]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/vrf.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 #include <net/netns/generic.h>
40
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.0"
43
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45
46 static unsigned int vrf_net_id;
47
48 struct net_vrf {
49 struct rtable __rcu *rth;
50 struct rtable __rcu *rth_local;
51 struct rt6_info __rcu *rt6;
52 struct rt6_info __rcu *rt6_local;
53 u32 tb_id;
54 };
55
56 struct pcpu_dstats {
57 u64 tx_pkts;
58 u64 tx_bytes;
59 u64 tx_drps;
60 u64 rx_pkts;
61 u64 rx_bytes;
62 u64 rx_drps;
63 struct u64_stats_sync syncp;
64 };
65
66 static void vrf_rx_stats(struct net_device *dev, int len)
67 {
68 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
69
70 u64_stats_update_begin(&dstats->syncp);
71 dstats->rx_pkts++;
72 dstats->rx_bytes += len;
73 u64_stats_update_end(&dstats->syncp);
74 }
75
76 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
77 {
78 vrf_dev->stats.tx_errors++;
79 kfree_skb(skb);
80 }
81
82 static void vrf_get_stats64(struct net_device *dev,
83 struct rtnl_link_stats64 *stats)
84 {
85 int i;
86
87 for_each_possible_cpu(i) {
88 const struct pcpu_dstats *dstats;
89 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
90 unsigned int start;
91
92 dstats = per_cpu_ptr(dev->dstats, i);
93 do {
94 start = u64_stats_fetch_begin_irq(&dstats->syncp);
95 tbytes = dstats->tx_bytes;
96 tpkts = dstats->tx_pkts;
97 tdrops = dstats->tx_drps;
98 rbytes = dstats->rx_bytes;
99 rpkts = dstats->rx_pkts;
100 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
101 stats->tx_bytes += tbytes;
102 stats->tx_packets += tpkts;
103 stats->tx_dropped += tdrops;
104 stats->rx_bytes += rbytes;
105 stats->rx_packets += rpkts;
106 }
107 }
108
109 /* by default VRF devices do not have a qdisc and are expected
110 * to be created with only a single queue.
111 */
112 static bool qdisc_tx_is_default(const struct net_device *dev)
113 {
114 struct netdev_queue *txq;
115 struct Qdisc *qdisc;
116
117 if (dev->num_tx_queues > 1)
118 return false;
119
120 txq = netdev_get_tx_queue(dev, 0);
121 qdisc = rcu_access_pointer(txq->qdisc);
122
123 return !qdisc->enqueue;
124 }
125
126 /* Local traffic destined to local address. Reinsert the packet to rx
127 * path, similar to loopback handling.
128 */
129 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
130 struct dst_entry *dst)
131 {
132 int len = skb->len;
133
134 skb_orphan(skb);
135
136 skb_dst_set(skb, dst);
137 skb_dst_force(skb);
138
139 /* set pkt_type to avoid skb hitting packet taps twice -
140 * once on Tx and again in Rx processing
141 */
142 skb->pkt_type = PACKET_LOOPBACK;
143
144 skb->protocol = eth_type_trans(skb, dev);
145
146 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
147 vrf_rx_stats(dev, len);
148 else
149 this_cpu_inc(dev->dstats->rx_drps);
150
151 return NETDEV_TX_OK;
152 }
153
154 #if IS_ENABLED(CONFIG_IPV6)
155 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
156 struct sk_buff *skb)
157 {
158 int err;
159
160 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
161 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
162
163 if (likely(err == 1))
164 err = dst_output(net, sk, skb);
165
166 return err;
167 }
168
169 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
170 struct net_device *dev)
171 {
172 const struct ipv6hdr *iph = ipv6_hdr(skb);
173 struct net *net = dev_net(skb->dev);
174 struct flowi6 fl6 = {
175 /* needed to match OIF rule */
176 .flowi6_oif = dev->ifindex,
177 .flowi6_iif = LOOPBACK_IFINDEX,
178 .daddr = iph->daddr,
179 .saddr = iph->saddr,
180 .flowlabel = ip6_flowinfo(iph),
181 .flowi6_mark = skb->mark,
182 .flowi6_proto = iph->nexthdr,
183 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
184 };
185 int ret = NET_XMIT_DROP;
186 struct dst_entry *dst;
187 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
188
189 dst = ip6_route_output(net, NULL, &fl6);
190 if (dst == dst_null)
191 goto err;
192
193 skb_dst_drop(skb);
194
195 /* if dst.dev is loopback or the VRF device again this is locally
196 * originated traffic destined to a local address. Short circuit
197 * to Rx path using our local dst
198 */
199 if (dst->dev == net->loopback_dev || dst->dev == dev) {
200 struct net_vrf *vrf = netdev_priv(dev);
201 struct rt6_info *rt6_local;
202
203 /* release looked up dst and use cached local dst */
204 dst_release(dst);
205
206 rcu_read_lock();
207
208 rt6_local = rcu_dereference(vrf->rt6_local);
209 if (unlikely(!rt6_local)) {
210 rcu_read_unlock();
211 goto err;
212 }
213
214 /* Ordering issue: cached local dst is created on newlink
215 * before the IPv6 initialization. Using the local dst
216 * requires rt6i_idev to be set so make sure it is.
217 */
218 if (unlikely(!rt6_local->rt6i_idev)) {
219 rt6_local->rt6i_idev = in6_dev_get(dev);
220 if (!rt6_local->rt6i_idev) {
221 rcu_read_unlock();
222 goto err;
223 }
224 }
225
226 dst = &rt6_local->dst;
227 dst_hold(dst);
228
229 rcu_read_unlock();
230
231 return vrf_local_xmit(skb, dev, &rt6_local->dst);
232 }
233
234 skb_dst_set(skb, dst);
235
236 /* strip the ethernet header added for pass through VRF device */
237 __skb_pull(skb, skb_network_offset(skb));
238
239 ret = vrf_ip6_local_out(net, skb->sk, skb);
240 if (unlikely(net_xmit_eval(ret)))
241 dev->stats.tx_errors++;
242 else
243 ret = NET_XMIT_SUCCESS;
244
245 return ret;
246 err:
247 vrf_tx_error(dev, skb);
248 return NET_XMIT_DROP;
249 }
250 #else
251 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
252 struct net_device *dev)
253 {
254 vrf_tx_error(dev, skb);
255 return NET_XMIT_DROP;
256 }
257 #endif
258
259 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
260 static int vrf_ip_local_out(struct net *net, struct sock *sk,
261 struct sk_buff *skb)
262 {
263 int err;
264
265 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
266 skb, NULL, skb_dst(skb)->dev, dst_output);
267 if (likely(err == 1))
268 err = dst_output(net, sk, skb);
269
270 return err;
271 }
272
273 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
274 struct net_device *vrf_dev)
275 {
276 struct iphdr *ip4h = ip_hdr(skb);
277 int ret = NET_XMIT_DROP;
278 struct flowi4 fl4 = {
279 /* needed to match OIF rule */
280 .flowi4_oif = vrf_dev->ifindex,
281 .flowi4_iif = LOOPBACK_IFINDEX,
282 .flowi4_tos = RT_TOS(ip4h->tos),
283 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
284 .flowi4_proto = ip4h->protocol,
285 .daddr = ip4h->daddr,
286 .saddr = ip4h->saddr,
287 };
288 struct net *net = dev_net(vrf_dev);
289 struct rtable *rt;
290
291 rt = ip_route_output_flow(net, &fl4, NULL);
292 if (IS_ERR(rt))
293 goto err;
294
295 skb_dst_drop(skb);
296
297 /* if dst.dev is loopback or the VRF device again this is locally
298 * originated traffic destined to a local address. Short circuit
299 * to Rx path using our local dst
300 */
301 if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
302 struct net_vrf *vrf = netdev_priv(vrf_dev);
303 struct rtable *rth_local;
304 struct dst_entry *dst = NULL;
305
306 ip_rt_put(rt);
307
308 rcu_read_lock();
309
310 rth_local = rcu_dereference(vrf->rth_local);
311 if (likely(rth_local)) {
312 dst = &rth_local->dst;
313 dst_hold(dst);
314 }
315
316 rcu_read_unlock();
317
318 if (unlikely(!dst))
319 goto err;
320
321 return vrf_local_xmit(skb, vrf_dev, dst);
322 }
323
324 skb_dst_set(skb, &rt->dst);
325
326 /* strip the ethernet header added for pass through VRF device */
327 __skb_pull(skb, skb_network_offset(skb));
328
329 if (!ip4h->saddr) {
330 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
331 RT_SCOPE_LINK);
332 }
333
334 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
335 if (unlikely(net_xmit_eval(ret)))
336 vrf_dev->stats.tx_errors++;
337 else
338 ret = NET_XMIT_SUCCESS;
339
340 out:
341 return ret;
342 err:
343 vrf_tx_error(vrf_dev, skb);
344 goto out;
345 }
346
347 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
348 {
349 switch (skb->protocol) {
350 case htons(ETH_P_IP):
351 return vrf_process_v4_outbound(skb, dev);
352 case htons(ETH_P_IPV6):
353 return vrf_process_v6_outbound(skb, dev);
354 default:
355 vrf_tx_error(dev, skb);
356 return NET_XMIT_DROP;
357 }
358 }
359
360 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
361 {
362 int len = skb->len;
363 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
364
365 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
366 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
367
368 u64_stats_update_begin(&dstats->syncp);
369 dstats->tx_pkts++;
370 dstats->tx_bytes += len;
371 u64_stats_update_end(&dstats->syncp);
372 } else {
373 this_cpu_inc(dev->dstats->tx_drps);
374 }
375
376 return ret;
377 }
378
379 static int vrf_finish_direct(struct net *net, struct sock *sk,
380 struct sk_buff *skb)
381 {
382 struct net_device *vrf_dev = skb->dev;
383
384 if (!list_empty(&vrf_dev->ptype_all) &&
385 likely(skb_headroom(skb) >= ETH_HLEN)) {
386 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
387
388 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
389 eth_zero_addr(eth->h_dest);
390 eth->h_proto = skb->protocol;
391
392 rcu_read_lock_bh();
393 dev_queue_xmit_nit(skb, vrf_dev);
394 rcu_read_unlock_bh();
395
396 skb_pull(skb, ETH_HLEN);
397 }
398
399 return 1;
400 }
401
402 #if IS_ENABLED(CONFIG_IPV6)
403 /* modelled after ip6_finish_output2 */
404 static int vrf_finish_output6(struct net *net, struct sock *sk,
405 struct sk_buff *skb)
406 {
407 struct dst_entry *dst = skb_dst(skb);
408 struct net_device *dev = dst->dev;
409 struct neighbour *neigh;
410 struct in6_addr *nexthop;
411 int ret;
412
413 nf_reset(skb);
414
415 skb->protocol = htons(ETH_P_IPV6);
416 skb->dev = dev;
417
418 rcu_read_lock_bh();
419 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
420 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
421 if (unlikely(!neigh))
422 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
423 if (!IS_ERR(neigh)) {
424 sock_confirm_neigh(skb, neigh);
425 ret = neigh_output(neigh, skb);
426 rcu_read_unlock_bh();
427 return ret;
428 }
429 rcu_read_unlock_bh();
430
431 IP6_INC_STATS(dev_net(dst->dev),
432 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
433 kfree_skb(skb);
434 return -EINVAL;
435 }
436
437 /* modelled after ip6_output */
438 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
439 {
440 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
441 net, sk, skb, NULL, skb_dst(skb)->dev,
442 vrf_finish_output6,
443 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
444 }
445
446 /* set dst on skb to send packet to us via dev_xmit path. Allows
447 * packet to go through device based features such as qdisc, netfilter
448 * hooks and packet sockets with skb->dev set to vrf device.
449 */
450 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
451 struct sk_buff *skb)
452 {
453 struct net_vrf *vrf = netdev_priv(vrf_dev);
454 struct dst_entry *dst = NULL;
455 struct rt6_info *rt6;
456
457 rcu_read_lock();
458
459 rt6 = rcu_dereference(vrf->rt6);
460 if (likely(rt6)) {
461 dst = &rt6->dst;
462 dst_hold(dst);
463 }
464
465 rcu_read_unlock();
466
467 if (unlikely(!dst)) {
468 vrf_tx_error(vrf_dev, skb);
469 return NULL;
470 }
471
472 skb_dst_drop(skb);
473 skb_dst_set(skb, dst);
474
475 return skb;
476 }
477
478 static int vrf_output6_direct(struct net *net, struct sock *sk,
479 struct sk_buff *skb)
480 {
481 skb->protocol = htons(ETH_P_IPV6);
482
483 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
484 net, sk, skb, NULL, skb->dev,
485 vrf_finish_direct,
486 !(IPCB(skb)->flags & IPSKB_REROUTED));
487 }
488
489 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
490 struct sock *sk,
491 struct sk_buff *skb)
492 {
493 struct net *net = dev_net(vrf_dev);
494 int err;
495
496 skb->dev = vrf_dev;
497
498 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
499 skb, NULL, vrf_dev, vrf_output6_direct);
500
501 if (likely(err == 1))
502 err = vrf_output6_direct(net, sk, skb);
503
504 /* reset skb device */
505 if (likely(err == 1))
506 nf_reset(skb);
507 else
508 skb = NULL;
509
510 return skb;
511 }
512
513 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
514 struct sock *sk,
515 struct sk_buff *skb)
516 {
517 /* don't divert link scope packets */
518 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
519 return skb;
520
521 if (qdisc_tx_is_default(vrf_dev))
522 return vrf_ip6_out_direct(vrf_dev, sk, skb);
523
524 return vrf_ip6_out_redirect(vrf_dev, skb);
525 }
526
527 /* holding rtnl */
528 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
529 {
530 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
531 struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
532 struct net *net = dev_net(dev);
533 struct dst_entry *dst;
534
535 RCU_INIT_POINTER(vrf->rt6, NULL);
536 RCU_INIT_POINTER(vrf->rt6_local, NULL);
537 synchronize_rcu();
538
539 /* move dev in dst's to loopback so this VRF device can be deleted
540 * - based on dst_ifdown
541 */
542 if (rt6) {
543 dst = &rt6->dst;
544 dev_put(dst->dev);
545 dst->dev = net->loopback_dev;
546 dev_hold(dst->dev);
547 dst_release(dst);
548 }
549
550 if (rt6_local) {
551 if (rt6_local->rt6i_idev) {
552 in6_dev_put(rt6_local->rt6i_idev);
553 rt6_local->rt6i_idev = NULL;
554 }
555
556 dst = &rt6_local->dst;
557 dev_put(dst->dev);
558 dst->dev = net->loopback_dev;
559 dev_hold(dst->dev);
560 dst_release(dst);
561 }
562 }
563
564 static int vrf_rt6_create(struct net_device *dev)
565 {
566 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
567 struct net_vrf *vrf = netdev_priv(dev);
568 struct net *net = dev_net(dev);
569 struct fib6_table *rt6i_table;
570 struct rt6_info *rt6, *rt6_local;
571 int rc = -ENOMEM;
572
573 /* IPv6 can be CONFIG enabled and then disabled runtime */
574 if (!ipv6_mod_enabled())
575 return 0;
576
577 rt6i_table = fib6_new_table(net, vrf->tb_id);
578 if (!rt6i_table)
579 goto out;
580
581 /* create a dst for routing packets out a VRF device */
582 rt6 = ip6_dst_alloc(net, dev, flags);
583 if (!rt6)
584 goto out;
585
586 rt6->rt6i_table = rt6i_table;
587 rt6->dst.output = vrf_output6;
588
589 /* create a dst for local routing - packets sent locally
590 * to local address via the VRF device as a loopback
591 */
592 rt6_local = ip6_dst_alloc(net, dev, flags);
593 if (!rt6_local) {
594 dst_release(&rt6->dst);
595 goto out;
596 }
597
598 rt6_local->rt6i_idev = in6_dev_get(dev);
599 rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
600 rt6_local->rt6i_table = rt6i_table;
601 rt6_local->dst.input = ip6_input;
602
603 rcu_assign_pointer(vrf->rt6, rt6);
604 rcu_assign_pointer(vrf->rt6_local, rt6_local);
605
606 rc = 0;
607 out:
608 return rc;
609 }
610 #else
611 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
612 struct sock *sk,
613 struct sk_buff *skb)
614 {
615 return skb;
616 }
617
618 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
619 {
620 }
621
622 static int vrf_rt6_create(struct net_device *dev)
623 {
624 return 0;
625 }
626 #endif
627
628 /* modelled after ip_finish_output2 */
629 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
630 {
631 struct dst_entry *dst = skb_dst(skb);
632 struct rtable *rt = (struct rtable *)dst;
633 struct net_device *dev = dst->dev;
634 unsigned int hh_len = LL_RESERVED_SPACE(dev);
635 struct neighbour *neigh;
636 u32 nexthop;
637 int ret = -EINVAL;
638
639 nf_reset(skb);
640
641 /* Be paranoid, rather than too clever. */
642 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
643 struct sk_buff *skb2;
644
645 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
646 if (!skb2) {
647 ret = -ENOMEM;
648 goto err;
649 }
650 if (skb->sk)
651 skb_set_owner_w(skb2, skb->sk);
652
653 consume_skb(skb);
654 skb = skb2;
655 }
656
657 rcu_read_lock_bh();
658
659 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
660 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
661 if (unlikely(!neigh))
662 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
663 if (!IS_ERR(neigh)) {
664 sock_confirm_neigh(skb, neigh);
665 ret = neigh_output(neigh, skb);
666 }
667
668 rcu_read_unlock_bh();
669 err:
670 if (unlikely(ret < 0))
671 vrf_tx_error(skb->dev, skb);
672 return ret;
673 }
674
675 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
676 {
677 struct net_device *dev = skb_dst(skb)->dev;
678
679 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
680
681 skb->dev = dev;
682 skb->protocol = htons(ETH_P_IP);
683
684 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
685 net, sk, skb, NULL, dev,
686 vrf_finish_output,
687 !(IPCB(skb)->flags & IPSKB_REROUTED));
688 }
689
690 /* set dst on skb to send packet to us via dev_xmit path. Allows
691 * packet to go through device based features such as qdisc, netfilter
692 * hooks and packet sockets with skb->dev set to vrf device.
693 */
694 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
695 struct sk_buff *skb)
696 {
697 struct net_vrf *vrf = netdev_priv(vrf_dev);
698 struct dst_entry *dst = NULL;
699 struct rtable *rth;
700
701 rcu_read_lock();
702
703 rth = rcu_dereference(vrf->rth);
704 if (likely(rth)) {
705 dst = &rth->dst;
706 dst_hold(dst);
707 }
708
709 rcu_read_unlock();
710
711 if (unlikely(!dst)) {
712 vrf_tx_error(vrf_dev, skb);
713 return NULL;
714 }
715
716 skb_dst_drop(skb);
717 skb_dst_set(skb, dst);
718
719 return skb;
720 }
721
722 static int vrf_output_direct(struct net *net, struct sock *sk,
723 struct sk_buff *skb)
724 {
725 skb->protocol = htons(ETH_P_IP);
726
727 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
728 net, sk, skb, NULL, skb->dev,
729 vrf_finish_direct,
730 !(IPCB(skb)->flags & IPSKB_REROUTED));
731 }
732
733 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
734 struct sock *sk,
735 struct sk_buff *skb)
736 {
737 struct net *net = dev_net(vrf_dev);
738 int err;
739
740 skb->dev = vrf_dev;
741
742 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
743 skb, NULL, vrf_dev, vrf_output_direct);
744
745 if (likely(err == 1))
746 err = vrf_output_direct(net, sk, skb);
747
748 /* reset skb device */
749 if (likely(err == 1))
750 nf_reset(skb);
751 else
752 skb = NULL;
753
754 return skb;
755 }
756
757 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
758 struct sock *sk,
759 struct sk_buff *skb)
760 {
761 /* don't divert multicast */
762 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
763 return skb;
764
765 if (qdisc_tx_is_default(vrf_dev))
766 return vrf_ip_out_direct(vrf_dev, sk, skb);
767
768 return vrf_ip_out_redirect(vrf_dev, skb);
769 }
770
771 /* called with rcu lock held */
772 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
773 struct sock *sk,
774 struct sk_buff *skb,
775 u16 proto)
776 {
777 switch (proto) {
778 case AF_INET:
779 return vrf_ip_out(vrf_dev, sk, skb);
780 case AF_INET6:
781 return vrf_ip6_out(vrf_dev, sk, skb);
782 }
783
784 return skb;
785 }
786
787 /* holding rtnl */
788 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
789 {
790 struct rtable *rth = rtnl_dereference(vrf->rth);
791 struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
792 struct net *net = dev_net(dev);
793 struct dst_entry *dst;
794
795 RCU_INIT_POINTER(vrf->rth, NULL);
796 RCU_INIT_POINTER(vrf->rth_local, NULL);
797 synchronize_rcu();
798
799 /* move dev in dst's to loopback so this VRF device can be deleted
800 * - based on dst_ifdown
801 */
802 if (rth) {
803 dst = &rth->dst;
804 dev_put(dst->dev);
805 dst->dev = net->loopback_dev;
806 dev_hold(dst->dev);
807 dst_release(dst);
808 }
809
810 if (rth_local) {
811 dst = &rth_local->dst;
812 dev_put(dst->dev);
813 dst->dev = net->loopback_dev;
814 dev_hold(dst->dev);
815 dst_release(dst);
816 }
817 }
818
819 static int vrf_rtable_create(struct net_device *dev)
820 {
821 struct net_vrf *vrf = netdev_priv(dev);
822 struct rtable *rth, *rth_local;
823
824 if (!fib_new_table(dev_net(dev), vrf->tb_id))
825 return -ENOMEM;
826
827 /* create a dst for routing packets out through a VRF device */
828 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
829 if (!rth)
830 return -ENOMEM;
831
832 /* create a dst for local ingress routing - packets sent locally
833 * to local address via the VRF device as a loopback
834 */
835 rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
836 if (!rth_local) {
837 dst_release(&rth->dst);
838 return -ENOMEM;
839 }
840
841 rth->dst.output = vrf_output;
842 rth->rt_table_id = vrf->tb_id;
843
844 rth_local->rt_table_id = vrf->tb_id;
845
846 rcu_assign_pointer(vrf->rth, rth);
847 rcu_assign_pointer(vrf->rth_local, rth_local);
848
849 return 0;
850 }
851
852 /**************************** device handling ********************/
853
854 /* cycle interface to flush neighbor cache and move routes across tables */
855 static void cycle_netdev(struct net_device *dev)
856 {
857 unsigned int flags = dev->flags;
858 int ret;
859
860 if (!netif_running(dev))
861 return;
862
863 ret = dev_change_flags(dev, flags & ~IFF_UP);
864 if (ret >= 0)
865 ret = dev_change_flags(dev, flags);
866
867 if (ret < 0) {
868 netdev_err(dev,
869 "Failed to cycle device %s; route tables might be wrong!\n",
870 dev->name);
871 }
872 }
873
874 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
875 {
876 int ret;
877
878 /* do not allow loopback device to be enslaved to a VRF.
879 * The vrf device acts as the loopback for the vrf.
880 */
881 if (port_dev == dev_net(dev)->loopback_dev)
882 return -EOPNOTSUPP;
883
884 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
885 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
886 if (ret < 0)
887 goto err;
888
889 cycle_netdev(port_dev);
890
891 return 0;
892
893 err:
894 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
895 return ret;
896 }
897
898 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
899 {
900 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
901 return -EINVAL;
902
903 return do_vrf_add_slave(dev, port_dev);
904 }
905
906 /* inverse of do_vrf_add_slave */
907 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
908 {
909 netdev_upper_dev_unlink(port_dev, dev);
910 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
911
912 cycle_netdev(port_dev);
913
914 return 0;
915 }
916
917 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
918 {
919 return do_vrf_del_slave(dev, port_dev);
920 }
921
922 static void vrf_dev_uninit(struct net_device *dev)
923 {
924 struct net_vrf *vrf = netdev_priv(dev);
925
926 vrf_rtable_release(dev, vrf);
927 vrf_rt6_release(dev, vrf);
928
929 free_percpu(dev->dstats);
930 dev->dstats = NULL;
931 }
932
933 static int vrf_dev_init(struct net_device *dev)
934 {
935 struct net_vrf *vrf = netdev_priv(dev);
936
937 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
938 if (!dev->dstats)
939 goto out_nomem;
940
941 /* create the default dst which points back to us */
942 if (vrf_rtable_create(dev) != 0)
943 goto out_stats;
944
945 if (vrf_rt6_create(dev) != 0)
946 goto out_rth;
947
948 dev->flags = IFF_MASTER | IFF_NOARP;
949
950 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
951 dev->mtu = 64 * 1024;
952
953 /* similarly, oper state is irrelevant; set to up to avoid confusion */
954 dev->operstate = IF_OPER_UP;
955 netdev_lockdep_set_classes(dev);
956 return 0;
957
958 out_rth:
959 vrf_rtable_release(dev, vrf);
960 out_stats:
961 free_percpu(dev->dstats);
962 dev->dstats = NULL;
963 out_nomem:
964 return -ENOMEM;
965 }
966
967 static const struct net_device_ops vrf_netdev_ops = {
968 .ndo_init = vrf_dev_init,
969 .ndo_uninit = vrf_dev_uninit,
970 .ndo_start_xmit = vrf_xmit,
971 .ndo_get_stats64 = vrf_get_stats64,
972 .ndo_add_slave = vrf_add_slave,
973 .ndo_del_slave = vrf_del_slave,
974 };
975
976 static u32 vrf_fib_table(const struct net_device *dev)
977 {
978 struct net_vrf *vrf = netdev_priv(dev);
979
980 return vrf->tb_id;
981 }
982
983 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
984 {
985 kfree_skb(skb);
986 return 0;
987 }
988
989 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
990 struct sk_buff *skb,
991 struct net_device *dev)
992 {
993 struct net *net = dev_net(dev);
994
995 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
996 skb = NULL; /* kfree_skb(skb) handled by nf code */
997
998 return skb;
999 }
1000
1001 #if IS_ENABLED(CONFIG_IPV6)
1002 /* neighbor handling is done with actual device; do not want
1003 * to flip skb->dev for those ndisc packets. This really fails
1004 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1005 * a start.
1006 */
1007 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1008 {
1009 const struct ipv6hdr *iph = ipv6_hdr(skb);
1010 bool rc = false;
1011
1012 if (iph->nexthdr == NEXTHDR_ICMP) {
1013 const struct icmp6hdr *icmph;
1014 struct icmp6hdr _icmph;
1015
1016 icmph = skb_header_pointer(skb, sizeof(*iph),
1017 sizeof(_icmph), &_icmph);
1018 if (!icmph)
1019 goto out;
1020
1021 switch (icmph->icmp6_type) {
1022 case NDISC_ROUTER_SOLICITATION:
1023 case NDISC_ROUTER_ADVERTISEMENT:
1024 case NDISC_NEIGHBOUR_SOLICITATION:
1025 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1026 case NDISC_REDIRECT:
1027 rc = true;
1028 break;
1029 }
1030 }
1031
1032 out:
1033 return rc;
1034 }
1035
1036 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1037 const struct net_device *dev,
1038 struct flowi6 *fl6,
1039 int ifindex,
1040 int flags)
1041 {
1042 struct net_vrf *vrf = netdev_priv(dev);
1043 struct fib6_table *table = NULL;
1044 struct rt6_info *rt6;
1045
1046 rcu_read_lock();
1047
1048 /* fib6_table does not have a refcnt and can not be freed */
1049 rt6 = rcu_dereference(vrf->rt6);
1050 if (likely(rt6))
1051 table = rt6->rt6i_table;
1052
1053 rcu_read_unlock();
1054
1055 if (!table)
1056 return NULL;
1057
1058 return ip6_pol_route(net, table, ifindex, fl6, flags);
1059 }
1060
1061 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1062 int ifindex)
1063 {
1064 const struct ipv6hdr *iph = ipv6_hdr(skb);
1065 struct flowi6 fl6 = {
1066 .daddr = iph->daddr,
1067 .saddr = iph->saddr,
1068 .flowlabel = ip6_flowinfo(iph),
1069 .flowi6_mark = skb->mark,
1070 .flowi6_proto = iph->nexthdr,
1071 .flowi6_iif = ifindex,
1072 };
1073 struct net *net = dev_net(vrf_dev);
1074 struct rt6_info *rt6;
1075
1076 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
1077 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1078 if (unlikely(!rt6))
1079 return;
1080
1081 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1082 return;
1083
1084 skb_dst_set(skb, &rt6->dst);
1085 }
1086
1087 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1088 struct sk_buff *skb)
1089 {
1090 int orig_iif = skb->skb_iif;
1091 bool need_strict;
1092
1093 /* loopback traffic; do not push through packet taps again.
1094 * Reset pkt_type for upper layers to process skb
1095 */
1096 if (skb->pkt_type == PACKET_LOOPBACK) {
1097 skb->dev = vrf_dev;
1098 skb->skb_iif = vrf_dev->ifindex;
1099 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1100 skb->pkt_type = PACKET_HOST;
1101 goto out;
1102 }
1103
1104 /* if packet is NDISC or addressed to multicast or link-local
1105 * then keep the ingress interface
1106 */
1107 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1108 if (!ipv6_ndisc_frame(skb) && !need_strict) {
1109 vrf_rx_stats(vrf_dev, skb->len);
1110 skb->dev = vrf_dev;
1111 skb->skb_iif = vrf_dev->ifindex;
1112
1113 if (!list_empty(&vrf_dev->ptype_all)) {
1114 skb_push(skb, skb->mac_len);
1115 dev_queue_xmit_nit(skb, vrf_dev);
1116 skb_pull(skb, skb->mac_len);
1117 }
1118
1119 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1120 }
1121
1122 if (need_strict)
1123 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1124
1125 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1126 out:
1127 return skb;
1128 }
1129
1130 #else
1131 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1132 struct sk_buff *skb)
1133 {
1134 return skb;
1135 }
1136 #endif
1137
1138 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1139 struct sk_buff *skb)
1140 {
1141 skb->dev = vrf_dev;
1142 skb->skb_iif = vrf_dev->ifindex;
1143 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1144
1145 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1146 goto out;
1147
1148 /* loopback traffic; do not push through packet taps again.
1149 * Reset pkt_type for upper layers to process skb
1150 */
1151 if (skb->pkt_type == PACKET_LOOPBACK) {
1152 skb->pkt_type = PACKET_HOST;
1153 goto out;
1154 }
1155
1156 vrf_rx_stats(vrf_dev, skb->len);
1157
1158 if (!list_empty(&vrf_dev->ptype_all)) {
1159 skb_push(skb, skb->mac_len);
1160 dev_queue_xmit_nit(skb, vrf_dev);
1161 skb_pull(skb, skb->mac_len);
1162 }
1163
1164 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1165 out:
1166 return skb;
1167 }
1168
1169 /* called with rcu lock held */
1170 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1171 struct sk_buff *skb,
1172 u16 proto)
1173 {
1174 switch (proto) {
1175 case AF_INET:
1176 return vrf_ip_rcv(vrf_dev, skb);
1177 case AF_INET6:
1178 return vrf_ip6_rcv(vrf_dev, skb);
1179 }
1180
1181 return skb;
1182 }
1183
1184 #if IS_ENABLED(CONFIG_IPV6)
1185 /* send to link-local or multicast address via interface enslaved to
1186 * VRF device. Force lookup to VRF table without changing flow struct
1187 */
1188 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1189 struct flowi6 *fl6)
1190 {
1191 struct net *net = dev_net(dev);
1192 int flags = RT6_LOOKUP_F_IFACE;
1193 struct dst_entry *dst = NULL;
1194 struct rt6_info *rt;
1195
1196 /* VRF device does not have a link-local address and
1197 * sending packets to link-local or mcast addresses over
1198 * a VRF device does not make sense
1199 */
1200 if (fl6->flowi6_oif == dev->ifindex) {
1201 dst = &net->ipv6.ip6_null_entry->dst;
1202 dst_hold(dst);
1203 return dst;
1204 }
1205
1206 if (!ipv6_addr_any(&fl6->saddr))
1207 flags |= RT6_LOOKUP_F_HAS_SADDR;
1208
1209 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1210 if (rt)
1211 dst = &rt->dst;
1212
1213 return dst;
1214 }
1215 #endif
1216
1217 static const struct l3mdev_ops vrf_l3mdev_ops = {
1218 .l3mdev_fib_table = vrf_fib_table,
1219 .l3mdev_l3_rcv = vrf_l3_rcv,
1220 .l3mdev_l3_out = vrf_l3_out,
1221 #if IS_ENABLED(CONFIG_IPV6)
1222 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1223 #endif
1224 };
1225
1226 static void vrf_get_drvinfo(struct net_device *dev,
1227 struct ethtool_drvinfo *info)
1228 {
1229 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1230 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1231 }
1232
1233 static const struct ethtool_ops vrf_ethtool_ops = {
1234 .get_drvinfo = vrf_get_drvinfo,
1235 };
1236
1237 static inline size_t vrf_fib_rule_nl_size(void)
1238 {
1239 size_t sz;
1240
1241 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1242 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1243 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1244
1245 return sz;
1246 }
1247
1248 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1249 {
1250 struct fib_rule_hdr *frh;
1251 struct nlmsghdr *nlh;
1252 struct sk_buff *skb;
1253 int err;
1254
1255 if (family == AF_INET6 && !ipv6_mod_enabled())
1256 return 0;
1257
1258 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1259 if (!skb)
1260 return -ENOMEM;
1261
1262 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1263 if (!nlh)
1264 goto nla_put_failure;
1265
1266 /* rule only needs to appear once */
1267 nlh->nlmsg_flags |= NLM_F_EXCL;
1268
1269 frh = nlmsg_data(nlh);
1270 memset(frh, 0, sizeof(*frh));
1271 frh->family = family;
1272 frh->action = FR_ACT_TO_TBL;
1273
1274 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1275 goto nla_put_failure;
1276
1277 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1278 goto nla_put_failure;
1279
1280 nlmsg_end(skb, nlh);
1281
1282 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1283 skb->sk = dev_net(dev)->rtnl;
1284 if (add_it) {
1285 err = fib_nl_newrule(skb, nlh, NULL);
1286 if (err == -EEXIST)
1287 err = 0;
1288 } else {
1289 err = fib_nl_delrule(skb, nlh, NULL);
1290 if (err == -ENOENT)
1291 err = 0;
1292 }
1293 nlmsg_free(skb);
1294
1295 return err;
1296
1297 nla_put_failure:
1298 nlmsg_free(skb);
1299
1300 return -EMSGSIZE;
1301 }
1302
1303 static int vrf_add_fib_rules(const struct net_device *dev)
1304 {
1305 int err;
1306
1307 err = vrf_fib_rule(dev, AF_INET, true);
1308 if (err < 0)
1309 goto out_err;
1310
1311 err = vrf_fib_rule(dev, AF_INET6, true);
1312 if (err < 0)
1313 goto ipv6_err;
1314
1315 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1316 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1317 if (err < 0)
1318 goto ipmr_err;
1319 #endif
1320
1321 return 0;
1322
1323 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1324 ipmr_err:
1325 vrf_fib_rule(dev, AF_INET6, false);
1326 #endif
1327
1328 ipv6_err:
1329 vrf_fib_rule(dev, AF_INET, false);
1330
1331 out_err:
1332 netdev_err(dev, "Failed to add FIB rules.\n");
1333 return err;
1334 }
1335
1336 static void vrf_setup(struct net_device *dev)
1337 {
1338 ether_setup(dev);
1339
1340 /* Initialize the device structure. */
1341 dev->netdev_ops = &vrf_netdev_ops;
1342 dev->l3mdev_ops = &vrf_l3mdev_ops;
1343 dev->ethtool_ops = &vrf_ethtool_ops;
1344 dev->needs_free_netdev = true;
1345
1346 /* Fill in device structure with ethernet-generic values. */
1347 eth_hw_addr_random(dev);
1348
1349 /* don't acquire vrf device's netif_tx_lock when transmitting */
1350 dev->features |= NETIF_F_LLTX;
1351
1352 /* don't allow vrf devices to change network namespaces. */
1353 dev->features |= NETIF_F_NETNS_LOCAL;
1354
1355 /* does not make sense for a VLAN to be added to a vrf device */
1356 dev->features |= NETIF_F_VLAN_CHALLENGED;
1357
1358 /* enable offload features */
1359 dev->features |= NETIF_F_GSO_SOFTWARE;
1360 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1361 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1362
1363 dev->hw_features = dev->features;
1364 dev->hw_enc_features = dev->features;
1365
1366 /* default to no qdisc; user can add if desired */
1367 dev->priv_flags |= IFF_NO_QUEUE;
1368 }
1369
1370 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1371 struct netlink_ext_ack *extack)
1372 {
1373 if (tb[IFLA_ADDRESS]) {
1374 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1375 return -EINVAL;
1376 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1377 return -EADDRNOTAVAIL;
1378 }
1379 return 0;
1380 }
1381
1382 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1383 {
1384 struct net_device *port_dev;
1385 struct list_head *iter;
1386
1387 netdev_for_each_lower_dev(dev, port_dev, iter)
1388 vrf_del_slave(dev, port_dev);
1389
1390 unregister_netdevice_queue(dev, head);
1391 }
1392
1393 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1394 struct nlattr *tb[], struct nlattr *data[],
1395 struct netlink_ext_ack *extack)
1396 {
1397 struct net_vrf *vrf = netdev_priv(dev);
1398 bool *add_fib_rules;
1399 struct net *net;
1400 int err;
1401
1402 if (!data || !data[IFLA_VRF_TABLE])
1403 return -EINVAL;
1404
1405 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1406 if (vrf->tb_id == RT_TABLE_UNSPEC)
1407 return -EINVAL;
1408
1409 dev->priv_flags |= IFF_L3MDEV_MASTER;
1410
1411 err = register_netdevice(dev);
1412 if (err)
1413 goto out;
1414
1415 net = dev_net(dev);
1416 add_fib_rules = net_generic(net, vrf_net_id);
1417 if (*add_fib_rules) {
1418 err = vrf_add_fib_rules(dev);
1419 if (err) {
1420 unregister_netdevice(dev);
1421 goto out;
1422 }
1423 *add_fib_rules = false;
1424 }
1425
1426 out:
1427 return err;
1428 }
1429
1430 static size_t vrf_nl_getsize(const struct net_device *dev)
1431 {
1432 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1433 }
1434
1435 static int vrf_fillinfo(struct sk_buff *skb,
1436 const struct net_device *dev)
1437 {
1438 struct net_vrf *vrf = netdev_priv(dev);
1439
1440 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1441 }
1442
1443 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1444 const struct net_device *slave_dev)
1445 {
1446 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1447 }
1448
1449 static int vrf_fill_slave_info(struct sk_buff *skb,
1450 const struct net_device *vrf_dev,
1451 const struct net_device *slave_dev)
1452 {
1453 struct net_vrf *vrf = netdev_priv(vrf_dev);
1454
1455 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1456 return -EMSGSIZE;
1457
1458 return 0;
1459 }
1460
1461 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1462 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1463 };
1464
1465 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1466 .kind = DRV_NAME,
1467 .priv_size = sizeof(struct net_vrf),
1468
1469 .get_size = vrf_nl_getsize,
1470 .policy = vrf_nl_policy,
1471 .validate = vrf_validate,
1472 .fill_info = vrf_fillinfo,
1473
1474 .get_slave_size = vrf_get_slave_size,
1475 .fill_slave_info = vrf_fill_slave_info,
1476
1477 .newlink = vrf_newlink,
1478 .dellink = vrf_dellink,
1479 .setup = vrf_setup,
1480 .maxtype = IFLA_VRF_MAX,
1481 };
1482
1483 static int vrf_device_event(struct notifier_block *unused,
1484 unsigned long event, void *ptr)
1485 {
1486 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1487
1488 /* only care about unregister events to drop slave references */
1489 if (event == NETDEV_UNREGISTER) {
1490 struct net_device *vrf_dev;
1491
1492 if (!netif_is_l3_slave(dev))
1493 goto out;
1494
1495 vrf_dev = netdev_master_upper_dev_get(dev);
1496 vrf_del_slave(vrf_dev, dev);
1497 }
1498 out:
1499 return NOTIFY_DONE;
1500 }
1501
1502 static struct notifier_block vrf_notifier_block __read_mostly = {
1503 .notifier_call = vrf_device_event,
1504 };
1505
1506 /* Initialize per network namespace state */
1507 static int __net_init vrf_netns_init(struct net *net)
1508 {
1509 bool *add_fib_rules = net_generic(net, vrf_net_id);
1510
1511 *add_fib_rules = true;
1512
1513 return 0;
1514 }
1515
1516 static struct pernet_operations vrf_net_ops __net_initdata = {
1517 .init = vrf_netns_init,
1518 .id = &vrf_net_id,
1519 .size = sizeof(bool),
1520 };
1521
1522 static int __init vrf_init_module(void)
1523 {
1524 int rc;
1525
1526 register_netdevice_notifier(&vrf_notifier_block);
1527
1528 rc = register_pernet_subsys(&vrf_net_ops);
1529 if (rc < 0)
1530 goto error;
1531
1532 rc = rtnl_link_register(&vrf_link_ops);
1533 if (rc < 0) {
1534 unregister_pernet_subsys(&vrf_net_ops);
1535 goto error;
1536 }
1537
1538 return 0;
1539
1540 error:
1541 unregister_netdevice_notifier(&vrf_notifier_block);
1542 return rc;
1543 }
1544
1545 module_init(vrf_init_module);
1546 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1547 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1548 MODULE_LICENSE("GPL");
1549 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1550 MODULE_VERSION(DRV_VERSION);