]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/tulip/tulip_core.c
Merge branch 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / tulip / tulip_core.c
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
2
3 /*
4 Maintained by Jeff Garzik <jgarzik@pobox.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
7
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
10
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
14
15 */
16
17 #include <linux/config.h>
18
19 #define DRV_NAME "tulip"
20 #ifdef CONFIG_TULIP_NAPI
21 #define DRV_VERSION "1.1.13-NAPI" /* Keep at least for test */
22 #else
23 #define DRV_VERSION "1.1.13"
24 #endif
25 #define DRV_RELDATE "May 11, 2002"
26
27
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include "tulip.h"
31 #include <linux/init.h>
32 #include <linux/etherdevice.h>
33 #include <linux/delay.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <asm/unaligned.h>
38 #include <asm/uaccess.h>
39
40 #ifdef __sparc__
41 #include <asm/pbm.h>
42 #endif
43
44 static char version[] __devinitdata =
45 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
46
47
48 /* A few user-configurable values. */
49
50 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
51 static unsigned int max_interrupt_work = 25;
52
53 #define MAX_UNITS 8
54 /* Used to pass the full-duplex flag, etc. */
55 static int full_duplex[MAX_UNITS];
56 static int options[MAX_UNITS];
57 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
58
59 /* The possible media types that can be set in options[] are: */
60 const char * const medianame[32] = {
61 "10baseT", "10base2", "AUI", "100baseTx",
62 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
63 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
64 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
65 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
66 "","","","", "","","","", "","","","Transceiver reset",
67 };
68
69 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
70 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
71 || defined(__sparc_) || defined(__ia64__) \
72 || defined(__sh__) || defined(__mips__)
73 static int rx_copybreak = 1518;
74 #else
75 static int rx_copybreak = 100;
76 #endif
77
78 /*
79 Set the bus performance register.
80 Typical: Set 16 longword cache alignment, no burst limit.
81 Cache alignment bits 15:14 Burst length 13:8
82 0000 No alignment 0x00000000 unlimited 0800 8 longwords
83 4000 8 longwords 0100 1 longword 1000 16 longwords
84 8000 16 longwords 0200 2 longwords 2000 32 longwords
85 C000 32 longwords 0400 4 longwords
86 Warning: many older 486 systems are broken and require setting 0x00A04800
87 8 longword cache alignment, 8 longword burst.
88 ToDo: Non-Intel setting could be better.
89 */
90
91 #if defined(__alpha__) || defined(__ia64__)
92 static int csr0 = 0x01A00000 | 0xE000;
93 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
94 static int csr0 = 0x01A00000 | 0x8000;
95 #elif defined(__sparc__) || defined(__hppa__)
96 /* The UltraSparc PCI controllers will disconnect at every 64-byte
97 * crossing anyways so it makes no sense to tell Tulip to burst
98 * any more than that.
99 */
100 static int csr0 = 0x01A00000 | 0x9000;
101 #elif defined(__arm__) || defined(__sh__)
102 static int csr0 = 0x01A00000 | 0x4800;
103 #elif defined(__mips__)
104 static int csr0 = 0x00200000 | 0x4000;
105 #else
106 #warning Processor architecture undefined!
107 static int csr0 = 0x00A00000 | 0x4800;
108 #endif
109
110 /* Operational parameters that usually are not changed. */
111 /* Time in jiffies before concluding the transmitter is hung. */
112 #define TX_TIMEOUT (4*HZ)
113
114
115 MODULE_AUTHOR("The Linux Kernel Team");
116 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
117 MODULE_LICENSE("GPL");
118 MODULE_VERSION(DRV_VERSION);
119 module_param(tulip_debug, int, 0);
120 module_param(max_interrupt_work, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param(csr0, int, 0);
123 module_param_array(options, int, NULL, 0);
124 module_param_array(full_duplex, int, NULL, 0);
125
126 #define PFX DRV_NAME ": "
127
128 #ifdef TULIP_DEBUG
129 int tulip_debug = TULIP_DEBUG;
130 #else
131 int tulip_debug = 1;
132 #endif
133
134
135
136 /*
137 * This table use during operation for capabilities and media timer.
138 *
139 * It is indexed via the values in 'enum chips'
140 */
141
142 struct tulip_chip_table tulip_tbl[] = {
143 { }, /* placeholder for array, slot unused currently */
144 { }, /* placeholder for array, slot unused currently */
145
146 /* DC21140 */
147 { "Digital DS21140 Tulip", 128, 0x0001ebef,
148 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer },
149
150 /* DC21142, DC21143 */
151 { "Digital DS21143 Tulip", 128, 0x0801fbff,
152 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
153 | HAS_INTR_MITIGATION | HAS_PCI_MWI, t21142_timer },
154
155 /* LC82C168 */
156 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
157 HAS_MII | HAS_PNICNWAY, pnic_timer },
158
159 /* MX98713 */
160 { "Macronix 98713 PMAC", 128, 0x0001ebef,
161 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
162
163 /* MX98715 */
164 { "Macronix 98715 PMAC", 256, 0x0001ebef,
165 HAS_MEDIA_TABLE, mxic_timer },
166
167 /* MX98725 */
168 { "Macronix 98725 PMAC", 256, 0x0001ebef,
169 HAS_MEDIA_TABLE, mxic_timer },
170
171 /* AX88140 */
172 { "ASIX AX88140", 128, 0x0001fbff,
173 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
174 | IS_ASIX, tulip_timer },
175
176 /* PNIC2 */
177 { "Lite-On PNIC-II", 256, 0x0801fbff,
178 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer },
179
180 /* COMET */
181 { "ADMtek Comet", 256, 0x0001abef,
182 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer },
183
184 /* COMPEX9881 */
185 { "Compex 9881 PMAC", 128, 0x0001ebef,
186 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
187
188 /* I21145 */
189 { "Intel DS21145 Tulip", 128, 0x0801fbff,
190 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
191 | HAS_NWAY | HAS_PCI_MWI, t21142_timer },
192
193 /* DM910X */
194 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
195 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
196 tulip_timer },
197
198 /* RS7112 */
199 { "Conexant LANfinity", 256, 0x0001ebef,
200 HAS_MII | HAS_ACPI, tulip_timer },
201
202 };
203
204
205 static struct pci_device_id tulip_pci_tbl[] = {
206 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
207 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
208 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
209 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
210 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
211 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
212 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
213 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
214 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
215 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
216 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
217 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
218 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
219 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
225 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
226 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
227 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
228 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
230 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
232 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
233 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
234 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
235 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
240 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
241 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
242 { } /* terminate list */
243 };
244 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
245
246
247 /* A full-duplex map for media types. */
248 const char tulip_media_cap[32] =
249 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
250
251 static void tulip_tx_timeout(struct net_device *dev);
252 static void tulip_init_ring(struct net_device *dev);
253 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
254 static int tulip_open(struct net_device *dev);
255 static int tulip_close(struct net_device *dev);
256 static void tulip_up(struct net_device *dev);
257 static void tulip_down(struct net_device *dev);
258 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
259 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
260 static void set_rx_mode(struct net_device *dev);
261 #ifdef CONFIG_NET_POLL_CONTROLLER
262 static void poll_tulip(struct net_device *dev);
263 #endif
264
265 static void tulip_set_power_state (struct tulip_private *tp,
266 int sleep, int snooze)
267 {
268 if (tp->flags & HAS_ACPI) {
269 u32 tmp, newtmp;
270 pci_read_config_dword (tp->pdev, CFDD, &tmp);
271 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
272 if (sleep)
273 newtmp |= CFDD_Sleep;
274 else if (snooze)
275 newtmp |= CFDD_Snooze;
276 if (tmp != newtmp)
277 pci_write_config_dword (tp->pdev, CFDD, newtmp);
278 }
279
280 }
281
282
283 static void tulip_up(struct net_device *dev)
284 {
285 struct tulip_private *tp = netdev_priv(dev);
286 void __iomem *ioaddr = tp->base_addr;
287 int next_tick = 3*HZ;
288 int i;
289
290 /* Wake the chip from sleep/snooze mode. */
291 tulip_set_power_state (tp, 0, 0);
292
293 /* On some chip revs we must set the MII/SYM port before the reset!? */
294 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
295 iowrite32(0x00040000, ioaddr + CSR6);
296
297 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
298 iowrite32(0x00000001, ioaddr + CSR0);
299 udelay(100);
300
301 /* Deassert reset.
302 Wait the specified 50 PCI cycles after a reset by initializing
303 Tx and Rx queues and the address filter list. */
304 iowrite32(tp->csr0, ioaddr + CSR0);
305 udelay(100);
306
307 if (tulip_debug > 1)
308 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
309
310 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
311 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
312 tp->cur_rx = tp->cur_tx = 0;
313 tp->dirty_rx = tp->dirty_tx = 0;
314
315 if (tp->flags & MC_HASH_ONLY) {
316 u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr));
317 u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4)));
318 if (tp->chip_id == AX88140) {
319 iowrite32(0, ioaddr + CSR13);
320 iowrite32(addr_low, ioaddr + CSR14);
321 iowrite32(1, ioaddr + CSR13);
322 iowrite32(addr_high, ioaddr + CSR14);
323 } else if (tp->flags & COMET_MAC_ADDR) {
324 iowrite32(addr_low, ioaddr + 0xA4);
325 iowrite32(addr_high, ioaddr + 0xA8);
326 iowrite32(0, ioaddr + 0xAC);
327 iowrite32(0, ioaddr + 0xB0);
328 }
329 } else {
330 /* This is set_rx_mode(), but without starting the transmitter. */
331 u16 *eaddrs = (u16 *)dev->dev_addr;
332 u16 *setup_frm = &tp->setup_frame[15*6];
333 dma_addr_t mapping;
334
335 /* 21140 bug: you must add the broadcast address. */
336 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
337 /* Fill the final entry of the table with our physical address. */
338 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
339 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
340 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
341
342 mapping = pci_map_single(tp->pdev, tp->setup_frame,
343 sizeof(tp->setup_frame),
344 PCI_DMA_TODEVICE);
345 tp->tx_buffers[tp->cur_tx].skb = NULL;
346 tp->tx_buffers[tp->cur_tx].mapping = mapping;
347
348 /* Put the setup frame on the Tx list. */
349 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
350 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
351 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
352
353 tp->cur_tx++;
354 }
355
356 tp->saved_if_port = dev->if_port;
357 if (dev->if_port == 0)
358 dev->if_port = tp->default_port;
359
360 /* Allow selecting a default media. */
361 i = 0;
362 if (tp->mtable == NULL)
363 goto media_picked;
364 if (dev->if_port) {
365 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
366 (dev->if_port == 12 ? 0 : dev->if_port);
367 for (i = 0; i < tp->mtable->leafcount; i++)
368 if (tp->mtable->mleaf[i].media == looking_for) {
369 printk(KERN_INFO "%s: Using user-specified media %s.\n",
370 dev->name, medianame[dev->if_port]);
371 goto media_picked;
372 }
373 }
374 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
375 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
376 for (i = 0; i < tp->mtable->leafcount; i++)
377 if (tp->mtable->mleaf[i].media == looking_for) {
378 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
379 dev->name, medianame[looking_for]);
380 goto media_picked;
381 }
382 }
383 /* Start sensing first non-full-duplex media. */
384 for (i = tp->mtable->leafcount - 1;
385 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
386 ;
387 media_picked:
388
389 tp->csr6 = 0;
390 tp->cur_index = i;
391 tp->nwayset = 0;
392
393 if (dev->if_port) {
394 if (tp->chip_id == DC21143 &&
395 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
396 /* We must reset the media CSRs when we force-select MII mode. */
397 iowrite32(0x0000, ioaddr + CSR13);
398 iowrite32(0x0000, ioaddr + CSR14);
399 iowrite32(0x0008, ioaddr + CSR15);
400 }
401 tulip_select_media(dev, 1);
402 } else if (tp->chip_id == DC21142) {
403 if (tp->mii_cnt) {
404 tulip_select_media(dev, 1);
405 if (tulip_debug > 1)
406 printk(KERN_INFO "%s: Using MII transceiver %d, status "
407 "%4.4x.\n",
408 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
409 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
410 tp->csr6 = csr6_mask_hdcap;
411 dev->if_port = 11;
412 iowrite32(0x0000, ioaddr + CSR13);
413 iowrite32(0x0000, ioaddr + CSR14);
414 } else
415 t21142_start_nway(dev);
416 } else if (tp->chip_id == PNIC2) {
417 /* for initial startup advertise 10/100 Full and Half */
418 tp->sym_advertise = 0x01E0;
419 /* enable autonegotiate end interrupt */
420 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
421 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
422 pnic2_start_nway(dev);
423 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
424 if (tp->mii_cnt) {
425 dev->if_port = 11;
426 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
427 iowrite32(0x0001, ioaddr + CSR15);
428 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
429 pnic_do_nway(dev);
430 else {
431 /* Start with 10mbps to do autonegotiation. */
432 iowrite32(0x32, ioaddr + CSR12);
433 tp->csr6 = 0x00420000;
434 iowrite32(0x0001B078, ioaddr + 0xB8);
435 iowrite32(0x0201B078, ioaddr + 0xB8);
436 next_tick = 1*HZ;
437 }
438 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
439 && ! tp->medialock) {
440 dev->if_port = 0;
441 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
442 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
443 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
444 /* Provided by BOLO, Macronix - 12/10/1998. */
445 dev->if_port = 0;
446 tp->csr6 = 0x01a80200;
447 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
448 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
449 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
450 /* Enable automatic Tx underrun recovery. */
451 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
452 dev->if_port = tp->mii_cnt ? 11 : 0;
453 tp->csr6 = 0x00040000;
454 } else if (tp->chip_id == AX88140) {
455 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
456 } else
457 tulip_select_media(dev, 1);
458
459 /* Start the chip's Tx to process setup frame. */
460 tulip_stop_rxtx(tp);
461 barrier();
462 udelay(5);
463 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
464
465 /* Enable interrupts by setting the interrupt mask. */
466 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
467 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
468 tulip_start_rxtx(tp);
469 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
470
471 if (tulip_debug > 2) {
472 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
473 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
474 ioread32(ioaddr + CSR6));
475 }
476
477 /* Set the timer to switch to check for link beat and perhaps switch
478 to an alternate media type. */
479 tp->timer.expires = RUN_AT(next_tick);
480 add_timer(&tp->timer);
481 #ifdef CONFIG_TULIP_NAPI
482 init_timer(&tp->oom_timer);
483 tp->oom_timer.data = (unsigned long)dev;
484 tp->oom_timer.function = oom_timer;
485 #endif
486 }
487
488 static int
489 tulip_open(struct net_device *dev)
490 {
491 int retval;
492
493 if ((retval = request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, dev->name, dev)))
494 return retval;
495
496 tulip_init_ring (dev);
497
498 tulip_up (dev);
499
500 netif_start_queue (dev);
501
502 return 0;
503 }
504
505
506 static void tulip_tx_timeout(struct net_device *dev)
507 {
508 struct tulip_private *tp = netdev_priv(dev);
509 void __iomem *ioaddr = tp->base_addr;
510 unsigned long flags;
511
512 spin_lock_irqsave (&tp->lock, flags);
513
514 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
515 /* Do nothing -- the media monitor should handle this. */
516 if (tulip_debug > 1)
517 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
518 dev->name);
519 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
520 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
521 || tp->chip_id == DM910X) {
522 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
523 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
524 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
525 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
526 if ( ! tp->medialock && tp->mtable) {
527 do
528 --tp->cur_index;
529 while (tp->cur_index >= 0
530 && (tulip_media_cap[tp->mtable->mleaf[tp->cur_index].media]
531 & MediaIsFD));
532 if (--tp->cur_index < 0) {
533 /* We start again, but should instead look for default. */
534 tp->cur_index = tp->mtable->leafcount - 1;
535 }
536 tulip_select_media(dev, 0);
537 printk(KERN_WARNING "%s: transmit timed out, switching to %s "
538 "media.\n", dev->name, medianame[dev->if_port]);
539 }
540 } else if (tp->chip_id == PNIC2) {
541 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
542 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
543 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
544 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
545 } else {
546 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
547 "%8.8x, resetting...\n",
548 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
549 dev->if_port = 0;
550 }
551
552 #if defined(way_too_many_messages)
553 if (tulip_debug > 3) {
554 int i;
555 for (i = 0; i < RX_RING_SIZE; i++) {
556 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
557 int j;
558 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
559 "%2.2x %2.2x %2.2x.\n",
560 i, (unsigned int)tp->rx_ring[i].status,
561 (unsigned int)tp->rx_ring[i].length,
562 (unsigned int)tp->rx_ring[i].buffer1,
563 (unsigned int)tp->rx_ring[i].buffer2,
564 buf[0], buf[1], buf[2]);
565 for (j = 0; buf[j] != 0xee && j < 1600; j++)
566 if (j < 100) printk(" %2.2x", buf[j]);
567 printk(" j=%d.\n", j);
568 }
569 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
570 for (i = 0; i < RX_RING_SIZE; i++)
571 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
572 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
573 for (i = 0; i < TX_RING_SIZE; i++)
574 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
575 printk("\n");
576 }
577 #endif
578
579 /* Stop and restart the chip's Tx processes . */
580
581 tulip_restart_rxtx(tp);
582 /* Trigger an immediate transmit demand. */
583 iowrite32(0, ioaddr + CSR1);
584
585 tp->stats.tx_errors++;
586
587 spin_unlock_irqrestore (&tp->lock, flags);
588 dev->trans_start = jiffies;
589 netif_wake_queue (dev);
590 }
591
592
593 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
594 static void tulip_init_ring(struct net_device *dev)
595 {
596 struct tulip_private *tp = netdev_priv(dev);
597 int i;
598
599 tp->susp_rx = 0;
600 tp->ttimer = 0;
601 tp->nir = 0;
602
603 for (i = 0; i < RX_RING_SIZE; i++) {
604 tp->rx_ring[i].status = 0x00000000;
605 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
606 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
607 tp->rx_buffers[i].skb = NULL;
608 tp->rx_buffers[i].mapping = 0;
609 }
610 /* Mark the last entry as wrapping the ring. */
611 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
612 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
613
614 for (i = 0; i < RX_RING_SIZE; i++) {
615 dma_addr_t mapping;
616
617 /* Note the receive buffer must be longword aligned.
618 dev_alloc_skb() provides 16 byte alignment. But do *not*
619 use skb_reserve() to align the IP header! */
620 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
621 tp->rx_buffers[i].skb = skb;
622 if (skb == NULL)
623 break;
624 mapping = pci_map_single(tp->pdev, skb->data,
625 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
626 tp->rx_buffers[i].mapping = mapping;
627 skb->dev = dev; /* Mark as being used by this device. */
628 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
629 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
630 }
631 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
632
633 /* The Tx buffer descriptor is filled in as needed, but we
634 do need to clear the ownership bit. */
635 for (i = 0; i < TX_RING_SIZE; i++) {
636 tp->tx_buffers[i].skb = NULL;
637 tp->tx_buffers[i].mapping = 0;
638 tp->tx_ring[i].status = 0x00000000;
639 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
640 }
641 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
642 }
643
644 static int
645 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
646 {
647 struct tulip_private *tp = netdev_priv(dev);
648 int entry;
649 u32 flag;
650 dma_addr_t mapping;
651
652 spin_lock_irq(&tp->lock);
653
654 /* Calculate the next Tx descriptor entry. */
655 entry = tp->cur_tx % TX_RING_SIZE;
656
657 tp->tx_buffers[entry].skb = skb;
658 mapping = pci_map_single(tp->pdev, skb->data,
659 skb->len, PCI_DMA_TODEVICE);
660 tp->tx_buffers[entry].mapping = mapping;
661 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
662
663 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
664 flag = 0x60000000; /* No interrupt */
665 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
666 flag = 0xe0000000; /* Tx-done intr. */
667 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
668 flag = 0x60000000; /* No Tx-done intr. */
669 } else { /* Leave room for set_rx_mode() to fill entries. */
670 flag = 0xe0000000; /* Tx-done intr. */
671 netif_stop_queue(dev);
672 }
673 if (entry == TX_RING_SIZE-1)
674 flag = 0xe0000000 | DESC_RING_WRAP;
675
676 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
677 /* if we were using Transmit Automatic Polling, we would need a
678 * wmb() here. */
679 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
680 wmb();
681
682 tp->cur_tx++;
683
684 /* Trigger an immediate transmit demand. */
685 iowrite32(0, tp->base_addr + CSR1);
686
687 spin_unlock_irq(&tp->lock);
688
689 dev->trans_start = jiffies;
690
691 return 0;
692 }
693
694 static void tulip_clean_tx_ring(struct tulip_private *tp)
695 {
696 unsigned int dirty_tx;
697
698 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
699 dirty_tx++) {
700 int entry = dirty_tx % TX_RING_SIZE;
701 int status = le32_to_cpu(tp->tx_ring[entry].status);
702
703 if (status < 0) {
704 tp->stats.tx_errors++; /* It wasn't Txed */
705 tp->tx_ring[entry].status = 0;
706 }
707
708 /* Check for Tx filter setup frames. */
709 if (tp->tx_buffers[entry].skb == NULL) {
710 /* test because dummy frames not mapped */
711 if (tp->tx_buffers[entry].mapping)
712 pci_unmap_single(tp->pdev,
713 tp->tx_buffers[entry].mapping,
714 sizeof(tp->setup_frame),
715 PCI_DMA_TODEVICE);
716 continue;
717 }
718
719 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
720 tp->tx_buffers[entry].skb->len,
721 PCI_DMA_TODEVICE);
722
723 /* Free the original skb. */
724 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
725 tp->tx_buffers[entry].skb = NULL;
726 tp->tx_buffers[entry].mapping = 0;
727 }
728 }
729
730 static void tulip_down (struct net_device *dev)
731 {
732 struct tulip_private *tp = netdev_priv(dev);
733 void __iomem *ioaddr = tp->base_addr;
734 unsigned long flags;
735
736 del_timer_sync (&tp->timer);
737 #ifdef CONFIG_TULIP_NAPI
738 del_timer_sync (&tp->oom_timer);
739 #endif
740 spin_lock_irqsave (&tp->lock, flags);
741
742 /* Disable interrupts by clearing the interrupt mask. */
743 iowrite32 (0x00000000, ioaddr + CSR7);
744
745 /* Stop the Tx and Rx processes. */
746 tulip_stop_rxtx(tp);
747
748 /* prepare receive buffers */
749 tulip_refill_rx(dev);
750
751 /* release any unconsumed transmit buffers */
752 tulip_clean_tx_ring(tp);
753
754 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
755 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
756
757 spin_unlock_irqrestore (&tp->lock, flags);
758
759 init_timer(&tp->timer);
760 tp->timer.data = (unsigned long)dev;
761 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
762
763 dev->if_port = tp->saved_if_port;
764
765 /* Leave the driver in snooze, not sleep, mode. */
766 tulip_set_power_state (tp, 0, 1);
767 }
768
769
770 static int tulip_close (struct net_device *dev)
771 {
772 struct tulip_private *tp = netdev_priv(dev);
773 void __iomem *ioaddr = tp->base_addr;
774 int i;
775
776 netif_stop_queue (dev);
777
778 tulip_down (dev);
779
780 if (tulip_debug > 1)
781 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
782 dev->name, ioread32 (ioaddr + CSR5));
783
784 free_irq (dev->irq, dev);
785
786 /* Free all the skbuffs in the Rx queue. */
787 for (i = 0; i < RX_RING_SIZE; i++) {
788 struct sk_buff *skb = tp->rx_buffers[i].skb;
789 dma_addr_t mapping = tp->rx_buffers[i].mapping;
790
791 tp->rx_buffers[i].skb = NULL;
792 tp->rx_buffers[i].mapping = 0;
793
794 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
795 tp->rx_ring[i].length = 0;
796 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
797 if (skb) {
798 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
799 PCI_DMA_FROMDEVICE);
800 dev_kfree_skb (skb);
801 }
802 }
803 for (i = 0; i < TX_RING_SIZE; i++) {
804 struct sk_buff *skb = tp->tx_buffers[i].skb;
805
806 if (skb != NULL) {
807 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
808 skb->len, PCI_DMA_TODEVICE);
809 dev_kfree_skb (skb);
810 }
811 tp->tx_buffers[i].skb = NULL;
812 tp->tx_buffers[i].mapping = 0;
813 }
814
815 return 0;
816 }
817
818 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
819 {
820 struct tulip_private *tp = netdev_priv(dev);
821 void __iomem *ioaddr = tp->base_addr;
822
823 if (netif_running(dev)) {
824 unsigned long flags;
825
826 spin_lock_irqsave (&tp->lock, flags);
827
828 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
829
830 spin_unlock_irqrestore(&tp->lock, flags);
831 }
832
833 return &tp->stats;
834 }
835
836
837 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
838 {
839 struct tulip_private *np = netdev_priv(dev);
840 strcpy(info->driver, DRV_NAME);
841 strcpy(info->version, DRV_VERSION);
842 strcpy(info->bus_info, pci_name(np->pdev));
843 }
844
845 static struct ethtool_ops ops = {
846 .get_drvinfo = tulip_get_drvinfo
847 };
848
849 /* Provide ioctl() calls to examine the MII xcvr state. */
850 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
851 {
852 struct tulip_private *tp = netdev_priv(dev);
853 void __iomem *ioaddr = tp->base_addr;
854 struct mii_ioctl_data *data = if_mii(rq);
855 const unsigned int phy_idx = 0;
856 int phy = tp->phys[phy_idx] & 0x1f;
857 unsigned int regnum = data->reg_num;
858
859 switch (cmd) {
860 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
861 if (tp->mii_cnt)
862 data->phy_id = phy;
863 else if (tp->flags & HAS_NWAY)
864 data->phy_id = 32;
865 else if (tp->chip_id == COMET)
866 data->phy_id = 1;
867 else
868 return -ENODEV;
869
870 case SIOCGMIIREG: /* Read MII PHY register. */
871 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
872 int csr12 = ioread32 (ioaddr + CSR12);
873 int csr14 = ioread32 (ioaddr + CSR14);
874 switch (regnum) {
875 case 0:
876 if (((csr14<<5) & 0x1000) ||
877 (dev->if_port == 5 && tp->nwayset))
878 data->val_out = 0x1000;
879 else
880 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
881 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
882 break;
883 case 1:
884 data->val_out =
885 0x1848 +
886 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
887 ((csr12&0x06) == 6 ? 0 : 4);
888 data->val_out |= 0x6048;
889 break;
890 case 4:
891 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
892 data->val_out =
893 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
894 ((csr14 >> 1) & 0x20) + 1;
895 data->val_out |= ((csr14 >> 9) & 0x03C0);
896 break;
897 case 5: data->val_out = tp->lpar; break;
898 default: data->val_out = 0; break;
899 }
900 } else {
901 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
902 }
903 return 0;
904
905 case SIOCSMIIREG: /* Write MII PHY register. */
906 if (!capable (CAP_NET_ADMIN))
907 return -EPERM;
908 if (regnum & ~0x1f)
909 return -EINVAL;
910 if (data->phy_id == phy) {
911 u16 value = data->val_in;
912 switch (regnum) {
913 case 0: /* Check for autonegotiation on or reset. */
914 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
915 if (tp->full_duplex_lock)
916 tp->full_duplex = (value & 0x0100) ? 1 : 0;
917 break;
918 case 4:
919 tp->advertising[phy_idx] =
920 tp->mii_advertise = data->val_in;
921 break;
922 }
923 }
924 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
925 u16 value = data->val_in;
926 if (regnum == 0) {
927 if ((value & 0x1200) == 0x1200) {
928 if (tp->chip_id == PNIC2) {
929 pnic2_start_nway (dev);
930 } else {
931 t21142_start_nway (dev);
932 }
933 }
934 } else if (regnum == 4)
935 tp->sym_advertise = value;
936 } else {
937 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
938 }
939 return 0;
940 default:
941 return -EOPNOTSUPP;
942 }
943
944 return -EOPNOTSUPP;
945 }
946
947
948 /* Set or clear the multicast filter for this adaptor.
949 Note that we only use exclusion around actually queueing the
950 new frame, not around filling tp->setup_frame. This is non-deterministic
951 when re-entered but still correct. */
952
953 #undef set_bit_le
954 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
955
956 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
957 {
958 struct tulip_private *tp = netdev_priv(dev);
959 u16 hash_table[32];
960 struct dev_mc_list *mclist;
961 int i;
962 u16 *eaddrs;
963
964 memset(hash_table, 0, sizeof(hash_table));
965 set_bit_le(255, hash_table); /* Broadcast entry */
966 /* This should work on big-endian machines as well. */
967 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
968 i++, mclist = mclist->next) {
969 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
970
971 set_bit_le(index, hash_table);
972
973 }
974 for (i = 0; i < 32; i++) {
975 *setup_frm++ = hash_table[i];
976 *setup_frm++ = hash_table[i];
977 }
978 setup_frm = &tp->setup_frame[13*6];
979
980 /* Fill the final entry with our physical address. */
981 eaddrs = (u16 *)dev->dev_addr;
982 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
983 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
984 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
985 }
986
987 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
988 {
989 struct tulip_private *tp = netdev_priv(dev);
990 struct dev_mc_list *mclist;
991 int i;
992 u16 *eaddrs;
993
994 /* We have <= 14 addresses so we can use the wonderful
995 16 address perfect filtering of the Tulip. */
996 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
997 i++, mclist = mclist->next) {
998 eaddrs = (u16 *)mclist->dmi_addr;
999 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1000 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1001 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1002 }
1003 /* Fill the unused entries with the broadcast address. */
1004 memset(setup_frm, 0xff, (15-i)*12);
1005 setup_frm = &tp->setup_frame[15*6];
1006
1007 /* Fill the final entry with our physical address. */
1008 eaddrs = (u16 *)dev->dev_addr;
1009 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1010 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1011 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1012 }
1013
1014
1015 static void set_rx_mode(struct net_device *dev)
1016 {
1017 struct tulip_private *tp = netdev_priv(dev);
1018 void __iomem *ioaddr = tp->base_addr;
1019 int csr6;
1020
1021 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1022
1023 tp->csr6 &= ~0x00D5;
1024 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1025 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1026 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1027 /* Unconditionally log net taps. */
1028 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1029 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1030 /* Too many to filter well -- accept all multicasts. */
1031 tp->csr6 |= AcceptAllMulticast;
1032 csr6 |= AcceptAllMulticast;
1033 } else if (tp->flags & MC_HASH_ONLY) {
1034 /* Some work-alikes have only a 64-entry hash filter table. */
1035 /* Should verify correctness on big-endian/__powerpc__ */
1036 struct dev_mc_list *mclist;
1037 int i;
1038 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1039 tp->csr6 |= AcceptAllMulticast;
1040 csr6 |= AcceptAllMulticast;
1041 } else {
1042 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1043 int filterbit;
1044 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1045 i++, mclist = mclist->next) {
1046 if (tp->flags & COMET_MAC_ADDR)
1047 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1048 else
1049 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1050 filterbit &= 0x3f;
1051 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1052 if (tulip_debug > 2) {
1053 printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
1054 "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
1055 mclist->dmi_addr[0], mclist->dmi_addr[1],
1056 mclist->dmi_addr[2], mclist->dmi_addr[3],
1057 mclist->dmi_addr[4], mclist->dmi_addr[5],
1058 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1059 }
1060 }
1061 if (mc_filter[0] == tp->mc_filter[0] &&
1062 mc_filter[1] == tp->mc_filter[1])
1063 ; /* No change. */
1064 else if (tp->flags & IS_ASIX) {
1065 iowrite32(2, ioaddr + CSR13);
1066 iowrite32(mc_filter[0], ioaddr + CSR14);
1067 iowrite32(3, ioaddr + CSR13);
1068 iowrite32(mc_filter[1], ioaddr + CSR14);
1069 } else if (tp->flags & COMET_MAC_ADDR) {
1070 iowrite32(mc_filter[0], ioaddr + 0xAC);
1071 iowrite32(mc_filter[1], ioaddr + 0xB0);
1072 }
1073 tp->mc_filter[0] = mc_filter[0];
1074 tp->mc_filter[1] = mc_filter[1];
1075 }
1076 } else {
1077 unsigned long flags;
1078 u32 tx_flags = 0x08000000 | 192;
1079
1080 /* Note that only the low-address shortword of setup_frame is valid!
1081 The values are doubled for big-endian architectures. */
1082 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1083 build_setup_frame_hash(tp->setup_frame, dev);
1084 tx_flags = 0x08400000 | 192;
1085 } else {
1086 build_setup_frame_perfect(tp->setup_frame, dev);
1087 }
1088
1089 spin_lock_irqsave(&tp->lock, flags);
1090
1091 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1092 /* Same setup recently queued, we need not add it. */
1093 } else {
1094 unsigned int entry;
1095 int dummy = -1;
1096
1097 /* Now add this frame to the Tx list. */
1098
1099 entry = tp->cur_tx++ % TX_RING_SIZE;
1100
1101 if (entry != 0) {
1102 /* Avoid a chip errata by prefixing a dummy entry. */
1103 tp->tx_buffers[entry].skb = NULL;
1104 tp->tx_buffers[entry].mapping = 0;
1105 tp->tx_ring[entry].length =
1106 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1107 tp->tx_ring[entry].buffer1 = 0;
1108 /* Must set DescOwned later to avoid race with chip */
1109 dummy = entry;
1110 entry = tp->cur_tx++ % TX_RING_SIZE;
1111
1112 }
1113
1114 tp->tx_buffers[entry].skb = NULL;
1115 tp->tx_buffers[entry].mapping =
1116 pci_map_single(tp->pdev, tp->setup_frame,
1117 sizeof(tp->setup_frame),
1118 PCI_DMA_TODEVICE);
1119 /* Put the setup frame on the Tx list. */
1120 if (entry == TX_RING_SIZE-1)
1121 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1122 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1123 tp->tx_ring[entry].buffer1 =
1124 cpu_to_le32(tp->tx_buffers[entry].mapping);
1125 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1126 if (dummy >= 0)
1127 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1128 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1129 netif_stop_queue(dev);
1130
1131 /* Trigger an immediate transmit demand. */
1132 iowrite32(0, ioaddr + CSR1);
1133 }
1134
1135 spin_unlock_irqrestore(&tp->lock, flags);
1136 }
1137
1138 iowrite32(csr6, ioaddr + CSR6);
1139 }
1140
1141 #ifdef CONFIG_TULIP_MWI
1142 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1143 struct net_device *dev)
1144 {
1145 struct tulip_private *tp = netdev_priv(dev);
1146 u8 cache;
1147 u16 pci_command;
1148 u32 csr0;
1149
1150 if (tulip_debug > 3)
1151 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1152
1153 tp->csr0 = csr0 = 0;
1154
1155 /* if we have any cache line size at all, we can do MRM */
1156 csr0 |= MRM;
1157
1158 /* ...and barring hardware bugs, MWI */
1159 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1160 csr0 |= MWI;
1161
1162 /* set or disable MWI in the standard PCI command bit.
1163 * Check for the case where mwi is desired but not available
1164 */
1165 if (csr0 & MWI) pci_set_mwi(pdev);
1166 else pci_clear_mwi(pdev);
1167
1168 /* read result from hardware (in case bit refused to enable) */
1169 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1170 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1171 csr0 &= ~MWI;
1172
1173 /* if cache line size hardwired to zero, no MWI */
1174 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1175 if ((csr0 & MWI) && (cache == 0)) {
1176 csr0 &= ~MWI;
1177 pci_clear_mwi(pdev);
1178 }
1179
1180 /* assign per-cacheline-size cache alignment and
1181 * burst length values
1182 */
1183 switch (cache) {
1184 case 8:
1185 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1186 break;
1187 case 16:
1188 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1189 break;
1190 case 32:
1191 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1192 break;
1193 default:
1194 cache = 0;
1195 break;
1196 }
1197
1198 /* if we have a good cache line size, we by now have a good
1199 * csr0, so save it and exit
1200 */
1201 if (cache)
1202 goto out;
1203
1204 /* we don't have a good csr0 or cache line size, disable MWI */
1205 if (csr0 & MWI) {
1206 pci_clear_mwi(pdev);
1207 csr0 &= ~MWI;
1208 }
1209
1210 /* sane defaults for burst length and cache alignment
1211 * originally from de4x5 driver
1212 */
1213 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1214
1215 out:
1216 tp->csr0 = csr0;
1217 if (tulip_debug > 2)
1218 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1219 pci_name(pdev), cache, csr0);
1220 }
1221 #endif
1222
1223 /*
1224 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1225 * is the DM910X and the on chip ULi devices
1226 */
1227
1228 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1229 {
1230 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1231 return 1;
1232 return 0;
1233 }
1234
1235 static int __devinit tulip_init_one (struct pci_dev *pdev,
1236 const struct pci_device_id *ent)
1237 {
1238 struct tulip_private *tp;
1239 /* See note below on the multiport cards. */
1240 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1241 static struct pci_device_id early_486_chipsets[] = {
1242 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1243 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1244 { },
1245 };
1246 static int last_irq;
1247 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1248 u8 chip_rev;
1249 int i, irq;
1250 unsigned short sum;
1251 unsigned char *ee_data;
1252 struct net_device *dev;
1253 void __iomem *ioaddr;
1254 static int board_idx = -1;
1255 int chip_idx = ent->driver_data;
1256 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1257 unsigned int eeprom_missing = 0;
1258 unsigned int force_csr0 = 0;
1259
1260 #ifndef MODULE
1261 static int did_version; /* Already printed version info. */
1262 if (tulip_debug > 0 && did_version++ == 0)
1263 printk (KERN_INFO "%s", version);
1264 #endif
1265
1266 board_idx++;
1267
1268 /*
1269 * Lan media wire a tulip chip to a wan interface. Needs a very
1270 * different driver (lmc driver)
1271 */
1272
1273 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1274 printk (KERN_ERR PFX "skipping LMC card.\n");
1275 return -ENODEV;
1276 }
1277
1278 /*
1279 * Early DM9100's need software CRC and the DMFE driver
1280 */
1281
1282 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1283 {
1284 u32 dev_rev;
1285 /* Read Chip revision */
1286 pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev);
1287 if(dev_rev < 0x02000030)
1288 {
1289 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1290 return -ENODEV;
1291 }
1292 }
1293
1294 /*
1295 * Looks for early PCI chipsets where people report hangs
1296 * without the workarounds being on.
1297 */
1298
1299 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1300 aligned. Aries might need this too. The Saturn errata are not
1301 pretty reading but thankfully it's an old 486 chipset.
1302
1303 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1304 Saturn.
1305 */
1306
1307 if (pci_dev_present(early_486_chipsets)) {
1308 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1309 force_csr0 = 1;
1310 }
1311
1312 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1313 if (chip_idx == AX88140) {
1314 if ((csr0 & 0x3f00) == 0)
1315 csr0 |= 0x2000;
1316 }
1317
1318 /* PNIC doesn't have MWI/MRL/MRM... */
1319 if (chip_idx == LC82C168)
1320 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1321
1322 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1323 if (tulip_uli_dm_quirk(pdev)) {
1324 csr0 &= ~0x01f100ff;
1325 #if defined(__sparc__)
1326 csr0 = (csr0 & ~0xff00) | 0xe000;
1327 #endif
1328 }
1329 /*
1330 * And back to business
1331 */
1332
1333 i = pci_enable_device(pdev);
1334 if (i) {
1335 printk (KERN_ERR PFX
1336 "Cannot enable tulip board #%d, aborting\n",
1337 board_idx);
1338 return i;
1339 }
1340
1341 irq = pdev->irq;
1342
1343 /* alloc_etherdev ensures aligned and zeroed private structures */
1344 dev = alloc_etherdev (sizeof (*tp));
1345 if (!dev) {
1346 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1347 return -ENOMEM;
1348 }
1349
1350 SET_MODULE_OWNER(dev);
1351 SET_NETDEV_DEV(dev, &pdev->dev);
1352 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1353 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1354 "aborting\n", pci_name(pdev),
1355 (unsigned long long)pci_resource_len (pdev, 0),
1356 (unsigned long long)pci_resource_start (pdev, 0));
1357 goto err_out_free_netdev;
1358 }
1359
1360 /* grab all resources from both PIO and MMIO regions, as we
1361 * don't want anyone else messing around with our hardware */
1362 if (pci_request_regions (pdev, "tulip"))
1363 goto err_out_free_netdev;
1364
1365 #ifndef USE_IO_OPS
1366 ioaddr = pci_iomap(pdev, 1, tulip_tbl[chip_idx].io_size);
1367 #else
1368 ioaddr = pci_iomap(pdev, 0, tulip_tbl[chip_idx].io_size);
1369 #endif
1370 if (!ioaddr)
1371 goto err_out_free_res;
1372
1373 pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev);
1374
1375 /*
1376 * initialize private data structure 'tp'
1377 * it is zeroed and aligned in alloc_etherdev
1378 */
1379 tp = netdev_priv(dev);
1380
1381 tp->rx_ring = pci_alloc_consistent(pdev,
1382 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1383 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1384 &tp->rx_ring_dma);
1385 if (!tp->rx_ring)
1386 goto err_out_mtable;
1387 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1388 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1389
1390 tp->chip_id = chip_idx;
1391 tp->flags = tulip_tbl[chip_idx].flags;
1392 tp->pdev = pdev;
1393 tp->base_addr = ioaddr;
1394 tp->revision = chip_rev;
1395 tp->csr0 = csr0;
1396 spin_lock_init(&tp->lock);
1397 spin_lock_init(&tp->mii_lock);
1398 init_timer(&tp->timer);
1399 tp->timer.data = (unsigned long)dev;
1400 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1401
1402 dev->base_addr = (unsigned long)ioaddr;
1403
1404 #ifdef CONFIG_TULIP_MWI
1405 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1406 tulip_mwi_config (pdev, dev);
1407 #else
1408 /* MWI is broken for DC21143 rev 65... */
1409 if (chip_idx == DC21143 && chip_rev == 65)
1410 tp->csr0 &= ~MWI;
1411 #endif
1412
1413 /* Stop the chip's Tx and Rx processes. */
1414 tulip_stop_rxtx(tp);
1415
1416 pci_set_master(pdev);
1417
1418 #ifdef CONFIG_GSC
1419 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1420 switch (pdev->subsystem_device) {
1421 default:
1422 break;
1423 case 0x1061:
1424 case 0x1062:
1425 case 0x1063:
1426 case 0x1098:
1427 case 0x1099:
1428 case 0x10EE:
1429 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1430 chip_name = "GSC DS21140 Tulip";
1431 }
1432 }
1433 #endif
1434
1435 /* Clear the missed-packet counter. */
1436 ioread32(ioaddr + CSR8);
1437
1438 /* The station address ROM is read byte serially. The register must
1439 be polled, waiting for the value to be read bit serially from the
1440 EEPROM.
1441 */
1442 ee_data = tp->eeprom;
1443 sum = 0;
1444 if (chip_idx == LC82C168) {
1445 for (i = 0; i < 3; i++) {
1446 int value, boguscnt = 100000;
1447 iowrite32(0x600 | i, ioaddr + 0x98);
1448 do
1449 value = ioread32(ioaddr + CSR9);
1450 while (value < 0 && --boguscnt > 0);
1451 put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
1452 sum += value & 0xffff;
1453 }
1454 } else if (chip_idx == COMET) {
1455 /* No need to read the EEPROM. */
1456 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
1457 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4));
1458 for (i = 0; i < 6; i ++)
1459 sum += dev->dev_addr[i];
1460 } else {
1461 /* A serial EEPROM interface, we read now and sort it out later. */
1462 int sa_offset = 0;
1463 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1464
1465 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1466 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1467 ee_data[i] = data & 0xff;
1468 ee_data[i + 1] = data >> 8;
1469 }
1470
1471 /* DEC now has a specification (see Notes) but early board makers
1472 just put the address in the first EEPROM locations. */
1473 /* This does memcmp(ee_data, ee_data+16, 8) */
1474 for (i = 0; i < 8; i ++)
1475 if (ee_data[i] != ee_data[16+i])
1476 sa_offset = 20;
1477 if (chip_idx == CONEXANT) {
1478 /* Check that the tuple type and length is correct. */
1479 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1480 sa_offset = 0x19A;
1481 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1482 ee_data[2] == 0) {
1483 sa_offset = 2; /* Grrr, damn Matrox boards. */
1484 multiport_cnt = 4;
1485 }
1486 #ifdef CONFIG_DDB5477
1487 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
1488 /* DDB5477 MAC address in first EEPROM locations. */
1489 sa_offset = 0;
1490 /* No media table either */
1491 tp->flags &= ~HAS_MEDIA_TABLE;
1492 }
1493 #endif
1494 #ifdef CONFIG_MIPS_COBALT
1495 if ((pdev->bus->number == 0) &&
1496 ((PCI_SLOT(pdev->devfn) == 7) ||
1497 (PCI_SLOT(pdev->devfn) == 12))) {
1498 /* Cobalt MAC address in first EEPROM locations. */
1499 sa_offset = 0;
1500 /* Ensure our media table fixup get's applied */
1501 memcpy(ee_data + 16, ee_data, 8);
1502 }
1503 #endif
1504 #ifdef CONFIG_GSC
1505 /* Check to see if we have a broken srom */
1506 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1507 /* pci_vendor_id and subsystem_id are swapped */
1508 ee_data[0] = ee_data[2];
1509 ee_data[1] = ee_data[3];
1510 ee_data[2] = 0x61;
1511 ee_data[3] = 0x10;
1512
1513 /* HSC-PCI boards need to be byte-swaped and shifted
1514 * up 1 word. This shift needs to happen at the end
1515 * of the MAC first because of the 2 byte overlap.
1516 */
1517 for (i = 4; i >= 0; i -= 2) {
1518 ee_data[17 + i + 3] = ee_data[17 + i];
1519 ee_data[16 + i + 5] = ee_data[16 + i];
1520 }
1521 }
1522 #endif
1523
1524 for (i = 0; i < 6; i ++) {
1525 dev->dev_addr[i] = ee_data[i + sa_offset];
1526 sum += ee_data[i + sa_offset];
1527 }
1528 }
1529 /* Lite-On boards have the address byte-swapped. */
1530 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1531 && dev->dev_addr[1] == 0x00)
1532 for (i = 0; i < 6; i+=2) {
1533 char tmp = dev->dev_addr[i];
1534 dev->dev_addr[i] = dev->dev_addr[i+1];
1535 dev->dev_addr[i+1] = tmp;
1536 }
1537 /* On the Zynx 315 Etherarray and other multiport boards only the
1538 first Tulip has an EEPROM.
1539 On Sparc systems the mac address is held in the OBP property
1540 "local-mac-address".
1541 The addresses of the subsequent ports are derived from the first.
1542 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1543 that here as well. */
1544 if (sum == 0 || sum == 6*0xff) {
1545 #if defined(__sparc__)
1546 struct pcidev_cookie *pcp = pdev->sysdata;
1547 #endif
1548 eeprom_missing = 1;
1549 for (i = 0; i < 5; i++)
1550 dev->dev_addr[i] = last_phys_addr[i];
1551 dev->dev_addr[i] = last_phys_addr[i] + 1;
1552 #if defined(__sparc__)
1553 if (pcp) {
1554 unsigned char *addr;
1555 int len;
1556
1557 addr = of_get_property(pcp->prom_node,
1558 "local-mac-address", &len);
1559 if (addr && len == 6)
1560 memcpy(dev->dev_addr, addr, 6);
1561 }
1562 #endif
1563 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1564 if (last_irq)
1565 irq = last_irq;
1566 #endif
1567 }
1568
1569 for (i = 0; i < 6; i++)
1570 last_phys_addr[i] = dev->dev_addr[i];
1571 last_irq = irq;
1572 dev->irq = irq;
1573
1574 /* The lower four bits are the media type. */
1575 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1576 if (options[board_idx] & MEDIA_MASK)
1577 tp->default_port = options[board_idx] & MEDIA_MASK;
1578 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1579 tp->full_duplex = 1;
1580 if (mtu[board_idx] > 0)
1581 dev->mtu = mtu[board_idx];
1582 }
1583 if (dev->mem_start & MEDIA_MASK)
1584 tp->default_port = dev->mem_start & MEDIA_MASK;
1585 if (tp->default_port) {
1586 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1587 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1588 tp->medialock = 1;
1589 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1590 tp->full_duplex = 1;
1591 }
1592 if (tp->full_duplex)
1593 tp->full_duplex_lock = 1;
1594
1595 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1596 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1597 tp->mii_advertise = media2advert[tp->default_port - 9];
1598 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1599 }
1600
1601 if (tp->flags & HAS_MEDIA_TABLE) {
1602 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1603 tulip_parse_eeprom(dev);
1604 strcpy(dev->name, "eth%d"); /* un-hack */
1605 }
1606
1607 if ((tp->flags & ALWAYS_CHECK_MII) ||
1608 (tp->mtable && tp->mtable->has_mii) ||
1609 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1610 if (tp->mtable && tp->mtable->has_mii) {
1611 for (i = 0; i < tp->mtable->leafcount; i++)
1612 if (tp->mtable->mleaf[i].media == 11) {
1613 tp->cur_index = i;
1614 tp->saved_if_port = dev->if_port;
1615 tulip_select_media(dev, 2);
1616 dev->if_port = tp->saved_if_port;
1617 break;
1618 }
1619 }
1620
1621 /* Find the connected MII xcvrs.
1622 Doing this in open() would allow detecting external xcvrs
1623 later, but takes much time. */
1624 tulip_find_mii (dev, board_idx);
1625 }
1626
1627 /* The Tulip-specific entries in the device structure. */
1628 dev->open = tulip_open;
1629 dev->hard_start_xmit = tulip_start_xmit;
1630 dev->tx_timeout = tulip_tx_timeout;
1631 dev->watchdog_timeo = TX_TIMEOUT;
1632 #ifdef CONFIG_TULIP_NAPI
1633 dev->poll = tulip_poll;
1634 dev->weight = 16;
1635 #endif
1636 dev->stop = tulip_close;
1637 dev->get_stats = tulip_get_stats;
1638 dev->do_ioctl = private_ioctl;
1639 dev->set_multicast_list = set_rx_mode;
1640 #ifdef CONFIG_NET_POLL_CONTROLLER
1641 dev->poll_controller = &poll_tulip;
1642 #endif
1643 SET_ETHTOOL_OPS(dev, &ops);
1644
1645 if (register_netdev(dev))
1646 goto err_out_free_ring;
1647
1648 printk(KERN_INFO "%s: %s rev %d at %p,",
1649 dev->name, chip_name, chip_rev, ioaddr);
1650 pci_set_drvdata(pdev, dev);
1651
1652 if (eeprom_missing)
1653 printk(" EEPROM not present,");
1654 for (i = 0; i < 6; i++)
1655 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
1656 printk(", IRQ %d.\n", irq);
1657
1658 if (tp->chip_id == PNIC2)
1659 tp->link_change = pnic2_lnk_change;
1660 else if (tp->flags & HAS_NWAY)
1661 tp->link_change = t21142_lnk_change;
1662 else if (tp->flags & HAS_PNICNWAY)
1663 tp->link_change = pnic_lnk_change;
1664
1665 /* Reset the xcvr interface and turn on heartbeat. */
1666 switch (chip_idx) {
1667 case DC21140:
1668 case DM910X:
1669 default:
1670 if (tp->mtable)
1671 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1672 break;
1673 case DC21142:
1674 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1675 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1676 iowrite32(0x0000, ioaddr + CSR13);
1677 iowrite32(0x0000, ioaddr + CSR14);
1678 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1679 } else
1680 t21142_start_nway(dev);
1681 break;
1682 case PNIC2:
1683 /* just do a reset for sanity sake */
1684 iowrite32(0x0000, ioaddr + CSR13);
1685 iowrite32(0x0000, ioaddr + CSR14);
1686 break;
1687 case LC82C168:
1688 if ( ! tp->mii_cnt) {
1689 tp->nway = 1;
1690 tp->nwayset = 0;
1691 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1692 iowrite32(0x30, ioaddr + CSR12);
1693 iowrite32(0x0001F078, ioaddr + CSR6);
1694 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1695 }
1696 break;
1697 case MX98713:
1698 case COMPEX9881:
1699 iowrite32(0x00000000, ioaddr + CSR6);
1700 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1701 iowrite32(0x00000001, ioaddr + CSR13);
1702 break;
1703 case MX98715:
1704 case MX98725:
1705 iowrite32(0x01a80000, ioaddr + CSR6);
1706 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1707 iowrite32(0x00001000, ioaddr + CSR12);
1708 break;
1709 case COMET:
1710 /* No initialization necessary. */
1711 break;
1712 }
1713
1714 /* put the chip in snooze mode until opened */
1715 tulip_set_power_state (tp, 0, 1);
1716
1717 return 0;
1718
1719 err_out_free_ring:
1720 pci_free_consistent (pdev,
1721 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1722 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1723 tp->rx_ring, tp->rx_ring_dma);
1724
1725 err_out_mtable:
1726 kfree (tp->mtable);
1727 pci_iounmap(pdev, ioaddr);
1728
1729 err_out_free_res:
1730 pci_release_regions (pdev);
1731
1732 err_out_free_netdev:
1733 free_netdev (dev);
1734 return -ENODEV;
1735 }
1736
1737
1738 #ifdef CONFIG_PM
1739
1740 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1741 {
1742 struct net_device *dev = pci_get_drvdata(pdev);
1743
1744 if (!dev)
1745 return -EINVAL;
1746
1747 if (netif_running(dev))
1748 tulip_down(dev);
1749
1750 netif_device_detach(dev);
1751 free_irq(dev->irq, dev);
1752
1753 pci_save_state(pdev);
1754 pci_disable_device(pdev);
1755 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1756
1757 return 0;
1758 }
1759
1760
1761 static int tulip_resume(struct pci_dev *pdev)
1762 {
1763 struct net_device *dev = pci_get_drvdata(pdev);
1764 int retval;
1765
1766 if (!dev)
1767 return -EINVAL;
1768
1769 pci_set_power_state(pdev, PCI_D0);
1770 pci_restore_state(pdev);
1771
1772 pci_enable_device(pdev);
1773
1774 if ((retval = request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, dev->name, dev))) {
1775 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1776 return retval;
1777 }
1778
1779 netif_device_attach(dev);
1780
1781 if (netif_running(dev))
1782 tulip_up(dev);
1783
1784 return 0;
1785 }
1786
1787 #endif /* CONFIG_PM */
1788
1789
1790 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1791 {
1792 struct net_device *dev = pci_get_drvdata (pdev);
1793 struct tulip_private *tp;
1794
1795 if (!dev)
1796 return;
1797
1798 tp = netdev_priv(dev);
1799 unregister_netdev(dev);
1800 pci_free_consistent (pdev,
1801 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1802 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1803 tp->rx_ring, tp->rx_ring_dma);
1804 kfree (tp->mtable);
1805 pci_iounmap(pdev, tp->base_addr);
1806 free_netdev (dev);
1807 pci_release_regions (pdev);
1808 pci_set_drvdata (pdev, NULL);
1809
1810 /* pci_power_off (pdev, -1); */
1811 }
1812
1813 #ifdef CONFIG_NET_POLL_CONTROLLER
1814 /*
1815 * Polling 'interrupt' - used by things like netconsole to send skbs
1816 * without having to re-enable interrupts. It's not called while
1817 * the interrupt routine is executing.
1818 */
1819
1820 static void poll_tulip (struct net_device *dev)
1821 {
1822 /* disable_irq here is not very nice, but with the lockless
1823 interrupt handler we have no other choice. */
1824 disable_irq(dev->irq);
1825 tulip_interrupt (dev->irq, dev, NULL);
1826 enable_irq(dev->irq);
1827 }
1828 #endif
1829
1830 static struct pci_driver tulip_driver = {
1831 .name = DRV_NAME,
1832 .id_table = tulip_pci_tbl,
1833 .probe = tulip_init_one,
1834 .remove = __devexit_p(tulip_remove_one),
1835 #ifdef CONFIG_PM
1836 .suspend = tulip_suspend,
1837 .resume = tulip_resume,
1838 #endif /* CONFIG_PM */
1839 };
1840
1841
1842 static int __init tulip_init (void)
1843 {
1844 #ifdef MODULE
1845 printk (KERN_INFO "%s", version);
1846 #endif
1847
1848 /* copy module parms into globals */
1849 tulip_rx_copybreak = rx_copybreak;
1850 tulip_max_interrupt_work = max_interrupt_work;
1851
1852 /* probe for and init boards */
1853 return pci_module_init (&tulip_driver);
1854 }
1855
1856
1857 static void __exit tulip_cleanup (void)
1858 {
1859 pci_unregister_driver (&tulip_driver);
1860 }
1861
1862
1863 module_init(tulip_init);
1864 module_exit(tulip_cleanup);