]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/via-velocity.c
net: use NETDEV_TX_OK instead of 0 in ndo_start_xmit() functions
[mirror_ubuntu-artful-kernel.git] / drivers / net / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * Scatter gather
13 * More testing
14 *
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16 * Additional fixes and clean up: Francois Romieu
17 *
18 * This source has not been verified for use in safety critical systems.
19 *
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
22 *
23 * Original code:
24 *
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
27 *
28 * This software may be redistributed and/or modified under
29 * the terms of the GNU General Public License as published by the Free
30 * Software Foundation; either version 2 of the License, or
31 * any later version.
32 *
33 * This program is distributed in the hope that it will be useful, but
34 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
36 * for more details.
37 *
38 * Author: Chuang Liang-Shing, AJ Jiang
39 *
40 * Date: Jan 24, 2003
41 *
42 * MODULE_LICENSE("GPL");
43 *
44 */
45
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <asm/io.h>
65 #include <linux/if.h>
66 #include <asm/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
80
81 #include "via-velocity.h"
82
83
84 static int velocity_nics = 0;
85 static int msglevel = MSG_LEVEL_INFO;
86
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
91 *
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
94 */
95
96 static void mac_get_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
97 {
98 int i;
99
100 /* Select CAM mask */
101 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
102
103 writeb(0, &regs->CAMADDR);
104
105 /* read mask */
106 for (i = 0; i < 8; i++)
107 *mask++ = readb(&(regs->MARCAM[i]));
108
109 /* disable CAMEN */
110 writeb(0, &regs->CAMADDR);
111
112 /* Select mar */
113 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
114
115 }
116
117
118 /**
119 * mac_set_cam_mask - Set a CAM mask
120 * @regs: register block for this velocity
121 * @mask: CAM mask to load
122 *
123 * Store a new mask into a CAM
124 */
125
126 static void mac_set_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
127 {
128 int i;
129 /* Select CAM mask */
130 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131
132 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
133
134 for (i = 0; i < 8; i++) {
135 writeb(*mask++, &(regs->MARCAM[i]));
136 }
137 /* disable CAMEN */
138 writeb(0, &regs->CAMADDR);
139
140 /* Select mar */
141 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
142 }
143
144 static void mac_set_vlan_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
145 {
146 int i;
147 /* Select CAM mask */
148 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
149
150 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
151
152 for (i = 0; i < 8; i++) {
153 writeb(*mask++, &(regs->MARCAM[i]));
154 }
155 /* disable CAMEN */
156 writeb(0, &regs->CAMADDR);
157
158 /* Select mar */
159 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
160 }
161
162 /**
163 * mac_set_cam - set CAM data
164 * @regs: register block of this velocity
165 * @idx: Cam index
166 * @addr: 2 or 6 bytes of CAM data
167 *
168 * Load an address or vlan tag into a CAM
169 */
170
171 static void mac_set_cam(struct mac_regs __iomem * regs, int idx, const u8 *addr)
172 {
173 int i;
174
175 /* Select CAM mask */
176 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
177
178 idx &= (64 - 1);
179
180 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
181
182 for (i = 0; i < 6; i++) {
183 writeb(*addr++, &(regs->MARCAM[i]));
184 }
185 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
186
187 udelay(10);
188
189 writeb(0, &regs->CAMADDR);
190
191 /* Select mar */
192 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
193 }
194
195 static void mac_set_vlan_cam(struct mac_regs __iomem * regs, int idx,
196 const u8 *addr)
197 {
198
199 /* Select CAM mask */
200 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
201
202 idx &= (64 - 1);
203
204 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
205 writew(*((u16 *) addr), &regs->MARCAM[0]);
206
207 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
208
209 udelay(10);
210
211 writeb(0, &regs->CAMADDR);
212
213 /* Select mar */
214 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
215 }
216
217
218 /**
219 * mac_wol_reset - reset WOL after exiting low power
220 * @regs: register block of this velocity
221 *
222 * Called after we drop out of wake on lan mode in order to
223 * reset the Wake on lan features. This function doesn't restore
224 * the rest of the logic from the result of sleep/wakeup
225 */
226
227 static void mac_wol_reset(struct mac_regs __iomem * regs)
228 {
229
230 /* Turn off SWPTAG right after leaving power mode */
231 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
232 /* clear sticky bits */
233 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
234
235 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
236 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
237 /* disable force PME-enable */
238 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
239 /* disable power-event config bit */
240 writew(0xFFFF, &regs->WOLCRClr);
241 /* clear power status */
242 writew(0xFFFF, &regs->WOLSRClr);
243 }
244
245 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
246 static const struct ethtool_ops velocity_ethtool_ops;
247
248 /*
249 Define module options
250 */
251
252 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
253 MODULE_LICENSE("GPL");
254 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
255
256 #define VELOCITY_PARAM(N,D) \
257 static int N[MAX_UNITS]=OPTION_DEFAULT;\
258 module_param_array(N, int, NULL, 0); \
259 MODULE_PARM_DESC(N, D);
260
261 #define RX_DESC_MIN 64
262 #define RX_DESC_MAX 255
263 #define RX_DESC_DEF 64
264 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
265
266 #define TX_DESC_MIN 16
267 #define TX_DESC_MAX 256
268 #define TX_DESC_DEF 64
269 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
270
271 #define RX_THRESH_MIN 0
272 #define RX_THRESH_MAX 3
273 #define RX_THRESH_DEF 0
274 /* rx_thresh[] is used for controlling the receive fifo threshold.
275 0: indicate the rxfifo threshold is 128 bytes.
276 1: indicate the rxfifo threshold is 512 bytes.
277 2: indicate the rxfifo threshold is 1024 bytes.
278 3: indicate the rxfifo threshold is store & forward.
279 */
280 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
281
282 #define DMA_LENGTH_MIN 0
283 #define DMA_LENGTH_MAX 7
284 #define DMA_LENGTH_DEF 0
285
286 /* DMA_length[] is used for controlling the DMA length
287 0: 8 DWORDs
288 1: 16 DWORDs
289 2: 32 DWORDs
290 3: 64 DWORDs
291 4: 128 DWORDs
292 5: 256 DWORDs
293 6: SF(flush till emply)
294 7: SF(flush till emply)
295 */
296 VELOCITY_PARAM(DMA_length, "DMA length");
297
298 #define IP_ALIG_DEF 0
299 /* IP_byte_align[] is used for IP header DWORD byte aligned
300 0: indicate the IP header won't be DWORD byte aligned.(Default) .
301 1: indicate the IP header will be DWORD byte aligned.
302 In some enviroment, the IP header should be DWORD byte aligned,
303 or the packet will be droped when we receive it. (eg: IPVS)
304 */
305 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
306
307 #define TX_CSUM_DEF 1
308 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
309 (We only support RX checksum offload now)
310 0: disable csum_offload[checksum offload
311 1: enable checksum offload. (Default)
312 */
313 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
314
315 #define FLOW_CNTL_DEF 1
316 #define FLOW_CNTL_MIN 1
317 #define FLOW_CNTL_MAX 5
318
319 /* flow_control[] is used for setting the flow control ability of NIC.
320 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
321 2: enable TX flow control.
322 3: enable RX flow control.
323 4: enable RX/TX flow control.
324 5: disable
325 */
326 VELOCITY_PARAM(flow_control, "Enable flow control ability");
327
328 #define MED_LNK_DEF 0
329 #define MED_LNK_MIN 0
330 #define MED_LNK_MAX 4
331 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
332 0: indicate autonegotiation for both speed and duplex mode
333 1: indicate 100Mbps half duplex mode
334 2: indicate 100Mbps full duplex mode
335 3: indicate 10Mbps half duplex mode
336 4: indicate 10Mbps full duplex mode
337
338 Note:
339 if EEPROM have been set to the force mode, this option is ignored
340 by driver.
341 */
342 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
343
344 #define VAL_PKT_LEN_DEF 0
345 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
346 0: Receive frame with invalid layer 2 length (Default)
347 1: Drop frame with invalid layer 2 length
348 */
349 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
350
351 #define WOL_OPT_DEF 0
352 #define WOL_OPT_MIN 0
353 #define WOL_OPT_MAX 7
354 /* wol_opts[] is used for controlling wake on lan behavior.
355 0: Wake up if recevied a magic packet. (Default)
356 1: Wake up if link status is on/off.
357 2: Wake up if recevied an arp packet.
358 4: Wake up if recevied any unicast packet.
359 Those value can be sumed up to support more than one option.
360 */
361 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
362
363 #define INT_WORKS_DEF 20
364 #define INT_WORKS_MIN 10
365 #define INT_WORKS_MAX 64
366
367 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
368
369 static int rx_copybreak = 200;
370 module_param(rx_copybreak, int, 0644);
371 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
372
373 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
374 const struct velocity_info_tbl *info);
375 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
376 static void velocity_print_info(struct velocity_info *vptr);
377 static int velocity_open(struct net_device *dev);
378 static int velocity_change_mtu(struct net_device *dev, int mtu);
379 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
380 static irqreturn_t velocity_intr(int irq, void *dev_instance);
381 static void velocity_set_multi(struct net_device *dev);
382 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
383 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
384 static int velocity_close(struct net_device *dev);
385 static int velocity_receive_frame(struct velocity_info *, int idx);
386 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
387 static void velocity_free_rd_ring(struct velocity_info *vptr);
388 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
389 static int velocity_soft_reset(struct velocity_info *vptr);
390 static void mii_init(struct velocity_info *vptr, u32 mii_status);
391 static u32 velocity_get_link(struct net_device *dev);
392 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
393 static void velocity_print_link_status(struct velocity_info *vptr);
394 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
395 static void velocity_shutdown(struct velocity_info *vptr);
396 static void enable_flow_control_ability(struct velocity_info *vptr);
397 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
398 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
399 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
400 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
401 static u32 check_connection_type(struct mac_regs __iomem * regs);
402 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
403
404 #ifdef CONFIG_PM
405
406 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
407 static int velocity_resume(struct pci_dev *pdev);
408
409 static DEFINE_SPINLOCK(velocity_dev_list_lock);
410 static LIST_HEAD(velocity_dev_list);
411
412 #endif
413
414 #if defined(CONFIG_PM) && defined(CONFIG_INET)
415
416 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
417
418 static struct notifier_block velocity_inetaddr_notifier = {
419 .notifier_call = velocity_netdev_event,
420 };
421
422 static void velocity_register_notifier(void)
423 {
424 register_inetaddr_notifier(&velocity_inetaddr_notifier);
425 }
426
427 static void velocity_unregister_notifier(void)
428 {
429 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
430 }
431
432 #else
433
434 #define velocity_register_notifier() do {} while (0)
435 #define velocity_unregister_notifier() do {} while (0)
436
437 #endif
438
439 /*
440 * Internal board variants. At the moment we have only one
441 */
442
443 static struct velocity_info_tbl chip_info_table[] = {
444 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
445 { }
446 };
447
448 /*
449 * Describe the PCI device identifiers that we support in this
450 * device driver. Used for hotplug autoloading.
451 */
452
453 static const struct pci_device_id velocity_id_table[] __devinitdata = {
454 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
455 { }
456 };
457
458 MODULE_DEVICE_TABLE(pci, velocity_id_table);
459
460 /**
461 * get_chip_name - identifier to name
462 * @id: chip identifier
463 *
464 * Given a chip identifier return a suitable description. Returns
465 * a pointer a static string valid while the driver is loaded.
466 */
467
468 static const char __devinit *get_chip_name(enum chip_type chip_id)
469 {
470 int i;
471 for (i = 0; chip_info_table[i].name != NULL; i++)
472 if (chip_info_table[i].chip_id == chip_id)
473 break;
474 return chip_info_table[i].name;
475 }
476
477 /**
478 * velocity_remove1 - device unplug
479 * @pdev: PCI device being removed
480 *
481 * Device unload callback. Called on an unplug or on module
482 * unload for each active device that is present. Disconnects
483 * the device from the network layer and frees all the resources
484 */
485
486 static void __devexit velocity_remove1(struct pci_dev *pdev)
487 {
488 struct net_device *dev = pci_get_drvdata(pdev);
489 struct velocity_info *vptr = netdev_priv(dev);
490
491 #ifdef CONFIG_PM
492 unsigned long flags;
493
494 spin_lock_irqsave(&velocity_dev_list_lock, flags);
495 if (!list_empty(&velocity_dev_list))
496 list_del(&vptr->list);
497 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
498 #endif
499 unregister_netdev(dev);
500 iounmap(vptr->mac_regs);
501 pci_release_regions(pdev);
502 pci_disable_device(pdev);
503 pci_set_drvdata(pdev, NULL);
504 free_netdev(dev);
505
506 velocity_nics--;
507 }
508
509 /**
510 * velocity_set_int_opt - parser for integer options
511 * @opt: pointer to option value
512 * @val: value the user requested (or -1 for default)
513 * @min: lowest value allowed
514 * @max: highest value allowed
515 * @def: default value
516 * @name: property name
517 * @dev: device name
518 *
519 * Set an integer property in the module options. This function does
520 * all the verification and checking as well as reporting so that
521 * we don't duplicate code for each option.
522 */
523
524 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
525 {
526 if (val == -1)
527 *opt = def;
528 else if (val < min || val > max) {
529 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
530 devname, name, min, max);
531 *opt = def;
532 } else {
533 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
534 devname, name, val);
535 *opt = val;
536 }
537 }
538
539 /**
540 * velocity_set_bool_opt - parser for boolean options
541 * @opt: pointer to option value
542 * @val: value the user requested (or -1 for default)
543 * @def: default value (yes/no)
544 * @flag: numeric value to set for true.
545 * @name: property name
546 * @dev: device name
547 *
548 * Set a boolean property in the module options. This function does
549 * all the verification and checking as well as reporting so that
550 * we don't duplicate code for each option.
551 */
552
553 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, const char *devname)
554 {
555 (*opt) &= (~flag);
556 if (val == -1)
557 *opt |= (def ? flag : 0);
558 else if (val < 0 || val > 1) {
559 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
560 devname, name);
561 *opt |= (def ? flag : 0);
562 } else {
563 printk(KERN_INFO "%s: set parameter %s to %s\n",
564 devname, name, val ? "TRUE" : "FALSE");
565 *opt |= (val ? flag : 0);
566 }
567 }
568
569 /**
570 * velocity_get_options - set options on device
571 * @opts: option structure for the device
572 * @index: index of option to use in module options array
573 * @devname: device name
574 *
575 * Turn the module and command options into a single structure
576 * for the current device
577 */
578
579 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
580 {
581
582 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
583 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
584 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
585 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
586
587 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
588 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
589 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
590 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
591 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
592 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
593 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
594 opts->numrx = (opts->numrx & ~3);
595 }
596
597 /**
598 * velocity_init_cam_filter - initialise CAM
599 * @vptr: velocity to program
600 *
601 * Initialize the content addressable memory used for filters. Load
602 * appropriately according to the presence of VLAN
603 */
604
605 static void velocity_init_cam_filter(struct velocity_info *vptr)
606 {
607 struct mac_regs __iomem * regs = vptr->mac_regs;
608
609 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
610 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
611 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
612
613 /* Disable all CAMs */
614 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
615 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
616 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
617 mac_set_cam_mask(regs, vptr->mCAMmask);
618
619 /* Enable VCAMs */
620 if (vptr->vlgrp) {
621 unsigned int vid, i = 0;
622
623 if (!vlan_group_get_device(vptr->vlgrp, 0))
624 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
625
626 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
627 if (vlan_group_get_device(vptr->vlgrp, vid)) {
628 mac_set_vlan_cam(regs, i, (u8 *) &vid);
629 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
630 if (++i >= VCAM_SIZE)
631 break;
632 }
633 }
634 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
635 }
636 }
637
638 static void velocity_vlan_rx_register(struct net_device *dev,
639 struct vlan_group *grp)
640 {
641 struct velocity_info *vptr = netdev_priv(dev);
642
643 vptr->vlgrp = grp;
644 }
645
646 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
647 {
648 struct velocity_info *vptr = netdev_priv(dev);
649
650 spin_lock_irq(&vptr->lock);
651 velocity_init_cam_filter(vptr);
652 spin_unlock_irq(&vptr->lock);
653 }
654
655 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
656 {
657 struct velocity_info *vptr = netdev_priv(dev);
658
659 spin_lock_irq(&vptr->lock);
660 vlan_group_set_device(vptr->vlgrp, vid, NULL);
661 velocity_init_cam_filter(vptr);
662 spin_unlock_irq(&vptr->lock);
663 }
664
665 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
666 {
667 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
668 }
669
670 /**
671 * velocity_rx_reset - handle a receive reset
672 * @vptr: velocity we are resetting
673 *
674 * Reset the ownership and status for the receive ring side.
675 * Hand all the receive queue to the NIC.
676 */
677
678 static void velocity_rx_reset(struct velocity_info *vptr)
679 {
680
681 struct mac_regs __iomem * regs = vptr->mac_regs;
682 int i;
683
684 velocity_init_rx_ring_indexes(vptr);
685
686 /*
687 * Init state, all RD entries belong to the NIC
688 */
689 for (i = 0; i < vptr->options.numrx; ++i)
690 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
691
692 writew(vptr->options.numrx, &regs->RBRDU);
693 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
694 writew(0, &regs->RDIdx);
695 writew(vptr->options.numrx - 1, &regs->RDCSize);
696 }
697
698 /**
699 * velocity_init_registers - initialise MAC registers
700 * @vptr: velocity to init
701 * @type: type of initialisation (hot or cold)
702 *
703 * Initialise the MAC on a reset or on first set up on the
704 * hardware.
705 */
706
707 static void velocity_init_registers(struct velocity_info *vptr,
708 enum velocity_init_type type)
709 {
710 struct mac_regs __iomem * regs = vptr->mac_regs;
711 int i, mii_status;
712
713 mac_wol_reset(regs);
714
715 switch (type) {
716 case VELOCITY_INIT_RESET:
717 case VELOCITY_INIT_WOL:
718
719 netif_stop_queue(vptr->dev);
720
721 /*
722 * Reset RX to prevent RX pointer not on the 4X location
723 */
724 velocity_rx_reset(vptr);
725 mac_rx_queue_run(regs);
726 mac_rx_queue_wake(regs);
727
728 mii_status = velocity_get_opt_media_mode(vptr);
729 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
730 velocity_print_link_status(vptr);
731 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
732 netif_wake_queue(vptr->dev);
733 }
734
735 enable_flow_control_ability(vptr);
736
737 mac_clear_isr(regs);
738 writel(CR0_STOP, &regs->CR0Clr);
739 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
740 &regs->CR0Set);
741
742 break;
743
744 case VELOCITY_INIT_COLD:
745 default:
746 /*
747 * Do reset
748 */
749 velocity_soft_reset(vptr);
750 mdelay(5);
751
752 mac_eeprom_reload(regs);
753 for (i = 0; i < 6; i++) {
754 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
755 }
756 /*
757 * clear Pre_ACPI bit.
758 */
759 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
760 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
761 mac_set_dma_length(regs, vptr->options.DMA_length);
762
763 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
764 /*
765 * Back off algorithm use original IEEE standard
766 */
767 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
768
769 /*
770 * Init CAM filter
771 */
772 velocity_init_cam_filter(vptr);
773
774 /*
775 * Set packet filter: Receive directed and broadcast address
776 */
777 velocity_set_multi(vptr->dev);
778
779 /*
780 * Enable MII auto-polling
781 */
782 enable_mii_autopoll(regs);
783
784 vptr->int_mask = INT_MASK_DEF;
785
786 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
787 writew(vptr->options.numrx - 1, &regs->RDCSize);
788 mac_rx_queue_run(regs);
789 mac_rx_queue_wake(regs);
790
791 writew(vptr->options.numtx - 1, &regs->TDCSize);
792
793 for (i = 0; i < vptr->tx.numq; i++) {
794 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
795 mac_tx_queue_run(regs, i);
796 }
797
798 init_flow_control_register(vptr);
799
800 writel(CR0_STOP, &regs->CR0Clr);
801 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
802
803 mii_status = velocity_get_opt_media_mode(vptr);
804 netif_stop_queue(vptr->dev);
805
806 mii_init(vptr, mii_status);
807
808 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
809 velocity_print_link_status(vptr);
810 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
811 netif_wake_queue(vptr->dev);
812 }
813
814 enable_flow_control_ability(vptr);
815 mac_hw_mibs_init(regs);
816 mac_write_int_mask(vptr->int_mask, regs);
817 mac_clear_isr(regs);
818
819 }
820 }
821
822 /**
823 * velocity_soft_reset - soft reset
824 * @vptr: velocity to reset
825 *
826 * Kick off a soft reset of the velocity adapter and then poll
827 * until the reset sequence has completed before returning.
828 */
829
830 static int velocity_soft_reset(struct velocity_info *vptr)
831 {
832 struct mac_regs __iomem * regs = vptr->mac_regs;
833 int i = 0;
834
835 writel(CR0_SFRST, &regs->CR0Set);
836
837 for (i = 0; i < W_MAX_TIMEOUT; i++) {
838 udelay(5);
839 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
840 break;
841 }
842
843 if (i == W_MAX_TIMEOUT) {
844 writel(CR0_FORSRST, &regs->CR0Set);
845 /* FIXME: PCI POSTING */
846 /* delay 2ms */
847 mdelay(2);
848 }
849 return 0;
850 }
851
852 static const struct net_device_ops velocity_netdev_ops = {
853 .ndo_open = velocity_open,
854 .ndo_stop = velocity_close,
855 .ndo_start_xmit = velocity_xmit,
856 .ndo_get_stats = velocity_get_stats,
857 .ndo_validate_addr = eth_validate_addr,
858 .ndo_set_mac_address = eth_mac_addr,
859 .ndo_set_multicast_list = velocity_set_multi,
860 .ndo_change_mtu = velocity_change_mtu,
861 .ndo_do_ioctl = velocity_ioctl,
862 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
863 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
864 .ndo_vlan_rx_register = velocity_vlan_rx_register,
865 };
866
867 /**
868 * velocity_found1 - set up discovered velocity card
869 * @pdev: PCI device
870 * @ent: PCI device table entry that matched
871 *
872 * Configure a discovered adapter from scratch. Return a negative
873 * errno error code on failure paths.
874 */
875
876 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
877 {
878 static int first = 1;
879 struct net_device *dev;
880 int i;
881 const char *drv_string;
882 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
883 struct velocity_info *vptr;
884 struct mac_regs __iomem * regs;
885 int ret = -ENOMEM;
886
887 /* FIXME: this driver, like almost all other ethernet drivers,
888 * can support more than MAX_UNITS.
889 */
890 if (velocity_nics >= MAX_UNITS) {
891 dev_notice(&pdev->dev, "already found %d NICs.\n",
892 velocity_nics);
893 return -ENODEV;
894 }
895
896 dev = alloc_etherdev(sizeof(struct velocity_info));
897 if (!dev) {
898 dev_err(&pdev->dev, "allocate net device failed.\n");
899 goto out;
900 }
901
902 /* Chain it all together */
903
904 SET_NETDEV_DEV(dev, &pdev->dev);
905 vptr = netdev_priv(dev);
906
907
908 if (first) {
909 printk(KERN_INFO "%s Ver. %s\n",
910 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
911 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
912 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
913 first = 0;
914 }
915
916 velocity_init_info(pdev, vptr, info);
917
918 vptr->dev = dev;
919
920 dev->irq = pdev->irq;
921
922 ret = pci_enable_device(pdev);
923 if (ret < 0)
924 goto err_free_dev;
925
926 ret = velocity_get_pci_info(vptr, pdev);
927 if (ret < 0) {
928 /* error message already printed */
929 goto err_disable;
930 }
931
932 ret = pci_request_regions(pdev, VELOCITY_NAME);
933 if (ret < 0) {
934 dev_err(&pdev->dev, "No PCI resources.\n");
935 goto err_disable;
936 }
937
938 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
939 if (regs == NULL) {
940 ret = -EIO;
941 goto err_release_res;
942 }
943
944 vptr->mac_regs = regs;
945
946 mac_wol_reset(regs);
947
948 dev->base_addr = vptr->ioaddr;
949
950 for (i = 0; i < 6; i++)
951 dev->dev_addr[i] = readb(&regs->PAR[i]);
952
953
954 drv_string = dev_driver_string(&pdev->dev);
955
956 velocity_get_options(&vptr->options, velocity_nics, drv_string);
957
958 /*
959 * Mask out the options cannot be set to the chip
960 */
961
962 vptr->options.flags &= info->flags;
963
964 /*
965 * Enable the chip specified capbilities
966 */
967
968 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
969
970 vptr->wol_opts = vptr->options.wol_opts;
971 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
972
973 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
974
975 dev->irq = pdev->irq;
976 dev->netdev_ops = &velocity_netdev_ops;
977 dev->ethtool_ops = &velocity_ethtool_ops;
978
979 #ifdef VELOCITY_ZERO_COPY_SUPPORT
980 dev->features |= NETIF_F_SG;
981 #endif
982 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
983 NETIF_F_HW_VLAN_RX;
984
985 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
986 dev->features |= NETIF_F_IP_CSUM;
987
988 ret = register_netdev(dev);
989 if (ret < 0)
990 goto err_iounmap;
991
992 if (!velocity_get_link(dev)) {
993 netif_carrier_off(dev);
994 vptr->mii_status |= VELOCITY_LINK_FAIL;
995 }
996
997 velocity_print_info(vptr);
998 pci_set_drvdata(pdev, dev);
999
1000 /* and leave the chip powered down */
1001
1002 pci_set_power_state(pdev, PCI_D3hot);
1003 #ifdef CONFIG_PM
1004 {
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&velocity_dev_list_lock, flags);
1008 list_add(&vptr->list, &velocity_dev_list);
1009 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
1010 }
1011 #endif
1012 velocity_nics++;
1013 out:
1014 return ret;
1015
1016 err_iounmap:
1017 iounmap(regs);
1018 err_release_res:
1019 pci_release_regions(pdev);
1020 err_disable:
1021 pci_disable_device(pdev);
1022 err_free_dev:
1023 free_netdev(dev);
1024 goto out;
1025 }
1026
1027 /**
1028 * velocity_print_info - per driver data
1029 * @vptr: velocity
1030 *
1031 * Print per driver data as the kernel driver finds Velocity
1032 * hardware
1033 */
1034
1035 static void __devinit velocity_print_info(struct velocity_info *vptr)
1036 {
1037 struct net_device *dev = vptr->dev;
1038
1039 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
1040 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
1041 dev->name,
1042 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1043 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1044 }
1045
1046 /**
1047 * velocity_init_info - init private data
1048 * @pdev: PCI device
1049 * @vptr: Velocity info
1050 * @info: Board type
1051 *
1052 * Set up the initial velocity_info struct for the device that has been
1053 * discovered.
1054 */
1055
1056 static void __devinit velocity_init_info(struct pci_dev *pdev,
1057 struct velocity_info *vptr,
1058 const struct velocity_info_tbl *info)
1059 {
1060 memset(vptr, 0, sizeof(struct velocity_info));
1061
1062 vptr->pdev = pdev;
1063 vptr->chip_id = info->chip_id;
1064 vptr->tx.numq = info->txqueue;
1065 vptr->multicast_limit = MCAM_SIZE;
1066 spin_lock_init(&vptr->lock);
1067 INIT_LIST_HEAD(&vptr->list);
1068 }
1069
1070 /**
1071 * velocity_get_pci_info - retrieve PCI info for device
1072 * @vptr: velocity device
1073 * @pdev: PCI device it matches
1074 *
1075 * Retrieve the PCI configuration space data that interests us from
1076 * the kernel PCI layer
1077 */
1078
1079 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
1080 {
1081 vptr->rev_id = pdev->revision;
1082
1083 pci_set_master(pdev);
1084
1085 vptr->ioaddr = pci_resource_start(pdev, 0);
1086 vptr->memaddr = pci_resource_start(pdev, 1);
1087
1088 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
1089 dev_err(&pdev->dev,
1090 "region #0 is not an I/O resource, aborting.\n");
1091 return -EINVAL;
1092 }
1093
1094 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
1095 dev_err(&pdev->dev,
1096 "region #1 is an I/O resource, aborting.\n");
1097 return -EINVAL;
1098 }
1099
1100 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
1101 dev_err(&pdev->dev, "region #1 is too small.\n");
1102 return -EINVAL;
1103 }
1104 vptr->pdev = pdev;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * velocity_init_dma_rings - set up DMA rings
1111 * @vptr: Velocity to set up
1112 *
1113 * Allocate PCI mapped DMA rings for the receive and transmit layer
1114 * to use.
1115 */
1116
1117 static int velocity_init_dma_rings(struct velocity_info *vptr)
1118 {
1119 struct velocity_opt *opt = &vptr->options;
1120 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1121 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1122 struct pci_dev *pdev = vptr->pdev;
1123 dma_addr_t pool_dma;
1124 void *pool;
1125 unsigned int i;
1126
1127 /*
1128 * Allocate all RD/TD rings a single pool.
1129 *
1130 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1131 * alignment
1132 */
1133 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1134 rx_ring_size, &pool_dma);
1135 if (!pool) {
1136 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1137 vptr->dev->name);
1138 return -ENOMEM;
1139 }
1140
1141 vptr->rx.ring = pool;
1142 vptr->rx.pool_dma = pool_dma;
1143
1144 pool += rx_ring_size;
1145 pool_dma += rx_ring_size;
1146
1147 for (i = 0; i < vptr->tx.numq; i++) {
1148 vptr->tx.rings[i] = pool;
1149 vptr->tx.pool_dma[i] = pool_dma;
1150 pool += tx_ring_size;
1151 pool_dma += tx_ring_size;
1152 }
1153
1154 return 0;
1155 }
1156
1157 /**
1158 * velocity_free_dma_rings - free PCI ring pointers
1159 * @vptr: Velocity to free from
1160 *
1161 * Clean up the PCI ring buffers allocated to this velocity.
1162 */
1163
1164 static void velocity_free_dma_rings(struct velocity_info *vptr)
1165 {
1166 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1167 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1168
1169 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1170 }
1171
1172 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1173 {
1174 struct mac_regs __iomem *regs = vptr->mac_regs;
1175 int avail, dirty, unusable;
1176
1177 /*
1178 * RD number must be equal to 4X per hardware spec
1179 * (programming guide rev 1.20, p.13)
1180 */
1181 if (vptr->rx.filled < 4)
1182 return;
1183
1184 wmb();
1185
1186 unusable = vptr->rx.filled & 0x0003;
1187 dirty = vptr->rx.dirty - unusable;
1188 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1189 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1190 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1191 }
1192
1193 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1194 vptr->rx.filled = unusable;
1195 }
1196
1197 static int velocity_rx_refill(struct velocity_info *vptr)
1198 {
1199 int dirty = vptr->rx.dirty, done = 0;
1200
1201 do {
1202 struct rx_desc *rd = vptr->rx.ring + dirty;
1203
1204 /* Fine for an all zero Rx desc at init time as well */
1205 if (rd->rdesc0.len & OWNED_BY_NIC)
1206 break;
1207
1208 if (!vptr->rx.info[dirty].skb) {
1209 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1210 break;
1211 }
1212 done++;
1213 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1214 } while (dirty != vptr->rx.curr);
1215
1216 if (done) {
1217 vptr->rx.dirty = dirty;
1218 vptr->rx.filled += done;
1219 }
1220
1221 return done;
1222 }
1223
1224 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1225 {
1226 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1227 }
1228
1229 /**
1230 * velocity_init_rd_ring - set up receive ring
1231 * @vptr: velocity to configure
1232 *
1233 * Allocate and set up the receive buffers for each ring slot and
1234 * assign them to the network adapter.
1235 */
1236
1237 static int velocity_init_rd_ring(struct velocity_info *vptr)
1238 {
1239 int ret = -ENOMEM;
1240
1241 vptr->rx.info = kcalloc(vptr->options.numrx,
1242 sizeof(struct velocity_rd_info), GFP_KERNEL);
1243 if (!vptr->rx.info)
1244 goto out;
1245
1246 velocity_init_rx_ring_indexes(vptr);
1247
1248 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1249 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1250 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1251 velocity_free_rd_ring(vptr);
1252 goto out;
1253 }
1254
1255 ret = 0;
1256 out:
1257 return ret;
1258 }
1259
1260 /**
1261 * velocity_free_rd_ring - free receive ring
1262 * @vptr: velocity to clean up
1263 *
1264 * Free the receive buffers for each ring slot and any
1265 * attached socket buffers that need to go away.
1266 */
1267
1268 static void velocity_free_rd_ring(struct velocity_info *vptr)
1269 {
1270 int i;
1271
1272 if (vptr->rx.info == NULL)
1273 return;
1274
1275 for (i = 0; i < vptr->options.numrx; i++) {
1276 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1277 struct rx_desc *rd = vptr->rx.ring + i;
1278
1279 memset(rd, 0, sizeof(*rd));
1280
1281 if (!rd_info->skb)
1282 continue;
1283 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1284 PCI_DMA_FROMDEVICE);
1285 rd_info->skb_dma = 0;
1286
1287 dev_kfree_skb(rd_info->skb);
1288 rd_info->skb = NULL;
1289 }
1290
1291 kfree(vptr->rx.info);
1292 vptr->rx.info = NULL;
1293 }
1294
1295 /**
1296 * velocity_init_td_ring - set up transmit ring
1297 * @vptr: velocity
1298 *
1299 * Set up the transmit ring and chain the ring pointers together.
1300 * Returns zero on success or a negative posix errno code for
1301 * failure.
1302 */
1303
1304 static int velocity_init_td_ring(struct velocity_info *vptr)
1305 {
1306 dma_addr_t curr;
1307 int j;
1308
1309 /* Init the TD ring entries */
1310 for (j = 0; j < vptr->tx.numq; j++) {
1311 curr = vptr->tx.pool_dma[j];
1312
1313 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1314 sizeof(struct velocity_td_info),
1315 GFP_KERNEL);
1316 if (!vptr->tx.infos[j]) {
1317 while(--j >= 0)
1318 kfree(vptr->tx.infos[j]);
1319 return -ENOMEM;
1320 }
1321
1322 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1323 }
1324 return 0;
1325 }
1326
1327 /*
1328 * FIXME: could we merge this with velocity_free_tx_buf ?
1329 */
1330
1331 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1332 int q, int n)
1333 {
1334 struct velocity_td_info * td_info = &(vptr->tx.infos[q][n]);
1335 int i;
1336
1337 if (td_info == NULL)
1338 return;
1339
1340 if (td_info->skb) {
1341 for (i = 0; i < td_info->nskb_dma; i++)
1342 {
1343 if (td_info->skb_dma[i]) {
1344 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1345 td_info->skb->len, PCI_DMA_TODEVICE);
1346 td_info->skb_dma[i] = 0;
1347 }
1348 }
1349 dev_kfree_skb(td_info->skb);
1350 td_info->skb = NULL;
1351 }
1352 }
1353
1354 /**
1355 * velocity_free_td_ring - free td ring
1356 * @vptr: velocity
1357 *
1358 * Free up the transmit ring for this particular velocity adapter.
1359 * We free the ring contents but not the ring itself.
1360 */
1361
1362 static void velocity_free_td_ring(struct velocity_info *vptr)
1363 {
1364 int i, j;
1365
1366 for (j = 0; j < vptr->tx.numq; j++) {
1367 if (vptr->tx.infos[j] == NULL)
1368 continue;
1369 for (i = 0; i < vptr->options.numtx; i++) {
1370 velocity_free_td_ring_entry(vptr, j, i);
1371
1372 }
1373 kfree(vptr->tx.infos[j]);
1374 vptr->tx.infos[j] = NULL;
1375 }
1376 }
1377
1378 /**
1379 * velocity_rx_srv - service RX interrupt
1380 * @vptr: velocity
1381 * @status: adapter status (unused)
1382 *
1383 * Walk the receive ring of the velocity adapter and remove
1384 * any received packets from the receive queue. Hand the ring
1385 * slots back to the adapter for reuse.
1386 */
1387
1388 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1389 {
1390 struct net_device_stats *stats = &vptr->dev->stats;
1391 int rd_curr = vptr->rx.curr;
1392 int works = 0;
1393
1394 do {
1395 struct rx_desc *rd = vptr->rx.ring + rd_curr;
1396
1397 if (!vptr->rx.info[rd_curr].skb)
1398 break;
1399
1400 if (rd->rdesc0.len & OWNED_BY_NIC)
1401 break;
1402
1403 rmb();
1404
1405 /*
1406 * Don't drop CE or RL error frame although RXOK is off
1407 */
1408 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
1409 if (velocity_receive_frame(vptr, rd_curr) < 0)
1410 stats->rx_dropped++;
1411 } else {
1412 if (rd->rdesc0.RSR & RSR_CRC)
1413 stats->rx_crc_errors++;
1414 if (rd->rdesc0.RSR & RSR_FAE)
1415 stats->rx_frame_errors++;
1416
1417 stats->rx_dropped++;
1418 }
1419
1420 rd->size |= RX_INTEN;
1421
1422 rd_curr++;
1423 if (rd_curr >= vptr->options.numrx)
1424 rd_curr = 0;
1425 } while (++works <= 15);
1426
1427 vptr->rx.curr = rd_curr;
1428
1429 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
1430 velocity_give_many_rx_descs(vptr);
1431
1432 VAR_USED(stats);
1433 return works;
1434 }
1435
1436 /**
1437 * velocity_rx_csum - checksum process
1438 * @rd: receive packet descriptor
1439 * @skb: network layer packet buffer
1440 *
1441 * Process the status bits for the received packet and determine
1442 * if the checksum was computed and verified by the hardware
1443 */
1444
1445 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1446 {
1447 skb->ip_summed = CHECKSUM_NONE;
1448
1449 if (rd->rdesc1.CSM & CSM_IPKT) {
1450 if (rd->rdesc1.CSM & CSM_IPOK) {
1451 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1452 (rd->rdesc1.CSM & CSM_UDPKT)) {
1453 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1454 return;
1455 }
1456 }
1457 skb->ip_summed = CHECKSUM_UNNECESSARY;
1458 }
1459 }
1460 }
1461
1462 /**
1463 * velocity_rx_copy - in place Rx copy for small packets
1464 * @rx_skb: network layer packet buffer candidate
1465 * @pkt_size: received data size
1466 * @rd: receive packet descriptor
1467 * @dev: network device
1468 *
1469 * Replace the current skb that is scheduled for Rx processing by a
1470 * shorter, immediatly allocated skb, if the received packet is small
1471 * enough. This function returns a negative value if the received
1472 * packet is too big or if memory is exhausted.
1473 */
1474 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1475 struct velocity_info *vptr)
1476 {
1477 int ret = -1;
1478 if (pkt_size < rx_copybreak) {
1479 struct sk_buff *new_skb;
1480
1481 new_skb = netdev_alloc_skb(vptr->dev, pkt_size + 2);
1482 if (new_skb) {
1483 new_skb->ip_summed = rx_skb[0]->ip_summed;
1484 skb_reserve(new_skb, 2);
1485 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1486 *rx_skb = new_skb;
1487 ret = 0;
1488 }
1489
1490 }
1491 return ret;
1492 }
1493
1494 /**
1495 * velocity_iph_realign - IP header alignment
1496 * @vptr: velocity we are handling
1497 * @skb: network layer packet buffer
1498 * @pkt_size: received data size
1499 *
1500 * Align IP header on a 2 bytes boundary. This behavior can be
1501 * configured by the user.
1502 */
1503 static inline void velocity_iph_realign(struct velocity_info *vptr,
1504 struct sk_buff *skb, int pkt_size)
1505 {
1506 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1507 memmove(skb->data + 2, skb->data, pkt_size);
1508 skb_reserve(skb, 2);
1509 }
1510 }
1511
1512 /**
1513 * velocity_receive_frame - received packet processor
1514 * @vptr: velocity we are handling
1515 * @idx: ring index
1516 *
1517 * A packet has arrived. We process the packet and if appropriate
1518 * pass the frame up the network stack
1519 */
1520
1521 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1522 {
1523 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1524 struct net_device_stats *stats = &vptr->dev->stats;
1525 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1526 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1527 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
1528 struct sk_buff *skb;
1529
1530 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1531 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1532 stats->rx_length_errors++;
1533 return -EINVAL;
1534 }
1535
1536 if (rd->rdesc0.RSR & RSR_MAR)
1537 stats->multicast++;
1538
1539 skb = rd_info->skb;
1540
1541 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1542 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1543
1544 /*
1545 * Drop frame not meeting IEEE 802.3
1546 */
1547
1548 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1549 if (rd->rdesc0.RSR & RSR_RL) {
1550 stats->rx_length_errors++;
1551 return -EINVAL;
1552 }
1553 }
1554
1555 pci_action = pci_dma_sync_single_for_device;
1556
1557 velocity_rx_csum(rd, skb);
1558
1559 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1560 velocity_iph_realign(vptr, skb, pkt_len);
1561 pci_action = pci_unmap_single;
1562 rd_info->skb = NULL;
1563 }
1564
1565 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1566 PCI_DMA_FROMDEVICE);
1567
1568 skb_put(skb, pkt_len - 4);
1569 skb->protocol = eth_type_trans(skb, vptr->dev);
1570
1571 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
1572 vlan_hwaccel_rx(skb, vptr->vlgrp,
1573 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
1574 } else
1575 netif_rx(skb);
1576
1577 stats->rx_bytes += pkt_len;
1578
1579 return 0;
1580 }
1581
1582 /**
1583 * velocity_alloc_rx_buf - allocate aligned receive buffer
1584 * @vptr: velocity
1585 * @idx: ring index
1586 *
1587 * Allocate a new full sized buffer for the reception of a frame and
1588 * map it into PCI space for the hardware to use. The hardware
1589 * requires *64* byte alignment of the buffer which makes life
1590 * less fun than would be ideal.
1591 */
1592
1593 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1594 {
1595 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1596 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1597
1598 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1599 if (rd_info->skb == NULL)
1600 return -ENOMEM;
1601
1602 /*
1603 * Do the gymnastics to get the buffer head for data at
1604 * 64byte alignment.
1605 */
1606 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1607 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1608 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1609
1610 /*
1611 * Fill in the descriptor to match
1612 */
1613
1614 *((u32 *) & (rd->rdesc0)) = 0;
1615 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1616 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1617 rd->pa_high = 0;
1618 return 0;
1619 }
1620
1621 /**
1622 * tx_srv - transmit interrupt service
1623 * @vptr; Velocity
1624 * @status:
1625 *
1626 * Scan the queues looking for transmitted packets that
1627 * we can complete and clean up. Update any statistics as
1628 * necessary/
1629 */
1630
1631 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1632 {
1633 struct tx_desc *td;
1634 int qnum;
1635 int full = 0;
1636 int idx;
1637 int works = 0;
1638 struct velocity_td_info *tdinfo;
1639 struct net_device_stats *stats = &vptr->dev->stats;
1640
1641 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1642 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1643 idx = (idx + 1) % vptr->options.numtx) {
1644
1645 /*
1646 * Get Tx Descriptor
1647 */
1648 td = &(vptr->tx.rings[qnum][idx]);
1649 tdinfo = &(vptr->tx.infos[qnum][idx]);
1650
1651 if (td->tdesc0.len & OWNED_BY_NIC)
1652 break;
1653
1654 if ((works++ > 15))
1655 break;
1656
1657 if (td->tdesc0.TSR & TSR0_TERR) {
1658 stats->tx_errors++;
1659 stats->tx_dropped++;
1660 if (td->tdesc0.TSR & TSR0_CDH)
1661 stats->tx_heartbeat_errors++;
1662 if (td->tdesc0.TSR & TSR0_CRS)
1663 stats->tx_carrier_errors++;
1664 if (td->tdesc0.TSR & TSR0_ABT)
1665 stats->tx_aborted_errors++;
1666 if (td->tdesc0.TSR & TSR0_OWC)
1667 stats->tx_window_errors++;
1668 } else {
1669 stats->tx_packets++;
1670 stats->tx_bytes += tdinfo->skb->len;
1671 }
1672 velocity_free_tx_buf(vptr, tdinfo);
1673 vptr->tx.used[qnum]--;
1674 }
1675 vptr->tx.tail[qnum] = idx;
1676
1677 if (AVAIL_TD(vptr, qnum) < 1) {
1678 full = 1;
1679 }
1680 }
1681 /*
1682 * Look to see if we should kick the transmit network
1683 * layer for more work.
1684 */
1685 if (netif_queue_stopped(vptr->dev) && (full == 0)
1686 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1687 netif_wake_queue(vptr->dev);
1688 }
1689 return works;
1690 }
1691
1692 /**
1693 * velocity_print_link_status - link status reporting
1694 * @vptr: velocity to report on
1695 *
1696 * Turn the link status of the velocity card into a kernel log
1697 * description of the new link state, detailing speed and duplex
1698 * status
1699 */
1700
1701 static void velocity_print_link_status(struct velocity_info *vptr)
1702 {
1703
1704 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1705 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1706 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1707 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1708
1709 if (vptr->mii_status & VELOCITY_SPEED_1000)
1710 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1711 else if (vptr->mii_status & VELOCITY_SPEED_100)
1712 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1713 else
1714 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1715
1716 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1717 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1718 else
1719 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1720 } else {
1721 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1722 switch (vptr->options.spd_dpx) {
1723 case SPD_DPX_100_HALF:
1724 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1725 break;
1726 case SPD_DPX_100_FULL:
1727 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1728 break;
1729 case SPD_DPX_10_HALF:
1730 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1731 break;
1732 case SPD_DPX_10_FULL:
1733 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1734 break;
1735 default:
1736 break;
1737 }
1738 }
1739 }
1740
1741 /**
1742 * velocity_error - handle error from controller
1743 * @vptr: velocity
1744 * @status: card status
1745 *
1746 * Process an error report from the hardware and attempt to recover
1747 * the card itself. At the moment we cannot recover from some
1748 * theoretically impossible errors but this could be fixed using
1749 * the pci_device_failed logic to bounce the hardware
1750 *
1751 */
1752
1753 static void velocity_error(struct velocity_info *vptr, int status)
1754 {
1755
1756 if (status & ISR_TXSTLI) {
1757 struct mac_regs __iomem * regs = vptr->mac_regs;
1758
1759 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1760 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1761 writew(TRDCSR_RUN, &regs->TDCSRClr);
1762 netif_stop_queue(vptr->dev);
1763
1764 /* FIXME: port over the pci_device_failed code and use it
1765 here */
1766 }
1767
1768 if (status & ISR_SRCI) {
1769 struct mac_regs __iomem * regs = vptr->mac_regs;
1770 int linked;
1771
1772 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1773 vptr->mii_status = check_connection_type(regs);
1774
1775 /*
1776 * If it is a 3119, disable frame bursting in
1777 * halfduplex mode and enable it in fullduplex
1778 * mode
1779 */
1780 if (vptr->rev_id < REV_ID_VT3216_A0) {
1781 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1782 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1783 else
1784 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1785 }
1786 /*
1787 * Only enable CD heart beat counter in 10HD mode
1788 */
1789 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1790 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1791 } else {
1792 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1793 }
1794 }
1795 /*
1796 * Get link status from PHYSR0
1797 */
1798 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1799
1800 if (linked) {
1801 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1802 netif_carrier_on(vptr->dev);
1803 } else {
1804 vptr->mii_status |= VELOCITY_LINK_FAIL;
1805 netif_carrier_off(vptr->dev);
1806 }
1807
1808 velocity_print_link_status(vptr);
1809 enable_flow_control_ability(vptr);
1810
1811 /*
1812 * Re-enable auto-polling because SRCI will disable
1813 * auto-polling
1814 */
1815
1816 enable_mii_autopoll(regs);
1817
1818 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1819 netif_stop_queue(vptr->dev);
1820 else
1821 netif_wake_queue(vptr->dev);
1822
1823 };
1824 if (status & ISR_MIBFI)
1825 velocity_update_hw_mibs(vptr);
1826 if (status & ISR_LSTEI)
1827 mac_rx_queue_wake(vptr->mac_regs);
1828 }
1829
1830 /**
1831 * velocity_free_tx_buf - free transmit buffer
1832 * @vptr: velocity
1833 * @tdinfo: buffer
1834 *
1835 * Release an transmit buffer. If the buffer was preallocated then
1836 * recycle it, if not then unmap the buffer.
1837 */
1838
1839 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1840 {
1841 struct sk_buff *skb = tdinfo->skb;
1842 int i;
1843 int pktlen;
1844
1845 /*
1846 * Don't unmap the pre-allocated tx_bufs
1847 */
1848 if (tdinfo->skb_dma) {
1849
1850 pktlen = max_t(unsigned int, skb->len, ETH_ZLEN);
1851 for (i = 0; i < tdinfo->nskb_dma; i++) {
1852 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1853 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], le16_to_cpu(td->tdesc1.len), PCI_DMA_TODEVICE);
1854 #else
1855 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], pktlen, PCI_DMA_TODEVICE);
1856 #endif
1857 tdinfo->skb_dma[i] = 0;
1858 }
1859 }
1860 dev_kfree_skb_irq(skb);
1861 tdinfo->skb = NULL;
1862 }
1863
1864 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1865 {
1866 int ret;
1867
1868 velocity_set_rxbufsize(vptr, mtu);
1869
1870 ret = velocity_init_dma_rings(vptr);
1871 if (ret < 0)
1872 goto out;
1873
1874 ret = velocity_init_rd_ring(vptr);
1875 if (ret < 0)
1876 goto err_free_dma_rings_0;
1877
1878 ret = velocity_init_td_ring(vptr);
1879 if (ret < 0)
1880 goto err_free_rd_ring_1;
1881 out:
1882 return ret;
1883
1884 err_free_rd_ring_1:
1885 velocity_free_rd_ring(vptr);
1886 err_free_dma_rings_0:
1887 velocity_free_dma_rings(vptr);
1888 goto out;
1889 }
1890
1891 static void velocity_free_rings(struct velocity_info *vptr)
1892 {
1893 velocity_free_td_ring(vptr);
1894 velocity_free_rd_ring(vptr);
1895 velocity_free_dma_rings(vptr);
1896 }
1897
1898 /**
1899 * velocity_open - interface activation callback
1900 * @dev: network layer device to open
1901 *
1902 * Called when the network layer brings the interface up. Returns
1903 * a negative posix error code on failure, or zero on success.
1904 *
1905 * All the ring allocation and set up is done on open for this
1906 * adapter to minimise memory usage when inactive
1907 */
1908
1909 static int velocity_open(struct net_device *dev)
1910 {
1911 struct velocity_info *vptr = netdev_priv(dev);
1912 int ret;
1913
1914 ret = velocity_init_rings(vptr, dev->mtu);
1915 if (ret < 0)
1916 goto out;
1917
1918 /* Ensure chip is running */
1919 pci_set_power_state(vptr->pdev, PCI_D0);
1920
1921 velocity_give_many_rx_descs(vptr);
1922
1923 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1924
1925 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1926 dev->name, dev);
1927 if (ret < 0) {
1928 /* Power down the chip */
1929 pci_set_power_state(vptr->pdev, PCI_D3hot);
1930 velocity_free_rings(vptr);
1931 goto out;
1932 }
1933
1934 mac_enable_int(vptr->mac_regs);
1935 netif_start_queue(dev);
1936 vptr->flags |= VELOCITY_FLAGS_OPENED;
1937 out:
1938 return ret;
1939 }
1940
1941 /**
1942 * velocity_change_mtu - MTU change callback
1943 * @dev: network device
1944 * @new_mtu: desired MTU
1945 *
1946 * Handle requests from the networking layer for MTU change on
1947 * this interface. It gets called on a change by the network layer.
1948 * Return zero for success or negative posix error code.
1949 */
1950
1951 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1952 {
1953 struct velocity_info *vptr = netdev_priv(dev);
1954 int ret = 0;
1955
1956 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1957 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1958 vptr->dev->name);
1959 ret = -EINVAL;
1960 goto out_0;
1961 }
1962
1963 if (!netif_running(dev)) {
1964 dev->mtu = new_mtu;
1965 goto out_0;
1966 }
1967
1968 if (dev->mtu != new_mtu) {
1969 struct velocity_info *tmp_vptr;
1970 unsigned long flags;
1971 struct rx_info rx;
1972 struct tx_info tx;
1973
1974 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
1975 if (!tmp_vptr) {
1976 ret = -ENOMEM;
1977 goto out_0;
1978 }
1979
1980 tmp_vptr->dev = dev;
1981 tmp_vptr->pdev = vptr->pdev;
1982 tmp_vptr->options = vptr->options;
1983 tmp_vptr->tx.numq = vptr->tx.numq;
1984
1985 ret = velocity_init_rings(tmp_vptr, new_mtu);
1986 if (ret < 0)
1987 goto out_free_tmp_vptr_1;
1988
1989 spin_lock_irqsave(&vptr->lock, flags);
1990
1991 netif_stop_queue(dev);
1992 velocity_shutdown(vptr);
1993
1994 rx = vptr->rx;
1995 tx = vptr->tx;
1996
1997 vptr->rx = tmp_vptr->rx;
1998 vptr->tx = tmp_vptr->tx;
1999
2000 tmp_vptr->rx = rx;
2001 tmp_vptr->tx = tx;
2002
2003 dev->mtu = new_mtu;
2004
2005 velocity_give_many_rx_descs(vptr);
2006
2007 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2008
2009 mac_enable_int(vptr->mac_regs);
2010 netif_start_queue(dev);
2011
2012 spin_unlock_irqrestore(&vptr->lock, flags);
2013
2014 velocity_free_rings(tmp_vptr);
2015
2016 out_free_tmp_vptr_1:
2017 kfree(tmp_vptr);
2018 }
2019 out_0:
2020 return ret;
2021 }
2022
2023 /**
2024 * velocity_shutdown - shut down the chip
2025 * @vptr: velocity to deactivate
2026 *
2027 * Shuts down the internal operations of the velocity and
2028 * disables interrupts, autopolling, transmit and receive
2029 */
2030
2031 static void velocity_shutdown(struct velocity_info *vptr)
2032 {
2033 struct mac_regs __iomem * regs = vptr->mac_regs;
2034 mac_disable_int(regs);
2035 writel(CR0_STOP, &regs->CR0Set);
2036 writew(0xFFFF, &regs->TDCSRClr);
2037 writeb(0xFF, &regs->RDCSRClr);
2038 safe_disable_mii_autopoll(regs);
2039 mac_clear_isr(regs);
2040 }
2041
2042 /**
2043 * velocity_close - close adapter callback
2044 * @dev: network device
2045 *
2046 * Callback from the network layer when the velocity is being
2047 * deactivated by the network layer
2048 */
2049
2050 static int velocity_close(struct net_device *dev)
2051 {
2052 struct velocity_info *vptr = netdev_priv(dev);
2053
2054 netif_stop_queue(dev);
2055 velocity_shutdown(vptr);
2056
2057 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2058 velocity_get_ip(vptr);
2059 if (dev->irq != 0)
2060 free_irq(dev->irq, dev);
2061
2062 /* Power down the chip */
2063 pci_set_power_state(vptr->pdev, PCI_D3hot);
2064
2065 velocity_free_rings(vptr);
2066
2067 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2068 return 0;
2069 }
2070
2071 /**
2072 * velocity_xmit - transmit packet callback
2073 * @skb: buffer to transmit
2074 * @dev: network device
2075 *
2076 * Called by the networ layer to request a packet is queued to
2077 * the velocity. Returns zero on success.
2078 */
2079
2080 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
2081 {
2082 struct velocity_info *vptr = netdev_priv(dev);
2083 int qnum = 0;
2084 struct tx_desc *td_ptr;
2085 struct velocity_td_info *tdinfo;
2086 unsigned long flags;
2087 int pktlen;
2088 __le16 len;
2089 int index;
2090
2091
2092 if (skb_padto(skb, ETH_ZLEN))
2093 goto out;
2094 pktlen = max_t(unsigned int, skb->len, ETH_ZLEN);
2095
2096 len = cpu_to_le16(pktlen);
2097
2098 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2099 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2100 kfree_skb(skb);
2101 return NETDEV_TX_OK;
2102 }
2103 #endif
2104
2105 spin_lock_irqsave(&vptr->lock, flags);
2106
2107 index = vptr->tx.curr[qnum];
2108 td_ptr = &(vptr->tx.rings[qnum][index]);
2109 tdinfo = &(vptr->tx.infos[qnum][index]);
2110
2111 td_ptr->tdesc1.TCR = TCR0_TIC;
2112 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2113
2114 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2115 if (skb_shinfo(skb)->nr_frags > 0) {
2116 int nfrags = skb_shinfo(skb)->nr_frags;
2117 tdinfo->skb = skb;
2118 if (nfrags > 6) {
2119 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
2120 tdinfo->skb_dma[0] = tdinfo->buf_dma;
2121 td_ptr->tdesc0.len = len;
2122 td_ptr->tx.buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2123 td_ptr->tx.buf[0].pa_high = 0;
2124 td_ptr->tx.buf[0].size = len; /* queue is 0 anyway */
2125 tdinfo->nskb_dma = 1;
2126 } else {
2127 int i = 0;
2128 tdinfo->nskb_dma = 0;
2129 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data,
2130 skb_headlen(skb), PCI_DMA_TODEVICE);
2131
2132 td_ptr->tdesc0.len = len;
2133
2134 /* FIXME: support 48bit DMA later */
2135 td_ptr->tx.buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
2136 td_ptr->tx.buf[i].pa_high = 0;
2137 td_ptr->tx.buf[i].size = cpu_to_le16(skb_headlen(skb));
2138
2139 for (i = 0; i < nfrags; i++) {
2140 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2141 void *addr = (void *)page_address(frag->page) + frag->page_offset;
2142
2143 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
2144
2145 td_ptr->tx.buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2146 td_ptr->tx.buf[i + 1].pa_high = 0;
2147 td_ptr->tx.buf[i + 1].size = cpu_to_le16(frag->size);
2148 }
2149 tdinfo->nskb_dma = i - 1;
2150 }
2151
2152 } else
2153 #endif
2154 {
2155 /*
2156 * Map the linear network buffer into PCI space and
2157 * add it to the transmit ring.
2158 */
2159 tdinfo->skb = skb;
2160 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2161 td_ptr->tdesc0.len = len;
2162 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2163 td_ptr->td_buf[0].pa_high = 0;
2164 td_ptr->td_buf[0].size = len;
2165 tdinfo->nskb_dma = 1;
2166 }
2167 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2168
2169 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2170 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2171 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2172 }
2173
2174 /*
2175 * Handle hardware checksum
2176 */
2177 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2178 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2179 const struct iphdr *ip = ip_hdr(skb);
2180 if (ip->protocol == IPPROTO_TCP)
2181 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2182 else if (ip->protocol == IPPROTO_UDP)
2183 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2184 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2185 }
2186 {
2187
2188 int prev = index - 1;
2189
2190 if (prev < 0)
2191 prev = vptr->options.numtx - 1;
2192 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2193 vptr->tx.used[qnum]++;
2194 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2195
2196 if (AVAIL_TD(vptr, qnum) < 1)
2197 netif_stop_queue(dev);
2198
2199 td_ptr = &(vptr->tx.rings[qnum][prev]);
2200 td_ptr->td_buf[0].size |= TD_QUEUE;
2201 mac_tx_queue_wake(vptr->mac_regs, qnum);
2202 }
2203 dev->trans_start = jiffies;
2204 spin_unlock_irqrestore(&vptr->lock, flags);
2205 out:
2206 return NETDEV_TX_OK;
2207 }
2208
2209 /**
2210 * velocity_intr - interrupt callback
2211 * @irq: interrupt number
2212 * @dev_instance: interrupting device
2213 *
2214 * Called whenever an interrupt is generated by the velocity
2215 * adapter IRQ line. We may not be the source of the interrupt
2216 * and need to identify initially if we are, and if not exit as
2217 * efficiently as possible.
2218 */
2219
2220 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2221 {
2222 struct net_device *dev = dev_instance;
2223 struct velocity_info *vptr = netdev_priv(dev);
2224 u32 isr_status;
2225 int max_count = 0;
2226
2227
2228 spin_lock(&vptr->lock);
2229 isr_status = mac_read_isr(vptr->mac_regs);
2230
2231 /* Not us ? */
2232 if (isr_status == 0) {
2233 spin_unlock(&vptr->lock);
2234 return IRQ_NONE;
2235 }
2236
2237 mac_disable_int(vptr->mac_regs);
2238
2239 /*
2240 * Keep processing the ISR until we have completed
2241 * processing and the isr_status becomes zero
2242 */
2243
2244 while (isr_status != 0) {
2245 mac_write_isr(vptr->mac_regs, isr_status);
2246 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2247 velocity_error(vptr, isr_status);
2248 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2249 max_count += velocity_rx_srv(vptr, isr_status);
2250 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2251 max_count += velocity_tx_srv(vptr, isr_status);
2252 isr_status = mac_read_isr(vptr->mac_regs);
2253 if (max_count > vptr->options.int_works)
2254 {
2255 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2256 dev->name);
2257 max_count = 0;
2258 }
2259 }
2260 spin_unlock(&vptr->lock);
2261 mac_enable_int(vptr->mac_regs);
2262 return IRQ_HANDLED;
2263
2264 }
2265
2266
2267 /**
2268 * velocity_set_multi - filter list change callback
2269 * @dev: network device
2270 *
2271 * Called by the network layer when the filter lists need to change
2272 * for a velocity adapter. Reload the CAMs with the new address
2273 * filter ruleset.
2274 */
2275
2276 static void velocity_set_multi(struct net_device *dev)
2277 {
2278 struct velocity_info *vptr = netdev_priv(dev);
2279 struct mac_regs __iomem * regs = vptr->mac_regs;
2280 u8 rx_mode;
2281 int i;
2282 struct dev_mc_list *mclist;
2283
2284 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2285 writel(0xffffffff, &regs->MARCAM[0]);
2286 writel(0xffffffff, &regs->MARCAM[4]);
2287 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2288 } else if ((dev->mc_count > vptr->multicast_limit)
2289 || (dev->flags & IFF_ALLMULTI)) {
2290 writel(0xffffffff, &regs->MARCAM[0]);
2291 writel(0xffffffff, &regs->MARCAM[4]);
2292 rx_mode = (RCR_AM | RCR_AB);
2293 } else {
2294 int offset = MCAM_SIZE - vptr->multicast_limit;
2295 mac_get_cam_mask(regs, vptr->mCAMmask);
2296
2297 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2298 mac_set_cam(regs, i + offset, mclist->dmi_addr);
2299 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2300 }
2301
2302 mac_set_cam_mask(regs, vptr->mCAMmask);
2303 rx_mode = RCR_AM | RCR_AB | RCR_AP;
2304 }
2305 if (dev->mtu > 1500)
2306 rx_mode |= RCR_AL;
2307
2308 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2309
2310 }
2311
2312 /**
2313 * velocity_get_status - statistics callback
2314 * @dev: network device
2315 *
2316 * Callback from the network layer to allow driver statistics
2317 * to be resynchronized with hardware collected state. In the
2318 * case of the velocity we need to pull the MIB counters from
2319 * the hardware into the counters before letting the network
2320 * layer display them.
2321 */
2322
2323 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2324 {
2325 struct velocity_info *vptr = netdev_priv(dev);
2326
2327 /* If the hardware is down, don't touch MII */
2328 if(!netif_running(dev))
2329 return &dev->stats;
2330
2331 spin_lock_irq(&vptr->lock);
2332 velocity_update_hw_mibs(vptr);
2333 spin_unlock_irq(&vptr->lock);
2334
2335 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2336 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2337 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2338
2339 // unsigned long rx_dropped; /* no space in linux buffers */
2340 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2341 /* detailed rx_errors: */
2342 // unsigned long rx_length_errors;
2343 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2344 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2345 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2346 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2347 // unsigned long rx_missed_errors; /* receiver missed packet */
2348
2349 /* detailed tx_errors */
2350 // unsigned long tx_fifo_errors;
2351
2352 return &dev->stats;
2353 }
2354
2355
2356 /**
2357 * velocity_ioctl - ioctl entry point
2358 * @dev: network device
2359 * @rq: interface request ioctl
2360 * @cmd: command code
2361 *
2362 * Called when the user issues an ioctl request to the network
2363 * device in question. The velocity interface supports MII.
2364 */
2365
2366 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2367 {
2368 struct velocity_info *vptr = netdev_priv(dev);
2369 int ret;
2370
2371 /* If we are asked for information and the device is power
2372 saving then we need to bring the device back up to talk to it */
2373
2374 if (!netif_running(dev))
2375 pci_set_power_state(vptr->pdev, PCI_D0);
2376
2377 switch (cmd) {
2378 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2379 case SIOCGMIIREG: /* Read MII PHY register. */
2380 case SIOCSMIIREG: /* Write to MII PHY register. */
2381 ret = velocity_mii_ioctl(dev, rq, cmd);
2382 break;
2383
2384 default:
2385 ret = -EOPNOTSUPP;
2386 }
2387 if (!netif_running(dev))
2388 pci_set_power_state(vptr->pdev, PCI_D3hot);
2389
2390
2391 return ret;
2392 }
2393
2394 /*
2395 * Definition for our device driver. The PCI layer interface
2396 * uses this to handle all our card discover and plugging
2397 */
2398
2399 static struct pci_driver velocity_driver = {
2400 .name = VELOCITY_NAME,
2401 .id_table = velocity_id_table,
2402 .probe = velocity_found1,
2403 .remove = __devexit_p(velocity_remove1),
2404 #ifdef CONFIG_PM
2405 .suspend = velocity_suspend,
2406 .resume = velocity_resume,
2407 #endif
2408 };
2409
2410 /**
2411 * velocity_init_module - load time function
2412 *
2413 * Called when the velocity module is loaded. The PCI driver
2414 * is registered with the PCI layer, and in turn will call
2415 * the probe functions for each velocity adapter installed
2416 * in the system.
2417 */
2418
2419 static int __init velocity_init_module(void)
2420 {
2421 int ret;
2422
2423 velocity_register_notifier();
2424 ret = pci_register_driver(&velocity_driver);
2425 if (ret < 0)
2426 velocity_unregister_notifier();
2427 return ret;
2428 }
2429
2430 /**
2431 * velocity_cleanup - module unload
2432 *
2433 * When the velocity hardware is unloaded this function is called.
2434 * It will clean up the notifiers and the unregister the PCI
2435 * driver interface for this hardware. This in turn cleans up
2436 * all discovered interfaces before returning from the function
2437 */
2438
2439 static void __exit velocity_cleanup_module(void)
2440 {
2441 velocity_unregister_notifier();
2442 pci_unregister_driver(&velocity_driver);
2443 }
2444
2445 module_init(velocity_init_module);
2446 module_exit(velocity_cleanup_module);
2447
2448
2449 /*
2450 * MII access , media link mode setting functions
2451 */
2452
2453
2454 /**
2455 * mii_init - set up MII
2456 * @vptr: velocity adapter
2457 * @mii_status: links tatus
2458 *
2459 * Set up the PHY for the current link state.
2460 */
2461
2462 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2463 {
2464 u16 BMCR;
2465
2466 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2467 case PHYID_CICADA_CS8201:
2468 /*
2469 * Reset to hardware default
2470 */
2471 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2472 /*
2473 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2474 * off it in NWay-forced half mode for NWay-forced v.s.
2475 * legacy-forced issue.
2476 */
2477 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2478 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2479 else
2480 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2481 /*
2482 * Turn on Link/Activity LED enable bit for CIS8201
2483 */
2484 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2485 break;
2486 case PHYID_VT3216_32BIT:
2487 case PHYID_VT3216_64BIT:
2488 /*
2489 * Reset to hardware default
2490 */
2491 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2492 /*
2493 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2494 * off it in NWay-forced half mode for NWay-forced v.s.
2495 * legacy-forced issue
2496 */
2497 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2498 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2499 else
2500 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2501 break;
2502
2503 case PHYID_MARVELL_1000:
2504 case PHYID_MARVELL_1000S:
2505 /*
2506 * Assert CRS on Transmit
2507 */
2508 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2509 /*
2510 * Reset to hardware default
2511 */
2512 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2513 break;
2514 default:
2515 ;
2516 }
2517 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2518 if (BMCR & BMCR_ISO) {
2519 BMCR &= ~BMCR_ISO;
2520 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2521 }
2522 }
2523
2524 /**
2525 * safe_disable_mii_autopoll - autopoll off
2526 * @regs: velocity registers
2527 *
2528 * Turn off the autopoll and wait for it to disable on the chip
2529 */
2530
2531 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2532 {
2533 u16 ww;
2534
2535 /* turn off MAUTO */
2536 writeb(0, &regs->MIICR);
2537 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2538 udelay(1);
2539 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2540 break;
2541 }
2542 }
2543
2544 /**
2545 * enable_mii_autopoll - turn on autopolling
2546 * @regs: velocity registers
2547 *
2548 * Enable the MII link status autopoll feature on the Velocity
2549 * hardware. Wait for it to enable.
2550 */
2551
2552 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2553 {
2554 int ii;
2555
2556 writeb(0, &(regs->MIICR));
2557 writeb(MIIADR_SWMPL, &regs->MIIADR);
2558
2559 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2560 udelay(1);
2561 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2562 break;
2563 }
2564
2565 writeb(MIICR_MAUTO, &regs->MIICR);
2566
2567 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2568 udelay(1);
2569 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2570 break;
2571 }
2572
2573 }
2574
2575 /**
2576 * velocity_mii_read - read MII data
2577 * @regs: velocity registers
2578 * @index: MII register index
2579 * @data: buffer for received data
2580 *
2581 * Perform a single read of an MII 16bit register. Returns zero
2582 * on success or -ETIMEDOUT if the PHY did not respond.
2583 */
2584
2585 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2586 {
2587 u16 ww;
2588
2589 /*
2590 * Disable MIICR_MAUTO, so that mii addr can be set normally
2591 */
2592 safe_disable_mii_autopoll(regs);
2593
2594 writeb(index, &regs->MIIADR);
2595
2596 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2597
2598 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2599 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2600 break;
2601 }
2602
2603 *data = readw(&regs->MIIDATA);
2604
2605 enable_mii_autopoll(regs);
2606 if (ww == W_MAX_TIMEOUT)
2607 return -ETIMEDOUT;
2608 return 0;
2609 }
2610
2611 /**
2612 * velocity_mii_write - write MII data
2613 * @regs: velocity registers
2614 * @index: MII register index
2615 * @data: 16bit data for the MII register
2616 *
2617 * Perform a single write to an MII 16bit register. Returns zero
2618 * on success or -ETIMEDOUT if the PHY did not respond.
2619 */
2620
2621 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2622 {
2623 u16 ww;
2624
2625 /*
2626 * Disable MIICR_MAUTO, so that mii addr can be set normally
2627 */
2628 safe_disable_mii_autopoll(regs);
2629
2630 /* MII reg offset */
2631 writeb(mii_addr, &regs->MIIADR);
2632 /* set MII data */
2633 writew(data, &regs->MIIDATA);
2634
2635 /* turn on MIICR_WCMD */
2636 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2637
2638 /* W_MAX_TIMEOUT is the timeout period */
2639 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2640 udelay(5);
2641 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2642 break;
2643 }
2644 enable_mii_autopoll(regs);
2645
2646 if (ww == W_MAX_TIMEOUT)
2647 return -ETIMEDOUT;
2648 return 0;
2649 }
2650
2651 /**
2652 * velocity_get_opt_media_mode - get media selection
2653 * @vptr: velocity adapter
2654 *
2655 * Get the media mode stored in EEPROM or module options and load
2656 * mii_status accordingly. The requested link state information
2657 * is also returned.
2658 */
2659
2660 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2661 {
2662 u32 status = 0;
2663
2664 switch (vptr->options.spd_dpx) {
2665 case SPD_DPX_AUTO:
2666 status = VELOCITY_AUTONEG_ENABLE;
2667 break;
2668 case SPD_DPX_100_FULL:
2669 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2670 break;
2671 case SPD_DPX_10_FULL:
2672 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2673 break;
2674 case SPD_DPX_100_HALF:
2675 status = VELOCITY_SPEED_100;
2676 break;
2677 case SPD_DPX_10_HALF:
2678 status = VELOCITY_SPEED_10;
2679 break;
2680 }
2681 vptr->mii_status = status;
2682 return status;
2683 }
2684
2685 /**
2686 * mii_set_auto_on - autonegotiate on
2687 * @vptr: velocity
2688 *
2689 * Enable autonegotation on this interface
2690 */
2691
2692 static void mii_set_auto_on(struct velocity_info *vptr)
2693 {
2694 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2695 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2696 else
2697 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2698 }
2699
2700
2701 /*
2702 static void mii_set_auto_off(struct velocity_info * vptr)
2703 {
2704 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2705 }
2706 */
2707
2708 /**
2709 * set_mii_flow_control - flow control setup
2710 * @vptr: velocity interface
2711 *
2712 * Set up the flow control on this interface according to
2713 * the supplied user/eeprom options.
2714 */
2715
2716 static void set_mii_flow_control(struct velocity_info *vptr)
2717 {
2718 /*Enable or Disable PAUSE in ANAR */
2719 switch (vptr->options.flow_cntl) {
2720 case FLOW_CNTL_TX:
2721 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2722 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2723 break;
2724
2725 case FLOW_CNTL_RX:
2726 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2727 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2728 break;
2729
2730 case FLOW_CNTL_TX_RX:
2731 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2732 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2733 break;
2734
2735 case FLOW_CNTL_DISABLE:
2736 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2737 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2738 break;
2739 default:
2740 break;
2741 }
2742 }
2743
2744 /**
2745 * velocity_set_media_mode - set media mode
2746 * @mii_status: old MII link state
2747 *
2748 * Check the media link state and configure the flow control
2749 * PHY and also velocity hardware setup accordingly. In particular
2750 * we need to set up CD polling and frame bursting.
2751 */
2752
2753 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2754 {
2755 u32 curr_status;
2756 struct mac_regs __iomem * regs = vptr->mac_regs;
2757
2758 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2759 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2760
2761 /* Set mii link status */
2762 set_mii_flow_control(vptr);
2763
2764 /*
2765 Check if new status is consisent with current status
2766 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2767 || (mii_status==curr_status)) {
2768 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2769 vptr->mii_status=check_connection_type(vptr->mac_regs);
2770 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2771 return 0;
2772 }
2773 */
2774
2775 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2776 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2777 }
2778
2779 /*
2780 * If connection type is AUTO
2781 */
2782 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2783 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2784 /* clear force MAC mode bit */
2785 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2786 /* set duplex mode of MAC according to duplex mode of MII */
2787 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2788 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2789 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2790
2791 /* enable AUTO-NEGO mode */
2792 mii_set_auto_on(vptr);
2793 } else {
2794 u16 ANAR;
2795 u8 CHIPGCR;
2796
2797 /*
2798 * 1. if it's 3119, disable frame bursting in halfduplex mode
2799 * and enable it in fullduplex mode
2800 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2801 * 3. only enable CD heart beat counter in 10HD mode
2802 */
2803
2804 /* set force MAC mode bit */
2805 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2806
2807 CHIPGCR = readb(&regs->CHIPGCR);
2808 CHIPGCR &= ~CHIPGCR_FCGMII;
2809
2810 if (mii_status & VELOCITY_DUPLEX_FULL) {
2811 CHIPGCR |= CHIPGCR_FCFDX;
2812 writeb(CHIPGCR, &regs->CHIPGCR);
2813 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2814 if (vptr->rev_id < REV_ID_VT3216_A0)
2815 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2816 } else {
2817 CHIPGCR &= ~CHIPGCR_FCFDX;
2818 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2819 writeb(CHIPGCR, &regs->CHIPGCR);
2820 if (vptr->rev_id < REV_ID_VT3216_A0)
2821 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2822 }
2823
2824 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2825
2826 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2827 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2828 } else {
2829 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2830 }
2831 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2832 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2833 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2834 if (mii_status & VELOCITY_SPEED_100) {
2835 if (mii_status & VELOCITY_DUPLEX_FULL)
2836 ANAR |= ANAR_TXFD;
2837 else
2838 ANAR |= ANAR_TX;
2839 } else {
2840 if (mii_status & VELOCITY_DUPLEX_FULL)
2841 ANAR |= ANAR_10FD;
2842 else
2843 ANAR |= ANAR_10;
2844 }
2845 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2846 /* enable AUTO-NEGO mode */
2847 mii_set_auto_on(vptr);
2848 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2849 }
2850 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2851 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2852 return VELOCITY_LINK_CHANGE;
2853 }
2854
2855 /**
2856 * mii_check_media_mode - check media state
2857 * @regs: velocity registers
2858 *
2859 * Check the current MII status and determine the link status
2860 * accordingly
2861 */
2862
2863 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2864 {
2865 u32 status = 0;
2866 u16 ANAR;
2867
2868 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2869 status |= VELOCITY_LINK_FAIL;
2870
2871 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2872 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2873 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2874 status |= (VELOCITY_SPEED_1000);
2875 else {
2876 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2877 if (ANAR & ANAR_TXFD)
2878 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2879 else if (ANAR & ANAR_TX)
2880 status |= VELOCITY_SPEED_100;
2881 else if (ANAR & ANAR_10FD)
2882 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2883 else
2884 status |= (VELOCITY_SPEED_10);
2885 }
2886
2887 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2888 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2889 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2890 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2891 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2892 status |= VELOCITY_AUTONEG_ENABLE;
2893 }
2894 }
2895
2896 return status;
2897 }
2898
2899 static u32 check_connection_type(struct mac_regs __iomem * regs)
2900 {
2901 u32 status = 0;
2902 u8 PHYSR0;
2903 u16 ANAR;
2904 PHYSR0 = readb(&regs->PHYSR0);
2905
2906 /*
2907 if (!(PHYSR0 & PHYSR0_LINKGD))
2908 status|=VELOCITY_LINK_FAIL;
2909 */
2910
2911 if (PHYSR0 & PHYSR0_FDPX)
2912 status |= VELOCITY_DUPLEX_FULL;
2913
2914 if (PHYSR0 & PHYSR0_SPDG)
2915 status |= VELOCITY_SPEED_1000;
2916 else if (PHYSR0 & PHYSR0_SPD10)
2917 status |= VELOCITY_SPEED_10;
2918 else
2919 status |= VELOCITY_SPEED_100;
2920
2921 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2922 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2923 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2924 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2925 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2926 status |= VELOCITY_AUTONEG_ENABLE;
2927 }
2928 }
2929
2930 return status;
2931 }
2932
2933 /**
2934 * enable_flow_control_ability - flow control
2935 * @vptr: veloity to configure
2936 *
2937 * Set up flow control according to the flow control options
2938 * determined by the eeprom/configuration.
2939 */
2940
2941 static void enable_flow_control_ability(struct velocity_info *vptr)
2942 {
2943
2944 struct mac_regs __iomem * regs = vptr->mac_regs;
2945
2946 switch (vptr->options.flow_cntl) {
2947
2948 case FLOW_CNTL_DEFAULT:
2949 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2950 writel(CR0_FDXRFCEN, &regs->CR0Set);
2951 else
2952 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2953
2954 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2955 writel(CR0_FDXTFCEN, &regs->CR0Set);
2956 else
2957 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2958 break;
2959
2960 case FLOW_CNTL_TX:
2961 writel(CR0_FDXTFCEN, &regs->CR0Set);
2962 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2963 break;
2964
2965 case FLOW_CNTL_RX:
2966 writel(CR0_FDXRFCEN, &regs->CR0Set);
2967 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2968 break;
2969
2970 case FLOW_CNTL_TX_RX:
2971 writel(CR0_FDXTFCEN, &regs->CR0Set);
2972 writel(CR0_FDXRFCEN, &regs->CR0Set);
2973 break;
2974
2975 case FLOW_CNTL_DISABLE:
2976 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2977 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2978 break;
2979
2980 default:
2981 break;
2982 }
2983
2984 }
2985
2986
2987 /**
2988 * velocity_ethtool_up - pre hook for ethtool
2989 * @dev: network device
2990 *
2991 * Called before an ethtool operation. We need to make sure the
2992 * chip is out of D3 state before we poke at it.
2993 */
2994
2995 static int velocity_ethtool_up(struct net_device *dev)
2996 {
2997 struct velocity_info *vptr = netdev_priv(dev);
2998 if (!netif_running(dev))
2999 pci_set_power_state(vptr->pdev, PCI_D0);
3000 return 0;
3001 }
3002
3003 /**
3004 * velocity_ethtool_down - post hook for ethtool
3005 * @dev: network device
3006 *
3007 * Called after an ethtool operation. Restore the chip back to D3
3008 * state if it isn't running.
3009 */
3010
3011 static void velocity_ethtool_down(struct net_device *dev)
3012 {
3013 struct velocity_info *vptr = netdev_priv(dev);
3014 if (!netif_running(dev))
3015 pci_set_power_state(vptr->pdev, PCI_D3hot);
3016 }
3017
3018 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3019 {
3020 struct velocity_info *vptr = netdev_priv(dev);
3021 struct mac_regs __iomem * regs = vptr->mac_regs;
3022 u32 status;
3023 status = check_connection_type(vptr->mac_regs);
3024
3025 cmd->supported = SUPPORTED_TP |
3026 SUPPORTED_Autoneg |
3027 SUPPORTED_10baseT_Half |
3028 SUPPORTED_10baseT_Full |
3029 SUPPORTED_100baseT_Half |
3030 SUPPORTED_100baseT_Full |
3031 SUPPORTED_1000baseT_Half |
3032 SUPPORTED_1000baseT_Full;
3033 if (status & VELOCITY_SPEED_1000)
3034 cmd->speed = SPEED_1000;
3035 else if (status & VELOCITY_SPEED_100)
3036 cmd->speed = SPEED_100;
3037 else
3038 cmd->speed = SPEED_10;
3039 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3040 cmd->port = PORT_TP;
3041 cmd->transceiver = XCVR_INTERNAL;
3042 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3043
3044 if (status & VELOCITY_DUPLEX_FULL)
3045 cmd->duplex = DUPLEX_FULL;
3046 else
3047 cmd->duplex = DUPLEX_HALF;
3048
3049 return 0;
3050 }
3051
3052 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3053 {
3054 struct velocity_info *vptr = netdev_priv(dev);
3055 u32 curr_status;
3056 u32 new_status = 0;
3057 int ret = 0;
3058
3059 curr_status = check_connection_type(vptr->mac_regs);
3060 curr_status &= (~VELOCITY_LINK_FAIL);
3061
3062 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3063 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3064 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3065 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3066
3067 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3068 ret = -EINVAL;
3069 else
3070 velocity_set_media_mode(vptr, new_status);
3071
3072 return ret;
3073 }
3074
3075 static u32 velocity_get_link(struct net_device *dev)
3076 {
3077 struct velocity_info *vptr = netdev_priv(dev);
3078 struct mac_regs __iomem * regs = vptr->mac_regs;
3079 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
3080 }
3081
3082 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3083 {
3084 struct velocity_info *vptr = netdev_priv(dev);
3085 strcpy(info->driver, VELOCITY_NAME);
3086 strcpy(info->version, VELOCITY_VERSION);
3087 strcpy(info->bus_info, pci_name(vptr->pdev));
3088 }
3089
3090 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3091 {
3092 struct velocity_info *vptr = netdev_priv(dev);
3093 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3094 wol->wolopts |= WAKE_MAGIC;
3095 /*
3096 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3097 wol.wolopts|=WAKE_PHY;
3098 */
3099 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3100 wol->wolopts |= WAKE_UCAST;
3101 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3102 wol->wolopts |= WAKE_ARP;
3103 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3104 }
3105
3106 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3107 {
3108 struct velocity_info *vptr = netdev_priv(dev);
3109
3110 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3111 return -EFAULT;
3112 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3113
3114 /*
3115 if (wol.wolopts & WAKE_PHY) {
3116 vptr->wol_opts|=VELOCITY_WOL_PHY;
3117 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3118 }
3119 */
3120
3121 if (wol->wolopts & WAKE_MAGIC) {
3122 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3123 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3124 }
3125 if (wol->wolopts & WAKE_UCAST) {
3126 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3127 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3128 }
3129 if (wol->wolopts & WAKE_ARP) {
3130 vptr->wol_opts |= VELOCITY_WOL_ARP;
3131 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3132 }
3133 memcpy(vptr->wol_passwd, wol->sopass, 6);
3134 return 0;
3135 }
3136
3137 static u32 velocity_get_msglevel(struct net_device *dev)
3138 {
3139 return msglevel;
3140 }
3141
3142 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3143 {
3144 msglevel = value;
3145 }
3146
3147 static const struct ethtool_ops velocity_ethtool_ops = {
3148 .get_settings = velocity_get_settings,
3149 .set_settings = velocity_set_settings,
3150 .get_drvinfo = velocity_get_drvinfo,
3151 .get_wol = velocity_ethtool_get_wol,
3152 .set_wol = velocity_ethtool_set_wol,
3153 .get_msglevel = velocity_get_msglevel,
3154 .set_msglevel = velocity_set_msglevel,
3155 .get_link = velocity_get_link,
3156 .begin = velocity_ethtool_up,
3157 .complete = velocity_ethtool_down
3158 };
3159
3160 /**
3161 * velocity_mii_ioctl - MII ioctl handler
3162 * @dev: network device
3163 * @ifr: the ifreq block for the ioctl
3164 * @cmd: the command
3165 *
3166 * Process MII requests made via ioctl from the network layer. These
3167 * are used by tools like kudzu to interrogate the link state of the
3168 * hardware
3169 */
3170
3171 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3172 {
3173 struct velocity_info *vptr = netdev_priv(dev);
3174 struct mac_regs __iomem * regs = vptr->mac_regs;
3175 unsigned long flags;
3176 struct mii_ioctl_data *miidata = if_mii(ifr);
3177 int err;
3178
3179 switch (cmd) {
3180 case SIOCGMIIPHY:
3181 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3182 break;
3183 case SIOCGMIIREG:
3184 if (!capable(CAP_NET_ADMIN))
3185 return -EPERM;
3186 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3187 return -ETIMEDOUT;
3188 break;
3189 case SIOCSMIIREG:
3190 if (!capable(CAP_NET_ADMIN))
3191 return -EPERM;
3192 spin_lock_irqsave(&vptr->lock, flags);
3193 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3194 spin_unlock_irqrestore(&vptr->lock, flags);
3195 check_connection_type(vptr->mac_regs);
3196 if(err)
3197 return err;
3198 break;
3199 default:
3200 return -EOPNOTSUPP;
3201 }
3202 return 0;
3203 }
3204
3205 #ifdef CONFIG_PM
3206
3207 /**
3208 * velocity_save_context - save registers
3209 * @vptr: velocity
3210 * @context: buffer for stored context
3211 *
3212 * Retrieve the current configuration from the velocity hardware
3213 * and stash it in the context structure, for use by the context
3214 * restore functions. This allows us to save things we need across
3215 * power down states
3216 */
3217
3218 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3219 {
3220 struct mac_regs __iomem * regs = vptr->mac_regs;
3221 u16 i;
3222 u8 __iomem *ptr = (u8 __iomem *)regs;
3223
3224 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3225 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3226
3227 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3228 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3229
3230 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3231 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3232
3233 }
3234
3235 /**
3236 * velocity_restore_context - restore registers
3237 * @vptr: velocity
3238 * @context: buffer for stored context
3239 *
3240 * Reload the register configuration from the velocity context
3241 * created by velocity_save_context.
3242 */
3243
3244 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3245 {
3246 struct mac_regs __iomem * regs = vptr->mac_regs;
3247 int i;
3248 u8 __iomem *ptr = (u8 __iomem *)regs;
3249
3250 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3251 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3252 }
3253
3254 /* Just skip cr0 */
3255 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3256 /* Clear */
3257 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3258 /* Set */
3259 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3260 }
3261
3262 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3263 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3264 }
3265
3266 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3267 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3268 }
3269
3270 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3271 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3272 }
3273
3274 }
3275
3276 /**
3277 * wol_calc_crc - WOL CRC
3278 * @pattern: data pattern
3279 * @mask_pattern: mask
3280 *
3281 * Compute the wake on lan crc hashes for the packet header
3282 * we are interested in.
3283 */
3284
3285 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3286 {
3287 u16 crc = 0xFFFF;
3288 u8 mask;
3289 int i, j;
3290
3291 for (i = 0; i < size; i++) {
3292 mask = mask_pattern[i];
3293
3294 /* Skip this loop if the mask equals to zero */
3295 if (mask == 0x00)
3296 continue;
3297
3298 for (j = 0; j < 8; j++) {
3299 if ((mask & 0x01) == 0) {
3300 mask >>= 1;
3301 continue;
3302 }
3303 mask >>= 1;
3304 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3305 }
3306 }
3307 /* Finally, invert the result once to get the correct data */
3308 crc = ~crc;
3309 return bitrev32(crc) >> 16;
3310 }
3311
3312 /**
3313 * velocity_set_wol - set up for wake on lan
3314 * @vptr: velocity to set WOL status on
3315 *
3316 * Set a card up for wake on lan either by unicast or by
3317 * ARP packet.
3318 *
3319 * FIXME: check static buffer is safe here
3320 */
3321
3322 static int velocity_set_wol(struct velocity_info *vptr)
3323 {
3324 struct mac_regs __iomem * regs = vptr->mac_regs;
3325 static u8 buf[256];
3326 int i;
3327
3328 static u32 mask_pattern[2][4] = {
3329 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3330 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3331 };
3332
3333 writew(0xFFFF, &regs->WOLCRClr);
3334 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3335 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3336
3337 /*
3338 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3339 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3340 */
3341
3342 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3343 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3344 }
3345
3346 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3347 struct arp_packet *arp = (struct arp_packet *) buf;
3348 u16 crc;
3349 memset(buf, 0, sizeof(struct arp_packet) + 7);
3350
3351 for (i = 0; i < 4; i++)
3352 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3353
3354 arp->type = htons(ETH_P_ARP);
3355 arp->ar_op = htons(1);
3356
3357 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3358
3359 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3360 (u8 *) & mask_pattern[0][0]);
3361
3362 writew(crc, &regs->PatternCRC[0]);
3363 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3364 }
3365
3366 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3367 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3368
3369 writew(0x0FFF, &regs->WOLSRClr);
3370
3371 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3372 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3373 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3374
3375 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3376 }
3377
3378 if (vptr->mii_status & VELOCITY_SPEED_1000)
3379 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3380
3381 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3382
3383 {
3384 u8 GCR;
3385 GCR = readb(&regs->CHIPGCR);
3386 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3387 writeb(GCR, &regs->CHIPGCR);
3388 }
3389
3390 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3391 /* Turn on SWPTAG just before entering power mode */
3392 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3393 /* Go to bed ..... */
3394 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3395
3396 return 0;
3397 }
3398
3399 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3400 {
3401 struct net_device *dev = pci_get_drvdata(pdev);
3402 struct velocity_info *vptr = netdev_priv(dev);
3403 unsigned long flags;
3404
3405 if(!netif_running(vptr->dev))
3406 return 0;
3407
3408 netif_device_detach(vptr->dev);
3409
3410 spin_lock_irqsave(&vptr->lock, flags);
3411 pci_save_state(pdev);
3412 #ifdef ETHTOOL_GWOL
3413 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3414 velocity_get_ip(vptr);
3415 velocity_save_context(vptr, &vptr->context);
3416 velocity_shutdown(vptr);
3417 velocity_set_wol(vptr);
3418 pci_enable_wake(pdev, PCI_D3hot, 1);
3419 pci_set_power_state(pdev, PCI_D3hot);
3420 } else {
3421 velocity_save_context(vptr, &vptr->context);
3422 velocity_shutdown(vptr);
3423 pci_disable_device(pdev);
3424 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3425 }
3426 #else
3427 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3428 #endif
3429 spin_unlock_irqrestore(&vptr->lock, flags);
3430 return 0;
3431 }
3432
3433 static int velocity_resume(struct pci_dev *pdev)
3434 {
3435 struct net_device *dev = pci_get_drvdata(pdev);
3436 struct velocity_info *vptr = netdev_priv(dev);
3437 unsigned long flags;
3438 int i;
3439
3440 if(!netif_running(vptr->dev))
3441 return 0;
3442
3443 pci_set_power_state(pdev, PCI_D0);
3444 pci_enable_wake(pdev, 0, 0);
3445 pci_restore_state(pdev);
3446
3447 mac_wol_reset(vptr->mac_regs);
3448
3449 spin_lock_irqsave(&vptr->lock, flags);
3450 velocity_restore_context(vptr, &vptr->context);
3451 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3452 mac_disable_int(vptr->mac_regs);
3453
3454 velocity_tx_srv(vptr, 0);
3455
3456 for (i = 0; i < vptr->tx.numq; i++) {
3457 if (vptr->tx.used[i]) {
3458 mac_tx_queue_wake(vptr->mac_regs, i);
3459 }
3460 }
3461
3462 mac_enable_int(vptr->mac_regs);
3463 spin_unlock_irqrestore(&vptr->lock, flags);
3464 netif_device_attach(vptr->dev);
3465
3466 return 0;
3467 }
3468
3469 #ifdef CONFIG_INET
3470
3471 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3472 {
3473 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3474 struct net_device *dev = ifa->ifa_dev->dev;
3475 struct velocity_info *vptr;
3476 unsigned long flags;
3477
3478 if (dev_net(dev) != &init_net)
3479 return NOTIFY_DONE;
3480
3481 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3482 list_for_each_entry(vptr, &velocity_dev_list, list) {
3483 if (vptr->dev == dev) {
3484 velocity_get_ip(vptr);
3485 break;
3486 }
3487 }
3488 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3489
3490 return NOTIFY_DONE;
3491 }
3492
3493 #endif
3494 #endif