]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/via-rhine.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / net / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
35
36
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
42
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
46 defined(CONFIG_SPARC) || defined(__ia64__) || \
47 defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
52
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
56
57 /*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
65
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
77
78 /* Operational parameters that usually are not changed. */
79
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
82
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/interrupt.h>
93 #include <linux/pci.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/netdevice.h>
96 #include <linux/etherdevice.h>
97 #include <linux/skbuff.h>
98 #include <linux/init.h>
99 #include <linux/delay.h>
100 #include <linux/mii.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <linux/workqueue.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
110
111 /* These identify the driver base version and may not be removed. */
112 static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
115
116 /* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118 #ifdef CONFIG_VIA_RHINE_MMIO
119 #define USE_MMIO
120 #else
121 #endif
122
123 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125 MODULE_LICENSE("GPL");
126
127 module_param(max_interrupt_work, int, 0);
128 module_param(debug, int, 0);
129 module_param(rx_copybreak, int, 0);
130 module_param(avoid_D3, bool, 0);
131 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
134 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
135
136 /*
137 Theory of Operation
138
139 I. Board Compatibility
140
141 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
142 controller.
143
144 II. Board-specific settings
145
146 Boards with this chip are functional only in a bus-master PCI slot.
147
148 Many operational settings are loaded from the EEPROM to the Config word at
149 offset 0x78. For most of these settings, this driver assumes that they are
150 correct.
151 If this driver is compiled to use PCI memory space operations the EEPROM
152 must be configured to enable memory ops.
153
154 III. Driver operation
155
156 IIIa. Ring buffers
157
158 This driver uses two statically allocated fixed-size descriptor lists
159 formed into rings by a branch from the final descriptor to the beginning of
160 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
161
162 IIIb/c. Transmit/Receive Structure
163
164 This driver attempts to use a zero-copy receive and transmit scheme.
165
166 Alas, all data buffers are required to start on a 32 bit boundary, so
167 the driver must often copy transmit packets into bounce buffers.
168
169 The driver allocates full frame size skbuffs for the Rx ring buffers at
170 open() time and passes the skb->data field to the chip as receive data
171 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172 a fresh skbuff is allocated and the frame is copied to the new skbuff.
173 When the incoming frame is larger, the skbuff is passed directly up the
174 protocol stack. Buffers consumed this way are replaced by newly allocated
175 skbuffs in the last phase of rhine_rx().
176
177 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178 using a full-sized skbuff for small frames vs. the copying costs of larger
179 frames. New boards are typically used in generously configured machines
180 and the underfilled buffers have negligible impact compared to the benefit of
181 a single allocation size, so the default value of zero results in never
182 copying packets. When copying is done, the cost is usually mitigated by using
183 a combined copy/checksum routine. Copying also preloads the cache, which is
184 most useful with small frames.
185
186 Since the VIA chips are only able to transfer data to buffers on 32 bit
187 boundaries, the IP header at offset 14 in an ethernet frame isn't
188 longword aligned for further processing. Copying these unaligned buffers
189 has the beneficial effect of 16-byte aligning the IP header.
190
191 IIId. Synchronization
192
193 The driver runs as two independent, single-threaded flows of control. One
194 is the send-packet routine, which enforces single-threaded use by the
195 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196 which is single threaded by the hardware and interrupt handling software.
197
198 The send packet thread has partial control over the Tx ring. It locks the
199 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200 the ring is not available it stops the transmit queue by
201 calling netif_stop_queue.
202
203 The interrupt handler has exclusive control over the Rx ring and records stats
204 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205 empty by incrementing the dirty_tx mark. If at least half of the entries in
206 the Rx ring are available the transmit queue is woken up if it was stopped.
207
208 IV. Notes
209
210 IVb. References
211
212 Preliminary VT86C100A manual from http://www.via.com.tw/
213 http://www.scyld.com/expert/100mbps.html
214 http://www.scyld.com/expert/NWay.html
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
217
218
219 IVc. Errata
220
221 The VT86C100A manual is not reliable information.
222 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223 in significant performance degradation for bounce buffer copies on transmit
224 and unaligned IP headers on receive.
225 The chip does not pad to minimum transmit length.
226
227 */
228
229
230 /* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
234 */
235
236 enum rhine_revs {
237 VT86C100A = 0x00,
238 VTunknown0 = 0x20,
239 VT6102 = 0x40,
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
244 VTunknown1 = 0x7C,
245 VT6105 = 0x80,
246 VT6105_B0 = 0x83,
247 VT6105L = 0x8A,
248 VT6107 = 0x8C,
249 VTunknown2 = 0x8E,
250 VT6105M = 0x90, /* Management adapter */
251 };
252
253 enum rhine_quirks {
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
259 };
260 /*
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
264 */
265
266 /* Beware of PCI posted writes */
267 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
268
269 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
274 { } /* terminate list */
275 };
276 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
277
278
279 /* Offsets to the device registers. */
280 enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 ChipCmd1=0x09,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
294 };
295
296 /* Bits in ConfigD */
297 enum backoff_bits {
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
300 };
301
302 #ifdef USE_MMIO
303 /* Registers we check that mmio and reg are the same. */
304 static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
306 0
307 };
308 #endif
309
310 /* Bits in the interrupt status/mask registers. */
311 enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrPCIErr=0x0040,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrRxWakeUp=0x8000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
322 };
323
324 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
325 enum wol_bits {
326 WOLucast = 0x10,
327 WOLmagic = 0x20,
328 WOLbmcast = 0x30,
329 WOLlnkon = 0x40,
330 WOLlnkoff = 0x80,
331 };
332
333 /* The Rx and Tx buffer descriptors. */
334 struct rx_desc {
335 __le32 rx_status;
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
337 __le32 addr;
338 __le32 next_desc;
339 };
340 struct tx_desc {
341 __le32 tx_status;
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
343 __le32 addr;
344 __le32 next_desc;
345 };
346
347 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348 #define TXDESC 0x00e08000
349
350 enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
352 };
353
354 /* Bits in *_desc.*_status */
355 enum desc_status_bits {
356 DescOwn=0x80000000
357 };
358
359 /* Bits in ChipCmd. */
360 enum chip_cmd_bits {
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
365 };
366
367 struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
373
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
377
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
381
382 /* Tx bounce buffers (Rhine-I only) */
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
386
387 struct pci_dev *pdev;
388 long pioaddr;
389 struct net_device *dev;
390 struct napi_struct napi;
391 spinlock_t lock;
392 struct work_struct reset_task;
393
394 /* Frequently used values: keep some adjacent for cache effect. */
395 u32 quirks;
396 struct rx_desc *rx_head_desc;
397 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
398 unsigned int cur_tx, dirty_tx;
399 unsigned int rx_buf_sz; /* Based on MTU+slack. */
400 u8 wolopts;
401
402 u8 tx_thresh, rx_thresh;
403
404 struct mii_if_info mii_if;
405 void __iomem *base;
406 };
407
408 static int mdio_read(struct net_device *dev, int phy_id, int location);
409 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
410 static int rhine_open(struct net_device *dev);
411 static void rhine_reset_task(struct work_struct *work);
412 static void rhine_tx_timeout(struct net_device *dev);
413 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
414 struct net_device *dev);
415 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
416 static void rhine_tx(struct net_device *dev);
417 static int rhine_rx(struct net_device *dev, int limit);
418 static void rhine_error(struct net_device *dev, int intr_status);
419 static void rhine_set_rx_mode(struct net_device *dev);
420 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
421 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
422 static const struct ethtool_ops netdev_ethtool_ops;
423 static int rhine_close(struct net_device *dev);
424 static void rhine_shutdown (struct pci_dev *pdev);
425
426 #define RHINE_WAIT_FOR(condition) do { \
427 int i=1024; \
428 while (!(condition) && --i) \
429 ; \
430 if (debug > 1 && i < 512) \
431 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
432 DRV_NAME, 1024-i, __func__, __LINE__); \
433 } while(0)
434
435 static inline u32 get_intr_status(struct net_device *dev)
436 {
437 struct rhine_private *rp = netdev_priv(dev);
438 void __iomem *ioaddr = rp->base;
439 u32 intr_status;
440
441 intr_status = ioread16(ioaddr + IntrStatus);
442 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
443 if (rp->quirks & rqStatusWBRace)
444 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
445 return intr_status;
446 }
447
448 /*
449 * Get power related registers into sane state.
450 * Notify user about past WOL event.
451 */
452 static void rhine_power_init(struct net_device *dev)
453 {
454 struct rhine_private *rp = netdev_priv(dev);
455 void __iomem *ioaddr = rp->base;
456 u16 wolstat;
457
458 if (rp->quirks & rqWOL) {
459 /* Make sure chip is in power state D0 */
460 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
461
462 /* Disable "force PME-enable" */
463 iowrite8(0x80, ioaddr + WOLcgClr);
464
465 /* Clear power-event config bits (WOL) */
466 iowrite8(0xFF, ioaddr + WOLcrClr);
467 /* More recent cards can manage two additional patterns */
468 if (rp->quirks & rq6patterns)
469 iowrite8(0x03, ioaddr + WOLcrClr1);
470
471 /* Save power-event status bits */
472 wolstat = ioread8(ioaddr + PwrcsrSet);
473 if (rp->quirks & rq6patterns)
474 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
475
476 /* Clear power-event status bits */
477 iowrite8(0xFF, ioaddr + PwrcsrClr);
478 if (rp->quirks & rq6patterns)
479 iowrite8(0x03, ioaddr + PwrcsrClr1);
480
481 if (wolstat) {
482 char *reason;
483 switch (wolstat) {
484 case WOLmagic:
485 reason = "Magic packet";
486 break;
487 case WOLlnkon:
488 reason = "Link went up";
489 break;
490 case WOLlnkoff:
491 reason = "Link went down";
492 break;
493 case WOLucast:
494 reason = "Unicast packet";
495 break;
496 case WOLbmcast:
497 reason = "Multicast/broadcast packet";
498 break;
499 default:
500 reason = "Unknown";
501 }
502 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
503 DRV_NAME, reason);
504 }
505 }
506 }
507
508 static void rhine_chip_reset(struct net_device *dev)
509 {
510 struct rhine_private *rp = netdev_priv(dev);
511 void __iomem *ioaddr = rp->base;
512
513 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
514 IOSYNC;
515
516 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
517 printk(KERN_INFO "%s: Reset not complete yet. "
518 "Trying harder.\n", DRV_NAME);
519
520 /* Force reset */
521 if (rp->quirks & rqForceReset)
522 iowrite8(0x40, ioaddr + MiscCmd);
523
524 /* Reset can take somewhat longer (rare) */
525 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
526 }
527
528 if (debug > 1)
529 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
530 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
531 "failed" : "succeeded");
532 }
533
534 #ifdef USE_MMIO
535 static void enable_mmio(long pioaddr, u32 quirks)
536 {
537 int n;
538 if (quirks & rqRhineI) {
539 /* More recent docs say that this bit is reserved ... */
540 n = inb(pioaddr + ConfigA) | 0x20;
541 outb(n, pioaddr + ConfigA);
542 } else {
543 n = inb(pioaddr + ConfigD) | 0x80;
544 outb(n, pioaddr + ConfigD);
545 }
546 }
547 #endif
548
549 /*
550 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
551 * (plus 0x6C for Rhine-I/II)
552 */
553 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
554 {
555 struct rhine_private *rp = netdev_priv(dev);
556 void __iomem *ioaddr = rp->base;
557
558 outb(0x20, pioaddr + MACRegEEcsr);
559 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
560
561 #ifdef USE_MMIO
562 /*
563 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
564 * MMIO. If reloading EEPROM was done first this could be avoided, but
565 * it is not known if that still works with the "win98-reboot" problem.
566 */
567 enable_mmio(pioaddr, rp->quirks);
568 #endif
569
570 /* Turn off EEPROM-controlled wake-up (magic packet) */
571 if (rp->quirks & rqWOL)
572 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
573
574 }
575
576 #ifdef CONFIG_NET_POLL_CONTROLLER
577 static void rhine_poll(struct net_device *dev)
578 {
579 disable_irq(dev->irq);
580 rhine_interrupt(dev->irq, (void *)dev);
581 enable_irq(dev->irq);
582 }
583 #endif
584
585 static int rhine_napipoll(struct napi_struct *napi, int budget)
586 {
587 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
588 struct net_device *dev = rp->dev;
589 void __iomem *ioaddr = rp->base;
590 int work_done;
591
592 work_done = rhine_rx(dev, budget);
593
594 if (work_done < budget) {
595 napi_complete(napi);
596
597 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
598 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
599 IntrTxDone | IntrTxError | IntrTxUnderrun |
600 IntrPCIErr | IntrStatsMax | IntrLinkChange,
601 ioaddr + IntrEnable);
602 }
603 return work_done;
604 }
605
606 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
607 {
608 struct rhine_private *rp = netdev_priv(dev);
609
610 /* Reset the chip to erase previous misconfiguration. */
611 rhine_chip_reset(dev);
612
613 /* Rhine-I needs extra time to recuperate before EEPROM reload */
614 if (rp->quirks & rqRhineI)
615 msleep(5);
616
617 /* Reload EEPROM controlled bytes cleared by soft reset */
618 rhine_reload_eeprom(pioaddr, dev);
619 }
620
621 static const struct net_device_ops rhine_netdev_ops = {
622 .ndo_open = rhine_open,
623 .ndo_stop = rhine_close,
624 .ndo_start_xmit = rhine_start_tx,
625 .ndo_get_stats = rhine_get_stats,
626 .ndo_set_multicast_list = rhine_set_rx_mode,
627 .ndo_change_mtu = eth_change_mtu,
628 .ndo_validate_addr = eth_validate_addr,
629 .ndo_set_mac_address = eth_mac_addr,
630 .ndo_do_ioctl = netdev_ioctl,
631 .ndo_tx_timeout = rhine_tx_timeout,
632 #ifdef CONFIG_NET_POLL_CONTROLLER
633 .ndo_poll_controller = rhine_poll,
634 #endif
635 };
636
637 static int __devinit rhine_init_one(struct pci_dev *pdev,
638 const struct pci_device_id *ent)
639 {
640 struct net_device *dev;
641 struct rhine_private *rp;
642 int i, rc;
643 u32 quirks;
644 long pioaddr;
645 long memaddr;
646 void __iomem *ioaddr;
647 int io_size, phy_id;
648 const char *name;
649 #ifdef USE_MMIO
650 int bar = 1;
651 #else
652 int bar = 0;
653 #endif
654
655 /* when built into the kernel, we only print version if device is found */
656 #ifndef MODULE
657 static int printed_version;
658 if (!printed_version++)
659 printk(version);
660 #endif
661
662 io_size = 256;
663 phy_id = 0;
664 quirks = 0;
665 name = "Rhine";
666 if (pdev->revision < VTunknown0) {
667 quirks = rqRhineI;
668 io_size = 128;
669 }
670 else if (pdev->revision >= VT6102) {
671 quirks = rqWOL | rqForceReset;
672 if (pdev->revision < VT6105) {
673 name = "Rhine II";
674 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
675 }
676 else {
677 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
678 if (pdev->revision >= VT6105_B0)
679 quirks |= rq6patterns;
680 if (pdev->revision < VT6105M)
681 name = "Rhine III";
682 else
683 name = "Rhine III (Management Adapter)";
684 }
685 }
686
687 rc = pci_enable_device(pdev);
688 if (rc)
689 goto err_out;
690
691 /* this should always be supported */
692 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
693 if (rc) {
694 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
695 "the card!?\n");
696 goto err_out;
697 }
698
699 /* sanity check */
700 if ((pci_resource_len(pdev, 0) < io_size) ||
701 (pci_resource_len(pdev, 1) < io_size)) {
702 rc = -EIO;
703 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
704 goto err_out;
705 }
706
707 pioaddr = pci_resource_start(pdev, 0);
708 memaddr = pci_resource_start(pdev, 1);
709
710 pci_set_master(pdev);
711
712 dev = alloc_etherdev(sizeof(struct rhine_private));
713 if (!dev) {
714 rc = -ENOMEM;
715 printk(KERN_ERR "alloc_etherdev failed\n");
716 goto err_out;
717 }
718 SET_NETDEV_DEV(dev, &pdev->dev);
719
720 rp = netdev_priv(dev);
721 rp->dev = dev;
722 rp->quirks = quirks;
723 rp->pioaddr = pioaddr;
724 rp->pdev = pdev;
725
726 rc = pci_request_regions(pdev, DRV_NAME);
727 if (rc)
728 goto err_out_free_netdev;
729
730 ioaddr = pci_iomap(pdev, bar, io_size);
731 if (!ioaddr) {
732 rc = -EIO;
733 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
734 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
735 goto err_out_free_res;
736 }
737
738 #ifdef USE_MMIO
739 enable_mmio(pioaddr, quirks);
740
741 /* Check that selected MMIO registers match the PIO ones */
742 i = 0;
743 while (mmio_verify_registers[i]) {
744 int reg = mmio_verify_registers[i++];
745 unsigned char a = inb(pioaddr+reg);
746 unsigned char b = readb(ioaddr+reg);
747 if (a != b) {
748 rc = -EIO;
749 printk(KERN_ERR "MMIO do not match PIO [%02x] "
750 "(%02x != %02x)\n", reg, a, b);
751 goto err_out_unmap;
752 }
753 }
754 #endif /* USE_MMIO */
755
756 dev->base_addr = (unsigned long)ioaddr;
757 rp->base = ioaddr;
758
759 /* Get chip registers into a sane state */
760 rhine_power_init(dev);
761 rhine_hw_init(dev, pioaddr);
762
763 for (i = 0; i < 6; i++)
764 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
765 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
766
767 if (!is_valid_ether_addr(dev->perm_addr)) {
768 rc = -EIO;
769 printk(KERN_ERR "Invalid MAC address\n");
770 goto err_out_unmap;
771 }
772
773 /* For Rhine-I/II, phy_id is loaded from EEPROM */
774 if (!phy_id)
775 phy_id = ioread8(ioaddr + 0x6C);
776
777 dev->irq = pdev->irq;
778
779 spin_lock_init(&rp->lock);
780 INIT_WORK(&rp->reset_task, rhine_reset_task);
781
782 rp->mii_if.dev = dev;
783 rp->mii_if.mdio_read = mdio_read;
784 rp->mii_if.mdio_write = mdio_write;
785 rp->mii_if.phy_id_mask = 0x1f;
786 rp->mii_if.reg_num_mask = 0x1f;
787
788 /* The chip-specific entries in the device structure. */
789 dev->netdev_ops = &rhine_netdev_ops;
790 dev->ethtool_ops = &netdev_ethtool_ops,
791 dev->watchdog_timeo = TX_TIMEOUT;
792
793 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
794
795 if (rp->quirks & rqRhineI)
796 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
797
798 /* dev->name not defined before register_netdev()! */
799 rc = register_netdev(dev);
800 if (rc)
801 goto err_out_unmap;
802
803 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
804 dev->name, name,
805 #ifdef USE_MMIO
806 memaddr,
807 #else
808 (long)ioaddr,
809 #endif
810 dev->dev_addr, pdev->irq);
811
812 pci_set_drvdata(pdev, dev);
813
814 {
815 u16 mii_cmd;
816 int mii_status = mdio_read(dev, phy_id, 1);
817 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
818 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
819 if (mii_status != 0xffff && mii_status != 0x0000) {
820 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
821 printk(KERN_INFO "%s: MII PHY found at address "
822 "%d, status 0x%4.4x advertising %4.4x "
823 "Link %4.4x.\n", dev->name, phy_id,
824 mii_status, rp->mii_if.advertising,
825 mdio_read(dev, phy_id, 5));
826
827 /* set IFF_RUNNING */
828 if (mii_status & BMSR_LSTATUS)
829 netif_carrier_on(dev);
830 else
831 netif_carrier_off(dev);
832
833 }
834 }
835 rp->mii_if.phy_id = phy_id;
836 if (debug > 1 && avoid_D3)
837 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
838 dev->name);
839
840 return 0;
841
842 err_out_unmap:
843 pci_iounmap(pdev, ioaddr);
844 err_out_free_res:
845 pci_release_regions(pdev);
846 err_out_free_netdev:
847 free_netdev(dev);
848 err_out:
849 return rc;
850 }
851
852 static int alloc_ring(struct net_device* dev)
853 {
854 struct rhine_private *rp = netdev_priv(dev);
855 void *ring;
856 dma_addr_t ring_dma;
857
858 ring = pci_alloc_consistent(rp->pdev,
859 RX_RING_SIZE * sizeof(struct rx_desc) +
860 TX_RING_SIZE * sizeof(struct tx_desc),
861 &ring_dma);
862 if (!ring) {
863 printk(KERN_ERR "Could not allocate DMA memory.\n");
864 return -ENOMEM;
865 }
866 if (rp->quirks & rqRhineI) {
867 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
868 PKT_BUF_SZ * TX_RING_SIZE,
869 &rp->tx_bufs_dma);
870 if (rp->tx_bufs == NULL) {
871 pci_free_consistent(rp->pdev,
872 RX_RING_SIZE * sizeof(struct rx_desc) +
873 TX_RING_SIZE * sizeof(struct tx_desc),
874 ring, ring_dma);
875 return -ENOMEM;
876 }
877 }
878
879 rp->rx_ring = ring;
880 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
881 rp->rx_ring_dma = ring_dma;
882 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
883
884 return 0;
885 }
886
887 static void free_ring(struct net_device* dev)
888 {
889 struct rhine_private *rp = netdev_priv(dev);
890
891 pci_free_consistent(rp->pdev,
892 RX_RING_SIZE * sizeof(struct rx_desc) +
893 TX_RING_SIZE * sizeof(struct tx_desc),
894 rp->rx_ring, rp->rx_ring_dma);
895 rp->tx_ring = NULL;
896
897 if (rp->tx_bufs)
898 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
899 rp->tx_bufs, rp->tx_bufs_dma);
900
901 rp->tx_bufs = NULL;
902
903 }
904
905 static void alloc_rbufs(struct net_device *dev)
906 {
907 struct rhine_private *rp = netdev_priv(dev);
908 dma_addr_t next;
909 int i;
910
911 rp->dirty_rx = rp->cur_rx = 0;
912
913 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
914 rp->rx_head_desc = &rp->rx_ring[0];
915 next = rp->rx_ring_dma;
916
917 /* Init the ring entries */
918 for (i = 0; i < RX_RING_SIZE; i++) {
919 rp->rx_ring[i].rx_status = 0;
920 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
921 next += sizeof(struct rx_desc);
922 rp->rx_ring[i].next_desc = cpu_to_le32(next);
923 rp->rx_skbuff[i] = NULL;
924 }
925 /* Mark the last entry as wrapping the ring. */
926 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
927
928 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
929 for (i = 0; i < RX_RING_SIZE; i++) {
930 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
931 rp->rx_skbuff[i] = skb;
932 if (skb == NULL)
933 break;
934 skb->dev = dev; /* Mark as being used by this device. */
935
936 rp->rx_skbuff_dma[i] =
937 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
938 PCI_DMA_FROMDEVICE);
939
940 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
941 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
942 }
943 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
944 }
945
946 static void free_rbufs(struct net_device* dev)
947 {
948 struct rhine_private *rp = netdev_priv(dev);
949 int i;
950
951 /* Free all the skbuffs in the Rx queue. */
952 for (i = 0; i < RX_RING_SIZE; i++) {
953 rp->rx_ring[i].rx_status = 0;
954 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
955 if (rp->rx_skbuff[i]) {
956 pci_unmap_single(rp->pdev,
957 rp->rx_skbuff_dma[i],
958 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
959 dev_kfree_skb(rp->rx_skbuff[i]);
960 }
961 rp->rx_skbuff[i] = NULL;
962 }
963 }
964
965 static void alloc_tbufs(struct net_device* dev)
966 {
967 struct rhine_private *rp = netdev_priv(dev);
968 dma_addr_t next;
969 int i;
970
971 rp->dirty_tx = rp->cur_tx = 0;
972 next = rp->tx_ring_dma;
973 for (i = 0; i < TX_RING_SIZE; i++) {
974 rp->tx_skbuff[i] = NULL;
975 rp->tx_ring[i].tx_status = 0;
976 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
977 next += sizeof(struct tx_desc);
978 rp->tx_ring[i].next_desc = cpu_to_le32(next);
979 if (rp->quirks & rqRhineI)
980 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
981 }
982 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
983
984 }
985
986 static void free_tbufs(struct net_device* dev)
987 {
988 struct rhine_private *rp = netdev_priv(dev);
989 int i;
990
991 for (i = 0; i < TX_RING_SIZE; i++) {
992 rp->tx_ring[i].tx_status = 0;
993 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
994 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
995 if (rp->tx_skbuff[i]) {
996 if (rp->tx_skbuff_dma[i]) {
997 pci_unmap_single(rp->pdev,
998 rp->tx_skbuff_dma[i],
999 rp->tx_skbuff[i]->len,
1000 PCI_DMA_TODEVICE);
1001 }
1002 dev_kfree_skb(rp->tx_skbuff[i]);
1003 }
1004 rp->tx_skbuff[i] = NULL;
1005 rp->tx_buf[i] = NULL;
1006 }
1007 }
1008
1009 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1010 {
1011 struct rhine_private *rp = netdev_priv(dev);
1012 void __iomem *ioaddr = rp->base;
1013
1014 mii_check_media(&rp->mii_if, debug, init_media);
1015
1016 if (rp->mii_if.full_duplex)
1017 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1018 ioaddr + ChipCmd1);
1019 else
1020 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1021 ioaddr + ChipCmd1);
1022 if (debug > 1)
1023 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1024 rp->mii_if.force_media, netif_carrier_ok(dev));
1025 }
1026
1027 /* Called after status of force_media possibly changed */
1028 static void rhine_set_carrier(struct mii_if_info *mii)
1029 {
1030 if (mii->force_media) {
1031 /* autoneg is off: Link is always assumed to be up */
1032 if (!netif_carrier_ok(mii->dev))
1033 netif_carrier_on(mii->dev);
1034 }
1035 else /* Let MMI library update carrier status */
1036 rhine_check_media(mii->dev, 0);
1037 if (debug > 1)
1038 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1039 mii->dev->name, mii->force_media,
1040 netif_carrier_ok(mii->dev));
1041 }
1042
1043 static void init_registers(struct net_device *dev)
1044 {
1045 struct rhine_private *rp = netdev_priv(dev);
1046 void __iomem *ioaddr = rp->base;
1047 int i;
1048
1049 for (i = 0; i < 6; i++)
1050 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1051
1052 /* Initialize other registers. */
1053 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1054 /* Configure initial FIFO thresholds. */
1055 iowrite8(0x20, ioaddr + TxConfig);
1056 rp->tx_thresh = 0x20;
1057 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1058
1059 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1060 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1061
1062 rhine_set_rx_mode(dev);
1063
1064 napi_enable(&rp->napi);
1065
1066 /* Enable interrupts by setting the interrupt mask. */
1067 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1068 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1069 IntrTxDone | IntrTxError | IntrTxUnderrun |
1070 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1071 ioaddr + IntrEnable);
1072
1073 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1074 ioaddr + ChipCmd);
1075 rhine_check_media(dev, 1);
1076 }
1077
1078 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1079 static void rhine_enable_linkmon(void __iomem *ioaddr)
1080 {
1081 iowrite8(0, ioaddr + MIICmd);
1082 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1083 iowrite8(0x80, ioaddr + MIICmd);
1084
1085 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1086
1087 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1088 }
1089
1090 /* Disable MII link status auto-polling (required for MDIO access) */
1091 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1092 {
1093 iowrite8(0, ioaddr + MIICmd);
1094
1095 if (quirks & rqRhineI) {
1096 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1097
1098 /* Can be called from ISR. Evil. */
1099 mdelay(1);
1100
1101 /* 0x80 must be set immediately before turning it off */
1102 iowrite8(0x80, ioaddr + MIICmd);
1103
1104 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1105
1106 /* Heh. Now clear 0x80 again. */
1107 iowrite8(0, ioaddr + MIICmd);
1108 }
1109 else
1110 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1111 }
1112
1113 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1114
1115 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1116 {
1117 struct rhine_private *rp = netdev_priv(dev);
1118 void __iomem *ioaddr = rp->base;
1119 int result;
1120
1121 rhine_disable_linkmon(ioaddr, rp->quirks);
1122
1123 /* rhine_disable_linkmon already cleared MIICmd */
1124 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1125 iowrite8(regnum, ioaddr + MIIRegAddr);
1126 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1127 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1128 result = ioread16(ioaddr + MIIData);
1129
1130 rhine_enable_linkmon(ioaddr);
1131 return result;
1132 }
1133
1134 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1135 {
1136 struct rhine_private *rp = netdev_priv(dev);
1137 void __iomem *ioaddr = rp->base;
1138
1139 rhine_disable_linkmon(ioaddr, rp->quirks);
1140
1141 /* rhine_disable_linkmon already cleared MIICmd */
1142 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1143 iowrite8(regnum, ioaddr + MIIRegAddr);
1144 iowrite16(value, ioaddr + MIIData);
1145 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1146 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1147
1148 rhine_enable_linkmon(ioaddr);
1149 }
1150
1151 static int rhine_open(struct net_device *dev)
1152 {
1153 struct rhine_private *rp = netdev_priv(dev);
1154 void __iomem *ioaddr = rp->base;
1155 int rc;
1156
1157 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1158 dev);
1159 if (rc)
1160 return rc;
1161
1162 if (debug > 1)
1163 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1164 dev->name, rp->pdev->irq);
1165
1166 rc = alloc_ring(dev);
1167 if (rc) {
1168 free_irq(rp->pdev->irq, dev);
1169 return rc;
1170 }
1171 alloc_rbufs(dev);
1172 alloc_tbufs(dev);
1173 rhine_chip_reset(dev);
1174 init_registers(dev);
1175 if (debug > 2)
1176 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1177 "MII status: %4.4x.\n",
1178 dev->name, ioread16(ioaddr + ChipCmd),
1179 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1180
1181 netif_start_queue(dev);
1182
1183 return 0;
1184 }
1185
1186 static void rhine_reset_task(struct work_struct *work)
1187 {
1188 struct rhine_private *rp = container_of(work, struct rhine_private,
1189 reset_task);
1190 struct net_device *dev = rp->dev;
1191
1192 /* protect against concurrent rx interrupts */
1193 disable_irq(rp->pdev->irq);
1194
1195 napi_disable(&rp->napi);
1196
1197 spin_lock_bh(&rp->lock);
1198
1199 /* clear all descriptors */
1200 free_tbufs(dev);
1201 free_rbufs(dev);
1202 alloc_tbufs(dev);
1203 alloc_rbufs(dev);
1204
1205 /* Reinitialize the hardware. */
1206 rhine_chip_reset(dev);
1207 init_registers(dev);
1208
1209 spin_unlock_bh(&rp->lock);
1210 enable_irq(rp->pdev->irq);
1211
1212 dev->trans_start = jiffies;
1213 dev->stats.tx_errors++;
1214 netif_wake_queue(dev);
1215 }
1216
1217 static void rhine_tx_timeout(struct net_device *dev)
1218 {
1219 struct rhine_private *rp = netdev_priv(dev);
1220 void __iomem *ioaddr = rp->base;
1221
1222 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1223 "%4.4x, resetting...\n",
1224 dev->name, ioread16(ioaddr + IntrStatus),
1225 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1226
1227 schedule_work(&rp->reset_task);
1228 }
1229
1230 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1231 struct net_device *dev)
1232 {
1233 struct rhine_private *rp = netdev_priv(dev);
1234 void __iomem *ioaddr = rp->base;
1235 unsigned entry;
1236 unsigned long flags;
1237
1238 /* Caution: the write order is important here, set the field
1239 with the "ownership" bits last. */
1240
1241 /* Calculate the next Tx descriptor entry. */
1242 entry = rp->cur_tx % TX_RING_SIZE;
1243
1244 if (skb_padto(skb, ETH_ZLEN))
1245 return NETDEV_TX_OK;
1246
1247 rp->tx_skbuff[entry] = skb;
1248
1249 if ((rp->quirks & rqRhineI) &&
1250 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1251 /* Must use alignment buffer. */
1252 if (skb->len > PKT_BUF_SZ) {
1253 /* packet too long, drop it */
1254 dev_kfree_skb(skb);
1255 rp->tx_skbuff[entry] = NULL;
1256 dev->stats.tx_dropped++;
1257 return NETDEV_TX_OK;
1258 }
1259
1260 /* Padding is not copied and so must be redone. */
1261 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1262 if (skb->len < ETH_ZLEN)
1263 memset(rp->tx_buf[entry] + skb->len, 0,
1264 ETH_ZLEN - skb->len);
1265 rp->tx_skbuff_dma[entry] = 0;
1266 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1267 (rp->tx_buf[entry] -
1268 rp->tx_bufs));
1269 } else {
1270 rp->tx_skbuff_dma[entry] =
1271 pci_map_single(rp->pdev, skb->data, skb->len,
1272 PCI_DMA_TODEVICE);
1273 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1274 }
1275
1276 rp->tx_ring[entry].desc_length =
1277 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1278
1279 /* lock eth irq */
1280 spin_lock_irqsave(&rp->lock, flags);
1281 wmb();
1282 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1283 wmb();
1284
1285 rp->cur_tx++;
1286
1287 /* Non-x86 Todo: explicitly flush cache lines here. */
1288
1289 /* Wake the potentially-idle transmit channel */
1290 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1291 ioaddr + ChipCmd1);
1292 IOSYNC;
1293
1294 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1295 netif_stop_queue(dev);
1296
1297 dev->trans_start = jiffies;
1298
1299 spin_unlock_irqrestore(&rp->lock, flags);
1300
1301 if (debug > 4) {
1302 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1303 dev->name, rp->cur_tx-1, entry);
1304 }
1305 return NETDEV_TX_OK;
1306 }
1307
1308 /* The interrupt handler does all of the Rx thread work and cleans up
1309 after the Tx thread. */
1310 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1311 {
1312 struct net_device *dev = dev_instance;
1313 struct rhine_private *rp = netdev_priv(dev);
1314 void __iomem *ioaddr = rp->base;
1315 u32 intr_status;
1316 int boguscnt = max_interrupt_work;
1317 int handled = 0;
1318
1319 while ((intr_status = get_intr_status(dev))) {
1320 handled = 1;
1321
1322 /* Acknowledge all of the current interrupt sources ASAP. */
1323 if (intr_status & IntrTxDescRace)
1324 iowrite8(0x08, ioaddr + IntrStatus2);
1325 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1326 IOSYNC;
1327
1328 if (debug > 4)
1329 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1330 dev->name, intr_status);
1331
1332 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1333 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1334 iowrite16(IntrTxAborted |
1335 IntrTxDone | IntrTxError | IntrTxUnderrun |
1336 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1337 ioaddr + IntrEnable);
1338
1339 napi_schedule(&rp->napi);
1340 }
1341
1342 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1343 if (intr_status & IntrTxErrSummary) {
1344 /* Avoid scavenging before Tx engine turned off */
1345 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1346 if (debug > 2 &&
1347 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1348 printk(KERN_WARNING "%s: "
1349 "rhine_interrupt() Tx engine "
1350 "still on.\n", dev->name);
1351 }
1352 rhine_tx(dev);
1353 }
1354
1355 /* Abnormal error summary/uncommon events handlers. */
1356 if (intr_status & (IntrPCIErr | IntrLinkChange |
1357 IntrStatsMax | IntrTxError | IntrTxAborted |
1358 IntrTxUnderrun | IntrTxDescRace))
1359 rhine_error(dev, intr_status);
1360
1361 if (--boguscnt < 0) {
1362 printk(KERN_WARNING "%s: Too much work at interrupt, "
1363 "status=%#8.8x.\n",
1364 dev->name, intr_status);
1365 break;
1366 }
1367 }
1368
1369 if (debug > 3)
1370 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1371 dev->name, ioread16(ioaddr + IntrStatus));
1372 return IRQ_RETVAL(handled);
1373 }
1374
1375 /* This routine is logically part of the interrupt handler, but isolated
1376 for clarity. */
1377 static void rhine_tx(struct net_device *dev)
1378 {
1379 struct rhine_private *rp = netdev_priv(dev);
1380 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1381
1382 spin_lock(&rp->lock);
1383
1384 /* find and cleanup dirty tx descriptors */
1385 while (rp->dirty_tx != rp->cur_tx) {
1386 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1387 if (debug > 6)
1388 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1389 entry, txstatus);
1390 if (txstatus & DescOwn)
1391 break;
1392 if (txstatus & 0x8000) {
1393 if (debug > 1)
1394 printk(KERN_DEBUG "%s: Transmit error, "
1395 "Tx status %8.8x.\n",
1396 dev->name, txstatus);
1397 dev->stats.tx_errors++;
1398 if (txstatus & 0x0400)
1399 dev->stats.tx_carrier_errors++;
1400 if (txstatus & 0x0200)
1401 dev->stats.tx_window_errors++;
1402 if (txstatus & 0x0100)
1403 dev->stats.tx_aborted_errors++;
1404 if (txstatus & 0x0080)
1405 dev->stats.tx_heartbeat_errors++;
1406 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1407 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1408 dev->stats.tx_fifo_errors++;
1409 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1410 break; /* Keep the skb - we try again */
1411 }
1412 /* Transmitter restarted in 'abnormal' handler. */
1413 } else {
1414 if (rp->quirks & rqRhineI)
1415 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1416 else
1417 dev->stats.collisions += txstatus & 0x0F;
1418 if (debug > 6)
1419 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1420 (txstatus >> 3) & 0xF,
1421 txstatus & 0xF);
1422 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1423 dev->stats.tx_packets++;
1424 }
1425 /* Free the original skb. */
1426 if (rp->tx_skbuff_dma[entry]) {
1427 pci_unmap_single(rp->pdev,
1428 rp->tx_skbuff_dma[entry],
1429 rp->tx_skbuff[entry]->len,
1430 PCI_DMA_TODEVICE);
1431 }
1432 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1433 rp->tx_skbuff[entry] = NULL;
1434 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1435 }
1436 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1437 netif_wake_queue(dev);
1438
1439 spin_unlock(&rp->lock);
1440 }
1441
1442 /* Process up to limit frames from receive ring */
1443 static int rhine_rx(struct net_device *dev, int limit)
1444 {
1445 struct rhine_private *rp = netdev_priv(dev);
1446 int count;
1447 int entry = rp->cur_rx % RX_RING_SIZE;
1448
1449 if (debug > 4) {
1450 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1451 dev->name, entry,
1452 le32_to_cpu(rp->rx_head_desc->rx_status));
1453 }
1454
1455 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1456 for (count = 0; count < limit; ++count) {
1457 struct rx_desc *desc = rp->rx_head_desc;
1458 u32 desc_status = le32_to_cpu(desc->rx_status);
1459 int data_size = desc_status >> 16;
1460
1461 if (desc_status & DescOwn)
1462 break;
1463
1464 if (debug > 4)
1465 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1466 desc_status);
1467
1468 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1469 if ((desc_status & RxWholePkt) != RxWholePkt) {
1470 printk(KERN_WARNING "%s: Oversized Ethernet "
1471 "frame spanned multiple buffers, entry "
1472 "%#x length %d status %8.8x!\n",
1473 dev->name, entry, data_size,
1474 desc_status);
1475 printk(KERN_WARNING "%s: Oversized Ethernet "
1476 "frame %p vs %p.\n", dev->name,
1477 rp->rx_head_desc, &rp->rx_ring[entry]);
1478 dev->stats.rx_length_errors++;
1479 } else if (desc_status & RxErr) {
1480 /* There was a error. */
1481 if (debug > 2)
1482 printk(KERN_DEBUG "rhine_rx() Rx "
1483 "error was %8.8x.\n",
1484 desc_status);
1485 dev->stats.rx_errors++;
1486 if (desc_status & 0x0030)
1487 dev->stats.rx_length_errors++;
1488 if (desc_status & 0x0048)
1489 dev->stats.rx_fifo_errors++;
1490 if (desc_status & 0x0004)
1491 dev->stats.rx_frame_errors++;
1492 if (desc_status & 0x0002) {
1493 /* this can also be updated outside the interrupt handler */
1494 spin_lock(&rp->lock);
1495 dev->stats.rx_crc_errors++;
1496 spin_unlock(&rp->lock);
1497 }
1498 }
1499 } else {
1500 struct sk_buff *skb = NULL;
1501 /* Length should omit the CRC */
1502 int pkt_len = data_size - 4;
1503
1504 /* Check if the packet is long enough to accept without
1505 copying to a minimally-sized skbuff. */
1506 if (pkt_len < rx_copybreak)
1507 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1508 if (skb) {
1509 pci_dma_sync_single_for_cpu(rp->pdev,
1510 rp->rx_skbuff_dma[entry],
1511 rp->rx_buf_sz,
1512 PCI_DMA_FROMDEVICE);
1513
1514 skb_copy_to_linear_data(skb,
1515 rp->rx_skbuff[entry]->data,
1516 pkt_len);
1517 skb_put(skb, pkt_len);
1518 pci_dma_sync_single_for_device(rp->pdev,
1519 rp->rx_skbuff_dma[entry],
1520 rp->rx_buf_sz,
1521 PCI_DMA_FROMDEVICE);
1522 } else {
1523 skb = rp->rx_skbuff[entry];
1524 if (skb == NULL) {
1525 printk(KERN_ERR "%s: Inconsistent Rx "
1526 "descriptor chain.\n",
1527 dev->name);
1528 break;
1529 }
1530 rp->rx_skbuff[entry] = NULL;
1531 skb_put(skb, pkt_len);
1532 pci_unmap_single(rp->pdev,
1533 rp->rx_skbuff_dma[entry],
1534 rp->rx_buf_sz,
1535 PCI_DMA_FROMDEVICE);
1536 }
1537 skb->protocol = eth_type_trans(skb, dev);
1538 netif_receive_skb(skb);
1539 dev->stats.rx_bytes += pkt_len;
1540 dev->stats.rx_packets++;
1541 }
1542 entry = (++rp->cur_rx) % RX_RING_SIZE;
1543 rp->rx_head_desc = &rp->rx_ring[entry];
1544 }
1545
1546 /* Refill the Rx ring buffers. */
1547 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1548 struct sk_buff *skb;
1549 entry = rp->dirty_rx % RX_RING_SIZE;
1550 if (rp->rx_skbuff[entry] == NULL) {
1551 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1552 rp->rx_skbuff[entry] = skb;
1553 if (skb == NULL)
1554 break; /* Better luck next round. */
1555 skb->dev = dev; /* Mark as being used by this device. */
1556 rp->rx_skbuff_dma[entry] =
1557 pci_map_single(rp->pdev, skb->data,
1558 rp->rx_buf_sz,
1559 PCI_DMA_FROMDEVICE);
1560 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1561 }
1562 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1563 }
1564
1565 return count;
1566 }
1567
1568 /*
1569 * Clears the "tally counters" for CRC errors and missed frames(?).
1570 * It has been reported that some chips need a write of 0 to clear
1571 * these, for others the counters are set to 1 when written to and
1572 * instead cleared when read. So we clear them both ways ...
1573 */
1574 static inline void clear_tally_counters(void __iomem *ioaddr)
1575 {
1576 iowrite32(0, ioaddr + RxMissed);
1577 ioread16(ioaddr + RxCRCErrs);
1578 ioread16(ioaddr + RxMissed);
1579 }
1580
1581 static void rhine_restart_tx(struct net_device *dev) {
1582 struct rhine_private *rp = netdev_priv(dev);
1583 void __iomem *ioaddr = rp->base;
1584 int entry = rp->dirty_tx % TX_RING_SIZE;
1585 u32 intr_status;
1586
1587 /*
1588 * If new errors occured, we need to sort them out before doing Tx.
1589 * In that case the ISR will be back here RSN anyway.
1590 */
1591 intr_status = get_intr_status(dev);
1592
1593 if ((intr_status & IntrTxErrSummary) == 0) {
1594
1595 /* We know better than the chip where it should continue. */
1596 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1597 ioaddr + TxRingPtr);
1598
1599 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1600 ioaddr + ChipCmd);
1601 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1602 ioaddr + ChipCmd1);
1603 IOSYNC;
1604 }
1605 else {
1606 /* This should never happen */
1607 if (debug > 1)
1608 printk(KERN_WARNING "%s: rhine_restart_tx() "
1609 "Another error occured %8.8x.\n",
1610 dev->name, intr_status);
1611 }
1612
1613 }
1614
1615 static void rhine_error(struct net_device *dev, int intr_status)
1616 {
1617 struct rhine_private *rp = netdev_priv(dev);
1618 void __iomem *ioaddr = rp->base;
1619
1620 spin_lock(&rp->lock);
1621
1622 if (intr_status & IntrLinkChange)
1623 rhine_check_media(dev, 0);
1624 if (intr_status & IntrStatsMax) {
1625 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1626 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1627 clear_tally_counters(ioaddr);
1628 }
1629 if (intr_status & IntrTxAborted) {
1630 if (debug > 1)
1631 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1632 dev->name, intr_status);
1633 }
1634 if (intr_status & IntrTxUnderrun) {
1635 if (rp->tx_thresh < 0xE0)
1636 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1637 if (debug > 1)
1638 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1639 "threshold now %2.2x.\n",
1640 dev->name, rp->tx_thresh);
1641 }
1642 if (intr_status & IntrTxDescRace) {
1643 if (debug > 2)
1644 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1645 dev->name);
1646 }
1647 if ((intr_status & IntrTxError) &&
1648 (intr_status & (IntrTxAborted |
1649 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1650 if (rp->tx_thresh < 0xE0) {
1651 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1652 }
1653 if (debug > 1)
1654 printk(KERN_INFO "%s: Unspecified error. Tx "
1655 "threshold now %2.2x.\n",
1656 dev->name, rp->tx_thresh);
1657 }
1658 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1659 IntrTxError))
1660 rhine_restart_tx(dev);
1661
1662 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1663 IntrTxError | IntrTxAborted | IntrNormalSummary |
1664 IntrTxDescRace)) {
1665 if (debug > 1)
1666 printk(KERN_ERR "%s: Something Wicked happened! "
1667 "%8.8x.\n", dev->name, intr_status);
1668 }
1669
1670 spin_unlock(&rp->lock);
1671 }
1672
1673 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1674 {
1675 struct rhine_private *rp = netdev_priv(dev);
1676 void __iomem *ioaddr = rp->base;
1677 unsigned long flags;
1678
1679 spin_lock_irqsave(&rp->lock, flags);
1680 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1681 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1682 clear_tally_counters(ioaddr);
1683 spin_unlock_irqrestore(&rp->lock, flags);
1684
1685 return &dev->stats;
1686 }
1687
1688 static void rhine_set_rx_mode(struct net_device *dev)
1689 {
1690 struct rhine_private *rp = netdev_priv(dev);
1691 void __iomem *ioaddr = rp->base;
1692 u32 mc_filter[2]; /* Multicast hash filter */
1693 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1694
1695 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1696 rx_mode = 0x1C;
1697 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1698 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1699 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1700 (dev->flags & IFF_ALLMULTI)) {
1701 /* Too many to match, or accept all multicasts. */
1702 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1703 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1704 rx_mode = 0x0C;
1705 } else {
1706 struct dev_mc_list *mclist;
1707
1708 memset(mc_filter, 0, sizeof(mc_filter));
1709 netdev_for_each_mc_addr(mclist, dev) {
1710 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1711
1712 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1713 }
1714 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1715 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1716 rx_mode = 0x0C;
1717 }
1718 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1719 }
1720
1721 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1722 {
1723 struct rhine_private *rp = netdev_priv(dev);
1724
1725 strcpy(info->driver, DRV_NAME);
1726 strcpy(info->version, DRV_VERSION);
1727 strcpy(info->bus_info, pci_name(rp->pdev));
1728 }
1729
1730 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1731 {
1732 struct rhine_private *rp = netdev_priv(dev);
1733 int rc;
1734
1735 spin_lock_irq(&rp->lock);
1736 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1737 spin_unlock_irq(&rp->lock);
1738
1739 return rc;
1740 }
1741
1742 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1743 {
1744 struct rhine_private *rp = netdev_priv(dev);
1745 int rc;
1746
1747 spin_lock_irq(&rp->lock);
1748 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1749 spin_unlock_irq(&rp->lock);
1750 rhine_set_carrier(&rp->mii_if);
1751
1752 return rc;
1753 }
1754
1755 static int netdev_nway_reset(struct net_device *dev)
1756 {
1757 struct rhine_private *rp = netdev_priv(dev);
1758
1759 return mii_nway_restart(&rp->mii_if);
1760 }
1761
1762 static u32 netdev_get_link(struct net_device *dev)
1763 {
1764 struct rhine_private *rp = netdev_priv(dev);
1765
1766 return mii_link_ok(&rp->mii_if);
1767 }
1768
1769 static u32 netdev_get_msglevel(struct net_device *dev)
1770 {
1771 return debug;
1772 }
1773
1774 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1775 {
1776 debug = value;
1777 }
1778
1779 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1780 {
1781 struct rhine_private *rp = netdev_priv(dev);
1782
1783 if (!(rp->quirks & rqWOL))
1784 return;
1785
1786 spin_lock_irq(&rp->lock);
1787 wol->supported = WAKE_PHY | WAKE_MAGIC |
1788 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1789 wol->wolopts = rp->wolopts;
1790 spin_unlock_irq(&rp->lock);
1791 }
1792
1793 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1794 {
1795 struct rhine_private *rp = netdev_priv(dev);
1796 u32 support = WAKE_PHY | WAKE_MAGIC |
1797 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1798
1799 if (!(rp->quirks & rqWOL))
1800 return -EINVAL;
1801
1802 if (wol->wolopts & ~support)
1803 return -EINVAL;
1804
1805 spin_lock_irq(&rp->lock);
1806 rp->wolopts = wol->wolopts;
1807 spin_unlock_irq(&rp->lock);
1808
1809 return 0;
1810 }
1811
1812 static const struct ethtool_ops netdev_ethtool_ops = {
1813 .get_drvinfo = netdev_get_drvinfo,
1814 .get_settings = netdev_get_settings,
1815 .set_settings = netdev_set_settings,
1816 .nway_reset = netdev_nway_reset,
1817 .get_link = netdev_get_link,
1818 .get_msglevel = netdev_get_msglevel,
1819 .set_msglevel = netdev_set_msglevel,
1820 .get_wol = rhine_get_wol,
1821 .set_wol = rhine_set_wol,
1822 };
1823
1824 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1825 {
1826 struct rhine_private *rp = netdev_priv(dev);
1827 int rc;
1828
1829 if (!netif_running(dev))
1830 return -EINVAL;
1831
1832 spin_lock_irq(&rp->lock);
1833 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1834 spin_unlock_irq(&rp->lock);
1835 rhine_set_carrier(&rp->mii_if);
1836
1837 return rc;
1838 }
1839
1840 static int rhine_close(struct net_device *dev)
1841 {
1842 struct rhine_private *rp = netdev_priv(dev);
1843 void __iomem *ioaddr = rp->base;
1844
1845 napi_disable(&rp->napi);
1846 cancel_work_sync(&rp->reset_task);
1847 netif_stop_queue(dev);
1848
1849 spin_lock_irq(&rp->lock);
1850
1851 if (debug > 1)
1852 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1853 "status was %4.4x.\n",
1854 dev->name, ioread16(ioaddr + ChipCmd));
1855
1856 /* Switch to loopback mode to avoid hardware races. */
1857 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1858
1859 /* Disable interrupts by clearing the interrupt mask. */
1860 iowrite16(0x0000, ioaddr + IntrEnable);
1861
1862 /* Stop the chip's Tx and Rx processes. */
1863 iowrite16(CmdStop, ioaddr + ChipCmd);
1864
1865 spin_unlock_irq(&rp->lock);
1866
1867 free_irq(rp->pdev->irq, dev);
1868 free_rbufs(dev);
1869 free_tbufs(dev);
1870 free_ring(dev);
1871
1872 return 0;
1873 }
1874
1875
1876 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1877 {
1878 struct net_device *dev = pci_get_drvdata(pdev);
1879 struct rhine_private *rp = netdev_priv(dev);
1880
1881 unregister_netdev(dev);
1882
1883 pci_iounmap(pdev, rp->base);
1884 pci_release_regions(pdev);
1885
1886 free_netdev(dev);
1887 pci_disable_device(pdev);
1888 pci_set_drvdata(pdev, NULL);
1889 }
1890
1891 static void rhine_shutdown (struct pci_dev *pdev)
1892 {
1893 struct net_device *dev = pci_get_drvdata(pdev);
1894 struct rhine_private *rp = netdev_priv(dev);
1895 void __iomem *ioaddr = rp->base;
1896
1897 if (!(rp->quirks & rqWOL))
1898 return; /* Nothing to do for non-WOL adapters */
1899
1900 rhine_power_init(dev);
1901
1902 /* Make sure we use pattern 0, 1 and not 4, 5 */
1903 if (rp->quirks & rq6patterns)
1904 iowrite8(0x04, ioaddr + WOLcgClr);
1905
1906 if (rp->wolopts & WAKE_MAGIC) {
1907 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1908 /*
1909 * Turn EEPROM-controlled wake-up back on -- some hardware may
1910 * not cooperate otherwise.
1911 */
1912 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1913 }
1914
1915 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1916 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1917
1918 if (rp->wolopts & WAKE_PHY)
1919 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1920
1921 if (rp->wolopts & WAKE_UCAST)
1922 iowrite8(WOLucast, ioaddr + WOLcrSet);
1923
1924 if (rp->wolopts) {
1925 /* Enable legacy WOL (for old motherboards) */
1926 iowrite8(0x01, ioaddr + PwcfgSet);
1927 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1928 }
1929
1930 /* Hit power state D3 (sleep) */
1931 if (!avoid_D3)
1932 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1933
1934 /* TODO: Check use of pci_enable_wake() */
1935
1936 }
1937
1938 #ifdef CONFIG_PM
1939 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1940 {
1941 struct net_device *dev = pci_get_drvdata(pdev);
1942 struct rhine_private *rp = netdev_priv(dev);
1943 unsigned long flags;
1944
1945 if (!netif_running(dev))
1946 return 0;
1947
1948 napi_disable(&rp->napi);
1949
1950 netif_device_detach(dev);
1951 pci_save_state(pdev);
1952
1953 spin_lock_irqsave(&rp->lock, flags);
1954 rhine_shutdown(pdev);
1955 spin_unlock_irqrestore(&rp->lock, flags);
1956
1957 free_irq(dev->irq, dev);
1958 return 0;
1959 }
1960
1961 static int rhine_resume(struct pci_dev *pdev)
1962 {
1963 struct net_device *dev = pci_get_drvdata(pdev);
1964 struct rhine_private *rp = netdev_priv(dev);
1965 unsigned long flags;
1966 int ret;
1967
1968 if (!netif_running(dev))
1969 return 0;
1970
1971 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1972 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1973
1974 ret = pci_set_power_state(pdev, PCI_D0);
1975 if (debug > 1)
1976 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1977 dev->name, ret ? "failed" : "succeeded", ret);
1978
1979 pci_restore_state(pdev);
1980
1981 spin_lock_irqsave(&rp->lock, flags);
1982 #ifdef USE_MMIO
1983 enable_mmio(rp->pioaddr, rp->quirks);
1984 #endif
1985 rhine_power_init(dev);
1986 free_tbufs(dev);
1987 free_rbufs(dev);
1988 alloc_tbufs(dev);
1989 alloc_rbufs(dev);
1990 init_registers(dev);
1991 spin_unlock_irqrestore(&rp->lock, flags);
1992
1993 netif_device_attach(dev);
1994
1995 return 0;
1996 }
1997 #endif /* CONFIG_PM */
1998
1999 static struct pci_driver rhine_driver = {
2000 .name = DRV_NAME,
2001 .id_table = rhine_pci_tbl,
2002 .probe = rhine_init_one,
2003 .remove = __devexit_p(rhine_remove_one),
2004 #ifdef CONFIG_PM
2005 .suspend = rhine_suspend,
2006 .resume = rhine_resume,
2007 #endif /* CONFIG_PM */
2008 .shutdown = rhine_shutdown,
2009 };
2010
2011 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2012 {
2013 .ident = "EPIA-M",
2014 .matches = {
2015 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2016 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2017 },
2018 },
2019 {
2020 .ident = "KV7",
2021 .matches = {
2022 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2023 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2024 },
2025 },
2026 { NULL }
2027 };
2028
2029 static int __init rhine_init(void)
2030 {
2031 /* when a module, this is printed whether or not devices are found in probe */
2032 #ifdef MODULE
2033 printk(version);
2034 #endif
2035 if (dmi_check_system(rhine_dmi_table)) {
2036 /* these BIOSes fail at PXE boot if chip is in D3 */
2037 avoid_D3 = 1;
2038 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2039 "enabled.\n",
2040 DRV_NAME);
2041 }
2042 else if (avoid_D3)
2043 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2044
2045 return pci_register_driver(&rhine_driver);
2046 }
2047
2048
2049 static void __exit rhine_cleanup(void)
2050 {
2051 pci_unregister_driver(&rhine_driver);
2052 }
2053
2054
2055 module_init(rhine_init);
2056 module_exit(rhine_cleanup);