]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/vrf.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39
40 #define DRV_NAME "vrf"
41 #define DRV_VERSION "1.0"
42
43 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45
46 struct net_vrf {
47 struct rtable __rcu *rth;
48 struct rtable __rcu *rth_local;
49 struct rt6_info __rcu *rt6;
50 struct rt6_info __rcu *rt6_local;
51 u32 tb_id;
52 };
53
54 struct pcpu_dstats {
55 u64 tx_pkts;
56 u64 tx_bytes;
57 u64 tx_drps;
58 u64 rx_pkts;
59 u64 rx_bytes;
60 u64 rx_drps;
61 struct u64_stats_sync syncp;
62 };
63
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67
68 u64_stats_update_begin(&dstats->syncp);
69 dstats->rx_pkts++;
70 dstats->rx_bytes += len;
71 u64_stats_update_end(&dstats->syncp);
72 }
73
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 vrf_dev->stats.tx_errors++;
77 kfree_skb(skb);
78 }
79
80 static void vrf_get_stats64(struct net_device *dev,
81 struct rtnl_link_stats64 *stats)
82 {
83 int i;
84
85 for_each_possible_cpu(i) {
86 const struct pcpu_dstats *dstats;
87 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 unsigned int start;
89
90 dstats = per_cpu_ptr(dev->dstats, i);
91 do {
92 start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 tbytes = dstats->tx_bytes;
94 tpkts = dstats->tx_pkts;
95 tdrops = dstats->tx_drps;
96 rbytes = dstats->rx_bytes;
97 rpkts = dstats->rx_pkts;
98 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 stats->tx_bytes += tbytes;
100 stats->tx_packets += tpkts;
101 stats->tx_dropped += tdrops;
102 stats->rx_bytes += rbytes;
103 stats->rx_packets += rpkts;
104 }
105 }
106
107 /* by default VRF devices do not have a qdisc and are expected
108 * to be created with only a single queue.
109 */
110 static bool qdisc_tx_is_default(const struct net_device *dev)
111 {
112 struct netdev_queue *txq;
113 struct Qdisc *qdisc;
114
115 if (dev->num_tx_queues > 1)
116 return false;
117
118 txq = netdev_get_tx_queue(dev, 0);
119 qdisc = rcu_access_pointer(txq->qdisc);
120
121 return !qdisc->enqueue;
122 }
123
124 /* Local traffic destined to local address. Reinsert the packet to rx
125 * path, similar to loopback handling.
126 */
127 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
128 struct dst_entry *dst)
129 {
130 int len = skb->len;
131
132 skb_orphan(skb);
133
134 skb_dst_set(skb, dst);
135 skb_dst_force(skb);
136
137 /* set pkt_type to avoid skb hitting packet taps twice -
138 * once on Tx and again in Rx processing
139 */
140 skb->pkt_type = PACKET_LOOPBACK;
141
142 skb->protocol = eth_type_trans(skb, dev);
143
144 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
145 vrf_rx_stats(dev, len);
146 else
147 this_cpu_inc(dev->dstats->rx_drps);
148
149 return NETDEV_TX_OK;
150 }
151
152 #if IS_ENABLED(CONFIG_IPV6)
153 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
154 struct sk_buff *skb)
155 {
156 int err;
157
158 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
159 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
160
161 if (likely(err == 1))
162 err = dst_output(net, sk, skb);
163
164 return err;
165 }
166
167 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
168 struct net_device *dev)
169 {
170 const struct ipv6hdr *iph = ipv6_hdr(skb);
171 struct net *net = dev_net(skb->dev);
172 struct flowi6 fl6 = {
173 /* needed to match OIF rule */
174 .flowi6_oif = dev->ifindex,
175 .flowi6_iif = LOOPBACK_IFINDEX,
176 .daddr = iph->daddr,
177 .saddr = iph->saddr,
178 .flowlabel = ip6_flowinfo(iph),
179 .flowi6_mark = skb->mark,
180 .flowi6_proto = iph->nexthdr,
181 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
182 };
183 int ret = NET_XMIT_DROP;
184 struct dst_entry *dst;
185 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
186
187 dst = ip6_route_output(net, NULL, &fl6);
188 if (dst == dst_null)
189 goto err;
190
191 skb_dst_drop(skb);
192
193 /* if dst.dev is loopback or the VRF device again this is locally
194 * originated traffic destined to a local address. Short circuit
195 * to Rx path using our local dst
196 */
197 if (dst->dev == net->loopback_dev || dst->dev == dev) {
198 struct net_vrf *vrf = netdev_priv(dev);
199 struct rt6_info *rt6_local;
200
201 /* release looked up dst and use cached local dst */
202 dst_release(dst);
203
204 rcu_read_lock();
205
206 rt6_local = rcu_dereference(vrf->rt6_local);
207 if (unlikely(!rt6_local)) {
208 rcu_read_unlock();
209 goto err;
210 }
211
212 /* Ordering issue: cached local dst is created on newlink
213 * before the IPv6 initialization. Using the local dst
214 * requires rt6i_idev to be set so make sure it is.
215 */
216 if (unlikely(!rt6_local->rt6i_idev)) {
217 rt6_local->rt6i_idev = in6_dev_get(dev);
218 if (!rt6_local->rt6i_idev) {
219 rcu_read_unlock();
220 goto err;
221 }
222 }
223
224 dst = &rt6_local->dst;
225 dst_hold(dst);
226
227 rcu_read_unlock();
228
229 return vrf_local_xmit(skb, dev, &rt6_local->dst);
230 }
231
232 skb_dst_set(skb, dst);
233
234 /* strip the ethernet header added for pass through VRF device */
235 __skb_pull(skb, skb_network_offset(skb));
236
237 ret = vrf_ip6_local_out(net, skb->sk, skb);
238 if (unlikely(net_xmit_eval(ret)))
239 dev->stats.tx_errors++;
240 else
241 ret = NET_XMIT_SUCCESS;
242
243 return ret;
244 err:
245 vrf_tx_error(dev, skb);
246 return NET_XMIT_DROP;
247 }
248 #else
249 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
250 struct net_device *dev)
251 {
252 vrf_tx_error(dev, skb);
253 return NET_XMIT_DROP;
254 }
255 #endif
256
257 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
258 static int vrf_ip_local_out(struct net *net, struct sock *sk,
259 struct sk_buff *skb)
260 {
261 int err;
262
263 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
264 skb, NULL, skb_dst(skb)->dev, dst_output);
265 if (likely(err == 1))
266 err = dst_output(net, sk, skb);
267
268 return err;
269 }
270
271 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
272 struct net_device *vrf_dev)
273 {
274 struct iphdr *ip4h = ip_hdr(skb);
275 int ret = NET_XMIT_DROP;
276 struct flowi4 fl4 = {
277 /* needed to match OIF rule */
278 .flowi4_oif = vrf_dev->ifindex,
279 .flowi4_iif = LOOPBACK_IFINDEX,
280 .flowi4_tos = RT_TOS(ip4h->tos),
281 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
282 .flowi4_proto = ip4h->protocol,
283 .daddr = ip4h->daddr,
284 .saddr = ip4h->saddr,
285 };
286 struct net *net = dev_net(vrf_dev);
287 struct rtable *rt;
288
289 rt = ip_route_output_flow(net, &fl4, NULL);
290 if (IS_ERR(rt))
291 goto err;
292
293 skb_dst_drop(skb);
294
295 /* if dst.dev is loopback or the VRF device again this is locally
296 * originated traffic destined to a local address. Short circuit
297 * to Rx path using our local dst
298 */
299 if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
300 struct net_vrf *vrf = netdev_priv(vrf_dev);
301 struct rtable *rth_local;
302 struct dst_entry *dst = NULL;
303
304 ip_rt_put(rt);
305
306 rcu_read_lock();
307
308 rth_local = rcu_dereference(vrf->rth_local);
309 if (likely(rth_local)) {
310 dst = &rth_local->dst;
311 dst_hold(dst);
312 }
313
314 rcu_read_unlock();
315
316 if (unlikely(!dst))
317 goto err;
318
319 return vrf_local_xmit(skb, vrf_dev, dst);
320 }
321
322 skb_dst_set(skb, &rt->dst);
323
324 /* strip the ethernet header added for pass through VRF device */
325 __skb_pull(skb, skb_network_offset(skb));
326
327 if (!ip4h->saddr) {
328 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
329 RT_SCOPE_LINK);
330 }
331
332 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
333 if (unlikely(net_xmit_eval(ret)))
334 vrf_dev->stats.tx_errors++;
335 else
336 ret = NET_XMIT_SUCCESS;
337
338 out:
339 return ret;
340 err:
341 vrf_tx_error(vrf_dev, skb);
342 goto out;
343 }
344
345 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
346 {
347 switch (skb->protocol) {
348 case htons(ETH_P_IP):
349 return vrf_process_v4_outbound(skb, dev);
350 case htons(ETH_P_IPV6):
351 return vrf_process_v6_outbound(skb, dev);
352 default:
353 vrf_tx_error(dev, skb);
354 return NET_XMIT_DROP;
355 }
356 }
357
358 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
359 {
360 int len = skb->len;
361 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
362
363 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
364 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
365
366 u64_stats_update_begin(&dstats->syncp);
367 dstats->tx_pkts++;
368 dstats->tx_bytes += len;
369 u64_stats_update_end(&dstats->syncp);
370 } else {
371 this_cpu_inc(dev->dstats->tx_drps);
372 }
373
374 return ret;
375 }
376
377 static int vrf_finish_direct(struct net *net, struct sock *sk,
378 struct sk_buff *skb)
379 {
380 struct net_device *vrf_dev = skb->dev;
381
382 if (!list_empty(&vrf_dev->ptype_all) &&
383 likely(skb_headroom(skb) >= ETH_HLEN)) {
384 struct ethhdr *eth = (struct ethhdr *)skb_push(skb, ETH_HLEN);
385
386 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
387 eth_zero_addr(eth->h_dest);
388 eth->h_proto = skb->protocol;
389
390 rcu_read_lock_bh();
391 dev_queue_xmit_nit(skb, vrf_dev);
392 rcu_read_unlock_bh();
393
394 skb_pull(skb, ETH_HLEN);
395 }
396
397 return 1;
398 }
399
400 #if IS_ENABLED(CONFIG_IPV6)
401 /* modelled after ip6_finish_output2 */
402 static int vrf_finish_output6(struct net *net, struct sock *sk,
403 struct sk_buff *skb)
404 {
405 struct dst_entry *dst = skb_dst(skb);
406 struct net_device *dev = dst->dev;
407 struct neighbour *neigh;
408 struct in6_addr *nexthop;
409 int ret;
410
411 nf_reset(skb);
412
413 skb->protocol = htons(ETH_P_IPV6);
414 skb->dev = dev;
415
416 rcu_read_lock_bh();
417 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
418 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
419 if (unlikely(!neigh))
420 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
421 if (!IS_ERR(neigh)) {
422 sock_confirm_neigh(skb, neigh);
423 ret = neigh_output(neigh, skb);
424 rcu_read_unlock_bh();
425 return ret;
426 }
427 rcu_read_unlock_bh();
428
429 IP6_INC_STATS(dev_net(dst->dev),
430 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
431 kfree_skb(skb);
432 return -EINVAL;
433 }
434
435 /* modelled after ip6_output */
436 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
437 {
438 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
439 net, sk, skb, NULL, skb_dst(skb)->dev,
440 vrf_finish_output6,
441 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
442 }
443
444 /* set dst on skb to send packet to us via dev_xmit path. Allows
445 * packet to go through device based features such as qdisc, netfilter
446 * hooks and packet sockets with skb->dev set to vrf device.
447 */
448 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
449 struct sk_buff *skb)
450 {
451 struct net_vrf *vrf = netdev_priv(vrf_dev);
452 struct dst_entry *dst = NULL;
453 struct rt6_info *rt6;
454
455 rcu_read_lock();
456
457 rt6 = rcu_dereference(vrf->rt6);
458 if (likely(rt6)) {
459 dst = &rt6->dst;
460 dst_hold(dst);
461 }
462
463 rcu_read_unlock();
464
465 if (unlikely(!dst)) {
466 vrf_tx_error(vrf_dev, skb);
467 return NULL;
468 }
469
470 skb_dst_drop(skb);
471 skb_dst_set(skb, dst);
472
473 return skb;
474 }
475
476 static int vrf_output6_direct(struct net *net, struct sock *sk,
477 struct sk_buff *skb)
478 {
479 skb->protocol = htons(ETH_P_IPV6);
480
481 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
482 net, sk, skb, NULL, skb->dev,
483 vrf_finish_direct,
484 !(IPCB(skb)->flags & IPSKB_REROUTED));
485 }
486
487 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
488 struct sock *sk,
489 struct sk_buff *skb)
490 {
491 struct net *net = dev_net(vrf_dev);
492 int err;
493
494 skb->dev = vrf_dev;
495
496 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
497 skb, NULL, vrf_dev, vrf_output6_direct);
498
499 if (likely(err == 1))
500 err = vrf_output6_direct(net, sk, skb);
501
502 /* reset skb device */
503 if (likely(err == 1))
504 nf_reset(skb);
505 else
506 skb = NULL;
507
508 return skb;
509 }
510
511 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
512 struct sock *sk,
513 struct sk_buff *skb)
514 {
515 /* don't divert link scope packets */
516 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
517 return skb;
518
519 if (qdisc_tx_is_default(vrf_dev))
520 return vrf_ip6_out_direct(vrf_dev, sk, skb);
521
522 return vrf_ip6_out_redirect(vrf_dev, skb);
523 }
524
525 /* holding rtnl */
526 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
527 {
528 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
529 struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
530 struct net *net = dev_net(dev);
531 struct dst_entry *dst;
532
533 RCU_INIT_POINTER(vrf->rt6, NULL);
534 RCU_INIT_POINTER(vrf->rt6_local, NULL);
535 synchronize_rcu();
536
537 /* move dev in dst's to loopback so this VRF device can be deleted
538 * - based on dst_ifdown
539 */
540 if (rt6) {
541 dst = &rt6->dst;
542 dev_put(dst->dev);
543 dst->dev = net->loopback_dev;
544 dev_hold(dst->dev);
545 dst_release(dst);
546 }
547
548 if (rt6_local) {
549 if (rt6_local->rt6i_idev) {
550 in6_dev_put(rt6_local->rt6i_idev);
551 rt6_local->rt6i_idev = NULL;
552 }
553
554 dst = &rt6_local->dst;
555 dev_put(dst->dev);
556 dst->dev = net->loopback_dev;
557 dev_hold(dst->dev);
558 dst_release(dst);
559 }
560 }
561
562 static int vrf_rt6_create(struct net_device *dev)
563 {
564 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
565 struct net_vrf *vrf = netdev_priv(dev);
566 struct net *net = dev_net(dev);
567 struct fib6_table *rt6i_table;
568 struct rt6_info *rt6, *rt6_local;
569 int rc = -ENOMEM;
570
571 /* IPv6 can be CONFIG enabled and then disabled runtime */
572 if (!ipv6_mod_enabled())
573 return 0;
574
575 rt6i_table = fib6_new_table(net, vrf->tb_id);
576 if (!rt6i_table)
577 goto out;
578
579 /* create a dst for routing packets out a VRF device */
580 rt6 = ip6_dst_alloc(net, dev, flags);
581 if (!rt6)
582 goto out;
583
584 dst_hold(&rt6->dst);
585
586 rt6->rt6i_table = rt6i_table;
587 rt6->dst.output = vrf_output6;
588
589 /* create a dst for local routing - packets sent locally
590 * to local address via the VRF device as a loopback
591 */
592 rt6_local = ip6_dst_alloc(net, dev, flags);
593 if (!rt6_local) {
594 dst_release(&rt6->dst);
595 goto out;
596 }
597
598 dst_hold(&rt6_local->dst);
599
600 rt6_local->rt6i_idev = in6_dev_get(dev);
601 rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
602 rt6_local->rt6i_table = rt6i_table;
603 rt6_local->dst.input = ip6_input;
604
605 rcu_assign_pointer(vrf->rt6, rt6);
606 rcu_assign_pointer(vrf->rt6_local, rt6_local);
607
608 rc = 0;
609 out:
610 return rc;
611 }
612 #else
613 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
614 struct sock *sk,
615 struct sk_buff *skb)
616 {
617 return skb;
618 }
619
620 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
621 {
622 }
623
624 static int vrf_rt6_create(struct net_device *dev)
625 {
626 return 0;
627 }
628 #endif
629
630 /* modelled after ip_finish_output2 */
631 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
632 {
633 struct dst_entry *dst = skb_dst(skb);
634 struct rtable *rt = (struct rtable *)dst;
635 struct net_device *dev = dst->dev;
636 unsigned int hh_len = LL_RESERVED_SPACE(dev);
637 struct neighbour *neigh;
638 u32 nexthop;
639 int ret = -EINVAL;
640
641 nf_reset(skb);
642
643 /* Be paranoid, rather than too clever. */
644 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
645 struct sk_buff *skb2;
646
647 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
648 if (!skb2) {
649 ret = -ENOMEM;
650 goto err;
651 }
652 if (skb->sk)
653 skb_set_owner_w(skb2, skb->sk);
654
655 consume_skb(skb);
656 skb = skb2;
657 }
658
659 rcu_read_lock_bh();
660
661 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
662 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
663 if (unlikely(!neigh))
664 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
665 if (!IS_ERR(neigh)) {
666 sock_confirm_neigh(skb, neigh);
667 ret = neigh_output(neigh, skb);
668 }
669
670 rcu_read_unlock_bh();
671 err:
672 if (unlikely(ret < 0))
673 vrf_tx_error(skb->dev, skb);
674 return ret;
675 }
676
677 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
678 {
679 struct net_device *dev = skb_dst(skb)->dev;
680
681 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
682
683 skb->dev = dev;
684 skb->protocol = htons(ETH_P_IP);
685
686 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
687 net, sk, skb, NULL, dev,
688 vrf_finish_output,
689 !(IPCB(skb)->flags & IPSKB_REROUTED));
690 }
691
692 /* set dst on skb to send packet to us via dev_xmit path. Allows
693 * packet to go through device based features such as qdisc, netfilter
694 * hooks and packet sockets with skb->dev set to vrf device.
695 */
696 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
697 struct sk_buff *skb)
698 {
699 struct net_vrf *vrf = netdev_priv(vrf_dev);
700 struct dst_entry *dst = NULL;
701 struct rtable *rth;
702
703 rcu_read_lock();
704
705 rth = rcu_dereference(vrf->rth);
706 if (likely(rth)) {
707 dst = &rth->dst;
708 dst_hold(dst);
709 }
710
711 rcu_read_unlock();
712
713 if (unlikely(!dst)) {
714 vrf_tx_error(vrf_dev, skb);
715 return NULL;
716 }
717
718 skb_dst_drop(skb);
719 skb_dst_set(skb, dst);
720
721 return skb;
722 }
723
724 static int vrf_output_direct(struct net *net, struct sock *sk,
725 struct sk_buff *skb)
726 {
727 skb->protocol = htons(ETH_P_IP);
728
729 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
730 net, sk, skb, NULL, skb->dev,
731 vrf_finish_direct,
732 !(IPCB(skb)->flags & IPSKB_REROUTED));
733 }
734
735 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
736 struct sock *sk,
737 struct sk_buff *skb)
738 {
739 struct net *net = dev_net(vrf_dev);
740 int err;
741
742 skb->dev = vrf_dev;
743
744 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
745 skb, NULL, vrf_dev, vrf_output_direct);
746
747 if (likely(err == 1))
748 err = vrf_output_direct(net, sk, skb);
749
750 /* reset skb device */
751 if (likely(err == 1))
752 nf_reset(skb);
753 else
754 skb = NULL;
755
756 return skb;
757 }
758
759 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
760 struct sock *sk,
761 struct sk_buff *skb)
762 {
763 /* don't divert multicast */
764 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
765 return skb;
766
767 if (qdisc_tx_is_default(vrf_dev))
768 return vrf_ip_out_direct(vrf_dev, sk, skb);
769
770 return vrf_ip_out_redirect(vrf_dev, skb);
771 }
772
773 /* called with rcu lock held */
774 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
775 struct sock *sk,
776 struct sk_buff *skb,
777 u16 proto)
778 {
779 switch (proto) {
780 case AF_INET:
781 return vrf_ip_out(vrf_dev, sk, skb);
782 case AF_INET6:
783 return vrf_ip6_out(vrf_dev, sk, skb);
784 }
785
786 return skb;
787 }
788
789 /* holding rtnl */
790 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
791 {
792 struct rtable *rth = rtnl_dereference(vrf->rth);
793 struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
794 struct net *net = dev_net(dev);
795 struct dst_entry *dst;
796
797 RCU_INIT_POINTER(vrf->rth, NULL);
798 RCU_INIT_POINTER(vrf->rth_local, NULL);
799 synchronize_rcu();
800
801 /* move dev in dst's to loopback so this VRF device can be deleted
802 * - based on dst_ifdown
803 */
804 if (rth) {
805 dst = &rth->dst;
806 dev_put(dst->dev);
807 dst->dev = net->loopback_dev;
808 dev_hold(dst->dev);
809 dst_release(dst);
810 }
811
812 if (rth_local) {
813 dst = &rth_local->dst;
814 dev_put(dst->dev);
815 dst->dev = net->loopback_dev;
816 dev_hold(dst->dev);
817 dst_release(dst);
818 }
819 }
820
821 static int vrf_rtable_create(struct net_device *dev)
822 {
823 struct net_vrf *vrf = netdev_priv(dev);
824 struct rtable *rth, *rth_local;
825
826 if (!fib_new_table(dev_net(dev), vrf->tb_id))
827 return -ENOMEM;
828
829 /* create a dst for routing packets out through a VRF device */
830 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
831 if (!rth)
832 return -ENOMEM;
833
834 /* create a dst for local ingress routing - packets sent locally
835 * to local address via the VRF device as a loopback
836 */
837 rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
838 if (!rth_local) {
839 dst_release(&rth->dst);
840 return -ENOMEM;
841 }
842
843 rth->dst.output = vrf_output;
844 rth->rt_table_id = vrf->tb_id;
845
846 rth_local->rt_table_id = vrf->tb_id;
847
848 rcu_assign_pointer(vrf->rth, rth);
849 rcu_assign_pointer(vrf->rth_local, rth_local);
850
851 return 0;
852 }
853
854 /**************************** device handling ********************/
855
856 /* cycle interface to flush neighbor cache and move routes across tables */
857 static void cycle_netdev(struct net_device *dev)
858 {
859 unsigned int flags = dev->flags;
860 int ret;
861
862 if (!netif_running(dev))
863 return;
864
865 ret = dev_change_flags(dev, flags & ~IFF_UP);
866 if (ret >= 0)
867 ret = dev_change_flags(dev, flags);
868
869 if (ret < 0) {
870 netdev_err(dev,
871 "Failed to cycle device %s; route tables might be wrong!\n",
872 dev->name);
873 }
874 }
875
876 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
877 {
878 int ret;
879
880 /* do not allow loopback device to be enslaved to a VRF.
881 * The vrf device acts as the loopback for the vrf.
882 */
883 if (port_dev == dev_net(dev)->loopback_dev)
884 return -EOPNOTSUPP;
885
886 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
887 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
888 if (ret < 0)
889 goto err;
890
891 cycle_netdev(port_dev);
892
893 return 0;
894
895 err:
896 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
897 return ret;
898 }
899
900 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
901 {
902 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
903 return -EINVAL;
904
905 return do_vrf_add_slave(dev, port_dev);
906 }
907
908 /* inverse of do_vrf_add_slave */
909 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
910 {
911 netdev_upper_dev_unlink(port_dev, dev);
912 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
913
914 cycle_netdev(port_dev);
915
916 return 0;
917 }
918
919 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
920 {
921 return do_vrf_del_slave(dev, port_dev);
922 }
923
924 static void vrf_dev_uninit(struct net_device *dev)
925 {
926 struct net_vrf *vrf = netdev_priv(dev);
927 struct net_device *port_dev;
928 struct list_head *iter;
929
930 vrf_rtable_release(dev, vrf);
931 vrf_rt6_release(dev, vrf);
932
933 netdev_for_each_lower_dev(dev, port_dev, iter)
934 vrf_del_slave(dev, port_dev);
935
936 free_percpu(dev->dstats);
937 dev->dstats = NULL;
938 }
939
940 static int vrf_dev_init(struct net_device *dev)
941 {
942 struct net_vrf *vrf = netdev_priv(dev);
943
944 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
945 if (!dev->dstats)
946 goto out_nomem;
947
948 /* create the default dst which points back to us */
949 if (vrf_rtable_create(dev) != 0)
950 goto out_stats;
951
952 if (vrf_rt6_create(dev) != 0)
953 goto out_rth;
954
955 dev->flags = IFF_MASTER | IFF_NOARP;
956
957 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
958 dev->mtu = 64 * 1024;
959
960 /* similarly, oper state is irrelevant; set to up to avoid confusion */
961 dev->operstate = IF_OPER_UP;
962 netdev_lockdep_set_classes(dev);
963 return 0;
964
965 out_rth:
966 vrf_rtable_release(dev, vrf);
967 out_stats:
968 free_percpu(dev->dstats);
969 dev->dstats = NULL;
970 out_nomem:
971 return -ENOMEM;
972 }
973
974 static const struct net_device_ops vrf_netdev_ops = {
975 .ndo_init = vrf_dev_init,
976 .ndo_uninit = vrf_dev_uninit,
977 .ndo_start_xmit = vrf_xmit,
978 .ndo_get_stats64 = vrf_get_stats64,
979 .ndo_add_slave = vrf_add_slave,
980 .ndo_del_slave = vrf_del_slave,
981 };
982
983 static u32 vrf_fib_table(const struct net_device *dev)
984 {
985 struct net_vrf *vrf = netdev_priv(dev);
986
987 return vrf->tb_id;
988 }
989
990 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
991 {
992 kfree_skb(skb);
993 return 0;
994 }
995
996 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
997 struct sk_buff *skb,
998 struct net_device *dev)
999 {
1000 struct net *net = dev_net(dev);
1001
1002 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1003 skb = NULL; /* kfree_skb(skb) handled by nf code */
1004
1005 return skb;
1006 }
1007
1008 #if IS_ENABLED(CONFIG_IPV6)
1009 /* neighbor handling is done with actual device; do not want
1010 * to flip skb->dev for those ndisc packets. This really fails
1011 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1012 * a start.
1013 */
1014 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1015 {
1016 const struct ipv6hdr *iph = ipv6_hdr(skb);
1017 bool rc = false;
1018
1019 if (iph->nexthdr == NEXTHDR_ICMP) {
1020 const struct icmp6hdr *icmph;
1021 struct icmp6hdr _icmph;
1022
1023 icmph = skb_header_pointer(skb, sizeof(*iph),
1024 sizeof(_icmph), &_icmph);
1025 if (!icmph)
1026 goto out;
1027
1028 switch (icmph->icmp6_type) {
1029 case NDISC_ROUTER_SOLICITATION:
1030 case NDISC_ROUTER_ADVERTISEMENT:
1031 case NDISC_NEIGHBOUR_SOLICITATION:
1032 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1033 case NDISC_REDIRECT:
1034 rc = true;
1035 break;
1036 }
1037 }
1038
1039 out:
1040 return rc;
1041 }
1042
1043 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1044 const struct net_device *dev,
1045 struct flowi6 *fl6,
1046 int ifindex,
1047 int flags)
1048 {
1049 struct net_vrf *vrf = netdev_priv(dev);
1050 struct fib6_table *table = NULL;
1051 struct rt6_info *rt6;
1052
1053 rcu_read_lock();
1054
1055 /* fib6_table does not have a refcnt and can not be freed */
1056 rt6 = rcu_dereference(vrf->rt6);
1057 if (likely(rt6))
1058 table = rt6->rt6i_table;
1059
1060 rcu_read_unlock();
1061
1062 if (!table)
1063 return NULL;
1064
1065 return ip6_pol_route(net, table, ifindex, fl6, flags);
1066 }
1067
1068 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1069 int ifindex)
1070 {
1071 const struct ipv6hdr *iph = ipv6_hdr(skb);
1072 struct flowi6 fl6 = {
1073 .daddr = iph->daddr,
1074 .saddr = iph->saddr,
1075 .flowlabel = ip6_flowinfo(iph),
1076 .flowi6_mark = skb->mark,
1077 .flowi6_proto = iph->nexthdr,
1078 .flowi6_iif = ifindex,
1079 };
1080 struct net *net = dev_net(vrf_dev);
1081 struct rt6_info *rt6;
1082
1083 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
1084 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1085 if (unlikely(!rt6))
1086 return;
1087
1088 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1089 return;
1090
1091 skb_dst_set(skb, &rt6->dst);
1092 }
1093
1094 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1095 struct sk_buff *skb)
1096 {
1097 int orig_iif = skb->skb_iif;
1098 bool need_strict;
1099
1100 /* loopback traffic; do not push through packet taps again.
1101 * Reset pkt_type for upper layers to process skb
1102 */
1103 if (skb->pkt_type == PACKET_LOOPBACK) {
1104 skb->dev = vrf_dev;
1105 skb->skb_iif = vrf_dev->ifindex;
1106 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1107 skb->pkt_type = PACKET_HOST;
1108 goto out;
1109 }
1110
1111 /* if packet is NDISC or addressed to multicast or link-local
1112 * then keep the ingress interface
1113 */
1114 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1115 if (!ipv6_ndisc_frame(skb) && !need_strict) {
1116 vrf_rx_stats(vrf_dev, skb->len);
1117 skb->dev = vrf_dev;
1118 skb->skb_iif = vrf_dev->ifindex;
1119
1120 if (!list_empty(&vrf_dev->ptype_all)) {
1121 skb_push(skb, skb->mac_len);
1122 dev_queue_xmit_nit(skb, vrf_dev);
1123 skb_pull(skb, skb->mac_len);
1124 }
1125
1126 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1127 }
1128
1129 if (need_strict)
1130 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1131
1132 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1133 out:
1134 return skb;
1135 }
1136
1137 #else
1138 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1139 struct sk_buff *skb)
1140 {
1141 return skb;
1142 }
1143 #endif
1144
1145 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1146 struct sk_buff *skb)
1147 {
1148 skb->dev = vrf_dev;
1149 skb->skb_iif = vrf_dev->ifindex;
1150 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1151
1152 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1153 goto out;
1154
1155 /* loopback traffic; do not push through packet taps again.
1156 * Reset pkt_type for upper layers to process skb
1157 */
1158 if (skb->pkt_type == PACKET_LOOPBACK) {
1159 skb->pkt_type = PACKET_HOST;
1160 goto out;
1161 }
1162
1163 vrf_rx_stats(vrf_dev, skb->len);
1164
1165 if (!list_empty(&vrf_dev->ptype_all)) {
1166 skb_push(skb, skb->mac_len);
1167 dev_queue_xmit_nit(skb, vrf_dev);
1168 skb_pull(skb, skb->mac_len);
1169 }
1170
1171 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1172 out:
1173 return skb;
1174 }
1175
1176 /* called with rcu lock held */
1177 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1178 struct sk_buff *skb,
1179 u16 proto)
1180 {
1181 switch (proto) {
1182 case AF_INET:
1183 return vrf_ip_rcv(vrf_dev, skb);
1184 case AF_INET6:
1185 return vrf_ip6_rcv(vrf_dev, skb);
1186 }
1187
1188 return skb;
1189 }
1190
1191 #if IS_ENABLED(CONFIG_IPV6)
1192 /* send to link-local or multicast address via interface enslaved to
1193 * VRF device. Force lookup to VRF table without changing flow struct
1194 */
1195 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1196 struct flowi6 *fl6)
1197 {
1198 struct net *net = dev_net(dev);
1199 int flags = RT6_LOOKUP_F_IFACE;
1200 struct dst_entry *dst = NULL;
1201 struct rt6_info *rt;
1202
1203 /* VRF device does not have a link-local address and
1204 * sending packets to link-local or mcast addresses over
1205 * a VRF device does not make sense
1206 */
1207 if (fl6->flowi6_oif == dev->ifindex) {
1208 dst = &net->ipv6.ip6_null_entry->dst;
1209 dst_hold(dst);
1210 return dst;
1211 }
1212
1213 if (!ipv6_addr_any(&fl6->saddr))
1214 flags |= RT6_LOOKUP_F_HAS_SADDR;
1215
1216 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1217 if (rt)
1218 dst = &rt->dst;
1219
1220 return dst;
1221 }
1222 #endif
1223
1224 static const struct l3mdev_ops vrf_l3mdev_ops = {
1225 .l3mdev_fib_table = vrf_fib_table,
1226 .l3mdev_l3_rcv = vrf_l3_rcv,
1227 .l3mdev_l3_out = vrf_l3_out,
1228 #if IS_ENABLED(CONFIG_IPV6)
1229 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1230 #endif
1231 };
1232
1233 static void vrf_get_drvinfo(struct net_device *dev,
1234 struct ethtool_drvinfo *info)
1235 {
1236 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1237 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1238 }
1239
1240 static const struct ethtool_ops vrf_ethtool_ops = {
1241 .get_drvinfo = vrf_get_drvinfo,
1242 };
1243
1244 static inline size_t vrf_fib_rule_nl_size(void)
1245 {
1246 size_t sz;
1247
1248 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1249 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1250 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1251
1252 return sz;
1253 }
1254
1255 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1256 {
1257 struct fib_rule_hdr *frh;
1258 struct nlmsghdr *nlh;
1259 struct sk_buff *skb;
1260 int err;
1261
1262 if (family == AF_INET6 && !ipv6_mod_enabled())
1263 return 0;
1264
1265 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1266 if (!skb)
1267 return -ENOMEM;
1268
1269 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1270 if (!nlh)
1271 goto nla_put_failure;
1272
1273 /* rule only needs to appear once */
1274 nlh->nlmsg_flags |= NLM_F_EXCL;
1275
1276 frh = nlmsg_data(nlh);
1277 memset(frh, 0, sizeof(*frh));
1278 frh->family = family;
1279 frh->action = FR_ACT_TO_TBL;
1280
1281 if (nla_put_u32(skb, FRA_L3MDEV, 1))
1282 goto nla_put_failure;
1283
1284 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1285 goto nla_put_failure;
1286
1287 nlmsg_end(skb, nlh);
1288
1289 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1290 skb->sk = dev_net(dev)->rtnl;
1291 if (add_it) {
1292 err = fib_nl_newrule(skb, nlh, NULL);
1293 if (err == -EEXIST)
1294 err = 0;
1295 } else {
1296 err = fib_nl_delrule(skb, nlh, NULL);
1297 if (err == -ENOENT)
1298 err = 0;
1299 }
1300 nlmsg_free(skb);
1301
1302 return err;
1303
1304 nla_put_failure:
1305 nlmsg_free(skb);
1306
1307 return -EMSGSIZE;
1308 }
1309
1310 static int vrf_add_fib_rules(const struct net_device *dev)
1311 {
1312 int err;
1313
1314 err = vrf_fib_rule(dev, AF_INET, true);
1315 if (err < 0)
1316 goto out_err;
1317
1318 err = vrf_fib_rule(dev, AF_INET6, true);
1319 if (err < 0)
1320 goto ipv6_err;
1321
1322 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1323 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1324 if (err < 0)
1325 goto ipmr_err;
1326 #endif
1327
1328 return 0;
1329
1330 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1331 ipmr_err:
1332 vrf_fib_rule(dev, AF_INET6, false);
1333 #endif
1334
1335 ipv6_err:
1336 vrf_fib_rule(dev, AF_INET, false);
1337
1338 out_err:
1339 netdev_err(dev, "Failed to add FIB rules.\n");
1340 return err;
1341 }
1342
1343 static void vrf_setup(struct net_device *dev)
1344 {
1345 ether_setup(dev);
1346
1347 /* Initialize the device structure. */
1348 dev->netdev_ops = &vrf_netdev_ops;
1349 dev->l3mdev_ops = &vrf_l3mdev_ops;
1350 dev->ethtool_ops = &vrf_ethtool_ops;
1351 dev->destructor = free_netdev;
1352
1353 /* Fill in device structure with ethernet-generic values. */
1354 eth_hw_addr_random(dev);
1355
1356 /* don't acquire vrf device's netif_tx_lock when transmitting */
1357 dev->features |= NETIF_F_LLTX;
1358
1359 /* don't allow vrf devices to change network namespaces. */
1360 dev->features |= NETIF_F_NETNS_LOCAL;
1361
1362 /* does not make sense for a VLAN to be added to a vrf device */
1363 dev->features |= NETIF_F_VLAN_CHALLENGED;
1364
1365 /* enable offload features */
1366 dev->features |= NETIF_F_GSO_SOFTWARE;
1367 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1368 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1369
1370 dev->hw_features = dev->features;
1371 dev->hw_enc_features = dev->features;
1372
1373 /* default to no qdisc; user can add if desired */
1374 dev->priv_flags |= IFF_NO_QUEUE;
1375 }
1376
1377 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1378 {
1379 if (tb[IFLA_ADDRESS]) {
1380 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1381 return -EINVAL;
1382 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1383 return -EADDRNOTAVAIL;
1384 }
1385 return 0;
1386 }
1387
1388 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1389 {
1390 unregister_netdevice_queue(dev, head);
1391 }
1392
1393 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1394 struct nlattr *tb[], struct nlattr *data[])
1395 {
1396 struct net_vrf *vrf = netdev_priv(dev);
1397 int err;
1398
1399 if (!data || !data[IFLA_VRF_TABLE])
1400 return -EINVAL;
1401
1402 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1403 if (vrf->tb_id == RT_TABLE_UNSPEC)
1404 return -EINVAL;
1405
1406 dev->priv_flags |= IFF_L3MDEV_MASTER;
1407
1408 err = register_netdevice(dev);
1409 if (err)
1410 goto out;
1411
1412 if (add_fib_rules) {
1413 err = vrf_add_fib_rules(dev);
1414 if (err) {
1415 unregister_netdevice(dev);
1416 goto out;
1417 }
1418 add_fib_rules = false;
1419 }
1420
1421 out:
1422 return err;
1423 }
1424
1425 static size_t vrf_nl_getsize(const struct net_device *dev)
1426 {
1427 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1428 }
1429
1430 static int vrf_fillinfo(struct sk_buff *skb,
1431 const struct net_device *dev)
1432 {
1433 struct net_vrf *vrf = netdev_priv(dev);
1434
1435 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1436 }
1437
1438 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1439 const struct net_device *slave_dev)
1440 {
1441 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1442 }
1443
1444 static int vrf_fill_slave_info(struct sk_buff *skb,
1445 const struct net_device *vrf_dev,
1446 const struct net_device *slave_dev)
1447 {
1448 struct net_vrf *vrf = netdev_priv(vrf_dev);
1449
1450 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1451 return -EMSGSIZE;
1452
1453 return 0;
1454 }
1455
1456 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1457 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1458 };
1459
1460 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1461 .kind = DRV_NAME,
1462 .priv_size = sizeof(struct net_vrf),
1463
1464 .get_size = vrf_nl_getsize,
1465 .policy = vrf_nl_policy,
1466 .validate = vrf_validate,
1467 .fill_info = vrf_fillinfo,
1468
1469 .get_slave_size = vrf_get_slave_size,
1470 .fill_slave_info = vrf_fill_slave_info,
1471
1472 .newlink = vrf_newlink,
1473 .dellink = vrf_dellink,
1474 .setup = vrf_setup,
1475 .maxtype = IFLA_VRF_MAX,
1476 };
1477
1478 static int vrf_device_event(struct notifier_block *unused,
1479 unsigned long event, void *ptr)
1480 {
1481 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1482
1483 /* only care about unregister events to drop slave references */
1484 if (event == NETDEV_UNREGISTER) {
1485 struct net_device *vrf_dev;
1486
1487 if (!netif_is_l3_slave(dev))
1488 goto out;
1489
1490 vrf_dev = netdev_master_upper_dev_get(dev);
1491 vrf_del_slave(vrf_dev, dev);
1492 }
1493 out:
1494 return NOTIFY_DONE;
1495 }
1496
1497 static struct notifier_block vrf_notifier_block __read_mostly = {
1498 .notifier_call = vrf_device_event,
1499 };
1500
1501 static int __init vrf_init_module(void)
1502 {
1503 int rc;
1504
1505 register_netdevice_notifier(&vrf_notifier_block);
1506
1507 rc = rtnl_link_register(&vrf_link_ops);
1508 if (rc < 0)
1509 goto error;
1510
1511 return 0;
1512
1513 error:
1514 unregister_netdevice_notifier(&vrf_notifier_block);
1515 return rc;
1516 }
1517
1518 module_init(vrf_init_module);
1519 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1520 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1521 MODULE_LICENSE("GPL");
1522 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1523 MODULE_VERSION(DRV_VERSION);