]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/tulip/tulip_core.c
Remove obsolete #include <linux/config.h>
[mirror_ubuntu-bionic-kernel.git] / drivers / net / tulip / tulip_core.c
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
2
3 /*
4 Maintained by Jeff Garzik <jgarzik@pobox.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
7
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
10
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
14
15 */
16
17
18 #define DRV_NAME "tulip"
19 #ifdef CONFIG_TULIP_NAPI
20 #define DRV_VERSION "1.1.13-NAPI" /* Keep at least for test */
21 #else
22 #define DRV_VERSION "1.1.13"
23 #endif
24 #define DRV_RELDATE "May 11, 2002"
25
26
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include "tulip.h"
30 #include <linux/init.h>
31 #include <linux/etherdevice.h>
32 #include <linux/delay.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
38
39 #ifdef __sparc__
40 #include <asm/pbm.h>
41 #endif
42
43 static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
45
46
47 /* A few user-configurable values. */
48
49 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50 static unsigned int max_interrupt_work = 25;
51
52 #define MAX_UNITS 8
53 /* Used to pass the full-duplex flag, etc. */
54 static int full_duplex[MAX_UNITS];
55 static int options[MAX_UNITS];
56 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
57
58 /* The possible media types that can be set in options[] are: */
59 const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
66 };
67
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(__sparc_) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
73 #else
74 static int rx_copybreak = 100;
75 #endif
76
77 /*
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
88 */
89
90 #if defined(__alpha__) || defined(__ia64__)
91 static int csr0 = 0x01A00000 | 0xE000;
92 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93 static int csr0 = 0x01A00000 | 0x8000;
94 #elif defined(__sparc__) || defined(__hppa__)
95 /* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
97 * any more than that.
98 */
99 static int csr0 = 0x01A00000 | 0x9000;
100 #elif defined(__arm__) || defined(__sh__)
101 static int csr0 = 0x01A00000 | 0x4800;
102 #elif defined(__mips__)
103 static int csr0 = 0x00200000 | 0x4000;
104 #else
105 #warning Processor architecture undefined!
106 static int csr0 = 0x00A00000 | 0x4800;
107 #endif
108
109 /* Operational parameters that usually are not changed. */
110 /* Time in jiffies before concluding the transmitter is hung. */
111 #define TX_TIMEOUT (4*HZ)
112
113
114 MODULE_AUTHOR("The Linux Kernel Team");
115 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116 MODULE_LICENSE("GPL");
117 MODULE_VERSION(DRV_VERSION);
118 module_param(tulip_debug, int, 0);
119 module_param(max_interrupt_work, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param(csr0, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124
125 #define PFX DRV_NAME ": "
126
127 #ifdef TULIP_DEBUG
128 int tulip_debug = TULIP_DEBUG;
129 #else
130 int tulip_debug = 1;
131 #endif
132
133
134
135 /*
136 * This table use during operation for capabilities and media timer.
137 *
138 * It is indexed via the values in 'enum chips'
139 */
140
141 struct tulip_chip_table tulip_tbl[] = {
142 { }, /* placeholder for array, slot unused currently */
143 { }, /* placeholder for array, slot unused currently */
144
145 /* DC21140 */
146 { "Digital DS21140 Tulip", 128, 0x0001ebef,
147 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer },
148
149 /* DC21142, DC21143 */
150 { "Digital DS21143 Tulip", 128, 0x0801fbff,
151 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
152 | HAS_INTR_MITIGATION | HAS_PCI_MWI, t21142_timer },
153
154 /* LC82C168 */
155 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
156 HAS_MII | HAS_PNICNWAY, pnic_timer },
157
158 /* MX98713 */
159 { "Macronix 98713 PMAC", 128, 0x0001ebef,
160 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
161
162 /* MX98715 */
163 { "Macronix 98715 PMAC", 256, 0x0001ebef,
164 HAS_MEDIA_TABLE, mxic_timer },
165
166 /* MX98725 */
167 { "Macronix 98725 PMAC", 256, 0x0001ebef,
168 HAS_MEDIA_TABLE, mxic_timer },
169
170 /* AX88140 */
171 { "ASIX AX88140", 128, 0x0001fbff,
172 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
173 | IS_ASIX, tulip_timer },
174
175 /* PNIC2 */
176 { "Lite-On PNIC-II", 256, 0x0801fbff,
177 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer },
178
179 /* COMET */
180 { "ADMtek Comet", 256, 0x0001abef,
181 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer },
182
183 /* COMPEX9881 */
184 { "Compex 9881 PMAC", 128, 0x0001ebef,
185 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
186
187 /* I21145 */
188 { "Intel DS21145 Tulip", 128, 0x0801fbff,
189 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
190 | HAS_NWAY | HAS_PCI_MWI, t21142_timer },
191
192 /* DM910X */
193 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
194 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
195 tulip_timer },
196
197 /* RS7112 */
198 { "Conexant LANfinity", 256, 0x0001ebef,
199 HAS_MII | HAS_ACPI, tulip_timer },
200
201 };
202
203
204 static struct pci_device_id tulip_pci_tbl[] = {
205 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
206 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
207 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
208 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
209 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
210 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
211 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
212 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
213 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
214 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
215 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
216 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
217 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
218 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
219 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
224 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
225 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
226 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
227 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
229 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
232 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
233 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
234 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
235 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
239 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
240 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { } /* terminate list */
242 };
243 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
244
245
246 /* A full-duplex map for media types. */
247 const char tulip_media_cap[32] =
248 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
249
250 static void tulip_tx_timeout(struct net_device *dev);
251 static void tulip_init_ring(struct net_device *dev);
252 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
253 static int tulip_open(struct net_device *dev);
254 static int tulip_close(struct net_device *dev);
255 static void tulip_up(struct net_device *dev);
256 static void tulip_down(struct net_device *dev);
257 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
258 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
259 static void set_rx_mode(struct net_device *dev);
260 #ifdef CONFIG_NET_POLL_CONTROLLER
261 static void poll_tulip(struct net_device *dev);
262 #endif
263
264 static void tulip_set_power_state (struct tulip_private *tp,
265 int sleep, int snooze)
266 {
267 if (tp->flags & HAS_ACPI) {
268 u32 tmp, newtmp;
269 pci_read_config_dword (tp->pdev, CFDD, &tmp);
270 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
271 if (sleep)
272 newtmp |= CFDD_Sleep;
273 else if (snooze)
274 newtmp |= CFDD_Snooze;
275 if (tmp != newtmp)
276 pci_write_config_dword (tp->pdev, CFDD, newtmp);
277 }
278
279 }
280
281
282 static void tulip_up(struct net_device *dev)
283 {
284 struct tulip_private *tp = netdev_priv(dev);
285 void __iomem *ioaddr = tp->base_addr;
286 int next_tick = 3*HZ;
287 int i;
288
289 /* Wake the chip from sleep/snooze mode. */
290 tulip_set_power_state (tp, 0, 0);
291
292 /* On some chip revs we must set the MII/SYM port before the reset!? */
293 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
294 iowrite32(0x00040000, ioaddr + CSR6);
295
296 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
297 iowrite32(0x00000001, ioaddr + CSR0);
298 udelay(100);
299
300 /* Deassert reset.
301 Wait the specified 50 PCI cycles after a reset by initializing
302 Tx and Rx queues and the address filter list. */
303 iowrite32(tp->csr0, ioaddr + CSR0);
304 udelay(100);
305
306 if (tulip_debug > 1)
307 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
308
309 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
310 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
311 tp->cur_rx = tp->cur_tx = 0;
312 tp->dirty_rx = tp->dirty_tx = 0;
313
314 if (tp->flags & MC_HASH_ONLY) {
315 u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr));
316 u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4)));
317 if (tp->chip_id == AX88140) {
318 iowrite32(0, ioaddr + CSR13);
319 iowrite32(addr_low, ioaddr + CSR14);
320 iowrite32(1, ioaddr + CSR13);
321 iowrite32(addr_high, ioaddr + CSR14);
322 } else if (tp->flags & COMET_MAC_ADDR) {
323 iowrite32(addr_low, ioaddr + 0xA4);
324 iowrite32(addr_high, ioaddr + 0xA8);
325 iowrite32(0, ioaddr + 0xAC);
326 iowrite32(0, ioaddr + 0xB0);
327 }
328 } else {
329 /* This is set_rx_mode(), but without starting the transmitter. */
330 u16 *eaddrs = (u16 *)dev->dev_addr;
331 u16 *setup_frm = &tp->setup_frame[15*6];
332 dma_addr_t mapping;
333
334 /* 21140 bug: you must add the broadcast address. */
335 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
336 /* Fill the final entry of the table with our physical address. */
337 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
338 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
339 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
340
341 mapping = pci_map_single(tp->pdev, tp->setup_frame,
342 sizeof(tp->setup_frame),
343 PCI_DMA_TODEVICE);
344 tp->tx_buffers[tp->cur_tx].skb = NULL;
345 tp->tx_buffers[tp->cur_tx].mapping = mapping;
346
347 /* Put the setup frame on the Tx list. */
348 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
349 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
350 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
351
352 tp->cur_tx++;
353 }
354
355 tp->saved_if_port = dev->if_port;
356 if (dev->if_port == 0)
357 dev->if_port = tp->default_port;
358
359 /* Allow selecting a default media. */
360 i = 0;
361 if (tp->mtable == NULL)
362 goto media_picked;
363 if (dev->if_port) {
364 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
365 (dev->if_port == 12 ? 0 : dev->if_port);
366 for (i = 0; i < tp->mtable->leafcount; i++)
367 if (tp->mtable->mleaf[i].media == looking_for) {
368 printk(KERN_INFO "%s: Using user-specified media %s.\n",
369 dev->name, medianame[dev->if_port]);
370 goto media_picked;
371 }
372 }
373 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
374 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
375 for (i = 0; i < tp->mtable->leafcount; i++)
376 if (tp->mtable->mleaf[i].media == looking_for) {
377 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
378 dev->name, medianame[looking_for]);
379 goto media_picked;
380 }
381 }
382 /* Start sensing first non-full-duplex media. */
383 for (i = tp->mtable->leafcount - 1;
384 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
385 ;
386 media_picked:
387
388 tp->csr6 = 0;
389 tp->cur_index = i;
390 tp->nwayset = 0;
391
392 if (dev->if_port) {
393 if (tp->chip_id == DC21143 &&
394 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
395 /* We must reset the media CSRs when we force-select MII mode. */
396 iowrite32(0x0000, ioaddr + CSR13);
397 iowrite32(0x0000, ioaddr + CSR14);
398 iowrite32(0x0008, ioaddr + CSR15);
399 }
400 tulip_select_media(dev, 1);
401 } else if (tp->chip_id == DC21142) {
402 if (tp->mii_cnt) {
403 tulip_select_media(dev, 1);
404 if (tulip_debug > 1)
405 printk(KERN_INFO "%s: Using MII transceiver %d, status "
406 "%4.4x.\n",
407 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
408 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
409 tp->csr6 = csr6_mask_hdcap;
410 dev->if_port = 11;
411 iowrite32(0x0000, ioaddr + CSR13);
412 iowrite32(0x0000, ioaddr + CSR14);
413 } else
414 t21142_start_nway(dev);
415 } else if (tp->chip_id == PNIC2) {
416 /* for initial startup advertise 10/100 Full and Half */
417 tp->sym_advertise = 0x01E0;
418 /* enable autonegotiate end interrupt */
419 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
420 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
421 pnic2_start_nway(dev);
422 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
423 if (tp->mii_cnt) {
424 dev->if_port = 11;
425 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
426 iowrite32(0x0001, ioaddr + CSR15);
427 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
428 pnic_do_nway(dev);
429 else {
430 /* Start with 10mbps to do autonegotiation. */
431 iowrite32(0x32, ioaddr + CSR12);
432 tp->csr6 = 0x00420000;
433 iowrite32(0x0001B078, ioaddr + 0xB8);
434 iowrite32(0x0201B078, ioaddr + 0xB8);
435 next_tick = 1*HZ;
436 }
437 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
438 && ! tp->medialock) {
439 dev->if_port = 0;
440 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
441 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
442 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
443 /* Provided by BOLO, Macronix - 12/10/1998. */
444 dev->if_port = 0;
445 tp->csr6 = 0x01a80200;
446 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
447 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
448 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
449 /* Enable automatic Tx underrun recovery. */
450 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
451 dev->if_port = tp->mii_cnt ? 11 : 0;
452 tp->csr6 = 0x00040000;
453 } else if (tp->chip_id == AX88140) {
454 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
455 } else
456 tulip_select_media(dev, 1);
457
458 /* Start the chip's Tx to process setup frame. */
459 tulip_stop_rxtx(tp);
460 barrier();
461 udelay(5);
462 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
463
464 /* Enable interrupts by setting the interrupt mask. */
465 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
466 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
467 tulip_start_rxtx(tp);
468 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
469
470 if (tulip_debug > 2) {
471 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
472 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
473 ioread32(ioaddr + CSR6));
474 }
475
476 /* Set the timer to switch to check for link beat and perhaps switch
477 to an alternate media type. */
478 tp->timer.expires = RUN_AT(next_tick);
479 add_timer(&tp->timer);
480 #ifdef CONFIG_TULIP_NAPI
481 init_timer(&tp->oom_timer);
482 tp->oom_timer.data = (unsigned long)dev;
483 tp->oom_timer.function = oom_timer;
484 #endif
485 }
486
487 static int
488 tulip_open(struct net_device *dev)
489 {
490 int retval;
491
492 if ((retval = request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, dev->name, dev)))
493 return retval;
494
495 tulip_init_ring (dev);
496
497 tulip_up (dev);
498
499 netif_start_queue (dev);
500
501 return 0;
502 }
503
504
505 static void tulip_tx_timeout(struct net_device *dev)
506 {
507 struct tulip_private *tp = netdev_priv(dev);
508 void __iomem *ioaddr = tp->base_addr;
509 unsigned long flags;
510
511 spin_lock_irqsave (&tp->lock, flags);
512
513 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
514 /* Do nothing -- the media monitor should handle this. */
515 if (tulip_debug > 1)
516 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
517 dev->name);
518 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
519 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
520 || tp->chip_id == DM910X) {
521 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
522 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
523 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
524 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
525 if ( ! tp->medialock && tp->mtable) {
526 do
527 --tp->cur_index;
528 while (tp->cur_index >= 0
529 && (tulip_media_cap[tp->mtable->mleaf[tp->cur_index].media]
530 & MediaIsFD));
531 if (--tp->cur_index < 0) {
532 /* We start again, but should instead look for default. */
533 tp->cur_index = tp->mtable->leafcount - 1;
534 }
535 tulip_select_media(dev, 0);
536 printk(KERN_WARNING "%s: transmit timed out, switching to %s "
537 "media.\n", dev->name, medianame[dev->if_port]);
538 }
539 } else if (tp->chip_id == PNIC2) {
540 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
541 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
542 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
543 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
544 } else {
545 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
546 "%8.8x, resetting...\n",
547 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
548 dev->if_port = 0;
549 }
550
551 #if defined(way_too_many_messages)
552 if (tulip_debug > 3) {
553 int i;
554 for (i = 0; i < RX_RING_SIZE; i++) {
555 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
556 int j;
557 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
558 "%2.2x %2.2x %2.2x.\n",
559 i, (unsigned int)tp->rx_ring[i].status,
560 (unsigned int)tp->rx_ring[i].length,
561 (unsigned int)tp->rx_ring[i].buffer1,
562 (unsigned int)tp->rx_ring[i].buffer2,
563 buf[0], buf[1], buf[2]);
564 for (j = 0; buf[j] != 0xee && j < 1600; j++)
565 if (j < 100) printk(" %2.2x", buf[j]);
566 printk(" j=%d.\n", j);
567 }
568 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
569 for (i = 0; i < RX_RING_SIZE; i++)
570 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
571 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
572 for (i = 0; i < TX_RING_SIZE; i++)
573 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
574 printk("\n");
575 }
576 #endif
577
578 /* Stop and restart the chip's Tx processes . */
579
580 tulip_restart_rxtx(tp);
581 /* Trigger an immediate transmit demand. */
582 iowrite32(0, ioaddr + CSR1);
583
584 tp->stats.tx_errors++;
585
586 spin_unlock_irqrestore (&tp->lock, flags);
587 dev->trans_start = jiffies;
588 netif_wake_queue (dev);
589 }
590
591
592 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
593 static void tulip_init_ring(struct net_device *dev)
594 {
595 struct tulip_private *tp = netdev_priv(dev);
596 int i;
597
598 tp->susp_rx = 0;
599 tp->ttimer = 0;
600 tp->nir = 0;
601
602 for (i = 0; i < RX_RING_SIZE; i++) {
603 tp->rx_ring[i].status = 0x00000000;
604 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
605 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
606 tp->rx_buffers[i].skb = NULL;
607 tp->rx_buffers[i].mapping = 0;
608 }
609 /* Mark the last entry as wrapping the ring. */
610 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
611 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
612
613 for (i = 0; i < RX_RING_SIZE; i++) {
614 dma_addr_t mapping;
615
616 /* Note the receive buffer must be longword aligned.
617 dev_alloc_skb() provides 16 byte alignment. But do *not*
618 use skb_reserve() to align the IP header! */
619 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
620 tp->rx_buffers[i].skb = skb;
621 if (skb == NULL)
622 break;
623 mapping = pci_map_single(tp->pdev, skb->data,
624 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
625 tp->rx_buffers[i].mapping = mapping;
626 skb->dev = dev; /* Mark as being used by this device. */
627 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
628 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
629 }
630 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
631
632 /* The Tx buffer descriptor is filled in as needed, but we
633 do need to clear the ownership bit. */
634 for (i = 0; i < TX_RING_SIZE; i++) {
635 tp->tx_buffers[i].skb = NULL;
636 tp->tx_buffers[i].mapping = 0;
637 tp->tx_ring[i].status = 0x00000000;
638 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
639 }
640 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
641 }
642
643 static int
644 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
645 {
646 struct tulip_private *tp = netdev_priv(dev);
647 int entry;
648 u32 flag;
649 dma_addr_t mapping;
650
651 spin_lock_irq(&tp->lock);
652
653 /* Calculate the next Tx descriptor entry. */
654 entry = tp->cur_tx % TX_RING_SIZE;
655
656 tp->tx_buffers[entry].skb = skb;
657 mapping = pci_map_single(tp->pdev, skb->data,
658 skb->len, PCI_DMA_TODEVICE);
659 tp->tx_buffers[entry].mapping = mapping;
660 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
661
662 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
663 flag = 0x60000000; /* No interrupt */
664 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
665 flag = 0xe0000000; /* Tx-done intr. */
666 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
667 flag = 0x60000000; /* No Tx-done intr. */
668 } else { /* Leave room for set_rx_mode() to fill entries. */
669 flag = 0xe0000000; /* Tx-done intr. */
670 netif_stop_queue(dev);
671 }
672 if (entry == TX_RING_SIZE-1)
673 flag = 0xe0000000 | DESC_RING_WRAP;
674
675 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
676 /* if we were using Transmit Automatic Polling, we would need a
677 * wmb() here. */
678 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
679 wmb();
680
681 tp->cur_tx++;
682
683 /* Trigger an immediate transmit demand. */
684 iowrite32(0, tp->base_addr + CSR1);
685
686 spin_unlock_irq(&tp->lock);
687
688 dev->trans_start = jiffies;
689
690 return 0;
691 }
692
693 static void tulip_clean_tx_ring(struct tulip_private *tp)
694 {
695 unsigned int dirty_tx;
696
697 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
698 dirty_tx++) {
699 int entry = dirty_tx % TX_RING_SIZE;
700 int status = le32_to_cpu(tp->tx_ring[entry].status);
701
702 if (status < 0) {
703 tp->stats.tx_errors++; /* It wasn't Txed */
704 tp->tx_ring[entry].status = 0;
705 }
706
707 /* Check for Tx filter setup frames. */
708 if (tp->tx_buffers[entry].skb == NULL) {
709 /* test because dummy frames not mapped */
710 if (tp->tx_buffers[entry].mapping)
711 pci_unmap_single(tp->pdev,
712 tp->tx_buffers[entry].mapping,
713 sizeof(tp->setup_frame),
714 PCI_DMA_TODEVICE);
715 continue;
716 }
717
718 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
719 tp->tx_buffers[entry].skb->len,
720 PCI_DMA_TODEVICE);
721
722 /* Free the original skb. */
723 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
724 tp->tx_buffers[entry].skb = NULL;
725 tp->tx_buffers[entry].mapping = 0;
726 }
727 }
728
729 static void tulip_down (struct net_device *dev)
730 {
731 struct tulip_private *tp = netdev_priv(dev);
732 void __iomem *ioaddr = tp->base_addr;
733 unsigned long flags;
734
735 del_timer_sync (&tp->timer);
736 #ifdef CONFIG_TULIP_NAPI
737 del_timer_sync (&tp->oom_timer);
738 #endif
739 spin_lock_irqsave (&tp->lock, flags);
740
741 /* Disable interrupts by clearing the interrupt mask. */
742 iowrite32 (0x00000000, ioaddr + CSR7);
743
744 /* Stop the Tx and Rx processes. */
745 tulip_stop_rxtx(tp);
746
747 /* prepare receive buffers */
748 tulip_refill_rx(dev);
749
750 /* release any unconsumed transmit buffers */
751 tulip_clean_tx_ring(tp);
752
753 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
754 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
755
756 spin_unlock_irqrestore (&tp->lock, flags);
757
758 init_timer(&tp->timer);
759 tp->timer.data = (unsigned long)dev;
760 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
761
762 dev->if_port = tp->saved_if_port;
763
764 /* Leave the driver in snooze, not sleep, mode. */
765 tulip_set_power_state (tp, 0, 1);
766 }
767
768
769 static int tulip_close (struct net_device *dev)
770 {
771 struct tulip_private *tp = netdev_priv(dev);
772 void __iomem *ioaddr = tp->base_addr;
773 int i;
774
775 netif_stop_queue (dev);
776
777 tulip_down (dev);
778
779 if (tulip_debug > 1)
780 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
781 dev->name, ioread32 (ioaddr + CSR5));
782
783 free_irq (dev->irq, dev);
784
785 /* Free all the skbuffs in the Rx queue. */
786 for (i = 0; i < RX_RING_SIZE; i++) {
787 struct sk_buff *skb = tp->rx_buffers[i].skb;
788 dma_addr_t mapping = tp->rx_buffers[i].mapping;
789
790 tp->rx_buffers[i].skb = NULL;
791 tp->rx_buffers[i].mapping = 0;
792
793 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
794 tp->rx_ring[i].length = 0;
795 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
796 if (skb) {
797 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
798 PCI_DMA_FROMDEVICE);
799 dev_kfree_skb (skb);
800 }
801 }
802 for (i = 0; i < TX_RING_SIZE; i++) {
803 struct sk_buff *skb = tp->tx_buffers[i].skb;
804
805 if (skb != NULL) {
806 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
807 skb->len, PCI_DMA_TODEVICE);
808 dev_kfree_skb (skb);
809 }
810 tp->tx_buffers[i].skb = NULL;
811 tp->tx_buffers[i].mapping = 0;
812 }
813
814 return 0;
815 }
816
817 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
818 {
819 struct tulip_private *tp = netdev_priv(dev);
820 void __iomem *ioaddr = tp->base_addr;
821
822 if (netif_running(dev)) {
823 unsigned long flags;
824
825 spin_lock_irqsave (&tp->lock, flags);
826
827 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
828
829 spin_unlock_irqrestore(&tp->lock, flags);
830 }
831
832 return &tp->stats;
833 }
834
835
836 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
837 {
838 struct tulip_private *np = netdev_priv(dev);
839 strcpy(info->driver, DRV_NAME);
840 strcpy(info->version, DRV_VERSION);
841 strcpy(info->bus_info, pci_name(np->pdev));
842 }
843
844 static struct ethtool_ops ops = {
845 .get_drvinfo = tulip_get_drvinfo
846 };
847
848 /* Provide ioctl() calls to examine the MII xcvr state. */
849 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
850 {
851 struct tulip_private *tp = netdev_priv(dev);
852 void __iomem *ioaddr = tp->base_addr;
853 struct mii_ioctl_data *data = if_mii(rq);
854 const unsigned int phy_idx = 0;
855 int phy = tp->phys[phy_idx] & 0x1f;
856 unsigned int regnum = data->reg_num;
857
858 switch (cmd) {
859 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
860 if (tp->mii_cnt)
861 data->phy_id = phy;
862 else if (tp->flags & HAS_NWAY)
863 data->phy_id = 32;
864 else if (tp->chip_id == COMET)
865 data->phy_id = 1;
866 else
867 return -ENODEV;
868
869 case SIOCGMIIREG: /* Read MII PHY register. */
870 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
871 int csr12 = ioread32 (ioaddr + CSR12);
872 int csr14 = ioread32 (ioaddr + CSR14);
873 switch (regnum) {
874 case 0:
875 if (((csr14<<5) & 0x1000) ||
876 (dev->if_port == 5 && tp->nwayset))
877 data->val_out = 0x1000;
878 else
879 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
880 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
881 break;
882 case 1:
883 data->val_out =
884 0x1848 +
885 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
886 ((csr12&0x06) == 6 ? 0 : 4);
887 data->val_out |= 0x6048;
888 break;
889 case 4:
890 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
891 data->val_out =
892 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
893 ((csr14 >> 1) & 0x20) + 1;
894 data->val_out |= ((csr14 >> 9) & 0x03C0);
895 break;
896 case 5: data->val_out = tp->lpar; break;
897 default: data->val_out = 0; break;
898 }
899 } else {
900 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
901 }
902 return 0;
903
904 case SIOCSMIIREG: /* Write MII PHY register. */
905 if (!capable (CAP_NET_ADMIN))
906 return -EPERM;
907 if (regnum & ~0x1f)
908 return -EINVAL;
909 if (data->phy_id == phy) {
910 u16 value = data->val_in;
911 switch (regnum) {
912 case 0: /* Check for autonegotiation on or reset. */
913 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
914 if (tp->full_duplex_lock)
915 tp->full_duplex = (value & 0x0100) ? 1 : 0;
916 break;
917 case 4:
918 tp->advertising[phy_idx] =
919 tp->mii_advertise = data->val_in;
920 break;
921 }
922 }
923 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
924 u16 value = data->val_in;
925 if (regnum == 0) {
926 if ((value & 0x1200) == 0x1200) {
927 if (tp->chip_id == PNIC2) {
928 pnic2_start_nway (dev);
929 } else {
930 t21142_start_nway (dev);
931 }
932 }
933 } else if (regnum == 4)
934 tp->sym_advertise = value;
935 } else {
936 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
937 }
938 return 0;
939 default:
940 return -EOPNOTSUPP;
941 }
942
943 return -EOPNOTSUPP;
944 }
945
946
947 /* Set or clear the multicast filter for this adaptor.
948 Note that we only use exclusion around actually queueing the
949 new frame, not around filling tp->setup_frame. This is non-deterministic
950 when re-entered but still correct. */
951
952 #undef set_bit_le
953 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
954
955 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
956 {
957 struct tulip_private *tp = netdev_priv(dev);
958 u16 hash_table[32];
959 struct dev_mc_list *mclist;
960 int i;
961 u16 *eaddrs;
962
963 memset(hash_table, 0, sizeof(hash_table));
964 set_bit_le(255, hash_table); /* Broadcast entry */
965 /* This should work on big-endian machines as well. */
966 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
967 i++, mclist = mclist->next) {
968 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
969
970 set_bit_le(index, hash_table);
971
972 }
973 for (i = 0; i < 32; i++) {
974 *setup_frm++ = hash_table[i];
975 *setup_frm++ = hash_table[i];
976 }
977 setup_frm = &tp->setup_frame[13*6];
978
979 /* Fill the final entry with our physical address. */
980 eaddrs = (u16 *)dev->dev_addr;
981 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
982 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
983 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
984 }
985
986 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
987 {
988 struct tulip_private *tp = netdev_priv(dev);
989 struct dev_mc_list *mclist;
990 int i;
991 u16 *eaddrs;
992
993 /* We have <= 14 addresses so we can use the wonderful
994 16 address perfect filtering of the Tulip. */
995 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
996 i++, mclist = mclist->next) {
997 eaddrs = (u16 *)mclist->dmi_addr;
998 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
999 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1000 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1001 }
1002 /* Fill the unused entries with the broadcast address. */
1003 memset(setup_frm, 0xff, (15-i)*12);
1004 setup_frm = &tp->setup_frame[15*6];
1005
1006 /* Fill the final entry with our physical address. */
1007 eaddrs = (u16 *)dev->dev_addr;
1008 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1009 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1010 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1011 }
1012
1013
1014 static void set_rx_mode(struct net_device *dev)
1015 {
1016 struct tulip_private *tp = netdev_priv(dev);
1017 void __iomem *ioaddr = tp->base_addr;
1018 int csr6;
1019
1020 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1021
1022 tp->csr6 &= ~0x00D5;
1023 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1024 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1025 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1026 /* Unconditionally log net taps. */
1027 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1028 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1029 /* Too many to filter well -- accept all multicasts. */
1030 tp->csr6 |= AcceptAllMulticast;
1031 csr6 |= AcceptAllMulticast;
1032 } else if (tp->flags & MC_HASH_ONLY) {
1033 /* Some work-alikes have only a 64-entry hash filter table. */
1034 /* Should verify correctness on big-endian/__powerpc__ */
1035 struct dev_mc_list *mclist;
1036 int i;
1037 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1038 tp->csr6 |= AcceptAllMulticast;
1039 csr6 |= AcceptAllMulticast;
1040 } else {
1041 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1042 int filterbit;
1043 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1044 i++, mclist = mclist->next) {
1045 if (tp->flags & COMET_MAC_ADDR)
1046 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1047 else
1048 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1049 filterbit &= 0x3f;
1050 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1051 if (tulip_debug > 2) {
1052 printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
1053 "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
1054 mclist->dmi_addr[0], mclist->dmi_addr[1],
1055 mclist->dmi_addr[2], mclist->dmi_addr[3],
1056 mclist->dmi_addr[4], mclist->dmi_addr[5],
1057 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1058 }
1059 }
1060 if (mc_filter[0] == tp->mc_filter[0] &&
1061 mc_filter[1] == tp->mc_filter[1])
1062 ; /* No change. */
1063 else if (tp->flags & IS_ASIX) {
1064 iowrite32(2, ioaddr + CSR13);
1065 iowrite32(mc_filter[0], ioaddr + CSR14);
1066 iowrite32(3, ioaddr + CSR13);
1067 iowrite32(mc_filter[1], ioaddr + CSR14);
1068 } else if (tp->flags & COMET_MAC_ADDR) {
1069 iowrite32(mc_filter[0], ioaddr + 0xAC);
1070 iowrite32(mc_filter[1], ioaddr + 0xB0);
1071 }
1072 tp->mc_filter[0] = mc_filter[0];
1073 tp->mc_filter[1] = mc_filter[1];
1074 }
1075 } else {
1076 unsigned long flags;
1077 u32 tx_flags = 0x08000000 | 192;
1078
1079 /* Note that only the low-address shortword of setup_frame is valid!
1080 The values are doubled for big-endian architectures. */
1081 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1082 build_setup_frame_hash(tp->setup_frame, dev);
1083 tx_flags = 0x08400000 | 192;
1084 } else {
1085 build_setup_frame_perfect(tp->setup_frame, dev);
1086 }
1087
1088 spin_lock_irqsave(&tp->lock, flags);
1089
1090 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1091 /* Same setup recently queued, we need not add it. */
1092 } else {
1093 unsigned int entry;
1094 int dummy = -1;
1095
1096 /* Now add this frame to the Tx list. */
1097
1098 entry = tp->cur_tx++ % TX_RING_SIZE;
1099
1100 if (entry != 0) {
1101 /* Avoid a chip errata by prefixing a dummy entry. */
1102 tp->tx_buffers[entry].skb = NULL;
1103 tp->tx_buffers[entry].mapping = 0;
1104 tp->tx_ring[entry].length =
1105 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1106 tp->tx_ring[entry].buffer1 = 0;
1107 /* Must set DescOwned later to avoid race with chip */
1108 dummy = entry;
1109 entry = tp->cur_tx++ % TX_RING_SIZE;
1110
1111 }
1112
1113 tp->tx_buffers[entry].skb = NULL;
1114 tp->tx_buffers[entry].mapping =
1115 pci_map_single(tp->pdev, tp->setup_frame,
1116 sizeof(tp->setup_frame),
1117 PCI_DMA_TODEVICE);
1118 /* Put the setup frame on the Tx list. */
1119 if (entry == TX_RING_SIZE-1)
1120 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1121 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1122 tp->tx_ring[entry].buffer1 =
1123 cpu_to_le32(tp->tx_buffers[entry].mapping);
1124 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1125 if (dummy >= 0)
1126 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1127 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1128 netif_stop_queue(dev);
1129
1130 /* Trigger an immediate transmit demand. */
1131 iowrite32(0, ioaddr + CSR1);
1132 }
1133
1134 spin_unlock_irqrestore(&tp->lock, flags);
1135 }
1136
1137 iowrite32(csr6, ioaddr + CSR6);
1138 }
1139
1140 #ifdef CONFIG_TULIP_MWI
1141 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1142 struct net_device *dev)
1143 {
1144 struct tulip_private *tp = netdev_priv(dev);
1145 u8 cache;
1146 u16 pci_command;
1147 u32 csr0;
1148
1149 if (tulip_debug > 3)
1150 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1151
1152 tp->csr0 = csr0 = 0;
1153
1154 /* if we have any cache line size at all, we can do MRM */
1155 csr0 |= MRM;
1156
1157 /* ...and barring hardware bugs, MWI */
1158 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1159 csr0 |= MWI;
1160
1161 /* set or disable MWI in the standard PCI command bit.
1162 * Check for the case where mwi is desired but not available
1163 */
1164 if (csr0 & MWI) pci_set_mwi(pdev);
1165 else pci_clear_mwi(pdev);
1166
1167 /* read result from hardware (in case bit refused to enable) */
1168 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1169 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1170 csr0 &= ~MWI;
1171
1172 /* if cache line size hardwired to zero, no MWI */
1173 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1174 if ((csr0 & MWI) && (cache == 0)) {
1175 csr0 &= ~MWI;
1176 pci_clear_mwi(pdev);
1177 }
1178
1179 /* assign per-cacheline-size cache alignment and
1180 * burst length values
1181 */
1182 switch (cache) {
1183 case 8:
1184 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1185 break;
1186 case 16:
1187 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1188 break;
1189 case 32:
1190 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1191 break;
1192 default:
1193 cache = 0;
1194 break;
1195 }
1196
1197 /* if we have a good cache line size, we by now have a good
1198 * csr0, so save it and exit
1199 */
1200 if (cache)
1201 goto out;
1202
1203 /* we don't have a good csr0 or cache line size, disable MWI */
1204 if (csr0 & MWI) {
1205 pci_clear_mwi(pdev);
1206 csr0 &= ~MWI;
1207 }
1208
1209 /* sane defaults for burst length and cache alignment
1210 * originally from de4x5 driver
1211 */
1212 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1213
1214 out:
1215 tp->csr0 = csr0;
1216 if (tulip_debug > 2)
1217 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1218 pci_name(pdev), cache, csr0);
1219 }
1220 #endif
1221
1222 /*
1223 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1224 * is the DM910X and the on chip ULi devices
1225 */
1226
1227 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1228 {
1229 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1230 return 1;
1231 return 0;
1232 }
1233
1234 static int __devinit tulip_init_one (struct pci_dev *pdev,
1235 const struct pci_device_id *ent)
1236 {
1237 struct tulip_private *tp;
1238 /* See note below on the multiport cards. */
1239 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1240 static struct pci_device_id early_486_chipsets[] = {
1241 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1242 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1243 { },
1244 };
1245 static int last_irq;
1246 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1247 u8 chip_rev;
1248 int i, irq;
1249 unsigned short sum;
1250 unsigned char *ee_data;
1251 struct net_device *dev;
1252 void __iomem *ioaddr;
1253 static int board_idx = -1;
1254 int chip_idx = ent->driver_data;
1255 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1256 unsigned int eeprom_missing = 0;
1257 unsigned int force_csr0 = 0;
1258
1259 #ifndef MODULE
1260 static int did_version; /* Already printed version info. */
1261 if (tulip_debug > 0 && did_version++ == 0)
1262 printk (KERN_INFO "%s", version);
1263 #endif
1264
1265 board_idx++;
1266
1267 /*
1268 * Lan media wire a tulip chip to a wan interface. Needs a very
1269 * different driver (lmc driver)
1270 */
1271
1272 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1273 printk (KERN_ERR PFX "skipping LMC card.\n");
1274 return -ENODEV;
1275 }
1276
1277 /*
1278 * Early DM9100's need software CRC and the DMFE driver
1279 */
1280
1281 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1282 {
1283 u32 dev_rev;
1284 /* Read Chip revision */
1285 pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev);
1286 if(dev_rev < 0x02000030)
1287 {
1288 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1289 return -ENODEV;
1290 }
1291 }
1292
1293 /*
1294 * Looks for early PCI chipsets where people report hangs
1295 * without the workarounds being on.
1296 */
1297
1298 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1299 aligned. Aries might need this too. The Saturn errata are not
1300 pretty reading but thankfully it's an old 486 chipset.
1301
1302 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1303 Saturn.
1304 */
1305
1306 if (pci_dev_present(early_486_chipsets)) {
1307 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1308 force_csr0 = 1;
1309 }
1310
1311 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1312 if (chip_idx == AX88140) {
1313 if ((csr0 & 0x3f00) == 0)
1314 csr0 |= 0x2000;
1315 }
1316
1317 /* PNIC doesn't have MWI/MRL/MRM... */
1318 if (chip_idx == LC82C168)
1319 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1320
1321 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1322 if (tulip_uli_dm_quirk(pdev)) {
1323 csr0 &= ~0x01f100ff;
1324 #if defined(__sparc__)
1325 csr0 = (csr0 & ~0xff00) | 0xe000;
1326 #endif
1327 }
1328 /*
1329 * And back to business
1330 */
1331
1332 i = pci_enable_device(pdev);
1333 if (i) {
1334 printk (KERN_ERR PFX
1335 "Cannot enable tulip board #%d, aborting\n",
1336 board_idx);
1337 return i;
1338 }
1339
1340 irq = pdev->irq;
1341
1342 /* alloc_etherdev ensures aligned and zeroed private structures */
1343 dev = alloc_etherdev (sizeof (*tp));
1344 if (!dev) {
1345 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1346 return -ENOMEM;
1347 }
1348
1349 SET_MODULE_OWNER(dev);
1350 SET_NETDEV_DEV(dev, &pdev->dev);
1351 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1352 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1353 "aborting\n", pci_name(pdev),
1354 (unsigned long long)pci_resource_len (pdev, 0),
1355 (unsigned long long)pci_resource_start (pdev, 0));
1356 goto err_out_free_netdev;
1357 }
1358
1359 /* grab all resources from both PIO and MMIO regions, as we
1360 * don't want anyone else messing around with our hardware */
1361 if (pci_request_regions (pdev, "tulip"))
1362 goto err_out_free_netdev;
1363
1364 #ifndef USE_IO_OPS
1365 ioaddr = pci_iomap(pdev, 1, tulip_tbl[chip_idx].io_size);
1366 #else
1367 ioaddr = pci_iomap(pdev, 0, tulip_tbl[chip_idx].io_size);
1368 #endif
1369 if (!ioaddr)
1370 goto err_out_free_res;
1371
1372 pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev);
1373
1374 /*
1375 * initialize private data structure 'tp'
1376 * it is zeroed and aligned in alloc_etherdev
1377 */
1378 tp = netdev_priv(dev);
1379
1380 tp->rx_ring = pci_alloc_consistent(pdev,
1381 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1382 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1383 &tp->rx_ring_dma);
1384 if (!tp->rx_ring)
1385 goto err_out_mtable;
1386 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1387 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1388
1389 tp->chip_id = chip_idx;
1390 tp->flags = tulip_tbl[chip_idx].flags;
1391 tp->pdev = pdev;
1392 tp->base_addr = ioaddr;
1393 tp->revision = chip_rev;
1394 tp->csr0 = csr0;
1395 spin_lock_init(&tp->lock);
1396 spin_lock_init(&tp->mii_lock);
1397 init_timer(&tp->timer);
1398 tp->timer.data = (unsigned long)dev;
1399 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1400
1401 dev->base_addr = (unsigned long)ioaddr;
1402
1403 #ifdef CONFIG_TULIP_MWI
1404 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1405 tulip_mwi_config (pdev, dev);
1406 #else
1407 /* MWI is broken for DC21143 rev 65... */
1408 if (chip_idx == DC21143 && chip_rev == 65)
1409 tp->csr0 &= ~MWI;
1410 #endif
1411
1412 /* Stop the chip's Tx and Rx processes. */
1413 tulip_stop_rxtx(tp);
1414
1415 pci_set_master(pdev);
1416
1417 #ifdef CONFIG_GSC
1418 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1419 switch (pdev->subsystem_device) {
1420 default:
1421 break;
1422 case 0x1061:
1423 case 0x1062:
1424 case 0x1063:
1425 case 0x1098:
1426 case 0x1099:
1427 case 0x10EE:
1428 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1429 chip_name = "GSC DS21140 Tulip";
1430 }
1431 }
1432 #endif
1433
1434 /* Clear the missed-packet counter. */
1435 ioread32(ioaddr + CSR8);
1436
1437 /* The station address ROM is read byte serially. The register must
1438 be polled, waiting for the value to be read bit serially from the
1439 EEPROM.
1440 */
1441 ee_data = tp->eeprom;
1442 sum = 0;
1443 if (chip_idx == LC82C168) {
1444 for (i = 0; i < 3; i++) {
1445 int value, boguscnt = 100000;
1446 iowrite32(0x600 | i, ioaddr + 0x98);
1447 do
1448 value = ioread32(ioaddr + CSR9);
1449 while (value < 0 && --boguscnt > 0);
1450 put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
1451 sum += value & 0xffff;
1452 }
1453 } else if (chip_idx == COMET) {
1454 /* No need to read the EEPROM. */
1455 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
1456 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4));
1457 for (i = 0; i < 6; i ++)
1458 sum += dev->dev_addr[i];
1459 } else {
1460 /* A serial EEPROM interface, we read now and sort it out later. */
1461 int sa_offset = 0;
1462 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1463
1464 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1465 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1466 ee_data[i] = data & 0xff;
1467 ee_data[i + 1] = data >> 8;
1468 }
1469
1470 /* DEC now has a specification (see Notes) but early board makers
1471 just put the address in the first EEPROM locations. */
1472 /* This does memcmp(ee_data, ee_data+16, 8) */
1473 for (i = 0; i < 8; i ++)
1474 if (ee_data[i] != ee_data[16+i])
1475 sa_offset = 20;
1476 if (chip_idx == CONEXANT) {
1477 /* Check that the tuple type and length is correct. */
1478 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1479 sa_offset = 0x19A;
1480 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1481 ee_data[2] == 0) {
1482 sa_offset = 2; /* Grrr, damn Matrox boards. */
1483 multiport_cnt = 4;
1484 }
1485 #ifdef CONFIG_DDB5477
1486 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
1487 /* DDB5477 MAC address in first EEPROM locations. */
1488 sa_offset = 0;
1489 /* No media table either */
1490 tp->flags &= ~HAS_MEDIA_TABLE;
1491 }
1492 #endif
1493 #ifdef CONFIG_MIPS_COBALT
1494 if ((pdev->bus->number == 0) &&
1495 ((PCI_SLOT(pdev->devfn) == 7) ||
1496 (PCI_SLOT(pdev->devfn) == 12))) {
1497 /* Cobalt MAC address in first EEPROM locations. */
1498 sa_offset = 0;
1499 /* Ensure our media table fixup get's applied */
1500 memcpy(ee_data + 16, ee_data, 8);
1501 }
1502 #endif
1503 #ifdef CONFIG_GSC
1504 /* Check to see if we have a broken srom */
1505 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1506 /* pci_vendor_id and subsystem_id are swapped */
1507 ee_data[0] = ee_data[2];
1508 ee_data[1] = ee_data[3];
1509 ee_data[2] = 0x61;
1510 ee_data[3] = 0x10;
1511
1512 /* HSC-PCI boards need to be byte-swaped and shifted
1513 * up 1 word. This shift needs to happen at the end
1514 * of the MAC first because of the 2 byte overlap.
1515 */
1516 for (i = 4; i >= 0; i -= 2) {
1517 ee_data[17 + i + 3] = ee_data[17 + i];
1518 ee_data[16 + i + 5] = ee_data[16 + i];
1519 }
1520 }
1521 #endif
1522
1523 for (i = 0; i < 6; i ++) {
1524 dev->dev_addr[i] = ee_data[i + sa_offset];
1525 sum += ee_data[i + sa_offset];
1526 }
1527 }
1528 /* Lite-On boards have the address byte-swapped. */
1529 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1530 && dev->dev_addr[1] == 0x00)
1531 for (i = 0; i < 6; i+=2) {
1532 char tmp = dev->dev_addr[i];
1533 dev->dev_addr[i] = dev->dev_addr[i+1];
1534 dev->dev_addr[i+1] = tmp;
1535 }
1536 /* On the Zynx 315 Etherarray and other multiport boards only the
1537 first Tulip has an EEPROM.
1538 On Sparc systems the mac address is held in the OBP property
1539 "local-mac-address".
1540 The addresses of the subsequent ports are derived from the first.
1541 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1542 that here as well. */
1543 if (sum == 0 || sum == 6*0xff) {
1544 #if defined(__sparc__)
1545 struct pcidev_cookie *pcp = pdev->sysdata;
1546 #endif
1547 eeprom_missing = 1;
1548 for (i = 0; i < 5; i++)
1549 dev->dev_addr[i] = last_phys_addr[i];
1550 dev->dev_addr[i] = last_phys_addr[i] + 1;
1551 #if defined(__sparc__)
1552 if (pcp) {
1553 unsigned char *addr;
1554 int len;
1555
1556 addr = of_get_property(pcp->prom_node,
1557 "local-mac-address", &len);
1558 if (addr && len == 6)
1559 memcpy(dev->dev_addr, addr, 6);
1560 }
1561 #endif
1562 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1563 if (last_irq)
1564 irq = last_irq;
1565 #endif
1566 }
1567
1568 for (i = 0; i < 6; i++)
1569 last_phys_addr[i] = dev->dev_addr[i];
1570 last_irq = irq;
1571 dev->irq = irq;
1572
1573 /* The lower four bits are the media type. */
1574 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1575 if (options[board_idx] & MEDIA_MASK)
1576 tp->default_port = options[board_idx] & MEDIA_MASK;
1577 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1578 tp->full_duplex = 1;
1579 if (mtu[board_idx] > 0)
1580 dev->mtu = mtu[board_idx];
1581 }
1582 if (dev->mem_start & MEDIA_MASK)
1583 tp->default_port = dev->mem_start & MEDIA_MASK;
1584 if (tp->default_port) {
1585 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1586 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1587 tp->medialock = 1;
1588 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1589 tp->full_duplex = 1;
1590 }
1591 if (tp->full_duplex)
1592 tp->full_duplex_lock = 1;
1593
1594 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1595 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1596 tp->mii_advertise = media2advert[tp->default_port - 9];
1597 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1598 }
1599
1600 if (tp->flags & HAS_MEDIA_TABLE) {
1601 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1602 tulip_parse_eeprom(dev);
1603 strcpy(dev->name, "eth%d"); /* un-hack */
1604 }
1605
1606 if ((tp->flags & ALWAYS_CHECK_MII) ||
1607 (tp->mtable && tp->mtable->has_mii) ||
1608 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1609 if (tp->mtable && tp->mtable->has_mii) {
1610 for (i = 0; i < tp->mtable->leafcount; i++)
1611 if (tp->mtable->mleaf[i].media == 11) {
1612 tp->cur_index = i;
1613 tp->saved_if_port = dev->if_port;
1614 tulip_select_media(dev, 2);
1615 dev->if_port = tp->saved_if_port;
1616 break;
1617 }
1618 }
1619
1620 /* Find the connected MII xcvrs.
1621 Doing this in open() would allow detecting external xcvrs
1622 later, but takes much time. */
1623 tulip_find_mii (dev, board_idx);
1624 }
1625
1626 /* The Tulip-specific entries in the device structure. */
1627 dev->open = tulip_open;
1628 dev->hard_start_xmit = tulip_start_xmit;
1629 dev->tx_timeout = tulip_tx_timeout;
1630 dev->watchdog_timeo = TX_TIMEOUT;
1631 #ifdef CONFIG_TULIP_NAPI
1632 dev->poll = tulip_poll;
1633 dev->weight = 16;
1634 #endif
1635 dev->stop = tulip_close;
1636 dev->get_stats = tulip_get_stats;
1637 dev->do_ioctl = private_ioctl;
1638 dev->set_multicast_list = set_rx_mode;
1639 #ifdef CONFIG_NET_POLL_CONTROLLER
1640 dev->poll_controller = &poll_tulip;
1641 #endif
1642 SET_ETHTOOL_OPS(dev, &ops);
1643
1644 if (register_netdev(dev))
1645 goto err_out_free_ring;
1646
1647 printk(KERN_INFO "%s: %s rev %d at %p,",
1648 dev->name, chip_name, chip_rev, ioaddr);
1649 pci_set_drvdata(pdev, dev);
1650
1651 if (eeprom_missing)
1652 printk(" EEPROM not present,");
1653 for (i = 0; i < 6; i++)
1654 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
1655 printk(", IRQ %d.\n", irq);
1656
1657 if (tp->chip_id == PNIC2)
1658 tp->link_change = pnic2_lnk_change;
1659 else if (tp->flags & HAS_NWAY)
1660 tp->link_change = t21142_lnk_change;
1661 else if (tp->flags & HAS_PNICNWAY)
1662 tp->link_change = pnic_lnk_change;
1663
1664 /* Reset the xcvr interface and turn on heartbeat. */
1665 switch (chip_idx) {
1666 case DC21140:
1667 case DM910X:
1668 default:
1669 if (tp->mtable)
1670 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1671 break;
1672 case DC21142:
1673 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1674 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1675 iowrite32(0x0000, ioaddr + CSR13);
1676 iowrite32(0x0000, ioaddr + CSR14);
1677 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1678 } else
1679 t21142_start_nway(dev);
1680 break;
1681 case PNIC2:
1682 /* just do a reset for sanity sake */
1683 iowrite32(0x0000, ioaddr + CSR13);
1684 iowrite32(0x0000, ioaddr + CSR14);
1685 break;
1686 case LC82C168:
1687 if ( ! tp->mii_cnt) {
1688 tp->nway = 1;
1689 tp->nwayset = 0;
1690 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1691 iowrite32(0x30, ioaddr + CSR12);
1692 iowrite32(0x0001F078, ioaddr + CSR6);
1693 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1694 }
1695 break;
1696 case MX98713:
1697 case COMPEX9881:
1698 iowrite32(0x00000000, ioaddr + CSR6);
1699 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1700 iowrite32(0x00000001, ioaddr + CSR13);
1701 break;
1702 case MX98715:
1703 case MX98725:
1704 iowrite32(0x01a80000, ioaddr + CSR6);
1705 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1706 iowrite32(0x00001000, ioaddr + CSR12);
1707 break;
1708 case COMET:
1709 /* No initialization necessary. */
1710 break;
1711 }
1712
1713 /* put the chip in snooze mode until opened */
1714 tulip_set_power_state (tp, 0, 1);
1715
1716 return 0;
1717
1718 err_out_free_ring:
1719 pci_free_consistent (pdev,
1720 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1721 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1722 tp->rx_ring, tp->rx_ring_dma);
1723
1724 err_out_mtable:
1725 kfree (tp->mtable);
1726 pci_iounmap(pdev, ioaddr);
1727
1728 err_out_free_res:
1729 pci_release_regions (pdev);
1730
1731 err_out_free_netdev:
1732 free_netdev (dev);
1733 return -ENODEV;
1734 }
1735
1736
1737 #ifdef CONFIG_PM
1738
1739 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1740 {
1741 struct net_device *dev = pci_get_drvdata(pdev);
1742
1743 if (!dev)
1744 return -EINVAL;
1745
1746 if (netif_running(dev))
1747 tulip_down(dev);
1748
1749 netif_device_detach(dev);
1750 free_irq(dev->irq, dev);
1751
1752 pci_save_state(pdev);
1753 pci_disable_device(pdev);
1754 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1755
1756 return 0;
1757 }
1758
1759
1760 static int tulip_resume(struct pci_dev *pdev)
1761 {
1762 struct net_device *dev = pci_get_drvdata(pdev);
1763 int retval;
1764
1765 if (!dev)
1766 return -EINVAL;
1767
1768 pci_set_power_state(pdev, PCI_D0);
1769 pci_restore_state(pdev);
1770
1771 pci_enable_device(pdev);
1772
1773 if ((retval = request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, dev->name, dev))) {
1774 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1775 return retval;
1776 }
1777
1778 netif_device_attach(dev);
1779
1780 if (netif_running(dev))
1781 tulip_up(dev);
1782
1783 return 0;
1784 }
1785
1786 #endif /* CONFIG_PM */
1787
1788
1789 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1790 {
1791 struct net_device *dev = pci_get_drvdata (pdev);
1792 struct tulip_private *tp;
1793
1794 if (!dev)
1795 return;
1796
1797 tp = netdev_priv(dev);
1798 unregister_netdev(dev);
1799 pci_free_consistent (pdev,
1800 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1801 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1802 tp->rx_ring, tp->rx_ring_dma);
1803 kfree (tp->mtable);
1804 pci_iounmap(pdev, tp->base_addr);
1805 free_netdev (dev);
1806 pci_release_regions (pdev);
1807 pci_set_drvdata (pdev, NULL);
1808
1809 /* pci_power_off (pdev, -1); */
1810 }
1811
1812 #ifdef CONFIG_NET_POLL_CONTROLLER
1813 /*
1814 * Polling 'interrupt' - used by things like netconsole to send skbs
1815 * without having to re-enable interrupts. It's not called while
1816 * the interrupt routine is executing.
1817 */
1818
1819 static void poll_tulip (struct net_device *dev)
1820 {
1821 /* disable_irq here is not very nice, but with the lockless
1822 interrupt handler we have no other choice. */
1823 disable_irq(dev->irq);
1824 tulip_interrupt (dev->irq, dev, NULL);
1825 enable_irq(dev->irq);
1826 }
1827 #endif
1828
1829 static struct pci_driver tulip_driver = {
1830 .name = DRV_NAME,
1831 .id_table = tulip_pci_tbl,
1832 .probe = tulip_init_one,
1833 .remove = __devexit_p(tulip_remove_one),
1834 #ifdef CONFIG_PM
1835 .suspend = tulip_suspend,
1836 .resume = tulip_resume,
1837 #endif /* CONFIG_PM */
1838 };
1839
1840
1841 static int __init tulip_init (void)
1842 {
1843 #ifdef MODULE
1844 printk (KERN_INFO "%s", version);
1845 #endif
1846
1847 /* copy module parms into globals */
1848 tulip_rx_copybreak = rx_copybreak;
1849 tulip_max_interrupt_work = max_interrupt_work;
1850
1851 /* probe for and init boards */
1852 return pci_module_init (&tulip_driver);
1853 }
1854
1855
1856 static void __exit tulip_cleanup (void)
1857 {
1858 pci_unregister_driver (&tulip_driver);
1859 }
1860
1861
1862 module_init(tulip_init);
1863 module_exit(tulip_cleanup);