]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/tulip/tulip_core.c
PCI: Change all drivers to use pci_device->revision
[mirror_ubuntu-bionic-kernel.git] / drivers / net / tulip / tulip_core.c
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
2
3 /*
4 Maintained by Valerie Henson <val_henson@linux.intel.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
7
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
10
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
14
15 */
16
17
18 #define DRV_NAME "tulip"
19 #ifdef CONFIG_TULIP_NAPI
20 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
21 #else
22 #define DRV_VERSION "1.1.15"
23 #endif
24 #define DRV_RELDATE "Feb 27, 2007"
25
26
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include "tulip.h"
30 #include <linux/init.h>
31 #include <linux/etherdevice.h>
32 #include <linux/delay.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
38
39 #ifdef CONFIG_SPARC
40 #include <asm/prom.h>
41 #endif
42
43 static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
45
46
47 /* A few user-configurable values. */
48
49 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50 static unsigned int max_interrupt_work = 25;
51
52 #define MAX_UNITS 8
53 /* Used to pass the full-duplex flag, etc. */
54 static int full_duplex[MAX_UNITS];
55 static int options[MAX_UNITS];
56 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
57
58 /* The possible media types that can be set in options[] are: */
59 const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
66 };
67
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(CONFIG_SPARC) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
73 #else
74 static int rx_copybreak = 100;
75 #endif
76
77 /*
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
88 */
89
90 #if defined(__alpha__) || defined(__ia64__)
91 static int csr0 = 0x01A00000 | 0xE000;
92 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93 static int csr0 = 0x01A00000 | 0x8000;
94 #elif defined(CONFIG_SPARC) || defined(__hppa__)
95 /* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
97 * any more than that.
98 */
99 static int csr0 = 0x01A00000 | 0x9000;
100 #elif defined(__arm__) || defined(__sh__)
101 static int csr0 = 0x01A00000 | 0x4800;
102 #elif defined(__mips__)
103 static int csr0 = 0x00200000 | 0x4000;
104 #else
105 #warning Processor architecture undefined!
106 static int csr0 = 0x00A00000 | 0x4800;
107 #endif
108
109 /* Operational parameters that usually are not changed. */
110 /* Time in jiffies before concluding the transmitter is hung. */
111 #define TX_TIMEOUT (4*HZ)
112
113
114 MODULE_AUTHOR("The Linux Kernel Team");
115 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116 MODULE_LICENSE("GPL");
117 MODULE_VERSION(DRV_VERSION);
118 module_param(tulip_debug, int, 0);
119 module_param(max_interrupt_work, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param(csr0, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124
125 #define PFX DRV_NAME ": "
126
127 #ifdef TULIP_DEBUG
128 int tulip_debug = TULIP_DEBUG;
129 #else
130 int tulip_debug = 1;
131 #endif
132
133 static void tulip_timer(unsigned long data)
134 {
135 struct net_device *dev = (struct net_device *)data;
136 struct tulip_private *tp = netdev_priv(dev);
137
138 if (netif_running(dev))
139 schedule_work(&tp->media_work);
140 }
141
142 /*
143 * This table use during operation for capabilities and media timer.
144 *
145 * It is indexed via the values in 'enum chips'
146 */
147
148 struct tulip_chip_table tulip_tbl[] = {
149 { }, /* placeholder for array, slot unused currently */
150 { }, /* placeholder for array, slot unused currently */
151
152 /* DC21140 */
153 { "Digital DS21140 Tulip", 128, 0x0001ebef,
154 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
155 tulip_media_task },
156
157 /* DC21142, DC21143 */
158 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
159 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
160 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
161
162 /* LC82C168 */
163 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
164 HAS_MII | HAS_PNICNWAY, pnic_timer, },
165
166 /* MX98713 */
167 { "Macronix 98713 PMAC", 128, 0x0001ebef,
168 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
169
170 /* MX98715 */
171 { "Macronix 98715 PMAC", 256, 0x0001ebef,
172 HAS_MEDIA_TABLE, mxic_timer, },
173
174 /* MX98725 */
175 { "Macronix 98725 PMAC", 256, 0x0001ebef,
176 HAS_MEDIA_TABLE, mxic_timer, },
177
178 /* AX88140 */
179 { "ASIX AX88140", 128, 0x0001fbff,
180 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
181 | IS_ASIX, tulip_timer, tulip_media_task },
182
183 /* PNIC2 */
184 { "Lite-On PNIC-II", 256, 0x0801fbff,
185 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
186
187 /* COMET */
188 { "ADMtek Comet", 256, 0x0001abef,
189 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
190
191 /* COMPEX9881 */
192 { "Compex 9881 PMAC", 128, 0x0001ebef,
193 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
194
195 /* I21145 */
196 { "Intel DS21145 Tulip", 128, 0x0801fbff,
197 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
198 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
199
200 /* DM910X */
201 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
202 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
203 tulip_timer, tulip_media_task },
204
205 /* RS7112 */
206 { "Conexant LANfinity", 256, 0x0001ebef,
207 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
208
209 };
210
211
212 static struct pci_device_id tulip_pci_tbl[] = {
213 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
214 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
215 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
216 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
217 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
218 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
219 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
220 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
221 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
232 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
233 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 { } /* terminate list */
250 };
251 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
252
253
254 /* A full-duplex map for media types. */
255 const char tulip_media_cap[32] =
256 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
257
258 static void tulip_tx_timeout(struct net_device *dev);
259 static void tulip_init_ring(struct net_device *dev);
260 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
261 static int tulip_open(struct net_device *dev);
262 static int tulip_close(struct net_device *dev);
263 static void tulip_up(struct net_device *dev);
264 static void tulip_down(struct net_device *dev);
265 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
266 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
267 static void set_rx_mode(struct net_device *dev);
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269 static void poll_tulip(struct net_device *dev);
270 #endif
271
272 static void tulip_set_power_state (struct tulip_private *tp,
273 int sleep, int snooze)
274 {
275 if (tp->flags & HAS_ACPI) {
276 u32 tmp, newtmp;
277 pci_read_config_dword (tp->pdev, CFDD, &tmp);
278 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
279 if (sleep)
280 newtmp |= CFDD_Sleep;
281 else if (snooze)
282 newtmp |= CFDD_Snooze;
283 if (tmp != newtmp)
284 pci_write_config_dword (tp->pdev, CFDD, newtmp);
285 }
286
287 }
288
289
290 static void tulip_up(struct net_device *dev)
291 {
292 struct tulip_private *tp = netdev_priv(dev);
293 void __iomem *ioaddr = tp->base_addr;
294 int next_tick = 3*HZ;
295 int i;
296
297 /* Wake the chip from sleep/snooze mode. */
298 tulip_set_power_state (tp, 0, 0);
299
300 /* On some chip revs we must set the MII/SYM port before the reset!? */
301 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
302 iowrite32(0x00040000, ioaddr + CSR6);
303
304 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
305 iowrite32(0x00000001, ioaddr + CSR0);
306 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
307 udelay(100);
308
309 /* Deassert reset.
310 Wait the specified 50 PCI cycles after a reset by initializing
311 Tx and Rx queues and the address filter list. */
312 iowrite32(tp->csr0, ioaddr + CSR0);
313 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
314 udelay(100);
315
316 if (tulip_debug > 1)
317 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
318
319 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
320 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
321 tp->cur_rx = tp->cur_tx = 0;
322 tp->dirty_rx = tp->dirty_tx = 0;
323
324 if (tp->flags & MC_HASH_ONLY) {
325 u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr));
326 u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4)));
327 if (tp->chip_id == AX88140) {
328 iowrite32(0, ioaddr + CSR13);
329 iowrite32(addr_low, ioaddr + CSR14);
330 iowrite32(1, ioaddr + CSR13);
331 iowrite32(addr_high, ioaddr + CSR14);
332 } else if (tp->flags & COMET_MAC_ADDR) {
333 iowrite32(addr_low, ioaddr + 0xA4);
334 iowrite32(addr_high, ioaddr + 0xA8);
335 iowrite32(0, ioaddr + 0xAC);
336 iowrite32(0, ioaddr + 0xB0);
337 }
338 } else {
339 /* This is set_rx_mode(), but without starting the transmitter. */
340 u16 *eaddrs = (u16 *)dev->dev_addr;
341 u16 *setup_frm = &tp->setup_frame[15*6];
342 dma_addr_t mapping;
343
344 /* 21140 bug: you must add the broadcast address. */
345 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
346 /* Fill the final entry of the table with our physical address. */
347 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
348 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
349 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
350
351 mapping = pci_map_single(tp->pdev, tp->setup_frame,
352 sizeof(tp->setup_frame),
353 PCI_DMA_TODEVICE);
354 tp->tx_buffers[tp->cur_tx].skb = NULL;
355 tp->tx_buffers[tp->cur_tx].mapping = mapping;
356
357 /* Put the setup frame on the Tx list. */
358 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
359 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
360 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
361
362 tp->cur_tx++;
363 }
364
365 tp->saved_if_port = dev->if_port;
366 if (dev->if_port == 0)
367 dev->if_port = tp->default_port;
368
369 /* Allow selecting a default media. */
370 i = 0;
371 if (tp->mtable == NULL)
372 goto media_picked;
373 if (dev->if_port) {
374 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
375 (dev->if_port == 12 ? 0 : dev->if_port);
376 for (i = 0; i < tp->mtable->leafcount; i++)
377 if (tp->mtable->mleaf[i].media == looking_for) {
378 printk(KERN_INFO "%s: Using user-specified media %s.\n",
379 dev->name, medianame[dev->if_port]);
380 goto media_picked;
381 }
382 }
383 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
384 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
385 for (i = 0; i < tp->mtable->leafcount; i++)
386 if (tp->mtable->mleaf[i].media == looking_for) {
387 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
388 dev->name, medianame[looking_for]);
389 goto media_picked;
390 }
391 }
392 /* Start sensing first non-full-duplex media. */
393 for (i = tp->mtable->leafcount - 1;
394 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
395 ;
396 media_picked:
397
398 tp->csr6 = 0;
399 tp->cur_index = i;
400 tp->nwayset = 0;
401
402 if (dev->if_port) {
403 if (tp->chip_id == DC21143 &&
404 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
405 /* We must reset the media CSRs when we force-select MII mode. */
406 iowrite32(0x0000, ioaddr + CSR13);
407 iowrite32(0x0000, ioaddr + CSR14);
408 iowrite32(0x0008, ioaddr + CSR15);
409 }
410 tulip_select_media(dev, 1);
411 } else if (tp->chip_id == DC21142) {
412 if (tp->mii_cnt) {
413 tulip_select_media(dev, 1);
414 if (tulip_debug > 1)
415 printk(KERN_INFO "%s: Using MII transceiver %d, status "
416 "%4.4x.\n",
417 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
418 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
419 tp->csr6 = csr6_mask_hdcap;
420 dev->if_port = 11;
421 iowrite32(0x0000, ioaddr + CSR13);
422 iowrite32(0x0000, ioaddr + CSR14);
423 } else
424 t21142_start_nway(dev);
425 } else if (tp->chip_id == PNIC2) {
426 /* for initial startup advertise 10/100 Full and Half */
427 tp->sym_advertise = 0x01E0;
428 /* enable autonegotiate end interrupt */
429 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
430 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
431 pnic2_start_nway(dev);
432 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
433 if (tp->mii_cnt) {
434 dev->if_port = 11;
435 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
436 iowrite32(0x0001, ioaddr + CSR15);
437 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
438 pnic_do_nway(dev);
439 else {
440 /* Start with 10mbps to do autonegotiation. */
441 iowrite32(0x32, ioaddr + CSR12);
442 tp->csr6 = 0x00420000;
443 iowrite32(0x0001B078, ioaddr + 0xB8);
444 iowrite32(0x0201B078, ioaddr + 0xB8);
445 next_tick = 1*HZ;
446 }
447 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
448 && ! tp->medialock) {
449 dev->if_port = 0;
450 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
451 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
452 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
453 /* Provided by BOLO, Macronix - 12/10/1998. */
454 dev->if_port = 0;
455 tp->csr6 = 0x01a80200;
456 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
457 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
458 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
459 /* Enable automatic Tx underrun recovery. */
460 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
461 dev->if_port = tp->mii_cnt ? 11 : 0;
462 tp->csr6 = 0x00040000;
463 } else if (tp->chip_id == AX88140) {
464 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
465 } else
466 tulip_select_media(dev, 1);
467
468 /* Start the chip's Tx to process setup frame. */
469 tulip_stop_rxtx(tp);
470 barrier();
471 udelay(5);
472 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
473
474 /* Enable interrupts by setting the interrupt mask. */
475 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
476 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
477 tulip_start_rxtx(tp);
478 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
479
480 if (tulip_debug > 2) {
481 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
482 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
483 ioread32(ioaddr + CSR6));
484 }
485
486 /* Set the timer to switch to check for link beat and perhaps switch
487 to an alternate media type. */
488 tp->timer.expires = RUN_AT(next_tick);
489 add_timer(&tp->timer);
490 #ifdef CONFIG_TULIP_NAPI
491 init_timer(&tp->oom_timer);
492 tp->oom_timer.data = (unsigned long)dev;
493 tp->oom_timer.function = oom_timer;
494 #endif
495 }
496
497 static int
498 tulip_open(struct net_device *dev)
499 {
500 int retval;
501
502 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
503 return retval;
504
505 tulip_init_ring (dev);
506
507 tulip_up (dev);
508
509 netif_start_queue (dev);
510
511 return 0;
512 }
513
514
515 static void tulip_tx_timeout(struct net_device *dev)
516 {
517 struct tulip_private *tp = netdev_priv(dev);
518 void __iomem *ioaddr = tp->base_addr;
519 unsigned long flags;
520
521 spin_lock_irqsave (&tp->lock, flags);
522
523 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
524 /* Do nothing -- the media monitor should handle this. */
525 if (tulip_debug > 1)
526 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
527 dev->name);
528 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
529 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
530 || tp->chip_id == DM910X) {
531 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
532 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
533 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
534 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
535 tp->timeout_recovery = 1;
536 schedule_work(&tp->media_work);
537 goto out_unlock;
538 } else if (tp->chip_id == PNIC2) {
539 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
540 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
541 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
542 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
543 } else {
544 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
545 "%8.8x, resetting...\n",
546 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
547 dev->if_port = 0;
548 }
549
550 #if defined(way_too_many_messages)
551 if (tulip_debug > 3) {
552 int i;
553 for (i = 0; i < RX_RING_SIZE; i++) {
554 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
555 int j;
556 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
557 "%2.2x %2.2x %2.2x.\n",
558 i, (unsigned int)tp->rx_ring[i].status,
559 (unsigned int)tp->rx_ring[i].length,
560 (unsigned int)tp->rx_ring[i].buffer1,
561 (unsigned int)tp->rx_ring[i].buffer2,
562 buf[0], buf[1], buf[2]);
563 for (j = 0; buf[j] != 0xee && j < 1600; j++)
564 if (j < 100) printk(" %2.2x", buf[j]);
565 printk(" j=%d.\n", j);
566 }
567 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
568 for (i = 0; i < RX_RING_SIZE; i++)
569 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
570 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
571 for (i = 0; i < TX_RING_SIZE; i++)
572 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
573 printk("\n");
574 }
575 #endif
576
577 tulip_tx_timeout_complete(tp, ioaddr);
578
579 out_unlock:
580 spin_unlock_irqrestore (&tp->lock, flags);
581 dev->trans_start = jiffies;
582 netif_wake_queue (dev);
583 }
584
585
586 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
587 static void tulip_init_ring(struct net_device *dev)
588 {
589 struct tulip_private *tp = netdev_priv(dev);
590 int i;
591
592 tp->susp_rx = 0;
593 tp->ttimer = 0;
594 tp->nir = 0;
595
596 for (i = 0; i < RX_RING_SIZE; i++) {
597 tp->rx_ring[i].status = 0x00000000;
598 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
599 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
600 tp->rx_buffers[i].skb = NULL;
601 tp->rx_buffers[i].mapping = 0;
602 }
603 /* Mark the last entry as wrapping the ring. */
604 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
605 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
606
607 for (i = 0; i < RX_RING_SIZE; i++) {
608 dma_addr_t mapping;
609
610 /* Note the receive buffer must be longword aligned.
611 dev_alloc_skb() provides 16 byte alignment. But do *not*
612 use skb_reserve() to align the IP header! */
613 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
614 tp->rx_buffers[i].skb = skb;
615 if (skb == NULL)
616 break;
617 mapping = pci_map_single(tp->pdev, skb->data,
618 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
619 tp->rx_buffers[i].mapping = mapping;
620 skb->dev = dev; /* Mark as being used by this device. */
621 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
622 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
623 }
624 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
625
626 /* The Tx buffer descriptor is filled in as needed, but we
627 do need to clear the ownership bit. */
628 for (i = 0; i < TX_RING_SIZE; i++) {
629 tp->tx_buffers[i].skb = NULL;
630 tp->tx_buffers[i].mapping = 0;
631 tp->tx_ring[i].status = 0x00000000;
632 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
633 }
634 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
635 }
636
637 static int
638 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
639 {
640 struct tulip_private *tp = netdev_priv(dev);
641 int entry;
642 u32 flag;
643 dma_addr_t mapping;
644
645 spin_lock_irq(&tp->lock);
646
647 /* Calculate the next Tx descriptor entry. */
648 entry = tp->cur_tx % TX_RING_SIZE;
649
650 tp->tx_buffers[entry].skb = skb;
651 mapping = pci_map_single(tp->pdev, skb->data,
652 skb->len, PCI_DMA_TODEVICE);
653 tp->tx_buffers[entry].mapping = mapping;
654 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
655
656 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
657 flag = 0x60000000; /* No interrupt */
658 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
659 flag = 0xe0000000; /* Tx-done intr. */
660 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
661 flag = 0x60000000; /* No Tx-done intr. */
662 } else { /* Leave room for set_rx_mode() to fill entries. */
663 flag = 0xe0000000; /* Tx-done intr. */
664 netif_stop_queue(dev);
665 }
666 if (entry == TX_RING_SIZE-1)
667 flag = 0xe0000000 | DESC_RING_WRAP;
668
669 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
670 /* if we were using Transmit Automatic Polling, we would need a
671 * wmb() here. */
672 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
673 wmb();
674
675 tp->cur_tx++;
676
677 /* Trigger an immediate transmit demand. */
678 iowrite32(0, tp->base_addr + CSR1);
679
680 spin_unlock_irq(&tp->lock);
681
682 dev->trans_start = jiffies;
683
684 return 0;
685 }
686
687 static void tulip_clean_tx_ring(struct tulip_private *tp)
688 {
689 unsigned int dirty_tx;
690
691 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
692 dirty_tx++) {
693 int entry = dirty_tx % TX_RING_SIZE;
694 int status = le32_to_cpu(tp->tx_ring[entry].status);
695
696 if (status < 0) {
697 tp->stats.tx_errors++; /* It wasn't Txed */
698 tp->tx_ring[entry].status = 0;
699 }
700
701 /* Check for Tx filter setup frames. */
702 if (tp->tx_buffers[entry].skb == NULL) {
703 /* test because dummy frames not mapped */
704 if (tp->tx_buffers[entry].mapping)
705 pci_unmap_single(tp->pdev,
706 tp->tx_buffers[entry].mapping,
707 sizeof(tp->setup_frame),
708 PCI_DMA_TODEVICE);
709 continue;
710 }
711
712 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
713 tp->tx_buffers[entry].skb->len,
714 PCI_DMA_TODEVICE);
715
716 /* Free the original skb. */
717 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
718 tp->tx_buffers[entry].skb = NULL;
719 tp->tx_buffers[entry].mapping = 0;
720 }
721 }
722
723 static void tulip_down (struct net_device *dev)
724 {
725 struct tulip_private *tp = netdev_priv(dev);
726 void __iomem *ioaddr = tp->base_addr;
727 unsigned long flags;
728
729 flush_scheduled_work();
730
731 del_timer_sync (&tp->timer);
732 #ifdef CONFIG_TULIP_NAPI
733 del_timer_sync (&tp->oom_timer);
734 #endif
735 spin_lock_irqsave (&tp->lock, flags);
736
737 /* Disable interrupts by clearing the interrupt mask. */
738 iowrite32 (0x00000000, ioaddr + CSR7);
739
740 /* Stop the Tx and Rx processes. */
741 tulip_stop_rxtx(tp);
742
743 /* prepare receive buffers */
744 tulip_refill_rx(dev);
745
746 /* release any unconsumed transmit buffers */
747 tulip_clean_tx_ring(tp);
748
749 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
750 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
751
752 spin_unlock_irqrestore (&tp->lock, flags);
753
754 init_timer(&tp->timer);
755 tp->timer.data = (unsigned long)dev;
756 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
757
758 dev->if_port = tp->saved_if_port;
759
760 /* Leave the driver in snooze, not sleep, mode. */
761 tulip_set_power_state (tp, 0, 1);
762 }
763
764
765 static int tulip_close (struct net_device *dev)
766 {
767 struct tulip_private *tp = netdev_priv(dev);
768 void __iomem *ioaddr = tp->base_addr;
769 int i;
770
771 netif_stop_queue (dev);
772
773 tulip_down (dev);
774
775 if (tulip_debug > 1)
776 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
777 dev->name, ioread32 (ioaddr + CSR5));
778
779 free_irq (dev->irq, dev);
780
781 /* Free all the skbuffs in the Rx queue. */
782 for (i = 0; i < RX_RING_SIZE; i++) {
783 struct sk_buff *skb = tp->rx_buffers[i].skb;
784 dma_addr_t mapping = tp->rx_buffers[i].mapping;
785
786 tp->rx_buffers[i].skb = NULL;
787 tp->rx_buffers[i].mapping = 0;
788
789 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
790 tp->rx_ring[i].length = 0;
791 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
792 if (skb) {
793 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
794 PCI_DMA_FROMDEVICE);
795 dev_kfree_skb (skb);
796 }
797 }
798 for (i = 0; i < TX_RING_SIZE; i++) {
799 struct sk_buff *skb = tp->tx_buffers[i].skb;
800
801 if (skb != NULL) {
802 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
803 skb->len, PCI_DMA_TODEVICE);
804 dev_kfree_skb (skb);
805 }
806 tp->tx_buffers[i].skb = NULL;
807 tp->tx_buffers[i].mapping = 0;
808 }
809
810 return 0;
811 }
812
813 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
814 {
815 struct tulip_private *tp = netdev_priv(dev);
816 void __iomem *ioaddr = tp->base_addr;
817
818 if (netif_running(dev)) {
819 unsigned long flags;
820
821 spin_lock_irqsave (&tp->lock, flags);
822
823 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
824
825 spin_unlock_irqrestore(&tp->lock, flags);
826 }
827
828 return &tp->stats;
829 }
830
831
832 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
833 {
834 struct tulip_private *np = netdev_priv(dev);
835 strcpy(info->driver, DRV_NAME);
836 strcpy(info->version, DRV_VERSION);
837 strcpy(info->bus_info, pci_name(np->pdev));
838 }
839
840 static const struct ethtool_ops ops = {
841 .get_drvinfo = tulip_get_drvinfo
842 };
843
844 /* Provide ioctl() calls to examine the MII xcvr state. */
845 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
846 {
847 struct tulip_private *tp = netdev_priv(dev);
848 void __iomem *ioaddr = tp->base_addr;
849 struct mii_ioctl_data *data = if_mii(rq);
850 const unsigned int phy_idx = 0;
851 int phy = tp->phys[phy_idx] & 0x1f;
852 unsigned int regnum = data->reg_num;
853
854 switch (cmd) {
855 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
856 if (tp->mii_cnt)
857 data->phy_id = phy;
858 else if (tp->flags & HAS_NWAY)
859 data->phy_id = 32;
860 else if (tp->chip_id == COMET)
861 data->phy_id = 1;
862 else
863 return -ENODEV;
864
865 case SIOCGMIIREG: /* Read MII PHY register. */
866 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
867 int csr12 = ioread32 (ioaddr + CSR12);
868 int csr14 = ioread32 (ioaddr + CSR14);
869 switch (regnum) {
870 case 0:
871 if (((csr14<<5) & 0x1000) ||
872 (dev->if_port == 5 && tp->nwayset))
873 data->val_out = 0x1000;
874 else
875 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
876 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
877 break;
878 case 1:
879 data->val_out =
880 0x1848 +
881 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
882 ((csr12&0x06) == 6 ? 0 : 4);
883 data->val_out |= 0x6048;
884 break;
885 case 4:
886 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
887 data->val_out =
888 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
889 ((csr14 >> 1) & 0x20) + 1;
890 data->val_out |= ((csr14 >> 9) & 0x03C0);
891 break;
892 case 5: data->val_out = tp->lpar; break;
893 default: data->val_out = 0; break;
894 }
895 } else {
896 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
897 }
898 return 0;
899
900 case SIOCSMIIREG: /* Write MII PHY register. */
901 if (!capable (CAP_NET_ADMIN))
902 return -EPERM;
903 if (regnum & ~0x1f)
904 return -EINVAL;
905 if (data->phy_id == phy) {
906 u16 value = data->val_in;
907 switch (regnum) {
908 case 0: /* Check for autonegotiation on or reset. */
909 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
910 if (tp->full_duplex_lock)
911 tp->full_duplex = (value & 0x0100) ? 1 : 0;
912 break;
913 case 4:
914 tp->advertising[phy_idx] =
915 tp->mii_advertise = data->val_in;
916 break;
917 }
918 }
919 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
920 u16 value = data->val_in;
921 if (regnum == 0) {
922 if ((value & 0x1200) == 0x1200) {
923 if (tp->chip_id == PNIC2) {
924 pnic2_start_nway (dev);
925 } else {
926 t21142_start_nway (dev);
927 }
928 }
929 } else if (regnum == 4)
930 tp->sym_advertise = value;
931 } else {
932 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
933 }
934 return 0;
935 default:
936 return -EOPNOTSUPP;
937 }
938
939 return -EOPNOTSUPP;
940 }
941
942
943 /* Set or clear the multicast filter for this adaptor.
944 Note that we only use exclusion around actually queueing the
945 new frame, not around filling tp->setup_frame. This is non-deterministic
946 when re-entered but still correct. */
947
948 #undef set_bit_le
949 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
950
951 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
952 {
953 struct tulip_private *tp = netdev_priv(dev);
954 u16 hash_table[32];
955 struct dev_mc_list *mclist;
956 int i;
957 u16 *eaddrs;
958
959 memset(hash_table, 0, sizeof(hash_table));
960 set_bit_le(255, hash_table); /* Broadcast entry */
961 /* This should work on big-endian machines as well. */
962 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
963 i++, mclist = mclist->next) {
964 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
965
966 set_bit_le(index, hash_table);
967
968 }
969 for (i = 0; i < 32; i++) {
970 *setup_frm++ = hash_table[i];
971 *setup_frm++ = hash_table[i];
972 }
973 setup_frm = &tp->setup_frame[13*6];
974
975 /* Fill the final entry with our physical address. */
976 eaddrs = (u16 *)dev->dev_addr;
977 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
978 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
979 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
980 }
981
982 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
983 {
984 struct tulip_private *tp = netdev_priv(dev);
985 struct dev_mc_list *mclist;
986 int i;
987 u16 *eaddrs;
988
989 /* We have <= 14 addresses so we can use the wonderful
990 16 address perfect filtering of the Tulip. */
991 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
992 i++, mclist = mclist->next) {
993 eaddrs = (u16 *)mclist->dmi_addr;
994 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
995 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
996 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
997 }
998 /* Fill the unused entries with the broadcast address. */
999 memset(setup_frm, 0xff, (15-i)*12);
1000 setup_frm = &tp->setup_frame[15*6];
1001
1002 /* Fill the final entry with our physical address. */
1003 eaddrs = (u16 *)dev->dev_addr;
1004 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1005 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1006 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1007 }
1008
1009
1010 static void set_rx_mode(struct net_device *dev)
1011 {
1012 struct tulip_private *tp = netdev_priv(dev);
1013 void __iomem *ioaddr = tp->base_addr;
1014 int csr6;
1015
1016 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1017
1018 tp->csr6 &= ~0x00D5;
1019 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1020 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1021 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1022 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1023 /* Too many to filter well -- accept all multicasts. */
1024 tp->csr6 |= AcceptAllMulticast;
1025 csr6 |= AcceptAllMulticast;
1026 } else if (tp->flags & MC_HASH_ONLY) {
1027 /* Some work-alikes have only a 64-entry hash filter table. */
1028 /* Should verify correctness on big-endian/__powerpc__ */
1029 struct dev_mc_list *mclist;
1030 int i;
1031 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1032 tp->csr6 |= AcceptAllMulticast;
1033 csr6 |= AcceptAllMulticast;
1034 } else {
1035 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1036 int filterbit;
1037 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1038 i++, mclist = mclist->next) {
1039 if (tp->flags & COMET_MAC_ADDR)
1040 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1041 else
1042 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1043 filterbit &= 0x3f;
1044 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1045 if (tulip_debug > 2) {
1046 printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
1047 "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
1048 mclist->dmi_addr[0], mclist->dmi_addr[1],
1049 mclist->dmi_addr[2], mclist->dmi_addr[3],
1050 mclist->dmi_addr[4], mclist->dmi_addr[5],
1051 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1052 }
1053 }
1054 if (mc_filter[0] == tp->mc_filter[0] &&
1055 mc_filter[1] == tp->mc_filter[1])
1056 ; /* No change. */
1057 else if (tp->flags & IS_ASIX) {
1058 iowrite32(2, ioaddr + CSR13);
1059 iowrite32(mc_filter[0], ioaddr + CSR14);
1060 iowrite32(3, ioaddr + CSR13);
1061 iowrite32(mc_filter[1], ioaddr + CSR14);
1062 } else if (tp->flags & COMET_MAC_ADDR) {
1063 iowrite32(mc_filter[0], ioaddr + 0xAC);
1064 iowrite32(mc_filter[1], ioaddr + 0xB0);
1065 }
1066 tp->mc_filter[0] = mc_filter[0];
1067 tp->mc_filter[1] = mc_filter[1];
1068 }
1069 } else {
1070 unsigned long flags;
1071 u32 tx_flags = 0x08000000 | 192;
1072
1073 /* Note that only the low-address shortword of setup_frame is valid!
1074 The values are doubled for big-endian architectures. */
1075 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1076 build_setup_frame_hash(tp->setup_frame, dev);
1077 tx_flags = 0x08400000 | 192;
1078 } else {
1079 build_setup_frame_perfect(tp->setup_frame, dev);
1080 }
1081
1082 spin_lock_irqsave(&tp->lock, flags);
1083
1084 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1085 /* Same setup recently queued, we need not add it. */
1086 } else {
1087 unsigned int entry;
1088 int dummy = -1;
1089
1090 /* Now add this frame to the Tx list. */
1091
1092 entry = tp->cur_tx++ % TX_RING_SIZE;
1093
1094 if (entry != 0) {
1095 /* Avoid a chip errata by prefixing a dummy entry. */
1096 tp->tx_buffers[entry].skb = NULL;
1097 tp->tx_buffers[entry].mapping = 0;
1098 tp->tx_ring[entry].length =
1099 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1100 tp->tx_ring[entry].buffer1 = 0;
1101 /* Must set DescOwned later to avoid race with chip */
1102 dummy = entry;
1103 entry = tp->cur_tx++ % TX_RING_SIZE;
1104
1105 }
1106
1107 tp->tx_buffers[entry].skb = NULL;
1108 tp->tx_buffers[entry].mapping =
1109 pci_map_single(tp->pdev, tp->setup_frame,
1110 sizeof(tp->setup_frame),
1111 PCI_DMA_TODEVICE);
1112 /* Put the setup frame on the Tx list. */
1113 if (entry == TX_RING_SIZE-1)
1114 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1115 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1116 tp->tx_ring[entry].buffer1 =
1117 cpu_to_le32(tp->tx_buffers[entry].mapping);
1118 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1119 if (dummy >= 0)
1120 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1121 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1122 netif_stop_queue(dev);
1123
1124 /* Trigger an immediate transmit demand. */
1125 iowrite32(0, ioaddr + CSR1);
1126 }
1127
1128 spin_unlock_irqrestore(&tp->lock, flags);
1129 }
1130
1131 iowrite32(csr6, ioaddr + CSR6);
1132 }
1133
1134 #ifdef CONFIG_TULIP_MWI
1135 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1136 struct net_device *dev)
1137 {
1138 struct tulip_private *tp = netdev_priv(dev);
1139 u8 cache;
1140 u16 pci_command;
1141 u32 csr0;
1142
1143 if (tulip_debug > 3)
1144 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1145
1146 tp->csr0 = csr0 = 0;
1147
1148 /* if we have any cache line size at all, we can do MRM */
1149 csr0 |= MRM;
1150
1151 /* ...and barring hardware bugs, MWI */
1152 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1153 csr0 |= MWI;
1154
1155 /* set or disable MWI in the standard PCI command bit.
1156 * Check for the case where mwi is desired but not available
1157 */
1158 if (csr0 & MWI) pci_set_mwi(pdev);
1159 else pci_clear_mwi(pdev);
1160
1161 /* read result from hardware (in case bit refused to enable) */
1162 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1163 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1164 csr0 &= ~MWI;
1165
1166 /* if cache line size hardwired to zero, no MWI */
1167 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1168 if ((csr0 & MWI) && (cache == 0)) {
1169 csr0 &= ~MWI;
1170 pci_clear_mwi(pdev);
1171 }
1172
1173 /* assign per-cacheline-size cache alignment and
1174 * burst length values
1175 */
1176 switch (cache) {
1177 case 8:
1178 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1179 break;
1180 case 16:
1181 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1182 break;
1183 case 32:
1184 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1185 break;
1186 default:
1187 cache = 0;
1188 break;
1189 }
1190
1191 /* if we have a good cache line size, we by now have a good
1192 * csr0, so save it and exit
1193 */
1194 if (cache)
1195 goto out;
1196
1197 /* we don't have a good csr0 or cache line size, disable MWI */
1198 if (csr0 & MWI) {
1199 pci_clear_mwi(pdev);
1200 csr0 &= ~MWI;
1201 }
1202
1203 /* sane defaults for burst length and cache alignment
1204 * originally from de4x5 driver
1205 */
1206 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1207
1208 out:
1209 tp->csr0 = csr0;
1210 if (tulip_debug > 2)
1211 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1212 pci_name(pdev), cache, csr0);
1213 }
1214 #endif
1215
1216 /*
1217 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1218 * is the DM910X and the on chip ULi devices
1219 */
1220
1221 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1222 {
1223 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1224 return 1;
1225 return 0;
1226 }
1227
1228 static int __devinit tulip_init_one (struct pci_dev *pdev,
1229 const struct pci_device_id *ent)
1230 {
1231 struct tulip_private *tp;
1232 /* See note below on the multiport cards. */
1233 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1234 static struct pci_device_id early_486_chipsets[] = {
1235 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1236 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1237 { },
1238 };
1239 static int last_irq;
1240 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1241 int i, irq;
1242 unsigned short sum;
1243 unsigned char *ee_data;
1244 struct net_device *dev;
1245 void __iomem *ioaddr;
1246 static int board_idx = -1;
1247 int chip_idx = ent->driver_data;
1248 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1249 unsigned int eeprom_missing = 0;
1250 unsigned int force_csr0 = 0;
1251
1252 #ifndef MODULE
1253 static int did_version; /* Already printed version info. */
1254 if (tulip_debug > 0 && did_version++ == 0)
1255 printk (KERN_INFO "%s", version);
1256 #endif
1257
1258 board_idx++;
1259
1260 /*
1261 * Lan media wire a tulip chip to a wan interface. Needs a very
1262 * different driver (lmc driver)
1263 */
1264
1265 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1266 printk (KERN_ERR PFX "skipping LMC card.\n");
1267 return -ENODEV;
1268 }
1269
1270 /*
1271 * Early DM9100's need software CRC and the DMFE driver
1272 */
1273
1274 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1275 {
1276 /* Read Chip revision */
1277 if (pdev->revision < 0x02000030)
1278 {
1279 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1280 return -ENODEV;
1281 }
1282 }
1283
1284 /*
1285 * Looks for early PCI chipsets where people report hangs
1286 * without the workarounds being on.
1287 */
1288
1289 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1290 aligned. Aries might need this too. The Saturn errata are not
1291 pretty reading but thankfully it's an old 486 chipset.
1292
1293 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1294 Saturn.
1295 */
1296
1297 if (pci_dev_present(early_486_chipsets)) {
1298 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1299 force_csr0 = 1;
1300 }
1301
1302 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1303 if (chip_idx == AX88140) {
1304 if ((csr0 & 0x3f00) == 0)
1305 csr0 |= 0x2000;
1306 }
1307
1308 /* PNIC doesn't have MWI/MRL/MRM... */
1309 if (chip_idx == LC82C168)
1310 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1311
1312 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1313 if (tulip_uli_dm_quirk(pdev)) {
1314 csr0 &= ~0x01f100ff;
1315 #if defined(CONFIG_SPARC)
1316 csr0 = (csr0 & ~0xff00) | 0xe000;
1317 #endif
1318 }
1319 /*
1320 * And back to business
1321 */
1322
1323 i = pci_enable_device(pdev);
1324 if (i) {
1325 printk (KERN_ERR PFX
1326 "Cannot enable tulip board #%d, aborting\n",
1327 board_idx);
1328 return i;
1329 }
1330
1331 irq = pdev->irq;
1332
1333 /* alloc_etherdev ensures aligned and zeroed private structures */
1334 dev = alloc_etherdev (sizeof (*tp));
1335 if (!dev) {
1336 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1337 return -ENOMEM;
1338 }
1339
1340 SET_MODULE_OWNER(dev);
1341 SET_NETDEV_DEV(dev, &pdev->dev);
1342 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1343 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1344 "aborting\n", pci_name(pdev),
1345 (unsigned long long)pci_resource_len (pdev, 0),
1346 (unsigned long long)pci_resource_start (pdev, 0));
1347 goto err_out_free_netdev;
1348 }
1349
1350 /* grab all resources from both PIO and MMIO regions, as we
1351 * don't want anyone else messing around with our hardware */
1352 if (pci_request_regions (pdev, "tulip"))
1353 goto err_out_free_netdev;
1354
1355 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1356
1357 if (!ioaddr)
1358 goto err_out_free_res;
1359
1360 /*
1361 * initialize private data structure 'tp'
1362 * it is zeroed and aligned in alloc_etherdev
1363 */
1364 tp = netdev_priv(dev);
1365 tp->dev = dev;
1366
1367 tp->rx_ring = pci_alloc_consistent(pdev,
1368 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1369 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1370 &tp->rx_ring_dma);
1371 if (!tp->rx_ring)
1372 goto err_out_mtable;
1373 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1374 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1375
1376 tp->chip_id = chip_idx;
1377 tp->flags = tulip_tbl[chip_idx].flags;
1378 tp->pdev = pdev;
1379 tp->base_addr = ioaddr;
1380 tp->revision = pdev->revision;
1381 tp->csr0 = csr0;
1382 spin_lock_init(&tp->lock);
1383 spin_lock_init(&tp->mii_lock);
1384 init_timer(&tp->timer);
1385 tp->timer.data = (unsigned long)dev;
1386 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1387
1388 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1389
1390 dev->base_addr = (unsigned long)ioaddr;
1391
1392 #ifdef CONFIG_TULIP_MWI
1393 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1394 tulip_mwi_config (pdev, dev);
1395 #else
1396 /* MWI is broken for DC21143 rev 65... */
1397 if (chip_idx == DC21143 && pdev->revision == 65)
1398 tp->csr0 &= ~MWI;
1399 #endif
1400
1401 /* Stop the chip's Tx and Rx processes. */
1402 tulip_stop_rxtx(tp);
1403
1404 pci_set_master(pdev);
1405
1406 #ifdef CONFIG_GSC
1407 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1408 switch (pdev->subsystem_device) {
1409 default:
1410 break;
1411 case 0x1061:
1412 case 0x1062:
1413 case 0x1063:
1414 case 0x1098:
1415 case 0x1099:
1416 case 0x10EE:
1417 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1418 chip_name = "GSC DS21140 Tulip";
1419 }
1420 }
1421 #endif
1422
1423 /* Clear the missed-packet counter. */
1424 ioread32(ioaddr + CSR8);
1425
1426 /* The station address ROM is read byte serially. The register must
1427 be polled, waiting for the value to be read bit serially from the
1428 EEPROM.
1429 */
1430 ee_data = tp->eeprom;
1431 sum = 0;
1432 if (chip_idx == LC82C168) {
1433 for (i = 0; i < 3; i++) {
1434 int value, boguscnt = 100000;
1435 iowrite32(0x600 | i, ioaddr + 0x98);
1436 do
1437 value = ioread32(ioaddr + CSR9);
1438 while (value < 0 && --boguscnt > 0);
1439 put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
1440 sum += value & 0xffff;
1441 }
1442 } else if (chip_idx == COMET) {
1443 /* No need to read the EEPROM. */
1444 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
1445 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4));
1446 for (i = 0; i < 6; i ++)
1447 sum += dev->dev_addr[i];
1448 } else {
1449 /* A serial EEPROM interface, we read now and sort it out later. */
1450 int sa_offset = 0;
1451 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1452
1453 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1454 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1455 ee_data[i] = data & 0xff;
1456 ee_data[i + 1] = data >> 8;
1457 }
1458
1459 /* DEC now has a specification (see Notes) but early board makers
1460 just put the address in the first EEPROM locations. */
1461 /* This does memcmp(ee_data, ee_data+16, 8) */
1462 for (i = 0; i < 8; i ++)
1463 if (ee_data[i] != ee_data[16+i])
1464 sa_offset = 20;
1465 if (chip_idx == CONEXANT) {
1466 /* Check that the tuple type and length is correct. */
1467 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1468 sa_offset = 0x19A;
1469 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1470 ee_data[2] == 0) {
1471 sa_offset = 2; /* Grrr, damn Matrox boards. */
1472 multiport_cnt = 4;
1473 }
1474 #ifdef CONFIG_DDB5477
1475 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
1476 /* DDB5477 MAC address in first EEPROM locations. */
1477 sa_offset = 0;
1478 /* No media table either */
1479 tp->flags &= ~HAS_MEDIA_TABLE;
1480 }
1481 #endif
1482 #ifdef CONFIG_MIPS_COBALT
1483 if ((pdev->bus->number == 0) &&
1484 ((PCI_SLOT(pdev->devfn) == 7) ||
1485 (PCI_SLOT(pdev->devfn) == 12))) {
1486 /* Cobalt MAC address in first EEPROM locations. */
1487 sa_offset = 0;
1488 /* Ensure our media table fixup get's applied */
1489 memcpy(ee_data + 16, ee_data, 8);
1490 }
1491 #endif
1492 #ifdef CONFIG_GSC
1493 /* Check to see if we have a broken srom */
1494 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1495 /* pci_vendor_id and subsystem_id are swapped */
1496 ee_data[0] = ee_data[2];
1497 ee_data[1] = ee_data[3];
1498 ee_data[2] = 0x61;
1499 ee_data[3] = 0x10;
1500
1501 /* HSC-PCI boards need to be byte-swaped and shifted
1502 * up 1 word. This shift needs to happen at the end
1503 * of the MAC first because of the 2 byte overlap.
1504 */
1505 for (i = 4; i >= 0; i -= 2) {
1506 ee_data[17 + i + 3] = ee_data[17 + i];
1507 ee_data[16 + i + 5] = ee_data[16 + i];
1508 }
1509 }
1510 #endif
1511
1512 for (i = 0; i < 6; i ++) {
1513 dev->dev_addr[i] = ee_data[i + sa_offset];
1514 sum += ee_data[i + sa_offset];
1515 }
1516 }
1517 /* Lite-On boards have the address byte-swapped. */
1518 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1519 && dev->dev_addr[1] == 0x00)
1520 for (i = 0; i < 6; i+=2) {
1521 char tmp = dev->dev_addr[i];
1522 dev->dev_addr[i] = dev->dev_addr[i+1];
1523 dev->dev_addr[i+1] = tmp;
1524 }
1525 /* On the Zynx 315 Etherarray and other multiport boards only the
1526 first Tulip has an EEPROM.
1527 On Sparc systems the mac address is held in the OBP property
1528 "local-mac-address".
1529 The addresses of the subsequent ports are derived from the first.
1530 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1531 that here as well. */
1532 if (sum == 0 || sum == 6*0xff) {
1533 #if defined(CONFIG_SPARC)
1534 struct device_node *dp = pci_device_to_OF_node(pdev);
1535 const unsigned char *addr;
1536 int len;
1537 #endif
1538 eeprom_missing = 1;
1539 for (i = 0; i < 5; i++)
1540 dev->dev_addr[i] = last_phys_addr[i];
1541 dev->dev_addr[i] = last_phys_addr[i] + 1;
1542 #if defined(CONFIG_SPARC)
1543 addr = of_get_property(dp, "local-mac-address", &len);
1544 if (addr && len == 6)
1545 memcpy(dev->dev_addr, addr, 6);
1546 #endif
1547 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1548 if (last_irq)
1549 irq = last_irq;
1550 #endif
1551 }
1552
1553 for (i = 0; i < 6; i++)
1554 last_phys_addr[i] = dev->dev_addr[i];
1555 last_irq = irq;
1556 dev->irq = irq;
1557
1558 /* The lower four bits are the media type. */
1559 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1560 if (options[board_idx] & MEDIA_MASK)
1561 tp->default_port = options[board_idx] & MEDIA_MASK;
1562 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1563 tp->full_duplex = 1;
1564 if (mtu[board_idx] > 0)
1565 dev->mtu = mtu[board_idx];
1566 }
1567 if (dev->mem_start & MEDIA_MASK)
1568 tp->default_port = dev->mem_start & MEDIA_MASK;
1569 if (tp->default_port) {
1570 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1571 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1572 tp->medialock = 1;
1573 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1574 tp->full_duplex = 1;
1575 }
1576 if (tp->full_duplex)
1577 tp->full_duplex_lock = 1;
1578
1579 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1580 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1581 tp->mii_advertise = media2advert[tp->default_port - 9];
1582 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1583 }
1584
1585 if (tp->flags & HAS_MEDIA_TABLE) {
1586 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1587 tulip_parse_eeprom(dev);
1588 strcpy(dev->name, "eth%d"); /* un-hack */
1589 }
1590
1591 if ((tp->flags & ALWAYS_CHECK_MII) ||
1592 (tp->mtable && tp->mtable->has_mii) ||
1593 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1594 if (tp->mtable && tp->mtable->has_mii) {
1595 for (i = 0; i < tp->mtable->leafcount; i++)
1596 if (tp->mtable->mleaf[i].media == 11) {
1597 tp->cur_index = i;
1598 tp->saved_if_port = dev->if_port;
1599 tulip_select_media(dev, 2);
1600 dev->if_port = tp->saved_if_port;
1601 break;
1602 }
1603 }
1604
1605 /* Find the connected MII xcvrs.
1606 Doing this in open() would allow detecting external xcvrs
1607 later, but takes much time. */
1608 tulip_find_mii (dev, board_idx);
1609 }
1610
1611 /* The Tulip-specific entries in the device structure. */
1612 dev->open = tulip_open;
1613 dev->hard_start_xmit = tulip_start_xmit;
1614 dev->tx_timeout = tulip_tx_timeout;
1615 dev->watchdog_timeo = TX_TIMEOUT;
1616 #ifdef CONFIG_TULIP_NAPI
1617 dev->poll = tulip_poll;
1618 dev->weight = 16;
1619 #endif
1620 dev->stop = tulip_close;
1621 dev->get_stats = tulip_get_stats;
1622 dev->do_ioctl = private_ioctl;
1623 dev->set_multicast_list = set_rx_mode;
1624 #ifdef CONFIG_NET_POLL_CONTROLLER
1625 dev->poll_controller = &poll_tulip;
1626 #endif
1627 SET_ETHTOOL_OPS(dev, &ops);
1628
1629 if (register_netdev(dev))
1630 goto err_out_free_ring;
1631
1632 printk(KERN_INFO "%s: %s rev %d at "
1633 #ifdef CONFIG_TULIP_MMIO
1634 "MMIO"
1635 #else
1636 "Port"
1637 #endif
1638 " %#llx,", dev->name, chip_name, pdev->revision,
1639 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1640 pci_set_drvdata(pdev, dev);
1641
1642 if (eeprom_missing)
1643 printk(" EEPROM not present,");
1644 for (i = 0; i < 6; i++)
1645 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
1646 printk(", IRQ %d.\n", irq);
1647
1648 if (tp->chip_id == PNIC2)
1649 tp->link_change = pnic2_lnk_change;
1650 else if (tp->flags & HAS_NWAY)
1651 tp->link_change = t21142_lnk_change;
1652 else if (tp->flags & HAS_PNICNWAY)
1653 tp->link_change = pnic_lnk_change;
1654
1655 /* Reset the xcvr interface and turn on heartbeat. */
1656 switch (chip_idx) {
1657 case DC21140:
1658 case DM910X:
1659 default:
1660 if (tp->mtable)
1661 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1662 break;
1663 case DC21142:
1664 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1665 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1666 iowrite32(0x0000, ioaddr + CSR13);
1667 iowrite32(0x0000, ioaddr + CSR14);
1668 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1669 } else
1670 t21142_start_nway(dev);
1671 break;
1672 case PNIC2:
1673 /* just do a reset for sanity sake */
1674 iowrite32(0x0000, ioaddr + CSR13);
1675 iowrite32(0x0000, ioaddr + CSR14);
1676 break;
1677 case LC82C168:
1678 if ( ! tp->mii_cnt) {
1679 tp->nway = 1;
1680 tp->nwayset = 0;
1681 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1682 iowrite32(0x30, ioaddr + CSR12);
1683 iowrite32(0x0001F078, ioaddr + CSR6);
1684 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1685 }
1686 break;
1687 case MX98713:
1688 case COMPEX9881:
1689 iowrite32(0x00000000, ioaddr + CSR6);
1690 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1691 iowrite32(0x00000001, ioaddr + CSR13);
1692 break;
1693 case MX98715:
1694 case MX98725:
1695 iowrite32(0x01a80000, ioaddr + CSR6);
1696 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1697 iowrite32(0x00001000, ioaddr + CSR12);
1698 break;
1699 case COMET:
1700 /* No initialization necessary. */
1701 break;
1702 }
1703
1704 /* put the chip in snooze mode until opened */
1705 tulip_set_power_state (tp, 0, 1);
1706
1707 return 0;
1708
1709 err_out_free_ring:
1710 pci_free_consistent (pdev,
1711 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1712 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1713 tp->rx_ring, tp->rx_ring_dma);
1714
1715 err_out_mtable:
1716 kfree (tp->mtable);
1717 pci_iounmap(pdev, ioaddr);
1718
1719 err_out_free_res:
1720 pci_release_regions (pdev);
1721
1722 err_out_free_netdev:
1723 free_netdev (dev);
1724 return -ENODEV;
1725 }
1726
1727
1728 #ifdef CONFIG_PM
1729
1730 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1731 {
1732 struct net_device *dev = pci_get_drvdata(pdev);
1733
1734 if (!dev)
1735 return -EINVAL;
1736
1737 if (netif_running(dev))
1738 tulip_down(dev);
1739
1740 netif_device_detach(dev);
1741 free_irq(dev->irq, dev);
1742
1743 pci_save_state(pdev);
1744 pci_disable_device(pdev);
1745 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1746
1747 return 0;
1748 }
1749
1750
1751 static int tulip_resume(struct pci_dev *pdev)
1752 {
1753 struct net_device *dev = pci_get_drvdata(pdev);
1754 int retval;
1755
1756 if (!dev)
1757 return -EINVAL;
1758
1759 pci_set_power_state(pdev, PCI_D0);
1760 pci_restore_state(pdev);
1761
1762 if ((retval = pci_enable_device(pdev))) {
1763 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1764 return retval;
1765 }
1766
1767 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1768 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1769 return retval;
1770 }
1771
1772 netif_device_attach(dev);
1773
1774 if (netif_running(dev))
1775 tulip_up(dev);
1776
1777 return 0;
1778 }
1779
1780 #endif /* CONFIG_PM */
1781
1782
1783 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1784 {
1785 struct net_device *dev = pci_get_drvdata (pdev);
1786 struct tulip_private *tp;
1787
1788 if (!dev)
1789 return;
1790
1791 tp = netdev_priv(dev);
1792 unregister_netdev(dev);
1793 pci_free_consistent (pdev,
1794 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1795 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1796 tp->rx_ring, tp->rx_ring_dma);
1797 kfree (tp->mtable);
1798 pci_iounmap(pdev, tp->base_addr);
1799 free_netdev (dev);
1800 pci_release_regions (pdev);
1801 pci_set_drvdata (pdev, NULL);
1802
1803 /* pci_power_off (pdev, -1); */
1804 }
1805
1806 #ifdef CONFIG_NET_POLL_CONTROLLER
1807 /*
1808 * Polling 'interrupt' - used by things like netconsole to send skbs
1809 * without having to re-enable interrupts. It's not called while
1810 * the interrupt routine is executing.
1811 */
1812
1813 static void poll_tulip (struct net_device *dev)
1814 {
1815 /* disable_irq here is not very nice, but with the lockless
1816 interrupt handler we have no other choice. */
1817 disable_irq(dev->irq);
1818 tulip_interrupt (dev->irq, dev);
1819 enable_irq(dev->irq);
1820 }
1821 #endif
1822
1823 static struct pci_driver tulip_driver = {
1824 .name = DRV_NAME,
1825 .id_table = tulip_pci_tbl,
1826 .probe = tulip_init_one,
1827 .remove = __devexit_p(tulip_remove_one),
1828 #ifdef CONFIG_PM
1829 .suspend = tulip_suspend,
1830 .resume = tulip_resume,
1831 #endif /* CONFIG_PM */
1832 };
1833
1834
1835 static int __init tulip_init (void)
1836 {
1837 #ifdef MODULE
1838 printk (KERN_INFO "%s", version);
1839 #endif
1840
1841 /* copy module parms into globals */
1842 tulip_rx_copybreak = rx_copybreak;
1843 tulip_max_interrupt_work = max_interrupt_work;
1844
1845 /* probe for and init boards */
1846 return pci_register_driver(&tulip_driver);
1847 }
1848
1849
1850 static void __exit tulip_cleanup (void)
1851 {
1852 pci_unregister_driver (&tulip_driver);
1853 }
1854
1855
1856 module_init(tulip_init);
1857 module_exit(tulip_cleanup);