAUSE,
590 TSI108_STAT_TXPAUSEDROP_CARRY,
591 &data->tx_pause_drop);
592
593 data->tmpstats.tx_aborted_errors += excol;
594
595 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
596 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
597 data->tmpstats.rx_crc_errors +
598 data->tmpstats.rx_frame_errors +
599 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
600
601 spin_unlock_irq(&data->misclock);
602 return &data->tmpstats;
603 }
604
605 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
606 {
607 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
608 TSI108_EC_RXQ_PTRHIGH_VALID);
609
610 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
611 | TSI108_EC_RXCTRL_QUEUE0);
612 }
613
614 static void tsi108_restart_tx(struct tsi108_prv_data * data)
615 {
616 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
617 TSI108_EC_TXQ_PTRHIGH_VALID);
618
619 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
620 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
621 }
622
623 /* txlock must be held by caller, with IRQs disabled, and
624 * with permission to re-enable them when the lock is dropped.
625 */
626 static void tsi108_complete_tx(struct net_device *dev)
627 {
628 struct tsi108_prv_data *data = netdev_priv(dev);
629 int tx;
630 struct sk_buff *skb;
631 int release = 0;
632
633 while (!data->txfree || data->txhead != data->txtail) {
634 tx = data->txtail;
635
636 if (data->txring[tx].misc & TSI108_TX_OWN)
637 break;
638
639 skb = data->txskbs[tx];
640
641 if (!(data->txring[tx].misc & TSI108_TX_OK))
642 printk("%s: bad tx packet, misc %x\n",
643 dev->name, data->txring[tx].misc);
644
645 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
646 data->txfree++;
647
648 if (data->txring[tx].misc & TSI108_TX_EOF) {
649 dev_kfree_skb_any(skb);
650 release++;
651 }
652 }
653
654 if (release) {
655 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
656 netif_wake_queue(dev);
657 }
658 }
659
660 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
661 {
662 struct tsi108_prv_data *data = netdev_priv(dev);
663 int frags = skb_shinfo(skb)->nr_frags + 1;
664 int i;
665
666 if (!data->phy_ok && net_ratelimit())
667 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
668
669 if (!data->link_up) {
670 printk(KERN_ERR "%s: Transmit while link is down!\n",
671 dev->name);
672 netif_stop_queue(dev);
673 return NETDEV_TX_BUSY;
674 }
675
676 if (data->txfree < MAX_SKB_FRAGS + 1) {
677 netif_stop_queue(dev);
678
679 if (net_ratelimit())
680 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
681 dev->name);
682 return NETDEV_TX_BUSY;
683 }
684
685 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
686 netif_stop_queue(dev);
687 }
688
689 spin_lock_irq(&data->txlock);
690
691 for (i = 0; i < frags; i++) {
692 int misc = 0;
693 int tx = data->txhead;
694
695 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
696 * the interrupt bit. TX descriptor-complete interrupts are
697 * enabled when the queue fills up, and masked when there is
698 * still free space. This way, when saturating the outbound
699 * link, the tx interrupts are kept to a reasonable level.
700 * When the queue is not full, reclamation of skbs still occurs
701 * as new packets are transmitted, or on a queue-empty
702 * interrupt.
703 */
704
705 if ((tx % TSI108_TX_INT_FREQ == 0) &&
706 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
707 misc = TSI108_TX_INT;
708
709 data->txskbs[tx] = skb;
710
711 if (i == 0) {
712 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
713 skb->len - skb->data_len, DMA_TO_DEVICE);
714 data->txring[tx].len = skb->len - skb->data_len;
715 misc |= TSI108_TX_SOF;
716 } else {
717 skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
718
719 data->txring[tx].buf0 =
720 dma_map_page(NULL, frag->page, frag->page_offset,
721 frag->size, DMA_TO_DEVICE);
722 data->txring[tx].len = frag->size;
723 }
724
725 if (i == frags - 1)
726 misc |= TSI108_TX_EOF;
727
728 if (netif_msg_pktdata(data)) {
729 int i;
730 printk("%s: Tx Frame contents (%d)\n", dev->name,
731 skb->len);
732 for (i = 0; i < skb->len; i++)
733 printk(" %2.2x", skb->data[i]);
734 printk(".\n");
735 }
736 data->txring[tx].misc = misc | TSI108_TX_OWN;
737
738 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
739 data->txfree--;
740 }
741
742 tsi108_complete_tx(dev);
743
744 /* This must be done after the check for completed tx descriptors,
745 * so that the tail pointer is correct.
746 */
747
748 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
749 tsi108_restart_tx(data);
750
751 spin_unlock_irq(&data->txlock);
752 return NETDEV_TX_OK;
753 }
754
755 static int tsi108_complete_rx(struct net_device *dev, int budget)
756 {
757 struct tsi108_prv_data *data = netdev_priv(dev);
758 int done = 0;
759
760 while (data->rxfree && done != budget) {
761 int rx = data->rxtail;
762 struct sk_buff *skb;
763
764 if (data->rxring[rx].misc & TSI108_RX_OWN)
765 break;
766
767 skb = data->rxskbs[rx];
768 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
769 data->rxfree--;
770 done++;
771
772 if (data->rxring[rx].misc & TSI108_RX_BAD) {
773 spin_lock_irq(&data->misclock);
774
775 if (data->rxring[rx].misc & TSI108_RX_CRC)
776 data->stats.rx_crc_errors++;
777 if (data->rxring[rx].misc & TSI108_RX_OVER)
778 data->stats.rx_fifo_errors++;
779
780 spin_unlock_irq(&data->misclock);
781
782 dev_kfree_skb_any(skb);
783 continue;
784 }
785 if (netif_msg_pktdata(data)) {
786 int i;
787 printk("%s: Rx Frame contents (%d)\n",
788 dev->name, data->rxring[rx].len);
789 for (i = 0; i < data->rxring[rx].len; i++)
790 printk(" %2.2x", skb->data[i]);
791 printk(".\n");
792 }
793
794 skb_put(skb, data->rxring[rx].len);
795 skb->protocol = eth_type_trans(skb, dev);
796 netif_receive_skb(skb);
797 dev->last_rx = jiffies;
798 }
799
800 return done;
801 }
802
803 static int tsi108_refill_rx(struct net_device *dev, int budget)
804 {
805 struct tsi108_prv_data *data = netdev_priv(dev);
806 int done = 0;
807
808 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
809 int rx = data->rxhead;
810 struct sk_buff *skb;
811
812 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
813 if (!skb)
814 break;
815
816 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
817
818 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
819 TSI108_RX_SKB_SIZE,
820 DMA_FROM_DEVICE);
821
822 /* Sometimes the hardware sets blen to zero after packet
823 * reception, even though the manual says that it's only ever
824 * modified by the driver.
825 */
826
827 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
828 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
829
830 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
831 data->rxfree++;
832 done++;
833 }
834
835 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
836 TSI108_EC_RXSTAT_QUEUE0))
837 tsi108_restart_rx(data, dev);
838
839 return done;
840 }
841
842 static int tsi108_poll(struct napi_struct *napi, int budget)
843 {
844 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
845 struct net_device *dev = data->dev;
846 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
847 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
848 int num_received = 0, num_filled = 0;
849
850 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
851 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
852
853 TSI_WRITE(TSI108_EC_RXESTAT, estat);
854 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
855
856 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
857 num_received = tsi108_complete_rx(dev, budget);
858
859 /* This should normally fill no more slots than the number of
860 * packets received in tsi108_complete_rx(). The exception
861 * is when we previously ran out of memory for RX SKBs. In that
862 * case, it's helpful to obey the budget, not only so that the
863 * CPU isn't hogged, but so that memory (which may still be low)
864 * is not hogged by one device.
865 *
866 * A work unit is considered to be two SKBs to allow us to catch
867 * up when the ring has shrunk due to out-of-memory but we're
868 * still removing the full budget's worth of packets each time.
869 */
870
871 if (data->rxfree < TSI108_RXRING_LEN)
872 num_filled = tsi108_refill_rx(dev, budget * 2);
873
874 if (intstat & TSI108_INT_RXERROR) {
875 u32 err = TSI_READ(TSI108_EC_RXERR);
876 TSI_WRITE(TSI108_EC_RXERR, err);
877
878 if (err) {
879 if (net_ratelimit())
880 printk(KERN_DEBUG "%s: RX error %x\n",
881 dev->name, err);
882
883 if (!(TSI_READ(TSI108_EC_RXSTAT) &
884 TSI108_EC_RXSTAT_QUEUE0))
885 tsi108_restart_rx(data, dev);
886 }
887 }
888
889 if (intstat & TSI108_INT_RXOVERRUN) {
890 spin_lock_irq(&data->misclock);
891 data->stats.rx_fifo_errors++;
892 spin_unlock_irq(&data->misclock);
893 }
894
895 if (num_received < budget) {
896 data->rxpending = 0;
897 netif_rx_complete(dev, napi);
898
899 TSI_WRITE(TSI108_EC_INTMASK,
900 TSI_READ(TSI108_EC_INTMASK)
901 & ~(TSI108_INT_RXQUEUE0
902 | TSI108_INT_RXTHRESH |
903 TSI108_INT_RXOVERRUN |
904 TSI108_INT_RXERROR |
905 TSI108_INT_RXWAIT));
906 } else {
907 data->rxpending = 1;
908 }
909
910 return num_received;
911 }
912
913 static void tsi108_rx_int(struct net_device *dev)
914 {
915 struct tsi108_prv_data *data = netdev_priv(dev);
916
917 /* A race could cause dev to already be scheduled, so it's not an
918 * error if that happens (and interrupts shouldn't be re-masked,
919 * because that can cause harmful races, if poll has already
920 * unmasked them but not cleared LINK_STATE_SCHED).
921 *
922 * This can happen if this code races with tsi108_poll(), which masks
923 * the interrupts after tsi108_irq_one() read the mask, but before
924 * netif_rx_schedule is called. It could also happen due to calls
925 * from tsi108_check_rxring().
926 */
927
928 if (netif_rx_schedule_prep(dev, &data->napi)) {
929 /* Mask, rather than ack, the receive interrupts. The ack
930 * will happen in tsi108_poll().
931 */
932
933 TSI_WRITE(TSI108_EC_INTMASK,
934 TSI_READ(TSI108_EC_INTMASK) |
935 TSI108_INT_RXQUEUE0
936 | TSI108_INT_RXTHRESH |
937 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
938 TSI108_INT_RXWAIT);
939 __netif_rx_schedule(dev, &data->napi);
940 } else {
941 if (!netif_running(dev)) {
942 /* This can happen if an interrupt occurs while the
943 * interface is being brought down, as the START
944 * bit is cleared before the stop function is called.
945 *
946 * In this case, the interrupts must be masked, or
947 * they will continue indefinitely.
948 *
949 * There's a race here if the interface is brought down
950 * and then up in rapid succession, as the device could
951 * be made running after the above check and before
952 * the masking below. This will only happen if the IRQ
953 * thread has a lower priority than the task brining
954 * up the interface. Fixing this race would likely
955 * require changes in generic code.
956 */
957
958 TSI_WRITE(TSI108_EC_INTMASK,
959 TSI_READ
960 (TSI108_EC_INTMASK) |
961 TSI108_INT_RXQUEUE0 |
962 TSI108_INT_RXTHRESH |
963 TSI108_INT_RXOVERRUN |
964 TSI108_INT_RXERROR |
965 TSI108_INT_RXWAIT);
966 }
967 }
968 }
969
970 /* If the RX ring has run out of memory, try periodically
971 * to allocate some more, as otherwise poll would never
972 * get called (apart from the initial end-of-queue condition).
973 *
974 * This is called once per second (by default) from the thread.
975 */
976
977 static void tsi108_check_rxring(struct net_device *dev)
978 {
979 struct tsi108_prv_data *data = netdev_priv(dev);
980
981 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
982 * directly, so as to keep the receive path single-threaded
983 * (and thus not needing a lock).
984 */
985
986 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
987 tsi108_rx_int(dev);
988 }
989
990 static void tsi108_tx_int(struct net_device *dev)
991 {
992 struct tsi108_prv_data *data = netdev_priv(dev);
993 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
994
995 TSI_WRITE(TSI108_EC_TXESTAT, estat);
996 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
997 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
998 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
999 u32 err = TSI_READ(TSI108_EC_TXERR);
1000 TSI_WRITE(TSI108_EC_TXERR, err);
1001
1002 if (err && net_ratelimit())
1003 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1004 }
1005
1006 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1007 spin_lock(&data->txlock);
1008 tsi108_complete_tx(dev);
1009 spin_unlock(&data->txlock);
1010 }
1011 }
1012
1013
1014 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1015 {
1016 struct net_device *dev = dev_id;
1017 struct tsi108_prv_data *data = netdev_priv(dev);
1018 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1019
1020 if (!(stat & TSI108_INT_ANY))
1021 return IRQ_NONE; /* Not our interrupt */
1022
1023 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1024
1025 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1026 TSI108_INT_TXERROR))
1027 tsi108_tx_int(dev);
1028 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1029 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1030 TSI108_INT_RXERROR))
1031 tsi108_rx_int(dev);
1032
1033 if (stat & TSI108_INT_SFN) {
1034 if (net_ratelimit())
1035 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1036 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1037 }
1038
1039 if (stat & TSI108_INT_STATCARRY) {
1040 tsi108_stat_carry(dev);
1041 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1042 }
1043
1044 return IRQ_HANDLED;
1045 }
1046
1047 static void tsi108_stop_ethernet(struct net_device *dev)
1048 {
1049 struct tsi108_prv_data *data = netdev_priv(dev);
1050 int i = 1000;
1051 /* Disable all TX and RX queues ... */
1052 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1053 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1054
1055 /* ...and wait for them to become idle */
1056 while(i--) {
1057 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1058 break;
1059 udelay(10);
1060 }
1061 i = 1000;
1062 while(i--){
1063 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1064 return;
1065 udelay(10);
1066 }
1067 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1068 }
1069
1070 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1071 {
1072 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1073 udelay(100);
1074 TSI_WRITE(TSI108_MAC_CFG1, 0);
1075
1076 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1077 udelay(100);
1078 TSI_WRITE(TSI108_EC_PORTCTRL,
1079 TSI_READ(TSI108_EC_PORTCTRL) &
1080 ~TSI108_EC_PORTCTRL_STATRST);
1081
1082 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1083 udelay(100);
1084 TSI_WRITE(TSI108_EC_TXCFG,
1085 TSI_READ(TSI108_EC_TXCFG) &
1086 ~TSI108_EC_TXCFG_RST);
1087
1088 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1089 udelay(100);
1090 TSI_WRITE(TSI108_EC_RXCFG,
1091 TSI_READ(TSI108_EC_RXCFG) &
1092 ~TSI108_EC_RXCFG_RST);
1093
1094 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1095 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1096 TSI108_MAC_MII_MGMT_RST);
1097 udelay(100);
1098 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1099 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1100 ~(TSI108_MAC_MII_MGMT_RST |
1101 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1102 }
1103
1104 static int tsi108_get_mac(struct net_device *dev)
1105 {
1106 struct tsi108_prv_data *data = netdev_priv(dev);
1107 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1108 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1109
1110 /* Note that the octets are reversed from what the manual says,
1111 * producing an even weirder ordering...
1112 */
1113 if (word2 == 0 && word1 == 0) {
1114 dev->dev_addr[0] = 0x00;
1115 dev->dev_addr[1] = 0x06;
1116 dev->dev_addr[2] = 0xd2;
1117 dev->dev_addr[3] = 0x00;
1118 dev->dev_addr[4] = 0x00;
1119 if (0x8 == data->phy)
1120 dev->dev_addr[5] = 0x01;
1121 else
1122 dev->dev_addr[5] = 0x02;
1123
1124 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1125
1126 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1127 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1128
1129 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1130 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1131 } else {
1132 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1133 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1134 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1135 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1136 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1137 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1138 }
1139
1140 if (!is_valid_ether_addr(dev->dev_addr)) {
1141 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1142 return -EINVAL;
1143 }
1144
1145 return 0;
1146 }
1147
1148 static int tsi108_set_mac(struct net_device *dev, void *addr)
1149 {
1150 struct tsi108_prv_data *data = netdev_priv(dev);
1151 u32 word1, word2;
1152 int i;
1153
1154 if (!is_valid_ether_addr(addr))
1155 return -EINVAL;
1156
1157 for (i = 0; i < 6; i++)
1158 /* +2 is for the offset of the HW addr type */
1159 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1160
1161 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1162
1163 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1164 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1165
1166 spin_lock_irq(&data->misclock);
1167 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1168 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1169 spin_lock(&data->txlock);
1170
1171 if (data->txfree && data->link_up)
1172 netif_wake_queue(dev);
1173
1174 spin_unlock(&data->txlock);
1175 spin_unlock_irq(&data->misclock);
1176 return 0;
1177 }
1178
1179 /* Protected by dev->xmit_lock. */
1180 static void tsi108_set_rx_mode(struct net_device *dev)
1181 {
1182 struct tsi108_prv_data *data = netdev_priv(dev);
1183 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1184
1185 if (dev->flags & IFF_PROMISC) {
1186 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1187 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1188 goto out;
1189 }
1190
1191 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1192
1193 if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1194 int i;
1195 struct dev_mc_list *mc = dev->mc_list;
1196 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1197
1198 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1199
1200 while (mc) {
1201 u32 hash, crc;
1202
1203 if (mc->dmi_addrlen == 6) {
1204 crc = ether_crc(6, mc->dmi_addr);
1205 hash = crc >> 23;
1206
1207 __set_bit(hash, &data->mc_hash[0]);
1208 } else {
1209 printk(KERN_ERR
1210 "%s: got multicast address of length %d "
1211 "instead of 6.\n", dev->name,
1212 mc->dmi_addrlen);
1213 }
1214
1215 mc = mc->next;
1216 }
1217
1218 TSI_WRITE(TSI108_EC_HASHADDR,
1219 TSI108_EC_HASHADDR_AUTOINC |
1220 TSI108_EC_HASHADDR_MCAST);
1221
1222 for (i = 0; i < 16; i++) {
1223 /* The manual says that the hardware may drop
1224 * back-to-back writes to the data register.
1225 */
1226 udelay(1);
1227 TSI_WRITE(TSI108_EC_HASHDATA,
1228 data->mc_hash[i]);
1229 }
1230 }
1231
1232 out:
1233 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1234 }
1235
1236 static void tsi108_init_phy(struct net_device *dev)
1237 {
1238 struct tsi108_prv_data *data = netdev_priv(dev);
1239 u32 i = 0;
1240 u16 phyval = 0;
1241 unsigned long flags;
1242
1243 spin_lock_irqsave(&phy_lock, flags);
1244
1245 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1246 while (i--){
1247 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1248 break;
1249 udelay(10);
1250 }
1251 if (i == 0)
1252 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1253
1254 if (data->phy_type == TSI108_PHY_BCM54XX) {
1255 tsi108_write_mii(data, 0x09, 0x0300);
1256 tsi108_write_mii(data, 0x10, 0x1020);
1257 tsi108_write_mii(data, 0x1c, 0x8c00);
1258 }
1259
1260 tsi108_write_mii(data,
1261 MII_BMCR,
1262 BMCR_ANENABLE | BMCR_ANRESTART);
1263 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1264 cpu_relax();
1265
1266 /* Set G/MII mode and receive clock select in TBI control #2. The
1267 * second port won't work if this isn't done, even though we don't
1268 * use TBI mode.
1269 */
1270
1271 tsi108_write_tbi(data, 0x11, 0x30);
1272
1273 /* FIXME: It seems to take more than 2 back-to-back reads to the
1274 * PHY_STAT register before the link up status bit is set.
1275 */
1276
1277 data->link_up = 1;
1278
1279 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1280 BMSR_LSTATUS)) {
1281 if (i++ > (MII_READ_DELAY / 10)) {
1282 data->link_up = 0;
1283 break;
1284 }
1285 spin_unlock_irqrestore(&phy_lock, flags);
1286 msleep(10);
1287 spin_lock_irqsave(&phy_lock, flags);
1288 }
1289
1290 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1291 data->phy_ok = 1;
1292 data->init_media = 1;
1293 spin_unlock_irqrestore(&phy_lock, flags);
1294 }
1295
1296 static void tsi108_kill_phy(struct net_device *dev)
1297 {
1298 struct tsi108_prv_data *data = netdev_priv(dev);
1299 unsigned long flags;
1300
1301 spin_lock_irqsave(&phy_lock, flags);
1302 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1303 data->phy_ok = 0;
1304 spin_unlock_irqrestore(&phy_lock, flags);
1305 }
1306
1307 static int tsi108_open(struct net_device *dev)
1308 {
1309 int i;
1310 struct tsi108_prv_data *data = netdev_priv(dev);
1311 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1312 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1313
1314 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1315 if (i != 0) {
1316 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1317 data->id, data->irq_num);
1318 return i;
1319 } else {
1320 dev->irq = data->irq_num;
1321 printk(KERN_NOTICE
1322 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1323 data->id, dev->irq, dev->name);
1324 }
1325
1326 data->rxring = dma_alloc_coherent(NULL, rxring_size,
1327 &data->rxdma, GFP_KERNEL);
1328
1329 if (!data->rxring) {
1330 printk(KERN_DEBUG
1331 "TSI108_ETH: failed to allocate memory for rxring!\n");
1332 return -ENOMEM;
1333 } else {
1334 memset(data->rxring, 0, rxring_size);
1335 }
1336
1337 data->txring = dma_alloc_coherent(NULL, txring_size,
1338 &data->txdma, GFP_KERNEL);
1339
1340 if (!data->txring) {
1341 printk(KERN_DEBUG
1342 "TSI108_ETH: failed to allocate memory for txring!\n");
1343 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1344 return -ENOMEM;
1345 } else {
1346 memset(data->txring, 0, txring_size);
1347 }
1348
1349 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1350 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1351 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1352 data->rxring[i].vlan = 0;
1353 }
1354
1355 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1356
1357 data->rxtail = 0;
1358 data->rxhead = 0;
1359
1360 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1361 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1362
1363 if (!skb) {
1364 /* Bah. No memory for now, but maybe we'll get
1365 * some more later.
1366 * For now, we'll live with the smaller ring.
1367 */
1368 printk(KERN_WARNING
1369 "%s: Could only allocate %d receive skb(s).\n",
1370 dev->name, i);
1371 data->rxhead = i;
1372 break;
1373 }
1374
1375 data->rxskbs[i] = skb;
1376 /* Align the payload on a 4-byte boundary */
1377 skb_reserve(skb, 2);
1378 data->rxskbs[i] = skb;
1379 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1380 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1381 }
1382
1383 data->rxfree = i;
1384 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1385
1386 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1387 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1388 data->txring[i].misc = 0;
1389 }
1390
1391 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1392 data->txtail = 0;
1393 data->txhead = 0;
1394 data->txfree = TSI108_TXRING_LEN;
1395 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1396 tsi108_init_phy(dev);
1397
1398 napi_enable(&data->napi);
1399
1400 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1401 mod_timer(&data->timer, jiffies + 1);
1402
1403 tsi108_restart_rx(data, dev);
1404
1405 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1406
1407 TSI_WRITE(TSI108_EC_INTMASK,
1408 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1409 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1410 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1411 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1412
1413 TSI_WRITE(TSI108_MAC_CFG1,
1414 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1415 netif_start_queue(dev);
1416 return 0;
1417 }
1418
1419 static int tsi108_close(struct net_device *dev)
1420 {
1421 struct tsi108_prv_data *data = netdev_priv(dev);
1422
1423 netif_stop_queue(dev);
1424 napi_disable(&data->napi);
1425
1426 del_timer_sync(&data->timer);
1427
1428 tsi108_stop_ethernet(dev);
1429 tsi108_kill_phy(dev);
1430 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1431 TSI_WRITE(TSI108_MAC_CFG1, 0);
1432
1433 /* Check for any pending TX packets, and drop them. */
1434
1435 while (!data->txfree || data->txhead != data->txtail) {
1436 int tx = data->txtail;
1437 struct sk_buff *skb;
1438 skb = data->txskbs[tx];
1439 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1440 data->txfree++;
1441 dev_kfree_skb(skb);
1442 }
1443
1444 synchronize_irq(data->irq_num);
1445 free_irq(data->irq_num, dev);
1446
1447 /* Discard the RX ring. */
1448
1449 while (data->rxfree) {
1450 int rx = data->rxtail;
1451 struct sk_buff *skb;
1452
1453 skb = data->rxskbs[rx];
1454 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1455 data->rxfree--;
1456 dev_kfree_skb(skb);
1457 }
1458
1459 dma_free_coherent(0,
1460 TSI108_RXRING_LEN * sizeof(rx_desc),
1461 data->rxring, data->rxdma);
1462 dma_free_coherent(0,
1463 TSI108_TXRING_LEN * sizeof(tx_desc),
1464 data->txring, data->txdma);
1465
1466 return 0;
1467 }
1468
1469 static void tsi108_init_mac(struct net_device *dev)
1470 {
1471 struct tsi108_prv_data *data = netdev_priv(dev);
1472
1473 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1474 TSI108_MAC_CFG2_PADCRC);
1475
1476 TSI_WRITE(TSI108_EC_TXTHRESH,
1477 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1478 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1479
1480 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1481 ~(TSI108_STAT_CARRY1_RXBYTES |
1482 TSI108_STAT_CARRY1_RXPKTS |
1483 TSI108_STAT_CARRY1_RXFCS |
1484 TSI108_STAT_CARRY1_RXMCAST |
1485 TSI108_STAT_CARRY1_RXALIGN |
1486 TSI108_STAT_CARRY1_RXLENGTH |
1487 TSI108_STAT_CARRY1_RXRUNT |
1488 TSI108_STAT_CARRY1_RXJUMBO |
1489 TSI108_STAT_CARRY1_RXFRAG |
1490 TSI108_STAT_CARRY1_RXJABBER |
1491 TSI108_STAT_CARRY1_RXDROP));
1492
1493 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1494 ~(TSI108_STAT_CARRY2_TXBYTES |
1495 TSI108_STAT_CARRY2_TXPKTS |
1496 TSI108_STAT_CARRY2_TXEXDEF |
1497 TSI108_STAT_CARRY2_TXEXCOL |
1498 TSI108_STAT_CARRY2_TXTCOL |
1499 TSI108_STAT_CARRY2_TXPAUSE));
1500
1501 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1502 TSI_WRITE(TSI108_MAC_CFG1, 0);
1503
1504 TSI_WRITE(TSI108_EC_RXCFG,
1505 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1506
1507 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1508 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1509 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1510 TSI108_EC_TXQ_CFG_SFNPORT));
1511
1512 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1513 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1514 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1515 TSI108_EC_RXQ_CFG_SFNPORT));
1516
1517 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1518 TSI108_EC_TXQ_BUFCFG_BURST256 |
1519 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1520 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1521
1522 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1523 TSI108_EC_RXQ_BUFCFG_BURST256 |
1524 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1525 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1526
1527 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1528 }
1529
1530 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1531 {
1532 struct tsi108_prv_data *data = netdev_priv(dev);
1533 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1534 }
1535
1536 static int
1537 tsi108_init_one(struct platform_device *pdev)
1538 {
1539 struct net_device *dev = NULL;
1540 struct tsi108_prv_data *data = NULL;
1541 hw_info *einfo;
1542 int err = 0;
1543 DECLARE_MAC_BUF(mac);
1544
1545 einfo = pdev->dev.platform_data;
1546
1547 if (NULL == einfo) {
1548 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1549 pdev->id);
1550 return -ENODEV;
1551 }
1552
1553 /* Create an ethernet device instance */
1554
1555 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1556 if (!dev) {
1557 printk("tsi108_eth: Could not allocate a device structure\n");
1558 return -ENOMEM;
1559 }
1560
1561 printk("tsi108_eth%d: probe...\n", pdev->id);
1562 data = netdev_priv(dev);
1563 data->dev = dev;
1564
1565 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1566 pdev->id, einfo->regs, einfo->phyregs,
1567 einfo->phy, einfo->irq_num);
1568
1569 data->regs = ioremap(einfo->regs, 0x400);
1570 if (NULL == data->regs) {
1571 err = -ENOMEM;
1572 goto regs_fail;
1573 }
1574
1575 data->phyregs = ioremap(einfo->phyregs, 0x400);
1576 if (NULL == data->phyregs) {
1577 err = -ENOMEM;
1578 goto regs_fail;
1579 }
1580 /* MII setup */
1581 data->mii_if.dev = dev;
1582 data->mii_if.mdio_read = tsi108_mdio_read;
1583 data->mii_if.mdio_write = tsi108_mdio_write;
1584 data->mii_if.phy_id = einfo->phy;
1585 data->mii_if.phy_id_mask = 0x1f;
1586 data->mii_if.reg_num_mask = 0x1f;
1587 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1588
1589 data->phy = einfo->phy;
1590 data->phy_type = einfo->phy_type;
1591 data->irq_num = einfo->irq_num;
1592 data->id = pdev->id;
1593 dev->open = tsi108_open;
1594 dev->stop = tsi108_close;
1595 dev->hard_start_xmit = tsi108_send_packet;
1596 dev->set_mac_address = tsi108_set_mac;
1597 dev->set_multicast_list = tsi108_set_rx_mode;
1598 dev->get_stats = tsi108_get_stats;
1599 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1600 dev->do_ioctl = tsi108_do_ioctl;
1601
1602 /* Apparently, the Linux networking code won't use scatter-gather
1603 * if the hardware doesn't do checksums. However, it's faster
1604 * to checksum in place and use SG, as (among other reasons)
1605 * the cache won't be dirtied (which then has to be flushed
1606 * before DMA). The checksumming is done by the driver (via
1607 * a new function skb_csum_dev() in net/core/skbuff.c).
1608 */
1609
1610 dev->features = NETIF_F_HIGHDMA;
1611
1612 spin_lock_init(&data->txlock);
1613 spin_lock_init(&data->misclock);
1614
1615 tsi108_reset_ether(data);
1616 tsi108_kill_phy(dev);
1617
1618 if ((err = tsi108_get_mac(dev)) != 0) {
1619 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1620 dev->name);
1621 goto register_fail;
1622 }
1623
1624 tsi108_init_mac(dev);
1625 err = register_netdev(dev);
1626 if (err) {
1627 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1628 dev->name);
1629 goto register_fail;
1630 }
1631
1632 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n",
1633 dev->name, print_mac(mac, dev->dev_addr));
1634 #ifdef DEBUG
1635 data->msg_enable = DEBUG;
1636 dump_eth_one(dev);
1637 #endif
1638
1639 return 0;
1640
1641 register_fail:
1642 iounmap(data->regs);
1643 iounmap(data->phyregs);
1644
1645 regs_fail:
1646 free_netdev(dev);
1647 return err;
1648 }
1649
1650 /* There's no way to either get interrupts from the PHY when
1651 * something changes, or to have the Tsi108 automatically communicate
1652 * with the PHY to reconfigure itself.
1653 *
1654 * Thus, we have to do it using a timer.
1655 */
1656
1657 static void tsi108_timed_checker(unsigned long dev_ptr)
1658 {
1659 struct net_device *dev = (struct net_device *)dev_ptr;
1660 struct tsi108_prv_data *data = netdev_priv(dev);
1661
1662 tsi108_check_phy(dev);
1663 tsi108_check_rxring(dev);
1664 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1665 }
1666
1667 static int tsi108_ether_init(void)
1668 {
1669 int ret;
1670 ret = platform_driver_register (&tsi_eth_driver);
1671 if (ret < 0){
1672 printk("tsi108_ether_init: error initializing ethernet "
1673 "device\n");
1674 return ret;
1675 }
1676 return 0;
1677 }
1678
1679 static int tsi108_ether_remove(struct platform_device *pdev)
1680 {
1681 struct net_device *dev = platform_get_drvdata(pdev);
1682 struct tsi108_prv_data *priv = netdev_priv(dev);
1683
1684 unregister_netdev(dev);
1685 tsi108_stop_ethernet(dev);
1686 platform_set_drvdata(pdev, NULL);
1687 iounmap(priv->regs);
1688 iounmap(priv->phyregs);
1689 free_netdev(dev);
1690
1691 return 0;
1692 }
1693 static void tsi108_ether_exit(void)
1694 {
1695 platform_driver_unregister(&tsi_eth_driver);
1696 }
1697
1698 module_init(tsi108_ether_init);
1699 module_exit(tsi108_ether_exit);
1700
1701 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1702 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1703 MODULE_LICENSE("GPL");