]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/vrf.c
usb: typec: tcpm: remove tcpm dir if no children
[mirror_ubuntu-bionic-kernel.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 #include <net/netns/generic.h>
40
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.0"
43
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45
46 static unsigned int vrf_net_id;
47
48 struct net_vrf {
49 struct rtable __rcu *rth;
50 struct rt6_info __rcu *rt6;
51 u32 tb_id;
52 };
53
54 struct pcpu_dstats {
55 u64 tx_pkts;
56 u64 tx_bytes;
57 u64 tx_drps;
58 u64 rx_pkts;
59 u64 rx_bytes;
60 u64 rx_drps;
61 struct u64_stats_sync syncp;
62 };
63
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67
68 u64_stats_update_begin(&dstats->syncp);
69 dstats->rx_pkts++;
70 dstats->rx_bytes += len;
71 u64_stats_update_end(&dstats->syncp);
72 }
73
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 vrf_dev->stats.tx_errors++;
77 kfree_skb(skb);
78 }
79
80 static void vrf_get_stats64(struct net_device *dev,
81 struct rtnl_link_stats64 *stats)
82 {
83 int i;
84
85 for_each_possible_cpu(i) {
86 const struct pcpu_dstats *dstats;
87 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 unsigned int start;
89
90 dstats = per_cpu_ptr(dev->dstats, i);
91 do {
92 start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 tbytes = dstats->tx_bytes;
94 tpkts = dstats->tx_pkts;
95 tdrops = dstats->tx_drps;
96 rbytes = dstats->rx_bytes;
97 rpkts = dstats->rx_pkts;
98 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 stats->tx_bytes += tbytes;
100 stats->tx_packets += tpkts;
101 stats->tx_dropped += tdrops;
102 stats->rx_bytes += rbytes;
103 stats->rx_packets += rpkts;
104 }
105 }
106
107 /* by default VRF devices do not have a qdisc and are expected
108 * to be created with only a single queue.
109 */
110 static bool qdisc_tx_is_default(const struct net_device *dev)
111 {
112 struct netdev_queue *txq;
113 struct Qdisc *qdisc;
114
115 if (dev->num_tx_queues > 1)
116 return false;
117
118 txq = netdev_get_tx_queue(dev, 0);
119 qdisc = rcu_access_pointer(txq->qdisc);
120
121 return !qdisc->enqueue;
122 }
123
124 /* Local traffic destined to local address. Reinsert the packet to rx
125 * path, similar to loopback handling.
126 */
127 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
128 struct dst_entry *dst)
129 {
130 int len = skb->len;
131
132 skb_orphan(skb);
133
134 skb_dst_set(skb, dst);
135
136 /* set pkt_type to avoid skb hitting packet taps twice -
137 * once on Tx and again in Rx processing
138 */
139 skb->pkt_type = PACKET_LOOPBACK;
140
141 skb->protocol = eth_type_trans(skb, dev);
142
143 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
144 vrf_rx_stats(dev, len);
145 else
146 this_cpu_inc(dev->dstats->rx_drps);
147
148 return NETDEV_TX_OK;
149 }
150
151 #if IS_ENABLED(CONFIG_IPV6)
152 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
153 struct sk_buff *skb)
154 {
155 int err;
156
157 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
158 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
159
160 if (likely(err == 1))
161 err = dst_output(net, sk, skb);
162
163 return err;
164 }
165
166 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
167 struct net_device *dev)
168 {
169 const struct ipv6hdr *iph;
170 struct net *net = dev_net(skb->dev);
171 struct flowi6 fl6;
172 int ret = NET_XMIT_DROP;
173 struct dst_entry *dst;
174 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
175
176 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
177 goto err;
178
179 iph = ipv6_hdr(skb);
180
181 memset(&fl6, 0, sizeof(fl6));
182 /* needed to match OIF rule */
183 fl6.flowi6_oif = dev->ifindex;
184 fl6.flowi6_iif = LOOPBACK_IFINDEX;
185 fl6.daddr = iph->daddr;
186 fl6.saddr = iph->saddr;
187 fl6.flowlabel = ip6_flowinfo(iph);
188 fl6.flowi6_mark = skb->mark;
189 fl6.flowi6_proto = iph->nexthdr;
190 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
191
192 dst = ip6_route_output(net, NULL, &fl6);
193 if (dst == dst_null)
194 goto err;
195
196 skb_dst_drop(skb);
197
198 /* if dst.dev is loopback or the VRF device again this is locally
199 * originated traffic destined to a local address. Short circuit
200 * to Rx path
201 */
202 if (dst->dev == dev)
203 return vrf_local_xmit(skb, dev, dst);
204
205 skb_dst_set(skb, dst);
206
207 /* strip the ethernet header added for pass through VRF device */
208 __skb_pull(skb, skb_network_offset(skb));
209
210 ret = vrf_ip6_local_out(net, skb->sk, skb);
211 if (unlikely(net_xmit_eval(ret)))
212 dev->stats.tx_errors++;
213 else
214 ret = NET_XMIT_SUCCESS;
215
216 return ret;
217 err:
218 vrf_tx_error(dev, skb);
219 return NET_XMIT_DROP;
220 }
221 #else
222 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
223 struct net_device *dev)
224 {
225 vrf_tx_error(dev, skb);
226 return NET_XMIT_DROP;
227 }
228 #endif
229
230 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
231 static int vrf_ip_local_out(struct net *net, struct sock *sk,
232 struct sk_buff *skb)
233 {
234 int err;
235
236 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
237 skb, NULL, skb_dst(skb)->dev, dst_output);
238 if (likely(err == 1))
239 err = dst_output(net, sk, skb);
240
241 return err;
242 }
243
244 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
245 struct net_device *vrf_dev)
246 {
247 struct iphdr *ip4h;
248 int ret = NET_XMIT_DROP;
249 struct flowi4 fl4;
250 struct net *net = dev_net(vrf_dev);
251 struct rtable *rt;
252
253 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
254 goto err;
255
256 ip4h = ip_hdr(skb);
257
258 memset(&fl4, 0, sizeof(fl4));
259 /* needed to match OIF rule */
260 fl4.flowi4_oif = vrf_dev->ifindex;
261 fl4.flowi4_iif = LOOPBACK_IFINDEX;
262 fl4.flowi4_tos = RT_TOS(ip4h->tos);
263 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
264 fl4.flowi4_proto = ip4h->protocol;
265 fl4.daddr = ip4h->daddr;
266 fl4.saddr = ip4h->saddr;
267
268 rt = ip_route_output_flow(net, &fl4, NULL);
269 if (IS_ERR(rt))
270 goto err;
271
272 skb_dst_drop(skb);
273
274 /* if dst.dev is loopback or the VRF device again this is locally
275 * originated traffic destined to a local address. Short circuit
276 * to Rx path
277 */
278 if (rt->dst.dev == vrf_dev)
279 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
280
281 skb_dst_set(skb, &rt->dst);
282
283 /* strip the ethernet header added for pass through VRF device */
284 __skb_pull(skb, skb_network_offset(skb));
285
286 if (!ip4h->saddr) {
287 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
288 RT_SCOPE_LINK);
289 }
290
291 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
292 if (unlikely(net_xmit_eval(ret)))
293 vrf_dev->stats.tx_errors++;
294 else
295 ret = NET_XMIT_SUCCESS;
296
297 out:
298 return ret;
299 err:
300 vrf_tx_error(vrf_dev, skb);
301 goto out;
302 }
303
304 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
305 {
306 switch (skb->protocol) {
307 case htons(ETH_P_IP):
308 return vrf_process_v4_outbound(skb, dev);
309 case htons(ETH_P_IPV6):
310 return vrf_process_v6_outbound(skb, dev);
311 default:
312 vrf_tx_error(dev, skb);
313 return NET_XMIT_DROP;
314 }
315 }
316
317 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
318 {
319 int len = skb->len;
320 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
321
322 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
323 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
324
325 u64_stats_update_begin(&dstats->syncp);
326 dstats->tx_pkts++;
327 dstats->tx_bytes += len;
328 u64_stats_update_end(&dstats->syncp);
329 } else {
330 this_cpu_inc(dev->dstats->tx_drps);
331 }
332
333 return ret;
334 }
335
336 static int vrf_finish_direct(struct net *net, struct sock *sk,
337 struct sk_buff *skb)
338 {
339 struct net_device *vrf_dev = skb->dev;
340
341 if (!list_empty(&vrf_dev->ptype_all) &&
342 likely(skb_headroom(skb) >= ETH_HLEN)) {
343 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
344
345 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
346 eth_zero_addr(eth->h_dest);
347 eth->h_proto = skb->protocol;
348
349 rcu_read_lock_bh();
350 dev_queue_xmit_nit(skb, vrf_dev);
351 rcu_read_unlock_bh();
352
353 skb_pull(skb, ETH_HLEN);
354 }
355
356 return 1;
357 }
358
359 #if IS_ENABLED(CONFIG_IPV6)
360 /* modelled after ip6_finish_output2 */
361 static int vrf_finish_output6(struct net *net, struct sock *sk,
362 struct sk_buff *skb)
363 {
364 struct dst_entry *dst = skb_dst(skb);
365 struct net_device *dev = dst->dev;
366 struct neighbour *neigh;
367 struct in6_addr *nexthop;
368 int ret;
369
370 nf_reset(skb);
371
372 skb->protocol = htons(ETH_P_IPV6);
373 skb->dev = dev;
374
375 rcu_read_lock_bh();
376 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
377 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
378 if (unlikely(!neigh))
379 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
380 if (!IS_ERR(neigh)) {
381 sock_confirm_neigh(skb, neigh);
382 ret = neigh_output(neigh, skb);
383 rcu_read_unlock_bh();
384 return ret;
385 }
386 rcu_read_unlock_bh();
387
388 IP6_INC_STATS(dev_net(dst->dev),
389 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
390 kfree_skb(skb);
391 return -EINVAL;
392 }
393
394 /* modelled after ip6_output */
395 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
396 {
397 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
398 net, sk, skb, NULL, skb_dst(skb)->dev,
399 vrf_finish_output6,
400 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
401 }
402
403 /* set dst on skb to send packet to us via dev_xmit path. Allows
404 * packet to go through device based features such as qdisc, netfilter
405 * hooks and packet sockets with skb->dev set to vrf device.
406 */
407 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
408 struct sk_buff *skb)
409 {
410 struct net_vrf *vrf = netdev_priv(vrf_dev);
411 struct dst_entry *dst = NULL;
412 struct rt6_info *rt6;
413
414 rcu_read_lock();
415
416 rt6 = rcu_dereference(vrf->rt6);
417 if (likely(rt6)) {
418 dst = &rt6->dst;
419 dst_hold(dst);
420 }
421
422 rcu_read_unlock();
423
424 if (unlikely(!dst)) {
425 vrf_tx_error(vrf_dev, skb);
426 return NULL;
427 }
428
429 skb_dst_drop(skb);
430 skb_dst_set(skb, dst);
431
432 return skb;
433 }
434
435 static int vrf_output6_direct(struct net *net, struct sock *sk,
436 struct sk_buff *skb)
437 {
438 skb->protocol = htons(ETH_P_IPV6);
439
440 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
441 net, sk, skb, NULL, skb->dev,
442 vrf_finish_direct,
443 !(IPCB(skb)->flags & IPSKB_REROUTED));
444 }
445
446 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
447 struct sock *sk,
448 struct sk_buff *skb)
449 {
450 struct net *net = dev_net(vrf_dev);
451 int err;
452
453 skb->dev = vrf_dev;
454
455 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
456 skb, NULL, vrf_dev, vrf_output6_direct);
457
458 if (likely(err == 1))
459 err = vrf_output6_direct(net, sk, skb);
460
461 /* reset skb device */
462 if (likely(err == 1))
463 nf_reset(skb);
464 else
465 skb = NULL;
466
467 return skb;
468 }
469
470 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
471 struct sock *sk,
472 struct sk_buff *skb)
473 {
474 /* don't divert link scope packets */
475 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
476 return skb;
477
478 if (qdisc_tx_is_default(vrf_dev))
479 return vrf_ip6_out_direct(vrf_dev, sk, skb);
480
481 return vrf_ip6_out_redirect(vrf_dev, skb);
482 }
483
484 /* holding rtnl */
485 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
486 {
487 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
488 struct net *net = dev_net(dev);
489 struct dst_entry *dst;
490
491 RCU_INIT_POINTER(vrf->rt6, NULL);
492 synchronize_rcu();
493
494 /* move dev in dst's to loopback so this VRF device can be deleted
495 * - based on dst_ifdown
496 */
497 if (rt6) {
498 dst = &rt6->dst;
499 dev_put(dst->dev);
500 dst->dev = net->loopback_dev;
501 dev_hold(dst->dev);
502 dst_release(dst);
503 }
504 }
505
506 static int vrf_rt6_create(struct net_device *dev)
507 {
508 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
509 struct net_vrf *vrf = netdev_priv(dev);
510 struct net *net = dev_net(dev);
511 struct fib6_table *rt6i_table;
512 struct rt6_info *rt6;
513 int rc = -ENOMEM;
514
515 /* IPv6 can be CONFIG enabled and then disabled runtime */
516 if (!ipv6_mod_enabled())
517 return 0;
518
519 rt6i_table = fib6_new_table(net, vrf->tb_id);
520 if (!rt6i_table)
521 goto out;
522
523 /* create a dst for routing packets out a VRF device */
524 rt6 = ip6_dst_alloc(net, dev, flags);
525 if (!rt6)
526 goto out;
527
528 rt6->rt6i_table = rt6i_table;
529 rt6->dst.output = vrf_output6;
530
531 rcu_assign_pointer(vrf->rt6, rt6);
532
533 rc = 0;
534 out:
535 return rc;
536 }
537 #else
538 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
539 struct sock *sk,
540 struct sk_buff *skb)
541 {
542 return skb;
543 }
544
545 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
546 {
547 }
548
549 static int vrf_rt6_create(struct net_device *dev)
550 {
551 return 0;
552 }
553 #endif
554
555 /* modelled after ip_finish_output2 */
556 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
557 {
558 struct dst_entry *dst = skb_dst(skb);
559 struct rtable *rt = (struct rtable *)dst;
560 struct net_device *dev = dst->dev;
561 unsigned int hh_len = LL_RESERVED_SPACE(dev);
562 struct neighbour *neigh;
563 u32 nexthop;
564 int ret = -EINVAL;
565
566 nf_reset(skb);
567
568 /* Be paranoid, rather than too clever. */
569 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
570 struct sk_buff *skb2;
571
572 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
573 if (!skb2) {
574 ret = -ENOMEM;
575 goto err;
576 }
577 if (skb->sk)
578 skb_set_owner_w(skb2, skb->sk);
579
580 consume_skb(skb);
581 skb = skb2;
582 }
583
584 rcu_read_lock_bh();
585
586 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
587 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
588 if (unlikely(!neigh))
589 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
590 if (!IS_ERR(neigh)) {
591 sock_confirm_neigh(skb, neigh);
592 ret = neigh_output(neigh, skb);
593 rcu_read_unlock_bh();
594 return ret;
595 }
596
597 rcu_read_unlock_bh();
598 err:
599 vrf_tx_error(skb->dev, skb);
600 return ret;
601 }
602
603 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
604 {
605 struct net_device *dev = skb_dst(skb)->dev;
606
607 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
608
609 skb->dev = dev;
610 skb->protocol = htons(ETH_P_IP);
611
612 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
613 net, sk, skb, NULL, dev,
614 vrf_finish_output,
615 !(IPCB(skb)->flags & IPSKB_REROUTED));
616 }
617
618 /* set dst on skb to send packet to us via dev_xmit path. Allows
619 * packet to go through device based features such as qdisc, netfilter
620 * hooks and packet sockets with skb->dev set to vrf device.
621 */
622 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
623 struct sk_buff *skb)
624 {
625 struct net_vrf *vrf = netdev_priv(vrf_dev);
626 struct dst_entry *dst = NULL;
627 struct rtable *rth;
628
629 rcu_read_lock();
630
631 rth = rcu_dereference(vrf->rth);
632 if (likely(rth)) {
633 dst = &rth->dst;
634 dst_hold(dst);
635 }
636
637 rcu_read_unlock();
638
639 if (unlikely(!dst)) {
640 vrf_tx_error(vrf_dev, skb);
641 return NULL;
642 }
643
644 skb_dst_drop(skb);
645 skb_dst_set(skb, dst);
646
647 return skb;
648 }
649
650 static int vrf_output_direct(struct net *net, struct sock *sk,
651 struct sk_buff *skb)
652 {
653 skb->protocol = htons(ETH_P_IP);
654
655 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
656 net, sk, skb, NULL, skb->dev,
657 vrf_finish_direct,
658 !(IPCB(skb)->flags & IPSKB_REROUTED));
659 }
660
661 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
662 struct sock *sk,
663 struct sk_buff *skb)
664 {
665 struct net *net = dev_net(vrf_dev);
666 int err;
667
668 skb->dev = vrf_dev;
669
670 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
671 skb, NULL, vrf_dev, vrf_output_direct);
672
673 if (likely(err == 1))
674 err = vrf_output_direct(net, sk, skb);
675
676 /* reset skb device */
677 if (likely(err == 1))
678 nf_reset(skb);
679 else
680 skb = NULL;
681
682 return skb;
683 }
684
685 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
686 struct sock *sk,
687 struct sk_buff *skb)
688 {
689 /* don't divert multicast or local broadcast */
690 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
691 ipv4_is_lbcast(ip_hdr(skb)->daddr))
692 return skb;
693
694 if (qdisc_tx_is_default(vrf_dev))
695 return vrf_ip_out_direct(vrf_dev, sk, skb);
696
697 return vrf_ip_out_redirect(vrf_dev, skb);
698 }
699
700 /* called with rcu lock held */
701 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
702 struct sock *sk,
703 struct sk_buff *skb,
704 u16 proto)
705 {
706 switch (proto) {
707 case AF_INET:
708 return vrf_ip_out(vrf_dev, sk, skb);
709 case AF_INET6:
710 return vrf_ip6_out(vrf_dev, sk, skb);
711 }
712
713 return skb;
714 }
715
716 /* holding rtnl */
717 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
718 {
719 struct rtable *rth = rtnl_dereference(vrf->rth);
720 struct net *net = dev_net(dev);
721 struct dst_entry *dst;
722
723 RCU_INIT_POINTER(vrf->rth, NULL);
724 synchronize_rcu();
725
726 /* move dev in dst's to loopback so this VRF device can be deleted
727 * - based on dst_ifdown
728 */
729 if (rth) {
730 dst = &rth->dst;
731 dev_put(dst->dev);
732 dst->dev = net->loopback_dev;
733 dev_hold(dst->dev);
734 dst_release(dst);
735 }
736 }
737
738 static int vrf_rtable_create(struct net_device *dev)
739 {
740 struct net_vrf *vrf = netdev_priv(dev);
741 struct rtable *rth;
742
743 if (!fib_new_table(dev_net(dev), vrf->tb_id))
744 return -ENOMEM;
745
746 /* create a dst for routing packets out through a VRF device */
747 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
748 if (!rth)
749 return -ENOMEM;
750
751 rth->dst.output = vrf_output;
752 rth->rt_table_id = vrf->tb_id;
753
754 rcu_assign_pointer(vrf->rth, rth);
755
756 return 0;
757 }
758
759 /**************************** device handling ********************/
760
761 /* cycle interface to flush neighbor cache and move routes across tables */
762 static void cycle_netdev(struct net_device *dev)
763 {
764 unsigned int flags = dev->flags;
765 int ret;
766
767 if (!netif_running(dev))
768 return;
769
770 ret = dev_change_flags(dev, flags & ~IFF_UP);
771 if (ret >= 0)
772 ret = dev_change_flags(dev, flags);
773
774 if (ret < 0) {
775 netdev_err(dev,
776 "Failed to cycle device %s; route tables might be wrong!\n",
777 dev->name);
778 }
779 }
780
781 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
782 struct netlink_ext_ack *extack)
783 {
784 int ret;
785
786 /* do not allow loopback device to be enslaved to a VRF.
787 * The vrf device acts as the loopback for the vrf.
788 */
789 if (port_dev == dev_net(dev)->loopback_dev) {
790 NL_SET_ERR_MSG(extack,
791 "Can not enslave loopback device to a VRF");
792 return -EOPNOTSUPP;
793 }
794
795 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
796 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
797 if (ret < 0)
798 goto err;
799
800 cycle_netdev(port_dev);
801
802 return 0;
803
804 err:
805 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
806 return ret;
807 }
808
809 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
810 struct netlink_ext_ack *extack)
811 {
812 if (netif_is_l3_master(port_dev)) {
813 NL_SET_ERR_MSG(extack,
814 "Can not enslave an L3 master device to a VRF");
815 return -EINVAL;
816 }
817
818 if (netif_is_l3_slave(port_dev))
819 return -EINVAL;
820
821 return do_vrf_add_slave(dev, port_dev, extack);
822 }
823
824 /* inverse of do_vrf_add_slave */
825 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
826 {
827 netdev_upper_dev_unlink(port_dev, dev);
828 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
829
830 cycle_netdev(port_dev);
831
832 return 0;
833 }
834
835 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
836 {
837 return do_vrf_del_slave(dev, port_dev);
838 }
839
840 static void vrf_dev_uninit(struct net_device *dev)
841 {
842 struct net_vrf *vrf = netdev_priv(dev);
843
844 vrf_rtable_release(dev, vrf);
845 vrf_rt6_release(dev, vrf);
846
847 free_percpu(dev->dstats);
848 dev->dstats = NULL;
849 }
850
851 static int vrf_dev_init(struct net_device *dev)
852 {
853 struct net_vrf *vrf = netdev_priv(dev);
854
855 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
856 if (!dev->dstats)
857 goto out_nomem;
858
859 /* create the default dst which points back to us */
860 if (vrf_rtable_create(dev) != 0)
861 goto out_stats;
862
863 if (vrf_rt6_create(dev) != 0)
864 goto out_rth;
865
866 dev->flags = IFF_MASTER | IFF_NOARP;
867
868 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
869 dev->mtu = 64 * 1024;
870
871 /* similarly, oper state is irrelevant; set to up to avoid confusion */
872 dev->operstate = IF_OPER_UP;
873 netdev_lockdep_set_classes(dev);
874 return 0;
875
876 out_rth:
877 vrf_rtable_release(dev, vrf);
878 out_stats:
879 free_percpu(dev->dstats);
880 dev->dstats = NULL;
881 out_nomem:
882 return -ENOMEM;
883 }
884
885 static const struct net_device_ops vrf_netdev_ops = {
886 .ndo_init = vrf_dev_init,
887 .ndo_uninit = vrf_dev_uninit,
888 .ndo_start_xmit = vrf_xmit,
889 .ndo_get_stats64 = vrf_get_stats64,
890 .ndo_add_slave = vrf_add_slave,
891 .ndo_del_slave = vrf_del_slave,
892 };
893
894 static u32 vrf_fib_table(const struct net_device *dev)
895 {
896 struct net_vrf *vrf = netdev_priv(dev);
897
898 return vrf->tb_id;
899 }
900
901 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
902 {
903 kfree_skb(skb);
904 return 0;
905 }
906
907 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
908 struct sk_buff *skb,
909 struct net_device *dev)
910 {
911 struct net *net = dev_net(dev);
912
913 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
914 skb = NULL; /* kfree_skb(skb) handled by nf code */
915
916 return skb;
917 }
918
919 #if IS_ENABLED(CONFIG_IPV6)
920 /* neighbor handling is done with actual device; do not want
921 * to flip skb->dev for those ndisc packets. This really fails
922 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
923 * a start.
924 */
925 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
926 {
927 const struct ipv6hdr *iph = ipv6_hdr(skb);
928 bool rc = false;
929
930 if (iph->nexthdr == NEXTHDR_ICMP) {
931 const struct icmp6hdr *icmph;
932 struct icmp6hdr _icmph;
933
934 icmph = skb_header_pointer(skb, sizeof(*iph),
935 sizeof(_icmph), &_icmph);
936 if (!icmph)
937 goto out;
938
939 switch (icmph->icmp6_type) {
940 case NDISC_ROUTER_SOLICITATION:
941 case NDISC_ROUTER_ADVERTISEMENT:
942 case NDISC_NEIGHBOUR_SOLICITATION:
943 case NDISC_NEIGHBOUR_ADVERTISEMENT:
944 case NDISC_REDIRECT:
945 rc = true;
946 break;
947 }
948 }
949
950 out:
951 return rc;
952 }
953
954 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
955 const struct net_device *dev,
956 struct flowi6 *fl6,
957 int ifindex,
958 int flags)
959 {
960 struct net_vrf *vrf = netdev_priv(dev);
961 struct fib6_table *table = NULL;
962 struct rt6_info *rt6;
963
964 rcu_read_lock();
965
966 /* fib6_table does not have a refcnt and can not be freed */
967 rt6 = rcu_dereference(vrf->rt6);
968 if (likely(rt6))
969 table = rt6->rt6i_table;
970
971 rcu_read_unlock();
972
973 if (!table)
974 return NULL;
975
976 return ip6_pol_route(net, table, ifindex, fl6, flags);
977 }
978
979 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
980 int ifindex)
981 {
982 const struct ipv6hdr *iph = ipv6_hdr(skb);
983 struct flowi6 fl6 = {
984 .flowi6_iif = ifindex,
985 .flowi6_mark = skb->mark,
986 .flowi6_proto = iph->nexthdr,
987 .daddr = iph->daddr,
988 .saddr = iph->saddr,
989 .flowlabel = ip6_flowinfo(iph),
990 };
991 struct net *net = dev_net(vrf_dev);
992 struct rt6_info *rt6;
993
994 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
995 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
996 if (unlikely(!rt6))
997 return;
998
999 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1000 return;
1001
1002 skb_dst_set(skb, &rt6->dst);
1003 }
1004
1005 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1006 struct sk_buff *skb)
1007 {
1008 int orig_iif = skb->skb_iif;
1009 bool need_strict;
1010
1011 /* loopback traffic; do not push through packet taps again.
1012 * Reset pkt_type for upper layers to process skb
1013 */
1014 if (skb->pkt_type == PACKET_LOOPBACK) {
1015 skb->dev = vrf_dev;
1016 skb->skb_iif = vrf_dev->ifindex;
1017 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1018 skb->pkt_type = PACKET_HOST;
1019 goto out;
1020 }
1021
1022 /* if packet is NDISC or addressed to multicast or link-local
1023 * then keep the ingress interface
1024 */
1025 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1026 if (!ipv6_ndisc_frame(skb) && !need_strict) {
1027 vrf_rx_stats(vrf_dev, skb->len);
1028 skb->dev = vrf_dev;
1029 skb->skb_iif = vrf_dev->ifindex;
1030
1031 if (!list_empty(&vrf_dev->ptype_all)) {
1032 skb_push(skb, skb->mac_len);
1033 dev_queue_xmit_nit(skb, vrf_dev);
1034 skb_pull(skb, skb->mac_len);
1035 }
1036
1037 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1038 }
1039
1040 if (need_strict)
1041 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1042
1043 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1044 out:
1045 return skb;
1046 }
1047
1048 #else
1049 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1050 struct sk_buff *skb)
1051 {
1052 return skb;
1053 }
1054 #endif
1055
1056 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1057 struct sk_buff *skb)
1058 {
1059 skb->dev = vrf_dev;
1060 skb->skb_iif = vrf_dev->ifindex;
1061 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1062
1063 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1064 goto out;
1065
1066 /* loopback traffic; do not push through packet taps again.
1067 * Reset pkt_type for upper layers to process skb
1068 */
1069 if (skb->pkt_type == PACKET_LOOPBACK) {
1070 skb->pkt_type = PACKET_HOST;
1071 goto out;
1072 }
1073
1074 vrf_rx_stats(vrf_dev, skb->len);
1075
1076 if (!list_empty(&vrf_dev->ptype_all)) {
1077 skb_push(skb, skb->mac_len);
1078 dev_queue_xmit_nit(skb, vrf_dev);
1079 skb_pull(skb, skb->mac_len);
1080 }
1081
1082 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1083 out:
1084 return skb;
1085 }
1086
1087 /* called with rcu lock held */
1088 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1089 struct sk_buff *skb,
1090 u16 proto)
1091 {
1092 switch (proto) {
1093 case AF_INET:
1094 return vrf_ip_rcv(vrf_dev, skb);
1095 case AF_INET6:
1096 return vrf_ip6_rcv(vrf_dev, skb);
1097 }
1098
1099 return skb;
1100 }
1101
1102 #if IS_ENABLED(CONFIG_IPV6)
1103 /* send to link-local or multicast address via interface enslaved to
1104 * VRF device. Force lookup to VRF table without changing flow struct
1105 */
1106 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1107 struct flowi6 *fl6)
1108 {
1109 struct net *net = dev_net(dev);
1110 int flags = RT6_LOOKUP_F_IFACE;
1111 struct dst_entry *dst = NULL;
1112 struct rt6_info *rt;
1113
1114 /* VRF device does not have a link-local address and
1115 * sending packets to link-local or mcast addresses over
1116 * a VRF device does not make sense
1117 */
1118 if (fl6->flowi6_oif == dev->ifindex) {
1119 dst = &net->ipv6.ip6_null_entry->dst;
1120 dst_hold(dst);
1121 return dst;
1122 }
1123
1124 if (!ipv6_addr_any(&fl6->saddr))
1125 flags |= RT6_LOOKUP_F_HAS_SADDR;
1126
1127 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1128 if (rt)
1129 dst = &rt->dst;
1130
1131 return dst;
1132 }
1133 #endif
1134
1135 static const struct l3mdev_ops vrf_l3mdev_ops = {
1136 .l3mdev_fib_table = vrf_fib_table,
1137 .l3mdev_l3_rcv = vrf_l3_rcv,
1138 .l3mdev_l3_out = vrf_l3_out,
1139 #if IS_ENABLED(CONFIG_IPV6)
1140 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1141 #endif
1142 };
1143
1144 static void vrf_get_drvinfo(struct net_device *dev,
1145 struct ethtool_drvinfo *info)
1146 {
1147 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1148 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1149 }
1150
1151 static const struct ethtool_ops vrf_ethtool_ops = {
1152 .get_drvinfo = vrf_get_drvinfo,
1153 };
1154
1155 static inline size_t vrf_fib_rule_nl_size(void)
1156 {
1157 size_t sz;
1158
1159 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1160 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1161 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1162
1163 return sz;
1164 }
1165
1166 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1167 {
1168 struct fib_rule_hdr *frh;
1169 struct nlmsghdr *nlh;
1170 struct sk_buff *skb;
1171 int err;
1172
1173 if (family == AF_INET6 && !ipv6_mod_enabled())
1174 return 0;
1175
1176 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1177 if (!skb)
1178 return -ENOMEM;
1179
1180 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1181 if (!nlh)
1182 goto nla_put_failure;
1183
1184 /* rule only needs to appear once */
1185 nlh->nlmsg_flags |= NLM_F_EXCL;
1186
1187 frh = nlmsg_data(nlh);
1188 memset(frh, 0, sizeof(*frh));
1189 frh->family = family;
1190 frh->action = FR_ACT_TO_TBL;
1191
1192 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1193 goto nla_put_failure;
1194
1195 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1196 goto nla_put_failure;
1197
1198 nlmsg_end(skb, nlh);
1199
1200 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1201 skb->sk = dev_net(dev)->rtnl;
1202 if (add_it) {
1203 err = fib_nl_newrule(skb, nlh, NULL);
1204 if (err == -EEXIST)
1205 err = 0;
1206 } else {
1207 err = fib_nl_delrule(skb, nlh, NULL);
1208 if (err == -ENOENT)
1209 err = 0;
1210 }
1211 nlmsg_free(skb);
1212
1213 return err;
1214
1215 nla_put_failure:
1216 nlmsg_free(skb);
1217
1218 return -EMSGSIZE;
1219 }
1220
1221 static int vrf_add_fib_rules(const struct net_device *dev)
1222 {
1223 int err;
1224
1225 err = vrf_fib_rule(dev, AF_INET, true);
1226 if (err < 0)
1227 goto out_err;
1228
1229 err = vrf_fib_rule(dev, AF_INET6, true);
1230 if (err < 0)
1231 goto ipv6_err;
1232
1233 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1234 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1235 if (err < 0)
1236 goto ipmr_err;
1237 #endif
1238
1239 return 0;
1240
1241 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1242 ipmr_err:
1243 vrf_fib_rule(dev, AF_INET6, false);
1244 #endif
1245
1246 ipv6_err:
1247 vrf_fib_rule(dev, AF_INET, false);
1248
1249 out_err:
1250 netdev_err(dev, "Failed to add FIB rules.\n");
1251 return err;
1252 }
1253
1254 static void vrf_setup(struct net_device *dev)
1255 {
1256 ether_setup(dev);
1257
1258 /* Initialize the device structure. */
1259 dev->netdev_ops = &vrf_netdev_ops;
1260 dev->l3mdev_ops = &vrf_l3mdev_ops;
1261 dev->ethtool_ops = &vrf_ethtool_ops;
1262 dev->needs_free_netdev = true;
1263
1264 /* Fill in device structure with ethernet-generic values. */
1265 eth_hw_addr_random(dev);
1266
1267 /* don't acquire vrf device's netif_tx_lock when transmitting */
1268 dev->features |= NETIF_F_LLTX;
1269
1270 /* don't allow vrf devices to change network namespaces. */
1271 dev->features |= NETIF_F_NETNS_LOCAL;
1272
1273 /* does not make sense for a VLAN to be added to a vrf device */
1274 dev->features |= NETIF_F_VLAN_CHALLENGED;
1275
1276 /* enable offload features */
1277 dev->features |= NETIF_F_GSO_SOFTWARE;
1278 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1279 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1280
1281 dev->hw_features = dev->features;
1282 dev->hw_enc_features = dev->features;
1283
1284 /* default to no qdisc; user can add if desired */
1285 dev->priv_flags |= IFF_NO_QUEUE;
1286 }
1287
1288 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1289 struct netlink_ext_ack *extack)
1290 {
1291 if (tb[IFLA_ADDRESS]) {
1292 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1293 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1294 return -EINVAL;
1295 }
1296 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1297 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1298 return -EADDRNOTAVAIL;
1299 }
1300 }
1301 return 0;
1302 }
1303
1304 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1305 {
1306 struct net_device *port_dev;
1307 struct list_head *iter;
1308
1309 netdev_for_each_lower_dev(dev, port_dev, iter)
1310 vrf_del_slave(dev, port_dev);
1311
1312 unregister_netdevice_queue(dev, head);
1313 }
1314
1315 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1316 struct nlattr *tb[], struct nlattr *data[],
1317 struct netlink_ext_ack *extack)
1318 {
1319 struct net_vrf *vrf = netdev_priv(dev);
1320 bool *add_fib_rules;
1321 struct net *net;
1322 int err;
1323
1324 if (!data || !data[IFLA_VRF_TABLE]) {
1325 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1326 return -EINVAL;
1327 }
1328
1329 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1330 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1331 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1332 "Invalid VRF table id");
1333 return -EINVAL;
1334 }
1335
1336 dev->priv_flags |= IFF_L3MDEV_MASTER;
1337
1338 err = register_netdevice(dev);
1339 if (err)
1340 goto out;
1341
1342 net = dev_net(dev);
1343 add_fib_rules = net_generic(net, vrf_net_id);
1344 if (*add_fib_rules) {
1345 err = vrf_add_fib_rules(dev);
1346 if (err) {
1347 unregister_netdevice(dev);
1348 goto out;
1349 }
1350 *add_fib_rules = false;
1351 }
1352
1353 out:
1354 return err;
1355 }
1356
1357 static size_t vrf_nl_getsize(const struct net_device *dev)
1358 {
1359 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1360 }
1361
1362 static int vrf_fillinfo(struct sk_buff *skb,
1363 const struct net_device *dev)
1364 {
1365 struct net_vrf *vrf = netdev_priv(dev);
1366
1367 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1368 }
1369
1370 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1371 const struct net_device *slave_dev)
1372 {
1373 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1374 }
1375
1376 static int vrf_fill_slave_info(struct sk_buff *skb,
1377 const struct net_device *vrf_dev,
1378 const struct net_device *slave_dev)
1379 {
1380 struct net_vrf *vrf = netdev_priv(vrf_dev);
1381
1382 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1383 return -EMSGSIZE;
1384
1385 return 0;
1386 }
1387
1388 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1389 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1390 };
1391
1392 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1393 .kind = DRV_NAME,
1394 .priv_size = sizeof(struct net_vrf),
1395
1396 .get_size = vrf_nl_getsize,
1397 .policy = vrf_nl_policy,
1398 .validate = vrf_validate,
1399 .fill_info = vrf_fillinfo,
1400
1401 .get_slave_size = vrf_get_slave_size,
1402 .fill_slave_info = vrf_fill_slave_info,
1403
1404 .newlink = vrf_newlink,
1405 .dellink = vrf_dellink,
1406 .setup = vrf_setup,
1407 .maxtype = IFLA_VRF_MAX,
1408 };
1409
1410 static int vrf_device_event(struct notifier_block *unused,
1411 unsigned long event, void *ptr)
1412 {
1413 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1414
1415 /* only care about unregister events to drop slave references */
1416 if (event == NETDEV_UNREGISTER) {
1417 struct net_device *vrf_dev;
1418
1419 if (!netif_is_l3_slave(dev))
1420 goto out;
1421
1422 vrf_dev = netdev_master_upper_dev_get(dev);
1423 vrf_del_slave(vrf_dev, dev);
1424 }
1425 out:
1426 return NOTIFY_DONE;
1427 }
1428
1429 static struct notifier_block vrf_notifier_block __read_mostly = {
1430 .notifier_call = vrf_device_event,
1431 };
1432
1433 /* Initialize per network namespace state */
1434 static int __net_init vrf_netns_init(struct net *net)
1435 {
1436 bool *add_fib_rules = net_generic(net, vrf_net_id);
1437
1438 *add_fib_rules = true;
1439
1440 return 0;
1441 }
1442
1443 static struct pernet_operations vrf_net_ops __net_initdata = {
1444 .init = vrf_netns_init,
1445 .id = &vrf_net_id,
1446 .size = sizeof(bool),
1447 };
1448
1449 static int __init vrf_init_module(void)
1450 {
1451 int rc;
1452
1453 register_netdevice_notifier(&vrf_notifier_block);
1454
1455 rc = register_pernet_subsys(&vrf_net_ops);
1456 if (rc < 0)
1457 goto error;
1458
1459 rc = rtnl_link_register(&vrf_link_ops);
1460 if (rc < 0) {
1461 unregister_pernet_subsys(&vrf_net_ops);
1462 goto error;
1463 }
1464
1465 return 0;
1466
1467 error:
1468 unregister_netdevice_notifier(&vrf_notifier_block);
1469 return rc;
1470 }
1471
1472 module_init(vrf_init_module);
1473 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1474 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1475 MODULE_LICENSE("GPL");
1476 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1477 MODULE_VERSION(DRV_VERSION);