]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/via-rhine.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
35
36
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
42
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 static int rx_copybreak;
46
47 /* Work-around for broken BIOSes: they are unable to get the chip back out of
48 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
49 static int avoid_D3;
50
51 /*
52 * In case you are looking for 'options[]' or 'full_duplex[]', they
53 * are gone. Use ethtool(8) instead.
54 */
55
56 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
57 The Rhine has a 64 element 8390-like hash table. */
58 static const int multicast_filter_limit = 32;
59
60
61 /* Operational parameters that are set at compile time. */
62
63 /* Keep the ring sizes a power of two for compile efficiency.
64 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
65 Making the Tx ring too large decreases the effectiveness of channel
66 bonding and packet priority.
67 There are no ill effects from too-large receive rings. */
68 #define TX_RING_SIZE 16
69 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
70 #ifdef CONFIG_VIA_RHINE_NAPI
71 #define RX_RING_SIZE 64
72 #else
73 #define RX_RING_SIZE 16
74 #endif
75
76
77 /* Operational parameters that usually are not changed. */
78
79 /* Time in jiffies before concluding the transmitter is hung. */
80 #define TX_TIMEOUT (2*HZ)
81
82 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
83
84 #include <linux/module.h>
85 #include <linux/moduleparam.h>
86 #include <linux/kernel.h>
87 #include <linux/string.h>
88 #include <linux/timer.h>
89 #include <linux/errno.h>
90 #include <linux/ioport.h>
91 #include <linux/slab.h>
92 #include <linux/interrupt.h>
93 #include <linux/pci.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/netdevice.h>
96 #include <linux/etherdevice.h>
97 #include <linux/skbuff.h>
98 #include <linux/init.h>
99 #include <linux/delay.h>
100 #include <linux/mii.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/processor.h> /* Processor type for cache alignment. */
105 #include <asm/io.h>
106 #include <asm/irq.h>
107 #include <asm/uaccess.h>
108 #include <linux/dmi.h>
109
110 /* These identify the driver base version and may not be removed. */
111 static char version[] __devinitdata =
112 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
113
114 /* This driver was written to use PCI memory space. Some early versions
115 of the Rhine may only work correctly with I/O space accesses. */
116 #ifdef CONFIG_VIA_RHINE_MMIO
117 #define USE_MMIO
118 #else
119 #endif
120
121 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
122 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
123 MODULE_LICENSE("GPL");
124
125 module_param(max_interrupt_work, int, 0);
126 module_param(debug, int, 0);
127 module_param(rx_copybreak, int, 0);
128 module_param(avoid_D3, bool, 0);
129 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
130 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
131 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
132 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
133
134 /*
135 Theory of Operation
136
137 I. Board Compatibility
138
139 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
140 controller.
141
142 II. Board-specific settings
143
144 Boards with this chip are functional only in a bus-master PCI slot.
145
146 Many operational settings are loaded from the EEPROM to the Config word at
147 offset 0x78. For most of these settings, this driver assumes that they are
148 correct.
149 If this driver is compiled to use PCI memory space operations the EEPROM
150 must be configured to enable memory ops.
151
152 III. Driver operation
153
154 IIIa. Ring buffers
155
156 This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
159
160 IIIb/c. Transmit/Receive Structure
161
162 This driver attempts to use a zero-copy receive and transmit scheme.
163
164 Alas, all data buffers are required to start on a 32 bit boundary, so
165 the driver must often copy transmit packets into bounce buffers.
166
167 The driver allocates full frame size skbuffs for the Rx ring buffers at
168 open() time and passes the skb->data field to the chip as receive data
169 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
170 a fresh skbuff is allocated and the frame is copied to the new skbuff.
171 When the incoming frame is larger, the skbuff is passed directly up the
172 protocol stack. Buffers consumed this way are replaced by newly allocated
173 skbuffs in the last phase of rhine_rx().
174
175 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
176 using a full-sized skbuff for small frames vs. the copying costs of larger
177 frames. New boards are typically used in generously configured machines
178 and the underfilled buffers have negligible impact compared to the benefit of
179 a single allocation size, so the default value of zero results in never
180 copying packets. When copying is done, the cost is usually mitigated by using
181 a combined copy/checksum routine. Copying also preloads the cache, which is
182 most useful with small frames.
183
184 Since the VIA chips are only able to transfer data to buffers on 32 bit
185 boundaries, the IP header at offset 14 in an ethernet frame isn't
186 longword aligned for further processing. Copying these unaligned buffers
187 has the beneficial effect of 16-byte aligning the IP header.
188
189 IIId. Synchronization
190
191 The driver runs as two independent, single-threaded flows of control. One
192 is the send-packet routine, which enforces single-threaded use by the
193 dev->priv->lock spinlock. The other thread is the interrupt handler, which
194 is single threaded by the hardware and interrupt handling software.
195
196 The send packet thread has partial control over the Tx ring. It locks the
197 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
198 is not available it stops the transmit queue by calling netif_stop_queue.
199
200 The interrupt handler has exclusive control over the Rx ring and records stats
201 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
202 empty by incrementing the dirty_tx mark. If at least half of the entries in
203 the Rx ring are available the transmit queue is woken up if it was stopped.
204
205 IV. Notes
206
207 IVb. References
208
209 Preliminary VT86C100A manual from http://www.via.com.tw/
210 http://www.scyld.com/expert/100mbps.html
211 http://www.scyld.com/expert/NWay.html
212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
213 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
214
215
216 IVc. Errata
217
218 The VT86C100A manual is not reliable information.
219 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
220 in significant performance degradation for bounce buffer copies on transmit
221 and unaligned IP headers on receive.
222 The chip does not pad to minimum transmit length.
223
224 */
225
226
227 /* This table drives the PCI probe routines. It's mostly boilerplate in all
228 of the drivers, and will likely be provided by some future kernel.
229 Note the matching code -- the first table entry matchs all 56** cards but
230 second only the 1234 card.
231 */
232
233 enum rhine_revs {
234 VT86C100A = 0x00,
235 VTunknown0 = 0x20,
236 VT6102 = 0x40,
237 VT8231 = 0x50, /* Integrated MAC */
238 VT8233 = 0x60, /* Integrated MAC */
239 VT8235 = 0x74, /* Integrated MAC */
240 VT8237 = 0x78, /* Integrated MAC */
241 VTunknown1 = 0x7C,
242 VT6105 = 0x80,
243 VT6105_B0 = 0x83,
244 VT6105L = 0x8A,
245 VT6107 = 0x8C,
246 VTunknown2 = 0x8E,
247 VT6105M = 0x90, /* Management adapter */
248 };
249
250 enum rhine_quirks {
251 rqWOL = 0x0001, /* Wake-On-LAN support */
252 rqForceReset = 0x0002,
253 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
254 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
255 rqRhineI = 0x0100, /* See comment below */
256 };
257 /*
258 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
259 * MMIO as well as for the collision counter and the Tx FIFO underflow
260 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
261 */
262
263 /* Beware of PCI posted writes */
264 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
265
266 static const struct pci_device_id rhine_pci_tbl[] = {
267 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
268 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
269 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
270 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
271 { } /* terminate list */
272 };
273 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
274
275
276 /* Offsets to the device registers. */
277 enum register_offsets {
278 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
279 ChipCmd1=0x09,
280 IntrStatus=0x0C, IntrEnable=0x0E,
281 MulticastFilter0=0x10, MulticastFilter1=0x14,
282 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
283 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
284 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
285 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
286 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
287 StickyHW=0x83, IntrStatus2=0x84,
288 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
289 WOLcrClr1=0xA6, WOLcgClr=0xA7,
290 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
291 };
292
293 /* Bits in ConfigD */
294 enum backoff_bits {
295 BackOptional=0x01, BackModify=0x02,
296 BackCaptureEffect=0x04, BackRandom=0x08
297 };
298
299 #ifdef USE_MMIO
300 /* Registers we check that mmio and reg are the same. */
301 static const int mmio_verify_registers[] = {
302 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
303 0
304 };
305 #endif
306
307 /* Bits in the interrupt status/mask registers. */
308 enum intr_status_bits {
309 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
310 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
311 IntrPCIErr=0x0040,
312 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
313 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
314 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
315 IntrRxWakeUp=0x8000,
316 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
317 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
318 IntrTxErrSummary=0x082218,
319 };
320
321 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
322 enum wol_bits {
323 WOLucast = 0x10,
324 WOLmagic = 0x20,
325 WOLbmcast = 0x30,
326 WOLlnkon = 0x40,
327 WOLlnkoff = 0x80,
328 };
329
330 /* The Rx and Tx buffer descriptors. */
331 struct rx_desc {
332 s32 rx_status;
333 u32 desc_length; /* Chain flag, Buffer/frame length */
334 u32 addr;
335 u32 next_desc;
336 };
337 struct tx_desc {
338 s32 tx_status;
339 u32 desc_length; /* Chain flag, Tx Config, Frame length */
340 u32 addr;
341 u32 next_desc;
342 };
343
344 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
345 #define TXDESC 0x00e08000
346
347 enum rx_status_bits {
348 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
349 };
350
351 /* Bits in *_desc.*_status */
352 enum desc_status_bits {
353 DescOwn=0x80000000
354 };
355
356 /* Bits in ChipCmd. */
357 enum chip_cmd_bits {
358 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
359 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
360 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
361 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
362 };
363
364 struct rhine_private {
365 /* Descriptor rings */
366 struct rx_desc *rx_ring;
367 struct tx_desc *tx_ring;
368 dma_addr_t rx_ring_dma;
369 dma_addr_t tx_ring_dma;
370
371 /* The addresses of receive-in-place skbuffs. */
372 struct sk_buff *rx_skbuff[RX_RING_SIZE];
373 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
374
375 /* The saved address of a sent-in-place packet/buffer, for later free(). */
376 struct sk_buff *tx_skbuff[TX_RING_SIZE];
377 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
378
379 /* Tx bounce buffers (Rhine-I only) */
380 unsigned char *tx_buf[TX_RING_SIZE];
381 unsigned char *tx_bufs;
382 dma_addr_t tx_bufs_dma;
383
384 struct pci_dev *pdev;
385 long pioaddr;
386 struct net_device_stats stats;
387 spinlock_t lock;
388
389 /* Frequently used values: keep some adjacent for cache effect. */
390 u32 quirks;
391 struct rx_desc *rx_head_desc;
392 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
393 unsigned int cur_tx, dirty_tx;
394 unsigned int rx_buf_sz; /* Based on MTU+slack. */
395 u8 wolopts;
396
397 u8 tx_thresh, rx_thresh;
398
399 struct mii_if_info mii_if;
400 void __iomem *base;
401 };
402
403 static int mdio_read(struct net_device *dev, int phy_id, int location);
404 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
405 static int rhine_open(struct net_device *dev);
406 static void rhine_tx_timeout(struct net_device *dev);
407 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
408 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
409 static void rhine_tx(struct net_device *dev);
410 static int rhine_rx(struct net_device *dev, int limit);
411 static void rhine_error(struct net_device *dev, int intr_status);
412 static void rhine_set_rx_mode(struct net_device *dev);
413 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
414 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
415 static const struct ethtool_ops netdev_ethtool_ops;
416 static int rhine_close(struct net_device *dev);
417 static void rhine_shutdown (struct pci_dev *pdev);
418
419 #define RHINE_WAIT_FOR(condition) do { \
420 int i=1024; \
421 while (!(condition) && --i) \
422 ; \
423 if (debug > 1 && i < 512) \
424 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
425 DRV_NAME, 1024-i, __func__, __LINE__); \
426 } while(0)
427
428 static inline u32 get_intr_status(struct net_device *dev)
429 {
430 struct rhine_private *rp = netdev_priv(dev);
431 void __iomem *ioaddr = rp->base;
432 u32 intr_status;
433
434 intr_status = ioread16(ioaddr + IntrStatus);
435 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
436 if (rp->quirks & rqStatusWBRace)
437 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
438 return intr_status;
439 }
440
441 /*
442 * Get power related registers into sane state.
443 * Notify user about past WOL event.
444 */
445 static void rhine_power_init(struct net_device *dev)
446 {
447 struct rhine_private *rp = netdev_priv(dev);
448 void __iomem *ioaddr = rp->base;
449 u16 wolstat;
450
451 if (rp->quirks & rqWOL) {
452 /* Make sure chip is in power state D0 */
453 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
454
455 /* Disable "force PME-enable" */
456 iowrite8(0x80, ioaddr + WOLcgClr);
457
458 /* Clear power-event config bits (WOL) */
459 iowrite8(0xFF, ioaddr + WOLcrClr);
460 /* More recent cards can manage two additional patterns */
461 if (rp->quirks & rq6patterns)
462 iowrite8(0x03, ioaddr + WOLcrClr1);
463
464 /* Save power-event status bits */
465 wolstat = ioread8(ioaddr + PwrcsrSet);
466 if (rp->quirks & rq6patterns)
467 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
468
469 /* Clear power-event status bits */
470 iowrite8(0xFF, ioaddr + PwrcsrClr);
471 if (rp->quirks & rq6patterns)
472 iowrite8(0x03, ioaddr + PwrcsrClr1);
473
474 if (wolstat) {
475 char *reason;
476 switch (wolstat) {
477 case WOLmagic:
478 reason = "Magic packet";
479 break;
480 case WOLlnkon:
481 reason = "Link went up";
482 break;
483 case WOLlnkoff:
484 reason = "Link went down";
485 break;
486 case WOLucast:
487 reason = "Unicast packet";
488 break;
489 case WOLbmcast:
490 reason = "Multicast/broadcast packet";
491 break;
492 default:
493 reason = "Unknown";
494 }
495 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
496 DRV_NAME, reason);
497 }
498 }
499 }
500
501 static void rhine_chip_reset(struct net_device *dev)
502 {
503 struct rhine_private *rp = netdev_priv(dev);
504 void __iomem *ioaddr = rp->base;
505
506 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
507 IOSYNC;
508
509 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
510 printk(KERN_INFO "%s: Reset not complete yet. "
511 "Trying harder.\n", DRV_NAME);
512
513 /* Force reset */
514 if (rp->quirks & rqForceReset)
515 iowrite8(0x40, ioaddr + MiscCmd);
516
517 /* Reset can take somewhat longer (rare) */
518 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
519 }
520
521 if (debug > 1)
522 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
523 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
524 "failed" : "succeeded");
525 }
526
527 #ifdef USE_MMIO
528 static void enable_mmio(long pioaddr, u32 quirks)
529 {
530 int n;
531 if (quirks & rqRhineI) {
532 /* More recent docs say that this bit is reserved ... */
533 n = inb(pioaddr + ConfigA) | 0x20;
534 outb(n, pioaddr + ConfigA);
535 } else {
536 n = inb(pioaddr + ConfigD) | 0x80;
537 outb(n, pioaddr + ConfigD);
538 }
539 }
540 #endif
541
542 /*
543 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
544 * (plus 0x6C for Rhine-I/II)
545 */
546 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
547 {
548 struct rhine_private *rp = netdev_priv(dev);
549 void __iomem *ioaddr = rp->base;
550
551 outb(0x20, pioaddr + MACRegEEcsr);
552 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
553
554 #ifdef USE_MMIO
555 /*
556 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
557 * MMIO. If reloading EEPROM was done first this could be avoided, but
558 * it is not known if that still works with the "win98-reboot" problem.
559 */
560 enable_mmio(pioaddr, rp->quirks);
561 #endif
562
563 /* Turn off EEPROM-controlled wake-up (magic packet) */
564 if (rp->quirks & rqWOL)
565 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
566
567 }
568
569 #ifdef CONFIG_NET_POLL_CONTROLLER
570 static void rhine_poll(struct net_device *dev)
571 {
572 disable_irq(dev->irq);
573 rhine_interrupt(dev->irq, (void *)dev);
574 enable_irq(dev->irq);
575 }
576 #endif
577
578 #ifdef CONFIG_VIA_RHINE_NAPI
579 static int rhine_napipoll(struct net_device *dev, int *budget)
580 {
581 struct rhine_private *rp = netdev_priv(dev);
582 void __iomem *ioaddr = rp->base;
583 int done, limit = min(dev->quota, *budget);
584
585 done = rhine_rx(dev, limit);
586 *budget -= done;
587 dev->quota -= done;
588
589 if (done < limit) {
590 netif_rx_complete(dev);
591
592 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
593 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
594 IntrTxDone | IntrTxError | IntrTxUnderrun |
595 IntrPCIErr | IntrStatsMax | IntrLinkChange,
596 ioaddr + IntrEnable);
597 return 0;
598 }
599 else
600 return 1;
601 }
602 #endif
603
604 static void rhine_hw_init(struct net_device *dev, long pioaddr)
605 {
606 struct rhine_private *rp = netdev_priv(dev);
607
608 /* Reset the chip to erase previous misconfiguration. */
609 rhine_chip_reset(dev);
610
611 /* Rhine-I needs extra time to recuperate before EEPROM reload */
612 if (rp->quirks & rqRhineI)
613 msleep(5);
614
615 /* Reload EEPROM controlled bytes cleared by soft reset */
616 rhine_reload_eeprom(pioaddr, dev);
617 }
618
619 static int __devinit rhine_init_one(struct pci_dev *pdev,
620 const struct pci_device_id *ent)
621 {
622 struct net_device *dev;
623 struct rhine_private *rp;
624 int i, rc;
625 u32 quirks;
626 long pioaddr;
627 long memaddr;
628 void __iomem *ioaddr;
629 int io_size, phy_id;
630 const char *name;
631 #ifdef USE_MMIO
632 int bar = 1;
633 #else
634 int bar = 0;
635 #endif
636
637 /* when built into the kernel, we only print version if device is found */
638 #ifndef MODULE
639 static int printed_version;
640 if (!printed_version++)
641 printk(version);
642 #endif
643
644 io_size = 256;
645 phy_id = 0;
646 quirks = 0;
647 name = "Rhine";
648 if (pdev->revision < VTunknown0) {
649 quirks = rqRhineI;
650 io_size = 128;
651 }
652 else if (pdev->revision >= VT6102) {
653 quirks = rqWOL | rqForceReset;
654 if (pdev->revision < VT6105) {
655 name = "Rhine II";
656 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
657 }
658 else {
659 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
660 if (pdev->revision >= VT6105_B0)
661 quirks |= rq6patterns;
662 if (pdev->revision < VT6105M)
663 name = "Rhine III";
664 else
665 name = "Rhine III (Management Adapter)";
666 }
667 }
668
669 rc = pci_enable_device(pdev);
670 if (rc)
671 goto err_out;
672
673 /* this should always be supported */
674 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
675 if (rc) {
676 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
677 "the card!?\n");
678 goto err_out;
679 }
680
681 /* sanity check */
682 if ((pci_resource_len(pdev, 0) < io_size) ||
683 (pci_resource_len(pdev, 1) < io_size)) {
684 rc = -EIO;
685 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
686 goto err_out;
687 }
688
689 pioaddr = pci_resource_start(pdev, 0);
690 memaddr = pci_resource_start(pdev, 1);
691
692 pci_set_master(pdev);
693
694 dev = alloc_etherdev(sizeof(struct rhine_private));
695 if (!dev) {
696 rc = -ENOMEM;
697 printk(KERN_ERR "alloc_etherdev failed\n");
698 goto err_out;
699 }
700 SET_MODULE_OWNER(dev);
701 SET_NETDEV_DEV(dev, &pdev->dev);
702
703 rp = netdev_priv(dev);
704 rp->quirks = quirks;
705 rp->pioaddr = pioaddr;
706 rp->pdev = pdev;
707
708 rc = pci_request_regions(pdev, DRV_NAME);
709 if (rc)
710 goto err_out_free_netdev;
711
712 ioaddr = pci_iomap(pdev, bar, io_size);
713 if (!ioaddr) {
714 rc = -EIO;
715 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
716 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
717 goto err_out_free_res;
718 }
719
720 #ifdef USE_MMIO
721 enable_mmio(pioaddr, quirks);
722
723 /* Check that selected MMIO registers match the PIO ones */
724 i = 0;
725 while (mmio_verify_registers[i]) {
726 int reg = mmio_verify_registers[i++];
727 unsigned char a = inb(pioaddr+reg);
728 unsigned char b = readb(ioaddr+reg);
729 if (a != b) {
730 rc = -EIO;
731 printk(KERN_ERR "MMIO do not match PIO [%02x] "
732 "(%02x != %02x)\n", reg, a, b);
733 goto err_out_unmap;
734 }
735 }
736 #endif /* USE_MMIO */
737
738 dev->base_addr = (unsigned long)ioaddr;
739 rp->base = ioaddr;
740
741 /* Get chip registers into a sane state */
742 rhine_power_init(dev);
743 rhine_hw_init(dev, pioaddr);
744
745 for (i = 0; i < 6; i++)
746 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
747 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
748
749 if (!is_valid_ether_addr(dev->perm_addr)) {
750 rc = -EIO;
751 printk(KERN_ERR "Invalid MAC address\n");
752 goto err_out_unmap;
753 }
754
755 /* For Rhine-I/II, phy_id is loaded from EEPROM */
756 if (!phy_id)
757 phy_id = ioread8(ioaddr + 0x6C);
758
759 dev->irq = pdev->irq;
760
761 spin_lock_init(&rp->lock);
762 rp->mii_if.dev = dev;
763 rp->mii_if.mdio_read = mdio_read;
764 rp->mii_if.mdio_write = mdio_write;
765 rp->mii_if.phy_id_mask = 0x1f;
766 rp->mii_if.reg_num_mask = 0x1f;
767
768 /* The chip-specific entries in the device structure. */
769 dev->open = rhine_open;
770 dev->hard_start_xmit = rhine_start_tx;
771 dev->stop = rhine_close;
772 dev->get_stats = rhine_get_stats;
773 dev->set_multicast_list = rhine_set_rx_mode;
774 dev->do_ioctl = netdev_ioctl;
775 dev->ethtool_ops = &netdev_ethtool_ops;
776 dev->tx_timeout = rhine_tx_timeout;
777 dev->watchdog_timeo = TX_TIMEOUT;
778 #ifdef CONFIG_NET_POLL_CONTROLLER
779 dev->poll_controller = rhine_poll;
780 #endif
781 #ifdef CONFIG_VIA_RHINE_NAPI
782 dev->poll = rhine_napipoll;
783 dev->weight = 64;
784 #endif
785 if (rp->quirks & rqRhineI)
786 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
787
788 /* dev->name not defined before register_netdev()! */
789 rc = register_netdev(dev);
790 if (rc)
791 goto err_out_unmap;
792
793 printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
794 dev->name, name,
795 #ifdef USE_MMIO
796 memaddr
797 #else
798 (long)ioaddr
799 #endif
800 );
801
802 for (i = 0; i < 5; i++)
803 printk("%2.2x:", dev->dev_addr[i]);
804 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);
805
806 pci_set_drvdata(pdev, dev);
807
808 {
809 u16 mii_cmd;
810 int mii_status = mdio_read(dev, phy_id, 1);
811 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
812 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
813 if (mii_status != 0xffff && mii_status != 0x0000) {
814 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
815 printk(KERN_INFO "%s: MII PHY found at address "
816 "%d, status 0x%4.4x advertising %4.4x "
817 "Link %4.4x.\n", dev->name, phy_id,
818 mii_status, rp->mii_if.advertising,
819 mdio_read(dev, phy_id, 5));
820
821 /* set IFF_RUNNING */
822 if (mii_status & BMSR_LSTATUS)
823 netif_carrier_on(dev);
824 else
825 netif_carrier_off(dev);
826
827 }
828 }
829 rp->mii_if.phy_id = phy_id;
830 if (debug > 1 && avoid_D3)
831 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
832 dev->name);
833
834 return 0;
835
836 err_out_unmap:
837 pci_iounmap(pdev, ioaddr);
838 err_out_free_res:
839 pci_release_regions(pdev);
840 err_out_free_netdev:
841 free_netdev(dev);
842 err_out:
843 return rc;
844 }
845
846 static int alloc_ring(struct net_device* dev)
847 {
848 struct rhine_private *rp = netdev_priv(dev);
849 void *ring;
850 dma_addr_t ring_dma;
851
852 ring = pci_alloc_consistent(rp->pdev,
853 RX_RING_SIZE * sizeof(struct rx_desc) +
854 TX_RING_SIZE * sizeof(struct tx_desc),
855 &ring_dma);
856 if (!ring) {
857 printk(KERN_ERR "Could not allocate DMA memory.\n");
858 return -ENOMEM;
859 }
860 if (rp->quirks & rqRhineI) {
861 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
862 PKT_BUF_SZ * TX_RING_SIZE,
863 &rp->tx_bufs_dma);
864 if (rp->tx_bufs == NULL) {
865 pci_free_consistent(rp->pdev,
866 RX_RING_SIZE * sizeof(struct rx_desc) +
867 TX_RING_SIZE * sizeof(struct tx_desc),
868 ring, ring_dma);
869 return -ENOMEM;
870 }
871 }
872
873 rp->rx_ring = ring;
874 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
875 rp->rx_ring_dma = ring_dma;
876 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
877
878 return 0;
879 }
880
881 static void free_ring(struct net_device* dev)
882 {
883 struct rhine_private *rp = netdev_priv(dev);
884
885 pci_free_consistent(rp->pdev,
886 RX_RING_SIZE * sizeof(struct rx_desc) +
887 TX_RING_SIZE * sizeof(struct tx_desc),
888 rp->rx_ring, rp->rx_ring_dma);
889 rp->tx_ring = NULL;
890
891 if (rp->tx_bufs)
892 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
893 rp->tx_bufs, rp->tx_bufs_dma);
894
895 rp->tx_bufs = NULL;
896
897 }
898
899 static void alloc_rbufs(struct net_device *dev)
900 {
901 struct rhine_private *rp = netdev_priv(dev);
902 dma_addr_t next;
903 int i;
904
905 rp->dirty_rx = rp->cur_rx = 0;
906
907 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
908 rp->rx_head_desc = &rp->rx_ring[0];
909 next = rp->rx_ring_dma;
910
911 /* Init the ring entries */
912 for (i = 0; i < RX_RING_SIZE; i++) {
913 rp->rx_ring[i].rx_status = 0;
914 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
915 next += sizeof(struct rx_desc);
916 rp->rx_ring[i].next_desc = cpu_to_le32(next);
917 rp->rx_skbuff[i] = NULL;
918 }
919 /* Mark the last entry as wrapping the ring. */
920 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
921
922 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
923 for (i = 0; i < RX_RING_SIZE; i++) {
924 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
925 rp->rx_skbuff[i] = skb;
926 if (skb == NULL)
927 break;
928 skb->dev = dev; /* Mark as being used by this device. */
929
930 rp->rx_skbuff_dma[i] =
931 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
932 PCI_DMA_FROMDEVICE);
933
934 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
935 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
936 }
937 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
938 }
939
940 static void free_rbufs(struct net_device* dev)
941 {
942 struct rhine_private *rp = netdev_priv(dev);
943 int i;
944
945 /* Free all the skbuffs in the Rx queue. */
946 for (i = 0; i < RX_RING_SIZE; i++) {
947 rp->rx_ring[i].rx_status = 0;
948 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
949 if (rp->rx_skbuff[i]) {
950 pci_unmap_single(rp->pdev,
951 rp->rx_skbuff_dma[i],
952 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
953 dev_kfree_skb(rp->rx_skbuff[i]);
954 }
955 rp->rx_skbuff[i] = NULL;
956 }
957 }
958
959 static void alloc_tbufs(struct net_device* dev)
960 {
961 struct rhine_private *rp = netdev_priv(dev);
962 dma_addr_t next;
963 int i;
964
965 rp->dirty_tx = rp->cur_tx = 0;
966 next = rp->tx_ring_dma;
967 for (i = 0; i < TX_RING_SIZE; i++) {
968 rp->tx_skbuff[i] = NULL;
969 rp->tx_ring[i].tx_status = 0;
970 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
971 next += sizeof(struct tx_desc);
972 rp->tx_ring[i].next_desc = cpu_to_le32(next);
973 if (rp->quirks & rqRhineI)
974 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
975 }
976 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
977
978 }
979
980 static void free_tbufs(struct net_device* dev)
981 {
982 struct rhine_private *rp = netdev_priv(dev);
983 int i;
984
985 for (i = 0; i < TX_RING_SIZE; i++) {
986 rp->tx_ring[i].tx_status = 0;
987 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
988 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
989 if (rp->tx_skbuff[i]) {
990 if (rp->tx_skbuff_dma[i]) {
991 pci_unmap_single(rp->pdev,
992 rp->tx_skbuff_dma[i],
993 rp->tx_skbuff[i]->len,
994 PCI_DMA_TODEVICE);
995 }
996 dev_kfree_skb(rp->tx_skbuff[i]);
997 }
998 rp->tx_skbuff[i] = NULL;
999 rp->tx_buf[i] = NULL;
1000 }
1001 }
1002
1003 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1004 {
1005 struct rhine_private *rp = netdev_priv(dev);
1006 void __iomem *ioaddr = rp->base;
1007
1008 mii_check_media(&rp->mii_if, debug, init_media);
1009
1010 if (rp->mii_if.full_duplex)
1011 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1012 ioaddr + ChipCmd1);
1013 else
1014 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1015 ioaddr + ChipCmd1);
1016 if (debug > 1)
1017 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1018 rp->mii_if.force_media, netif_carrier_ok(dev));
1019 }
1020
1021 /* Called after status of force_media possibly changed */
1022 static void rhine_set_carrier(struct mii_if_info *mii)
1023 {
1024 if (mii->force_media) {
1025 /* autoneg is off: Link is always assumed to be up */
1026 if (!netif_carrier_ok(mii->dev))
1027 netif_carrier_on(mii->dev);
1028 }
1029 else /* Let MMI library update carrier status */
1030 rhine_check_media(mii->dev, 0);
1031 if (debug > 1)
1032 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1033 mii->dev->name, mii->force_media,
1034 netif_carrier_ok(mii->dev));
1035 }
1036
1037 static void init_registers(struct net_device *dev)
1038 {
1039 struct rhine_private *rp = netdev_priv(dev);
1040 void __iomem *ioaddr = rp->base;
1041 int i;
1042
1043 for (i = 0; i < 6; i++)
1044 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1045
1046 /* Initialize other registers. */
1047 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1048 /* Configure initial FIFO thresholds. */
1049 iowrite8(0x20, ioaddr + TxConfig);
1050 rp->tx_thresh = 0x20;
1051 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1052
1053 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1054 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1055
1056 rhine_set_rx_mode(dev);
1057
1058 netif_poll_enable(dev);
1059
1060 /* Enable interrupts by setting the interrupt mask. */
1061 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1062 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1063 IntrTxDone | IntrTxError | IntrTxUnderrun |
1064 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1065 ioaddr + IntrEnable);
1066
1067 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1068 ioaddr + ChipCmd);
1069 rhine_check_media(dev, 1);
1070 }
1071
1072 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1073 static void rhine_enable_linkmon(void __iomem *ioaddr)
1074 {
1075 iowrite8(0, ioaddr + MIICmd);
1076 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1077 iowrite8(0x80, ioaddr + MIICmd);
1078
1079 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1080
1081 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1082 }
1083
1084 /* Disable MII link status auto-polling (required for MDIO access) */
1085 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1086 {
1087 iowrite8(0, ioaddr + MIICmd);
1088
1089 if (quirks & rqRhineI) {
1090 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1091
1092 /* Can be called from ISR. Evil. */
1093 mdelay(1);
1094
1095 /* 0x80 must be set immediately before turning it off */
1096 iowrite8(0x80, ioaddr + MIICmd);
1097
1098 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1099
1100 /* Heh. Now clear 0x80 again. */
1101 iowrite8(0, ioaddr + MIICmd);
1102 }
1103 else
1104 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1105 }
1106
1107 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1108
1109 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1110 {
1111 struct rhine_private *rp = netdev_priv(dev);
1112 void __iomem *ioaddr = rp->base;
1113 int result;
1114
1115 rhine_disable_linkmon(ioaddr, rp->quirks);
1116
1117 /* rhine_disable_linkmon already cleared MIICmd */
1118 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1119 iowrite8(regnum, ioaddr + MIIRegAddr);
1120 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1121 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1122 result = ioread16(ioaddr + MIIData);
1123
1124 rhine_enable_linkmon(ioaddr);
1125 return result;
1126 }
1127
1128 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1129 {
1130 struct rhine_private *rp = netdev_priv(dev);
1131 void __iomem *ioaddr = rp->base;
1132
1133 rhine_disable_linkmon(ioaddr, rp->quirks);
1134
1135 /* rhine_disable_linkmon already cleared MIICmd */
1136 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1137 iowrite8(regnum, ioaddr + MIIRegAddr);
1138 iowrite16(value, ioaddr + MIIData);
1139 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1140 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1141
1142 rhine_enable_linkmon(ioaddr);
1143 }
1144
1145 static int rhine_open(struct net_device *dev)
1146 {
1147 struct rhine_private *rp = netdev_priv(dev);
1148 void __iomem *ioaddr = rp->base;
1149 int rc;
1150
1151 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1152 dev);
1153 if (rc)
1154 return rc;
1155
1156 if (debug > 1)
1157 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1158 dev->name, rp->pdev->irq);
1159
1160 rc = alloc_ring(dev);
1161 if (rc) {
1162 free_irq(rp->pdev->irq, dev);
1163 return rc;
1164 }
1165 alloc_rbufs(dev);
1166 alloc_tbufs(dev);
1167 rhine_chip_reset(dev);
1168 init_registers(dev);
1169 if (debug > 2)
1170 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1171 "MII status: %4.4x.\n",
1172 dev->name, ioread16(ioaddr + ChipCmd),
1173 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1174
1175 netif_start_queue(dev);
1176
1177 return 0;
1178 }
1179
1180 static void rhine_tx_timeout(struct net_device *dev)
1181 {
1182 struct rhine_private *rp = netdev_priv(dev);
1183 void __iomem *ioaddr = rp->base;
1184
1185 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1186 "%4.4x, resetting...\n",
1187 dev->name, ioread16(ioaddr + IntrStatus),
1188 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1189
1190 /* protect against concurrent rx interrupts */
1191 disable_irq(rp->pdev->irq);
1192
1193 spin_lock(&rp->lock);
1194
1195 /* clear all descriptors */
1196 free_tbufs(dev);
1197 free_rbufs(dev);
1198 alloc_tbufs(dev);
1199 alloc_rbufs(dev);
1200
1201 /* Reinitialize the hardware. */
1202 rhine_chip_reset(dev);
1203 init_registers(dev);
1204
1205 spin_unlock(&rp->lock);
1206 enable_irq(rp->pdev->irq);
1207
1208 dev->trans_start = jiffies;
1209 rp->stats.tx_errors++;
1210 netif_wake_queue(dev);
1211 }
1212
1213 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1214 {
1215 struct rhine_private *rp = netdev_priv(dev);
1216 void __iomem *ioaddr = rp->base;
1217 unsigned entry;
1218
1219 /* Caution: the write order is important here, set the field
1220 with the "ownership" bits last. */
1221
1222 /* Calculate the next Tx descriptor entry. */
1223 entry = rp->cur_tx % TX_RING_SIZE;
1224
1225 if (skb_padto(skb, ETH_ZLEN))
1226 return 0;
1227
1228 rp->tx_skbuff[entry] = skb;
1229
1230 if ((rp->quirks & rqRhineI) &&
1231 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1232 /* Must use alignment buffer. */
1233 if (skb->len > PKT_BUF_SZ) {
1234 /* packet too long, drop it */
1235 dev_kfree_skb(skb);
1236 rp->tx_skbuff[entry] = NULL;
1237 rp->stats.tx_dropped++;
1238 return 0;
1239 }
1240
1241 /* Padding is not copied and so must be redone. */
1242 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1243 if (skb->len < ETH_ZLEN)
1244 memset(rp->tx_buf[entry] + skb->len, 0,
1245 ETH_ZLEN - skb->len);
1246 rp->tx_skbuff_dma[entry] = 0;
1247 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1248 (rp->tx_buf[entry] -
1249 rp->tx_bufs));
1250 } else {
1251 rp->tx_skbuff_dma[entry] =
1252 pci_map_single(rp->pdev, skb->data, skb->len,
1253 PCI_DMA_TODEVICE);
1254 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1255 }
1256
1257 rp->tx_ring[entry].desc_length =
1258 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1259
1260 /* lock eth irq */
1261 spin_lock_irq(&rp->lock);
1262 wmb();
1263 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1264 wmb();
1265
1266 rp->cur_tx++;
1267
1268 /* Non-x86 Todo: explicitly flush cache lines here. */
1269
1270 /* Wake the potentially-idle transmit channel */
1271 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1272 ioaddr + ChipCmd1);
1273 IOSYNC;
1274
1275 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1276 netif_stop_queue(dev);
1277
1278 dev->trans_start = jiffies;
1279
1280 spin_unlock_irq(&rp->lock);
1281
1282 if (debug > 4) {
1283 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1284 dev->name, rp->cur_tx-1, entry);
1285 }
1286 return 0;
1287 }
1288
1289 /* The interrupt handler does all of the Rx thread work and cleans up
1290 after the Tx thread. */
1291 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1292 {
1293 struct net_device *dev = dev_instance;
1294 struct rhine_private *rp = netdev_priv(dev);
1295 void __iomem *ioaddr = rp->base;
1296 u32 intr_status;
1297 int boguscnt = max_interrupt_work;
1298 int handled = 0;
1299
1300 while ((intr_status = get_intr_status(dev))) {
1301 handled = 1;
1302
1303 /* Acknowledge all of the current interrupt sources ASAP. */
1304 if (intr_status & IntrTxDescRace)
1305 iowrite8(0x08, ioaddr + IntrStatus2);
1306 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1307 IOSYNC;
1308
1309 if (debug > 4)
1310 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1311 dev->name, intr_status);
1312
1313 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1314 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1315 #ifdef CONFIG_VIA_RHINE_NAPI
1316 iowrite16(IntrTxAborted |
1317 IntrTxDone | IntrTxError | IntrTxUnderrun |
1318 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1319 ioaddr + IntrEnable);
1320
1321 netif_rx_schedule(dev);
1322 #else
1323 rhine_rx(dev, RX_RING_SIZE);
1324 #endif
1325 }
1326
1327 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1328 if (intr_status & IntrTxErrSummary) {
1329 /* Avoid scavenging before Tx engine turned off */
1330 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1331 if (debug > 2 &&
1332 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1333 printk(KERN_WARNING "%s: "
1334 "rhine_interrupt() Tx engine"
1335 "still on.\n", dev->name);
1336 }
1337 rhine_tx(dev);
1338 }
1339
1340 /* Abnormal error summary/uncommon events handlers. */
1341 if (intr_status & (IntrPCIErr | IntrLinkChange |
1342 IntrStatsMax | IntrTxError | IntrTxAborted |
1343 IntrTxUnderrun | IntrTxDescRace))
1344 rhine_error(dev, intr_status);
1345
1346 if (--boguscnt < 0) {
1347 printk(KERN_WARNING "%s: Too much work at interrupt, "
1348 "status=%#8.8x.\n",
1349 dev->name, intr_status);
1350 break;
1351 }
1352 }
1353
1354 if (debug > 3)
1355 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1356 dev->name, ioread16(ioaddr + IntrStatus));
1357 return IRQ_RETVAL(handled);
1358 }
1359
1360 /* This routine is logically part of the interrupt handler, but isolated
1361 for clarity. */
1362 static void rhine_tx(struct net_device *dev)
1363 {
1364 struct rhine_private *rp = netdev_priv(dev);
1365 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1366
1367 spin_lock(&rp->lock);
1368
1369 /* find and cleanup dirty tx descriptors */
1370 while (rp->dirty_tx != rp->cur_tx) {
1371 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1372 if (debug > 6)
1373 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1374 entry, txstatus);
1375 if (txstatus & DescOwn)
1376 break;
1377 if (txstatus & 0x8000) {
1378 if (debug > 1)
1379 printk(KERN_DEBUG "%s: Transmit error, "
1380 "Tx status %8.8x.\n",
1381 dev->name, txstatus);
1382 rp->stats.tx_errors++;
1383 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1384 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1385 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1386 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1387 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1388 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1389 rp->stats.tx_fifo_errors++;
1390 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1391 break; /* Keep the skb - we try again */
1392 }
1393 /* Transmitter restarted in 'abnormal' handler. */
1394 } else {
1395 if (rp->quirks & rqRhineI)
1396 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1397 else
1398 rp->stats.collisions += txstatus & 0x0F;
1399 if (debug > 6)
1400 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1401 (txstatus >> 3) & 0xF,
1402 txstatus & 0xF);
1403 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1404 rp->stats.tx_packets++;
1405 }
1406 /* Free the original skb. */
1407 if (rp->tx_skbuff_dma[entry]) {
1408 pci_unmap_single(rp->pdev,
1409 rp->tx_skbuff_dma[entry],
1410 rp->tx_skbuff[entry]->len,
1411 PCI_DMA_TODEVICE);
1412 }
1413 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1414 rp->tx_skbuff[entry] = NULL;
1415 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1416 }
1417 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1418 netif_wake_queue(dev);
1419
1420 spin_unlock(&rp->lock);
1421 }
1422
1423 /* Process up to limit frames from receive ring */
1424 static int rhine_rx(struct net_device *dev, int limit)
1425 {
1426 struct rhine_private *rp = netdev_priv(dev);
1427 int count;
1428 int entry = rp->cur_rx % RX_RING_SIZE;
1429
1430 if (debug > 4) {
1431 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1432 dev->name, entry,
1433 le32_to_cpu(rp->rx_head_desc->rx_status));
1434 }
1435
1436 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1437 for (count = 0; count < limit; ++count) {
1438 struct rx_desc *desc = rp->rx_head_desc;
1439 u32 desc_status = le32_to_cpu(desc->rx_status);
1440 int data_size = desc_status >> 16;
1441
1442 if (desc_status & DescOwn)
1443 break;
1444
1445 if (debug > 4)
1446 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1447 desc_status);
1448
1449 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1450 if ((desc_status & RxWholePkt) != RxWholePkt) {
1451 printk(KERN_WARNING "%s: Oversized Ethernet "
1452 "frame spanned multiple buffers, entry "
1453 "%#x length %d status %8.8x!\n",
1454 dev->name, entry, data_size,
1455 desc_status);
1456 printk(KERN_WARNING "%s: Oversized Ethernet "
1457 "frame %p vs %p.\n", dev->name,
1458 rp->rx_head_desc, &rp->rx_ring[entry]);
1459 rp->stats.rx_length_errors++;
1460 } else if (desc_status & RxErr) {
1461 /* There was a error. */
1462 if (debug > 2)
1463 printk(KERN_DEBUG "rhine_rx() Rx "
1464 "error was %8.8x.\n",
1465 desc_status);
1466 rp->stats.rx_errors++;
1467 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1468 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1469 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1470 if (desc_status & 0x0002) {
1471 /* this can also be updated outside the interrupt handler */
1472 spin_lock(&rp->lock);
1473 rp->stats.rx_crc_errors++;
1474 spin_unlock(&rp->lock);
1475 }
1476 }
1477 } else {
1478 struct sk_buff *skb;
1479 /* Length should omit the CRC */
1480 int pkt_len = data_size - 4;
1481
1482 /* Check if the packet is long enough to accept without
1483 copying to a minimally-sized skbuff. */
1484 if (pkt_len < rx_copybreak &&
1485 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1486 skb_reserve(skb, 2); /* 16 byte align the IP header */
1487 pci_dma_sync_single_for_cpu(rp->pdev,
1488 rp->rx_skbuff_dma[entry],
1489 rp->rx_buf_sz,
1490 PCI_DMA_FROMDEVICE);
1491
1492 skb_copy_to_linear_data(skb,
1493 rp->rx_skbuff[entry]->data,
1494 pkt_len);
1495 skb_put(skb, pkt_len);
1496 pci_dma_sync_single_for_device(rp->pdev,
1497 rp->rx_skbuff_dma[entry],
1498 rp->rx_buf_sz,
1499 PCI_DMA_FROMDEVICE);
1500 } else {
1501 skb = rp->rx_skbuff[entry];
1502 if (skb == NULL) {
1503 printk(KERN_ERR "%s: Inconsistent Rx "
1504 "descriptor chain.\n",
1505 dev->name);
1506 break;
1507 }
1508 rp->rx_skbuff[entry] = NULL;
1509 skb_put(skb, pkt_len);
1510 pci_unmap_single(rp->pdev,
1511 rp->rx_skbuff_dma[entry],
1512 rp->rx_buf_sz,
1513 PCI_DMA_FROMDEVICE);
1514 }
1515 skb->protocol = eth_type_trans(skb, dev);
1516 #ifdef CONFIG_VIA_RHINE_NAPI
1517 netif_receive_skb(skb);
1518 #else
1519 netif_rx(skb);
1520 #endif
1521 dev->last_rx = jiffies;
1522 rp->stats.rx_bytes += pkt_len;
1523 rp->stats.rx_packets++;
1524 }
1525 entry = (++rp->cur_rx) % RX_RING_SIZE;
1526 rp->rx_head_desc = &rp->rx_ring[entry];
1527 }
1528
1529 /* Refill the Rx ring buffers. */
1530 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1531 struct sk_buff *skb;
1532 entry = rp->dirty_rx % RX_RING_SIZE;
1533 if (rp->rx_skbuff[entry] == NULL) {
1534 skb = dev_alloc_skb(rp->rx_buf_sz);
1535 rp->rx_skbuff[entry] = skb;
1536 if (skb == NULL)
1537 break; /* Better luck next round. */
1538 skb->dev = dev; /* Mark as being used by this device. */
1539 rp->rx_skbuff_dma[entry] =
1540 pci_map_single(rp->pdev, skb->data,
1541 rp->rx_buf_sz,
1542 PCI_DMA_FROMDEVICE);
1543 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1544 }
1545 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1546 }
1547
1548 return count;
1549 }
1550
1551 /*
1552 * Clears the "tally counters" for CRC errors and missed frames(?).
1553 * It has been reported that some chips need a write of 0 to clear
1554 * these, for others the counters are set to 1 when written to and
1555 * instead cleared when read. So we clear them both ways ...
1556 */
1557 static inline void clear_tally_counters(void __iomem *ioaddr)
1558 {
1559 iowrite32(0, ioaddr + RxMissed);
1560 ioread16(ioaddr + RxCRCErrs);
1561 ioread16(ioaddr + RxMissed);
1562 }
1563
1564 static void rhine_restart_tx(struct net_device *dev) {
1565 struct rhine_private *rp = netdev_priv(dev);
1566 void __iomem *ioaddr = rp->base;
1567 int entry = rp->dirty_tx % TX_RING_SIZE;
1568 u32 intr_status;
1569
1570 /*
1571 * If new errors occured, we need to sort them out before doing Tx.
1572 * In that case the ISR will be back here RSN anyway.
1573 */
1574 intr_status = get_intr_status(dev);
1575
1576 if ((intr_status & IntrTxErrSummary) == 0) {
1577
1578 /* We know better than the chip where it should continue. */
1579 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1580 ioaddr + TxRingPtr);
1581
1582 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1583 ioaddr + ChipCmd);
1584 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1585 ioaddr + ChipCmd1);
1586 IOSYNC;
1587 }
1588 else {
1589 /* This should never happen */
1590 if (debug > 1)
1591 printk(KERN_WARNING "%s: rhine_restart_tx() "
1592 "Another error occured %8.8x.\n",
1593 dev->name, intr_status);
1594 }
1595
1596 }
1597
1598 static void rhine_error(struct net_device *dev, int intr_status)
1599 {
1600 struct rhine_private *rp = netdev_priv(dev);
1601 void __iomem *ioaddr = rp->base;
1602
1603 spin_lock(&rp->lock);
1604
1605 if (intr_status & IntrLinkChange)
1606 rhine_check_media(dev, 0);
1607 if (intr_status & IntrStatsMax) {
1608 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1609 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1610 clear_tally_counters(ioaddr);
1611 }
1612 if (intr_status & IntrTxAborted) {
1613 if (debug > 1)
1614 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1615 dev->name, intr_status);
1616 }
1617 if (intr_status & IntrTxUnderrun) {
1618 if (rp->tx_thresh < 0xE0)
1619 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1620 if (debug > 1)
1621 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1622 "threshold now %2.2x.\n",
1623 dev->name, rp->tx_thresh);
1624 }
1625 if (intr_status & IntrTxDescRace) {
1626 if (debug > 2)
1627 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1628 dev->name);
1629 }
1630 if ((intr_status & IntrTxError) &&
1631 (intr_status & (IntrTxAborted |
1632 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1633 if (rp->tx_thresh < 0xE0) {
1634 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1635 }
1636 if (debug > 1)
1637 printk(KERN_INFO "%s: Unspecified error. Tx "
1638 "threshold now %2.2x.\n",
1639 dev->name, rp->tx_thresh);
1640 }
1641 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1642 IntrTxError))
1643 rhine_restart_tx(dev);
1644
1645 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1646 IntrTxError | IntrTxAborted | IntrNormalSummary |
1647 IntrTxDescRace)) {
1648 if (debug > 1)
1649 printk(KERN_ERR "%s: Something Wicked happened! "
1650 "%8.8x.\n", dev->name, intr_status);
1651 }
1652
1653 spin_unlock(&rp->lock);
1654 }
1655
1656 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1657 {
1658 struct rhine_private *rp = netdev_priv(dev);
1659 void __iomem *ioaddr = rp->base;
1660 unsigned long flags;
1661
1662 spin_lock_irqsave(&rp->lock, flags);
1663 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1664 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1665 clear_tally_counters(ioaddr);
1666 spin_unlock_irqrestore(&rp->lock, flags);
1667
1668 return &rp->stats;
1669 }
1670
1671 static void rhine_set_rx_mode(struct net_device *dev)
1672 {
1673 struct rhine_private *rp = netdev_priv(dev);
1674 void __iomem *ioaddr = rp->base;
1675 u32 mc_filter[2]; /* Multicast hash filter */
1676 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1677
1678 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1679 rx_mode = 0x1C;
1680 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1681 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1682 } else if ((dev->mc_count > multicast_filter_limit)
1683 || (dev->flags & IFF_ALLMULTI)) {
1684 /* Too many to match, or accept all multicasts. */
1685 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1686 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1687 rx_mode = 0x0C;
1688 } else {
1689 struct dev_mc_list *mclist;
1690 int i;
1691 memset(mc_filter, 0, sizeof(mc_filter));
1692 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1693 i++, mclist = mclist->next) {
1694 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1695
1696 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1697 }
1698 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1699 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1700 rx_mode = 0x0C;
1701 }
1702 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1703 }
1704
1705 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1706 {
1707 struct rhine_private *rp = netdev_priv(dev);
1708
1709 strcpy(info->driver, DRV_NAME);
1710 strcpy(info->version, DRV_VERSION);
1711 strcpy(info->bus_info, pci_name(rp->pdev));
1712 }
1713
1714 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1715 {
1716 struct rhine_private *rp = netdev_priv(dev);
1717 int rc;
1718
1719 spin_lock_irq(&rp->lock);
1720 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1721 spin_unlock_irq(&rp->lock);
1722
1723 return rc;
1724 }
1725
1726 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1727 {
1728 struct rhine_private *rp = netdev_priv(dev);
1729 int rc;
1730
1731 spin_lock_irq(&rp->lock);
1732 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1733 spin_unlock_irq(&rp->lock);
1734 rhine_set_carrier(&rp->mii_if);
1735
1736 return rc;
1737 }
1738
1739 static int netdev_nway_reset(struct net_device *dev)
1740 {
1741 struct rhine_private *rp = netdev_priv(dev);
1742
1743 return mii_nway_restart(&rp->mii_if);
1744 }
1745
1746 static u32 netdev_get_link(struct net_device *dev)
1747 {
1748 struct rhine_private *rp = netdev_priv(dev);
1749
1750 return mii_link_ok(&rp->mii_if);
1751 }
1752
1753 static u32 netdev_get_msglevel(struct net_device *dev)
1754 {
1755 return debug;
1756 }
1757
1758 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1759 {
1760 debug = value;
1761 }
1762
1763 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1764 {
1765 struct rhine_private *rp = netdev_priv(dev);
1766
1767 if (!(rp->quirks & rqWOL))
1768 return;
1769
1770 spin_lock_irq(&rp->lock);
1771 wol->supported = WAKE_PHY | WAKE_MAGIC |
1772 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1773 wol->wolopts = rp->wolopts;
1774 spin_unlock_irq(&rp->lock);
1775 }
1776
1777 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1778 {
1779 struct rhine_private *rp = netdev_priv(dev);
1780 u32 support = WAKE_PHY | WAKE_MAGIC |
1781 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1782
1783 if (!(rp->quirks & rqWOL))
1784 return -EINVAL;
1785
1786 if (wol->wolopts & ~support)
1787 return -EINVAL;
1788
1789 spin_lock_irq(&rp->lock);
1790 rp->wolopts = wol->wolopts;
1791 spin_unlock_irq(&rp->lock);
1792
1793 return 0;
1794 }
1795
1796 static const struct ethtool_ops netdev_ethtool_ops = {
1797 .get_drvinfo = netdev_get_drvinfo,
1798 .get_settings = netdev_get_settings,
1799 .set_settings = netdev_set_settings,
1800 .nway_reset = netdev_nway_reset,
1801 .get_link = netdev_get_link,
1802 .get_msglevel = netdev_get_msglevel,
1803 .set_msglevel = netdev_set_msglevel,
1804 .get_wol = rhine_get_wol,
1805 .set_wol = rhine_set_wol,
1806 .get_sg = ethtool_op_get_sg,
1807 .get_tx_csum = ethtool_op_get_tx_csum,
1808 .get_perm_addr = ethtool_op_get_perm_addr,
1809 };
1810
1811 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1812 {
1813 struct rhine_private *rp = netdev_priv(dev);
1814 int rc;
1815
1816 if (!netif_running(dev))
1817 return -EINVAL;
1818
1819 spin_lock_irq(&rp->lock);
1820 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1821 spin_unlock_irq(&rp->lock);
1822 rhine_set_carrier(&rp->mii_if);
1823
1824 return rc;
1825 }
1826
1827 static int rhine_close(struct net_device *dev)
1828 {
1829 struct rhine_private *rp = netdev_priv(dev);
1830 void __iomem *ioaddr = rp->base;
1831
1832 spin_lock_irq(&rp->lock);
1833
1834 netif_stop_queue(dev);
1835 netif_poll_disable(dev);
1836
1837 if (debug > 1)
1838 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1839 "status was %4.4x.\n",
1840 dev->name, ioread16(ioaddr + ChipCmd));
1841
1842 /* Switch to loopback mode to avoid hardware races. */
1843 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1844
1845 /* Disable interrupts by clearing the interrupt mask. */
1846 iowrite16(0x0000, ioaddr + IntrEnable);
1847
1848 /* Stop the chip's Tx and Rx processes. */
1849 iowrite16(CmdStop, ioaddr + ChipCmd);
1850
1851 spin_unlock_irq(&rp->lock);
1852
1853 free_irq(rp->pdev->irq, dev);
1854 free_rbufs(dev);
1855 free_tbufs(dev);
1856 free_ring(dev);
1857
1858 return 0;
1859 }
1860
1861
1862 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1863 {
1864 struct net_device *dev = pci_get_drvdata(pdev);
1865 struct rhine_private *rp = netdev_priv(dev);
1866
1867 unregister_netdev(dev);
1868
1869 pci_iounmap(pdev, rp->base);
1870 pci_release_regions(pdev);
1871
1872 free_netdev(dev);
1873 pci_disable_device(pdev);
1874 pci_set_drvdata(pdev, NULL);
1875 }
1876
1877 static void rhine_shutdown (struct pci_dev *pdev)
1878 {
1879 struct net_device *dev = pci_get_drvdata(pdev);
1880 struct rhine_private *rp = netdev_priv(dev);
1881 void __iomem *ioaddr = rp->base;
1882
1883 if (!(rp->quirks & rqWOL))
1884 return; /* Nothing to do for non-WOL adapters */
1885
1886 rhine_power_init(dev);
1887
1888 /* Make sure we use pattern 0, 1 and not 4, 5 */
1889 if (rp->quirks & rq6patterns)
1890 iowrite8(0x04, ioaddr + 0xA7);
1891
1892 if (rp->wolopts & WAKE_MAGIC) {
1893 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1894 /*
1895 * Turn EEPROM-controlled wake-up back on -- some hardware may
1896 * not cooperate otherwise.
1897 */
1898 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1899 }
1900
1901 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1902 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1903
1904 if (rp->wolopts & WAKE_PHY)
1905 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1906
1907 if (rp->wolopts & WAKE_UCAST)
1908 iowrite8(WOLucast, ioaddr + WOLcrSet);
1909
1910 if (rp->wolopts) {
1911 /* Enable legacy WOL (for old motherboards) */
1912 iowrite8(0x01, ioaddr + PwcfgSet);
1913 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1914 }
1915
1916 /* Hit power state D3 (sleep) */
1917 if (!avoid_D3)
1918 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1919
1920 /* TODO: Check use of pci_enable_wake() */
1921
1922 }
1923
1924 #ifdef CONFIG_PM
1925 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1926 {
1927 struct net_device *dev = pci_get_drvdata(pdev);
1928 struct rhine_private *rp = netdev_priv(dev);
1929 unsigned long flags;
1930
1931 if (!netif_running(dev))
1932 return 0;
1933
1934 netif_device_detach(dev);
1935 pci_save_state(pdev);
1936
1937 spin_lock_irqsave(&rp->lock, flags);
1938 rhine_shutdown(pdev);
1939 spin_unlock_irqrestore(&rp->lock, flags);
1940
1941 free_irq(dev->irq, dev);
1942 return 0;
1943 }
1944
1945 static int rhine_resume(struct pci_dev *pdev)
1946 {
1947 struct net_device *dev = pci_get_drvdata(pdev);
1948 struct rhine_private *rp = netdev_priv(dev);
1949 unsigned long flags;
1950 int ret;
1951
1952 if (!netif_running(dev))
1953 return 0;
1954
1955 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1956 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1957
1958 ret = pci_set_power_state(pdev, PCI_D0);
1959 if (debug > 1)
1960 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1961 dev->name, ret ? "failed" : "succeeded", ret);
1962
1963 pci_restore_state(pdev);
1964
1965 spin_lock_irqsave(&rp->lock, flags);
1966 #ifdef USE_MMIO
1967 enable_mmio(rp->pioaddr, rp->quirks);
1968 #endif
1969 rhine_power_init(dev);
1970 free_tbufs(dev);
1971 free_rbufs(dev);
1972 alloc_tbufs(dev);
1973 alloc_rbufs(dev);
1974 init_registers(dev);
1975 spin_unlock_irqrestore(&rp->lock, flags);
1976
1977 netif_device_attach(dev);
1978
1979 return 0;
1980 }
1981 #endif /* CONFIG_PM */
1982
1983 static struct pci_driver rhine_driver = {
1984 .name = DRV_NAME,
1985 .id_table = rhine_pci_tbl,
1986 .probe = rhine_init_one,
1987 .remove = __devexit_p(rhine_remove_one),
1988 #ifdef CONFIG_PM
1989 .suspend = rhine_suspend,
1990 .resume = rhine_resume,
1991 #endif /* CONFIG_PM */
1992 .shutdown = rhine_shutdown,
1993 };
1994
1995 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1996 {
1997 .ident = "EPIA-M",
1998 .matches = {
1999 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2000 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2001 },
2002 },
2003 {
2004 .ident = "KV7",
2005 .matches = {
2006 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2007 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2008 },
2009 },
2010 { NULL }
2011 };
2012
2013 static int __init rhine_init(void)
2014 {
2015 /* when a module, this is printed whether or not devices are found in probe */
2016 #ifdef MODULE
2017 printk(version);
2018 #endif
2019 if (dmi_check_system(rhine_dmi_table)) {
2020 /* these BIOSes fail at PXE boot if chip is in D3 */
2021 avoid_D3 = 1;
2022 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2023 "enabled.\n",
2024 DRV_NAME);
2025 }
2026 else if (avoid_D3)
2027 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2028
2029 return pci_register_driver(&rhine_driver);
2030 }
2031
2032
2033 static void __exit rhine_cleanup(void)
2034 {
2035 pci_unregister_driver(&rhine_driver);
2036 }
2037
2038
2039 module_init(rhine_init);
2040 module_exit(rhine_cleanup);