]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/vrf.c
Merge series "ASoC: topology: fix error handling flow" from Pierre-Louis Bossart...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / vrf.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24
25 #include <linux/inetdevice.h>
26 #include <net/arp.h>
27 #include <net/ip.h>
28 #include <net/ip_fib.h>
29 #include <net/ip6_fib.h>
30 #include <net/ip6_route.h>
31 #include <net/route.h>
32 #include <net/addrconf.h>
33 #include <net/l3mdev.h>
34 #include <net/fib_rules.h>
35 #include <net/netns/generic.h>
36
37 #define DRV_NAME "vrf"
38 #define DRV_VERSION "1.0"
39
40 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
41
42 static unsigned int vrf_net_id;
43
44 struct net_vrf {
45 struct rtable __rcu *rth;
46 struct rt6_info __rcu *rt6;
47 #if IS_ENABLED(CONFIG_IPV6)
48 struct fib6_table *fib6_table;
49 #endif
50 u32 tb_id;
51 };
52
53 struct pcpu_dstats {
54 u64 tx_pkts;
55 u64 tx_bytes;
56 u64 tx_drps;
57 u64 rx_pkts;
58 u64 rx_bytes;
59 u64 rx_drps;
60 struct u64_stats_sync syncp;
61 };
62
63 static void vrf_rx_stats(struct net_device *dev, int len)
64 {
65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
66
67 u64_stats_update_begin(&dstats->syncp);
68 dstats->rx_pkts++;
69 dstats->rx_bytes += len;
70 u64_stats_update_end(&dstats->syncp);
71 }
72
73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
74 {
75 vrf_dev->stats.tx_errors++;
76 kfree_skb(skb);
77 }
78
79 static void vrf_get_stats64(struct net_device *dev,
80 struct rtnl_link_stats64 *stats)
81 {
82 int i;
83
84 for_each_possible_cpu(i) {
85 const struct pcpu_dstats *dstats;
86 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
87 unsigned int start;
88
89 dstats = per_cpu_ptr(dev->dstats, i);
90 do {
91 start = u64_stats_fetch_begin_irq(&dstats->syncp);
92 tbytes = dstats->tx_bytes;
93 tpkts = dstats->tx_pkts;
94 tdrops = dstats->tx_drps;
95 rbytes = dstats->rx_bytes;
96 rpkts = dstats->rx_pkts;
97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
98 stats->tx_bytes += tbytes;
99 stats->tx_packets += tpkts;
100 stats->tx_dropped += tdrops;
101 stats->rx_bytes += rbytes;
102 stats->rx_packets += rpkts;
103 }
104 }
105
106 /* by default VRF devices do not have a qdisc and are expected
107 * to be created with only a single queue.
108 */
109 static bool qdisc_tx_is_default(const struct net_device *dev)
110 {
111 struct netdev_queue *txq;
112 struct Qdisc *qdisc;
113
114 if (dev->num_tx_queues > 1)
115 return false;
116
117 txq = netdev_get_tx_queue(dev, 0);
118 qdisc = rcu_access_pointer(txq->qdisc);
119
120 return !qdisc->enqueue;
121 }
122
123 /* Local traffic destined to local address. Reinsert the packet to rx
124 * path, similar to loopback handling.
125 */
126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
127 struct dst_entry *dst)
128 {
129 int len = skb->len;
130
131 skb_orphan(skb);
132
133 skb_dst_set(skb, dst);
134
135 /* set pkt_type to avoid skb hitting packet taps twice -
136 * once on Tx and again in Rx processing
137 */
138 skb->pkt_type = PACKET_LOOPBACK;
139
140 skb->protocol = eth_type_trans(skb, dev);
141
142 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
143 vrf_rx_stats(dev, len);
144 else
145 this_cpu_inc(dev->dstats->rx_drps);
146
147 return NETDEV_TX_OK;
148 }
149
150 #if IS_ENABLED(CONFIG_IPV6)
151 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
152 struct sk_buff *skb)
153 {
154 int err;
155
156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
157 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
158
159 if (likely(err == 1))
160 err = dst_output(net, sk, skb);
161
162 return err;
163 }
164
165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
166 struct net_device *dev)
167 {
168 const struct ipv6hdr *iph;
169 struct net *net = dev_net(skb->dev);
170 struct flowi6 fl6;
171 int ret = NET_XMIT_DROP;
172 struct dst_entry *dst;
173 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
174
175 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
176 goto err;
177
178 iph = ipv6_hdr(skb);
179
180 memset(&fl6, 0, sizeof(fl6));
181 /* needed to match OIF rule */
182 fl6.flowi6_oif = dev->ifindex;
183 fl6.flowi6_iif = LOOPBACK_IFINDEX;
184 fl6.daddr = iph->daddr;
185 fl6.saddr = iph->saddr;
186 fl6.flowlabel = ip6_flowinfo(iph);
187 fl6.flowi6_mark = skb->mark;
188 fl6.flowi6_proto = iph->nexthdr;
189 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
190
191 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
192 if (IS_ERR(dst) || dst == dst_null)
193 goto err;
194
195 skb_dst_drop(skb);
196
197 /* if dst.dev is loopback or the VRF device again this is locally
198 * originated traffic destined to a local address. Short circuit
199 * to Rx path
200 */
201 if (dst->dev == dev)
202 return vrf_local_xmit(skb, dev, dst);
203
204 skb_dst_set(skb, dst);
205
206 /* strip the ethernet header added for pass through VRF device */
207 __skb_pull(skb, skb_network_offset(skb));
208
209 ret = vrf_ip6_local_out(net, skb->sk, skb);
210 if (unlikely(net_xmit_eval(ret)))
211 dev->stats.tx_errors++;
212 else
213 ret = NET_XMIT_SUCCESS;
214
215 return ret;
216 err:
217 vrf_tx_error(dev, skb);
218 return NET_XMIT_DROP;
219 }
220 #else
221 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
222 struct net_device *dev)
223 {
224 vrf_tx_error(dev, skb);
225 return NET_XMIT_DROP;
226 }
227 #endif
228
229 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
230 static int vrf_ip_local_out(struct net *net, struct sock *sk,
231 struct sk_buff *skb)
232 {
233 int err;
234
235 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
236 skb, NULL, skb_dst(skb)->dev, dst_output);
237 if (likely(err == 1))
238 err = dst_output(net, sk, skb);
239
240 return err;
241 }
242
243 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
244 struct net_device *vrf_dev)
245 {
246 struct iphdr *ip4h;
247 int ret = NET_XMIT_DROP;
248 struct flowi4 fl4;
249 struct net *net = dev_net(vrf_dev);
250 struct rtable *rt;
251
252 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
253 goto err;
254
255 ip4h = ip_hdr(skb);
256
257 memset(&fl4, 0, sizeof(fl4));
258 /* needed to match OIF rule */
259 fl4.flowi4_oif = vrf_dev->ifindex;
260 fl4.flowi4_iif = LOOPBACK_IFINDEX;
261 fl4.flowi4_tos = RT_TOS(ip4h->tos);
262 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
263 fl4.flowi4_proto = ip4h->protocol;
264 fl4.daddr = ip4h->daddr;
265 fl4.saddr = ip4h->saddr;
266
267 rt = ip_route_output_flow(net, &fl4, NULL);
268 if (IS_ERR(rt))
269 goto err;
270
271 skb_dst_drop(skb);
272
273 /* if dst.dev is loopback or the VRF device again this is locally
274 * originated traffic destined to a local address. Short circuit
275 * to Rx path
276 */
277 if (rt->dst.dev == vrf_dev)
278 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
279
280 skb_dst_set(skb, &rt->dst);
281
282 /* strip the ethernet header added for pass through VRF device */
283 __skb_pull(skb, skb_network_offset(skb));
284
285 if (!ip4h->saddr) {
286 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
287 RT_SCOPE_LINK);
288 }
289
290 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
291 if (unlikely(net_xmit_eval(ret)))
292 vrf_dev->stats.tx_errors++;
293 else
294 ret = NET_XMIT_SUCCESS;
295
296 out:
297 return ret;
298 err:
299 vrf_tx_error(vrf_dev, skb);
300 goto out;
301 }
302
303 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
304 {
305 switch (skb->protocol) {
306 case htons(ETH_P_IP):
307 return vrf_process_v4_outbound(skb, dev);
308 case htons(ETH_P_IPV6):
309 return vrf_process_v6_outbound(skb, dev);
310 default:
311 vrf_tx_error(dev, skb);
312 return NET_XMIT_DROP;
313 }
314 }
315
316 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
317 {
318 int len = skb->len;
319 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
320
321 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
322 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
323
324 u64_stats_update_begin(&dstats->syncp);
325 dstats->tx_pkts++;
326 dstats->tx_bytes += len;
327 u64_stats_update_end(&dstats->syncp);
328 } else {
329 this_cpu_inc(dev->dstats->tx_drps);
330 }
331
332 return ret;
333 }
334
335 static int vrf_finish_direct(struct net *net, struct sock *sk,
336 struct sk_buff *skb)
337 {
338 struct net_device *vrf_dev = skb->dev;
339
340 if (!list_empty(&vrf_dev->ptype_all) &&
341 likely(skb_headroom(skb) >= ETH_HLEN)) {
342 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
343
344 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
345 eth_zero_addr(eth->h_dest);
346 eth->h_proto = skb->protocol;
347
348 rcu_read_lock_bh();
349 dev_queue_xmit_nit(skb, vrf_dev);
350 rcu_read_unlock_bh();
351
352 skb_pull(skb, ETH_HLEN);
353 }
354
355 return 1;
356 }
357
358 #if IS_ENABLED(CONFIG_IPV6)
359 /* modelled after ip6_finish_output2 */
360 static int vrf_finish_output6(struct net *net, struct sock *sk,
361 struct sk_buff *skb)
362 {
363 struct dst_entry *dst = skb_dst(skb);
364 struct net_device *dev = dst->dev;
365 const struct in6_addr *nexthop;
366 struct neighbour *neigh;
367 int ret;
368
369 nf_reset_ct(skb);
370
371 skb->protocol = htons(ETH_P_IPV6);
372 skb->dev = dev;
373
374 rcu_read_lock_bh();
375 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
376 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
377 if (unlikely(!neigh))
378 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
379 if (!IS_ERR(neigh)) {
380 sock_confirm_neigh(skb, neigh);
381 ret = neigh_output(neigh, skb, false);
382 rcu_read_unlock_bh();
383 return ret;
384 }
385 rcu_read_unlock_bh();
386
387 IP6_INC_STATS(dev_net(dst->dev),
388 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
389 kfree_skb(skb);
390 return -EINVAL;
391 }
392
393 /* modelled after ip6_output */
394 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
395 {
396 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
397 net, sk, skb, NULL, skb_dst(skb)->dev,
398 vrf_finish_output6,
399 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
400 }
401
402 /* set dst on skb to send packet to us via dev_xmit path. Allows
403 * packet to go through device based features such as qdisc, netfilter
404 * hooks and packet sockets with skb->dev set to vrf device.
405 */
406 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
407 struct sk_buff *skb)
408 {
409 struct net_vrf *vrf = netdev_priv(vrf_dev);
410 struct dst_entry *dst = NULL;
411 struct rt6_info *rt6;
412
413 rcu_read_lock();
414
415 rt6 = rcu_dereference(vrf->rt6);
416 if (likely(rt6)) {
417 dst = &rt6->dst;
418 dst_hold(dst);
419 }
420
421 rcu_read_unlock();
422
423 if (unlikely(!dst)) {
424 vrf_tx_error(vrf_dev, skb);
425 return NULL;
426 }
427
428 skb_dst_drop(skb);
429 skb_dst_set(skb, dst);
430
431 return skb;
432 }
433
434 static int vrf_output6_direct(struct net *net, struct sock *sk,
435 struct sk_buff *skb)
436 {
437 skb->protocol = htons(ETH_P_IPV6);
438
439 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
440 net, sk, skb, NULL, skb->dev,
441 vrf_finish_direct,
442 !(IPCB(skb)->flags & IPSKB_REROUTED));
443 }
444
445 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
446 struct sock *sk,
447 struct sk_buff *skb)
448 {
449 struct net *net = dev_net(vrf_dev);
450 int err;
451
452 skb->dev = vrf_dev;
453
454 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
455 skb, NULL, vrf_dev, vrf_output6_direct);
456
457 if (likely(err == 1))
458 err = vrf_output6_direct(net, sk, skb);
459
460 /* reset skb device */
461 if (likely(err == 1))
462 nf_reset_ct(skb);
463 else
464 skb = NULL;
465
466 return skb;
467 }
468
469 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
470 struct sock *sk,
471 struct sk_buff *skb)
472 {
473 /* don't divert link scope packets */
474 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
475 return skb;
476
477 if (qdisc_tx_is_default(vrf_dev) ||
478 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
479 return vrf_ip6_out_direct(vrf_dev, sk, skb);
480
481 return vrf_ip6_out_redirect(vrf_dev, skb);
482 }
483
484 /* holding rtnl */
485 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
486 {
487 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
488 struct net *net = dev_net(dev);
489 struct dst_entry *dst;
490
491 RCU_INIT_POINTER(vrf->rt6, NULL);
492 synchronize_rcu();
493
494 /* move dev in dst's to loopback so this VRF device can be deleted
495 * - based on dst_ifdown
496 */
497 if (rt6) {
498 dst = &rt6->dst;
499 dev_put(dst->dev);
500 dst->dev = net->loopback_dev;
501 dev_hold(dst->dev);
502 dst_release(dst);
503 }
504 }
505
506 static int vrf_rt6_create(struct net_device *dev)
507 {
508 int flags = DST_NOPOLICY | DST_NOXFRM;
509 struct net_vrf *vrf = netdev_priv(dev);
510 struct net *net = dev_net(dev);
511 struct rt6_info *rt6;
512 int rc = -ENOMEM;
513
514 /* IPv6 can be CONFIG enabled and then disabled runtime */
515 if (!ipv6_mod_enabled())
516 return 0;
517
518 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
519 if (!vrf->fib6_table)
520 goto out;
521
522 /* create a dst for routing packets out a VRF device */
523 rt6 = ip6_dst_alloc(net, dev, flags);
524 if (!rt6)
525 goto out;
526
527 rt6->dst.output = vrf_output6;
528
529 rcu_assign_pointer(vrf->rt6, rt6);
530
531 rc = 0;
532 out:
533 return rc;
534 }
535 #else
536 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
537 struct sock *sk,
538 struct sk_buff *skb)
539 {
540 return skb;
541 }
542
543 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
544 {
545 }
546
547 static int vrf_rt6_create(struct net_device *dev)
548 {
549 return 0;
550 }
551 #endif
552
553 /* modelled after ip_finish_output2 */
554 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
555 {
556 struct dst_entry *dst = skb_dst(skb);
557 struct rtable *rt = (struct rtable *)dst;
558 struct net_device *dev = dst->dev;
559 unsigned int hh_len = LL_RESERVED_SPACE(dev);
560 struct neighbour *neigh;
561 bool is_v6gw = false;
562 int ret = -EINVAL;
563
564 nf_reset_ct(skb);
565
566 /* Be paranoid, rather than too clever. */
567 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
568 struct sk_buff *skb2;
569
570 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
571 if (!skb2) {
572 ret = -ENOMEM;
573 goto err;
574 }
575 if (skb->sk)
576 skb_set_owner_w(skb2, skb->sk);
577
578 consume_skb(skb);
579 skb = skb2;
580 }
581
582 rcu_read_lock_bh();
583
584 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
585 if (!IS_ERR(neigh)) {
586 sock_confirm_neigh(skb, neigh);
587 /* if crossing protocols, can not use the cached header */
588 ret = neigh_output(neigh, skb, is_v6gw);
589 rcu_read_unlock_bh();
590 return ret;
591 }
592
593 rcu_read_unlock_bh();
594 err:
595 vrf_tx_error(skb->dev, skb);
596 return ret;
597 }
598
599 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
600 {
601 struct net_device *dev = skb_dst(skb)->dev;
602
603 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
604
605 skb->dev = dev;
606 skb->protocol = htons(ETH_P_IP);
607
608 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
609 net, sk, skb, NULL, dev,
610 vrf_finish_output,
611 !(IPCB(skb)->flags & IPSKB_REROUTED));
612 }
613
614 /* set dst on skb to send packet to us via dev_xmit path. Allows
615 * packet to go through device based features such as qdisc, netfilter
616 * hooks and packet sockets with skb->dev set to vrf device.
617 */
618 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
619 struct sk_buff *skb)
620 {
621 struct net_vrf *vrf = netdev_priv(vrf_dev);
622 struct dst_entry *dst = NULL;
623 struct rtable *rth;
624
625 rcu_read_lock();
626
627 rth = rcu_dereference(vrf->rth);
628 if (likely(rth)) {
629 dst = &rth->dst;
630 dst_hold(dst);
631 }
632
633 rcu_read_unlock();
634
635 if (unlikely(!dst)) {
636 vrf_tx_error(vrf_dev, skb);
637 return NULL;
638 }
639
640 skb_dst_drop(skb);
641 skb_dst_set(skb, dst);
642
643 return skb;
644 }
645
646 static int vrf_output_direct(struct net *net, struct sock *sk,
647 struct sk_buff *skb)
648 {
649 skb->protocol = htons(ETH_P_IP);
650
651 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
652 net, sk, skb, NULL, skb->dev,
653 vrf_finish_direct,
654 !(IPCB(skb)->flags & IPSKB_REROUTED));
655 }
656
657 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
658 struct sock *sk,
659 struct sk_buff *skb)
660 {
661 struct net *net = dev_net(vrf_dev);
662 int err;
663
664 skb->dev = vrf_dev;
665
666 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
667 skb, NULL, vrf_dev, vrf_output_direct);
668
669 if (likely(err == 1))
670 err = vrf_output_direct(net, sk, skb);
671
672 /* reset skb device */
673 if (likely(err == 1))
674 nf_reset_ct(skb);
675 else
676 skb = NULL;
677
678 return skb;
679 }
680
681 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
682 struct sock *sk,
683 struct sk_buff *skb)
684 {
685 /* don't divert multicast or local broadcast */
686 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
687 ipv4_is_lbcast(ip_hdr(skb)->daddr))
688 return skb;
689
690 if (qdisc_tx_is_default(vrf_dev) ||
691 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
692 return vrf_ip_out_direct(vrf_dev, sk, skb);
693
694 return vrf_ip_out_redirect(vrf_dev, skb);
695 }
696
697 /* called with rcu lock held */
698 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
699 struct sock *sk,
700 struct sk_buff *skb,
701 u16 proto)
702 {
703 switch (proto) {
704 case AF_INET:
705 return vrf_ip_out(vrf_dev, sk, skb);
706 case AF_INET6:
707 return vrf_ip6_out(vrf_dev, sk, skb);
708 }
709
710 return skb;
711 }
712
713 /* holding rtnl */
714 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
715 {
716 struct rtable *rth = rtnl_dereference(vrf->rth);
717 struct net *net = dev_net(dev);
718 struct dst_entry *dst;
719
720 RCU_INIT_POINTER(vrf->rth, NULL);
721 synchronize_rcu();
722
723 /* move dev in dst's to loopback so this VRF device can be deleted
724 * - based on dst_ifdown
725 */
726 if (rth) {
727 dst = &rth->dst;
728 dev_put(dst->dev);
729 dst->dev = net->loopback_dev;
730 dev_hold(dst->dev);
731 dst_release(dst);
732 }
733 }
734
735 static int vrf_rtable_create(struct net_device *dev)
736 {
737 struct net_vrf *vrf = netdev_priv(dev);
738 struct rtable *rth;
739
740 if (!fib_new_table(dev_net(dev), vrf->tb_id))
741 return -ENOMEM;
742
743 /* create a dst for routing packets out through a VRF device */
744 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
745 if (!rth)
746 return -ENOMEM;
747
748 rth->dst.output = vrf_output;
749
750 rcu_assign_pointer(vrf->rth, rth);
751
752 return 0;
753 }
754
755 /**************************** device handling ********************/
756
757 /* cycle interface to flush neighbor cache and move routes across tables */
758 static void cycle_netdev(struct net_device *dev,
759 struct netlink_ext_ack *extack)
760 {
761 unsigned int flags = dev->flags;
762 int ret;
763
764 if (!netif_running(dev))
765 return;
766
767 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
768 if (ret >= 0)
769 ret = dev_change_flags(dev, flags, extack);
770
771 if (ret < 0) {
772 netdev_err(dev,
773 "Failed to cycle device %s; route tables might be wrong!\n",
774 dev->name);
775 }
776 }
777
778 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
779 struct netlink_ext_ack *extack)
780 {
781 int ret;
782
783 /* do not allow loopback device to be enslaved to a VRF.
784 * The vrf device acts as the loopback for the vrf.
785 */
786 if (port_dev == dev_net(dev)->loopback_dev) {
787 NL_SET_ERR_MSG(extack,
788 "Can not enslave loopback device to a VRF");
789 return -EOPNOTSUPP;
790 }
791
792 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
793 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
794 if (ret < 0)
795 goto err;
796
797 cycle_netdev(port_dev, extack);
798
799 return 0;
800
801 err:
802 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
803 return ret;
804 }
805
806 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
807 struct netlink_ext_ack *extack)
808 {
809 if (netif_is_l3_master(port_dev)) {
810 NL_SET_ERR_MSG(extack,
811 "Can not enslave an L3 master device to a VRF");
812 return -EINVAL;
813 }
814
815 if (netif_is_l3_slave(port_dev))
816 return -EINVAL;
817
818 return do_vrf_add_slave(dev, port_dev, extack);
819 }
820
821 /* inverse of do_vrf_add_slave */
822 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
823 {
824 netdev_upper_dev_unlink(port_dev, dev);
825 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
826
827 cycle_netdev(port_dev, NULL);
828
829 return 0;
830 }
831
832 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
833 {
834 return do_vrf_del_slave(dev, port_dev);
835 }
836
837 static void vrf_dev_uninit(struct net_device *dev)
838 {
839 struct net_vrf *vrf = netdev_priv(dev);
840
841 vrf_rtable_release(dev, vrf);
842 vrf_rt6_release(dev, vrf);
843
844 free_percpu(dev->dstats);
845 dev->dstats = NULL;
846 }
847
848 static int vrf_dev_init(struct net_device *dev)
849 {
850 struct net_vrf *vrf = netdev_priv(dev);
851
852 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
853 if (!dev->dstats)
854 goto out_nomem;
855
856 /* create the default dst which points back to us */
857 if (vrf_rtable_create(dev) != 0)
858 goto out_stats;
859
860 if (vrf_rt6_create(dev) != 0)
861 goto out_rth;
862
863 dev->flags = IFF_MASTER | IFF_NOARP;
864
865 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
866 dev->mtu = 64 * 1024;
867
868 /* similarly, oper state is irrelevant; set to up to avoid confusion */
869 dev->operstate = IF_OPER_UP;
870 netdev_lockdep_set_classes(dev);
871 return 0;
872
873 out_rth:
874 vrf_rtable_release(dev, vrf);
875 out_stats:
876 free_percpu(dev->dstats);
877 dev->dstats = NULL;
878 out_nomem:
879 return -ENOMEM;
880 }
881
882 static const struct net_device_ops vrf_netdev_ops = {
883 .ndo_init = vrf_dev_init,
884 .ndo_uninit = vrf_dev_uninit,
885 .ndo_start_xmit = vrf_xmit,
886 .ndo_set_mac_address = eth_mac_addr,
887 .ndo_get_stats64 = vrf_get_stats64,
888 .ndo_add_slave = vrf_add_slave,
889 .ndo_del_slave = vrf_del_slave,
890 };
891
892 static u32 vrf_fib_table(const struct net_device *dev)
893 {
894 struct net_vrf *vrf = netdev_priv(dev);
895
896 return vrf->tb_id;
897 }
898
899 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
900 {
901 kfree_skb(skb);
902 return 0;
903 }
904
905 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
906 struct sk_buff *skb,
907 struct net_device *dev)
908 {
909 struct net *net = dev_net(dev);
910
911 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
912 skb = NULL; /* kfree_skb(skb) handled by nf code */
913
914 return skb;
915 }
916
917 #if IS_ENABLED(CONFIG_IPV6)
918 /* neighbor handling is done with actual device; do not want
919 * to flip skb->dev for those ndisc packets. This really fails
920 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
921 * a start.
922 */
923 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
924 {
925 const struct ipv6hdr *iph = ipv6_hdr(skb);
926 bool rc = false;
927
928 if (iph->nexthdr == NEXTHDR_ICMP) {
929 const struct icmp6hdr *icmph;
930 struct icmp6hdr _icmph;
931
932 icmph = skb_header_pointer(skb, sizeof(*iph),
933 sizeof(_icmph), &_icmph);
934 if (!icmph)
935 goto out;
936
937 switch (icmph->icmp6_type) {
938 case NDISC_ROUTER_SOLICITATION:
939 case NDISC_ROUTER_ADVERTISEMENT:
940 case NDISC_NEIGHBOUR_SOLICITATION:
941 case NDISC_NEIGHBOUR_ADVERTISEMENT:
942 case NDISC_REDIRECT:
943 rc = true;
944 break;
945 }
946 }
947
948 out:
949 return rc;
950 }
951
952 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
953 const struct net_device *dev,
954 struct flowi6 *fl6,
955 int ifindex,
956 const struct sk_buff *skb,
957 int flags)
958 {
959 struct net_vrf *vrf = netdev_priv(dev);
960
961 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
962 }
963
964 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
965 int ifindex)
966 {
967 const struct ipv6hdr *iph = ipv6_hdr(skb);
968 struct flowi6 fl6 = {
969 .flowi6_iif = ifindex,
970 .flowi6_mark = skb->mark,
971 .flowi6_proto = iph->nexthdr,
972 .daddr = iph->daddr,
973 .saddr = iph->saddr,
974 .flowlabel = ip6_flowinfo(iph),
975 };
976 struct net *net = dev_net(vrf_dev);
977 struct rt6_info *rt6;
978
979 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
980 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
981 if (unlikely(!rt6))
982 return;
983
984 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
985 return;
986
987 skb_dst_set(skb, &rt6->dst);
988 }
989
990 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
991 struct sk_buff *skb)
992 {
993 int orig_iif = skb->skb_iif;
994 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
995 bool is_ndisc = ipv6_ndisc_frame(skb);
996
997 /* loopback, multicast & non-ND link-local traffic; do not push through
998 * packet taps again. Reset pkt_type for upper layers to process skb
999 */
1000 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1001 skb->dev = vrf_dev;
1002 skb->skb_iif = vrf_dev->ifindex;
1003 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1004 if (skb->pkt_type == PACKET_LOOPBACK)
1005 skb->pkt_type = PACKET_HOST;
1006 goto out;
1007 }
1008
1009 /* if packet is NDISC then keep the ingress interface */
1010 if (!is_ndisc) {
1011 vrf_rx_stats(vrf_dev, skb->len);
1012 skb->dev = vrf_dev;
1013 skb->skb_iif = vrf_dev->ifindex;
1014
1015 if (!list_empty(&vrf_dev->ptype_all)) {
1016 skb_push(skb, skb->mac_len);
1017 dev_queue_xmit_nit(skb, vrf_dev);
1018 skb_pull(skb, skb->mac_len);
1019 }
1020
1021 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1022 }
1023
1024 if (need_strict)
1025 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1026
1027 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1028 out:
1029 return skb;
1030 }
1031
1032 #else
1033 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1034 struct sk_buff *skb)
1035 {
1036 return skb;
1037 }
1038 #endif
1039
1040 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1041 struct sk_buff *skb)
1042 {
1043 skb->dev = vrf_dev;
1044 skb->skb_iif = vrf_dev->ifindex;
1045 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1046
1047 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1048 goto out;
1049
1050 /* loopback traffic; do not push through packet taps again.
1051 * Reset pkt_type for upper layers to process skb
1052 */
1053 if (skb->pkt_type == PACKET_LOOPBACK) {
1054 skb->pkt_type = PACKET_HOST;
1055 goto out;
1056 }
1057
1058 vrf_rx_stats(vrf_dev, skb->len);
1059
1060 if (!list_empty(&vrf_dev->ptype_all)) {
1061 skb_push(skb, skb->mac_len);
1062 dev_queue_xmit_nit(skb, vrf_dev);
1063 skb_pull(skb, skb->mac_len);
1064 }
1065
1066 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1067 out:
1068 return skb;
1069 }
1070
1071 /* called with rcu lock held */
1072 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1073 struct sk_buff *skb,
1074 u16 proto)
1075 {
1076 switch (proto) {
1077 case AF_INET:
1078 return vrf_ip_rcv(vrf_dev, skb);
1079 case AF_INET6:
1080 return vrf_ip6_rcv(vrf_dev, skb);
1081 }
1082
1083 return skb;
1084 }
1085
1086 #if IS_ENABLED(CONFIG_IPV6)
1087 /* send to link-local or multicast address via interface enslaved to
1088 * VRF device. Force lookup to VRF table without changing flow struct
1089 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1090 * is taken on the dst by this function.
1091 */
1092 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1093 struct flowi6 *fl6)
1094 {
1095 struct net *net = dev_net(dev);
1096 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1097 struct dst_entry *dst = NULL;
1098 struct rt6_info *rt;
1099
1100 /* VRF device does not have a link-local address and
1101 * sending packets to link-local or mcast addresses over
1102 * a VRF device does not make sense
1103 */
1104 if (fl6->flowi6_oif == dev->ifindex) {
1105 dst = &net->ipv6.ip6_null_entry->dst;
1106 return dst;
1107 }
1108
1109 if (!ipv6_addr_any(&fl6->saddr))
1110 flags |= RT6_LOOKUP_F_HAS_SADDR;
1111
1112 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1113 if (rt)
1114 dst = &rt->dst;
1115
1116 return dst;
1117 }
1118 #endif
1119
1120 static const struct l3mdev_ops vrf_l3mdev_ops = {
1121 .l3mdev_fib_table = vrf_fib_table,
1122 .l3mdev_l3_rcv = vrf_l3_rcv,
1123 .l3mdev_l3_out = vrf_l3_out,
1124 #if IS_ENABLED(CONFIG_IPV6)
1125 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1126 #endif
1127 };
1128
1129 static void vrf_get_drvinfo(struct net_device *dev,
1130 struct ethtool_drvinfo *info)
1131 {
1132 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1133 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1134 }
1135
1136 static const struct ethtool_ops vrf_ethtool_ops = {
1137 .get_drvinfo = vrf_get_drvinfo,
1138 };
1139
1140 static inline size_t vrf_fib_rule_nl_size(void)
1141 {
1142 size_t sz;
1143
1144 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1145 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1146 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1147 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1148
1149 return sz;
1150 }
1151
1152 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1153 {
1154 struct fib_rule_hdr *frh;
1155 struct nlmsghdr *nlh;
1156 struct sk_buff *skb;
1157 int err;
1158
1159 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1160 !ipv6_mod_enabled())
1161 return 0;
1162
1163 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1164 if (!skb)
1165 return -ENOMEM;
1166
1167 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1168 if (!nlh)
1169 goto nla_put_failure;
1170
1171 /* rule only needs to appear once */
1172 nlh->nlmsg_flags |= NLM_F_EXCL;
1173
1174 frh = nlmsg_data(nlh);
1175 memset(frh, 0, sizeof(*frh));
1176 frh->family = family;
1177 frh->action = FR_ACT_TO_TBL;
1178
1179 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1180 goto nla_put_failure;
1181
1182 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1183 goto nla_put_failure;
1184
1185 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1186 goto nla_put_failure;
1187
1188 nlmsg_end(skb, nlh);
1189
1190 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1191 skb->sk = dev_net(dev)->rtnl;
1192 if (add_it) {
1193 err = fib_nl_newrule(skb, nlh, NULL);
1194 if (err == -EEXIST)
1195 err = 0;
1196 } else {
1197 err = fib_nl_delrule(skb, nlh, NULL);
1198 if (err == -ENOENT)
1199 err = 0;
1200 }
1201 nlmsg_free(skb);
1202
1203 return err;
1204
1205 nla_put_failure:
1206 nlmsg_free(skb);
1207
1208 return -EMSGSIZE;
1209 }
1210
1211 static int vrf_add_fib_rules(const struct net_device *dev)
1212 {
1213 int err;
1214
1215 err = vrf_fib_rule(dev, AF_INET, true);
1216 if (err < 0)
1217 goto out_err;
1218
1219 err = vrf_fib_rule(dev, AF_INET6, true);
1220 if (err < 0)
1221 goto ipv6_err;
1222
1223 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1224 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1225 if (err < 0)
1226 goto ipmr_err;
1227 #endif
1228
1229 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1230 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1231 if (err < 0)
1232 goto ip6mr_err;
1233 #endif
1234
1235 return 0;
1236
1237 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1238 ip6mr_err:
1239 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1240 #endif
1241
1242 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1243 ipmr_err:
1244 vrf_fib_rule(dev, AF_INET6, false);
1245 #endif
1246
1247 ipv6_err:
1248 vrf_fib_rule(dev, AF_INET, false);
1249
1250 out_err:
1251 netdev_err(dev, "Failed to add FIB rules.\n");
1252 return err;
1253 }
1254
1255 static void vrf_setup(struct net_device *dev)
1256 {
1257 ether_setup(dev);
1258
1259 /* Initialize the device structure. */
1260 dev->netdev_ops = &vrf_netdev_ops;
1261 dev->l3mdev_ops = &vrf_l3mdev_ops;
1262 dev->ethtool_ops = &vrf_ethtool_ops;
1263 dev->needs_free_netdev = true;
1264
1265 /* Fill in device structure with ethernet-generic values. */
1266 eth_hw_addr_random(dev);
1267
1268 /* don't acquire vrf device's netif_tx_lock when transmitting */
1269 dev->features |= NETIF_F_LLTX;
1270
1271 /* don't allow vrf devices to change network namespaces. */
1272 dev->features |= NETIF_F_NETNS_LOCAL;
1273
1274 /* does not make sense for a VLAN to be added to a vrf device */
1275 dev->features |= NETIF_F_VLAN_CHALLENGED;
1276
1277 /* enable offload features */
1278 dev->features |= NETIF_F_GSO_SOFTWARE;
1279 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1280 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1281
1282 dev->hw_features = dev->features;
1283 dev->hw_enc_features = dev->features;
1284
1285 /* default to no qdisc; user can add if desired */
1286 dev->priv_flags |= IFF_NO_QUEUE;
1287 dev->priv_flags |= IFF_NO_RX_HANDLER;
1288 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1289
1290 /* VRF devices do not care about MTU, but if the MTU is set
1291 * too low then the ipv4 and ipv6 protocols are disabled
1292 * which breaks networking.
1293 */
1294 dev->min_mtu = IPV6_MIN_MTU;
1295 dev->max_mtu = ETH_MAX_MTU;
1296 }
1297
1298 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1299 struct netlink_ext_ack *extack)
1300 {
1301 if (tb[IFLA_ADDRESS]) {
1302 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1303 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1304 return -EINVAL;
1305 }
1306 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1307 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1308 return -EADDRNOTAVAIL;
1309 }
1310 }
1311 return 0;
1312 }
1313
1314 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1315 {
1316 struct net_device *port_dev;
1317 struct list_head *iter;
1318
1319 netdev_for_each_lower_dev(dev, port_dev, iter)
1320 vrf_del_slave(dev, port_dev);
1321
1322 unregister_netdevice_queue(dev, head);
1323 }
1324
1325 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1326 struct nlattr *tb[], struct nlattr *data[],
1327 struct netlink_ext_ack *extack)
1328 {
1329 struct net_vrf *vrf = netdev_priv(dev);
1330 bool *add_fib_rules;
1331 struct net *net;
1332 int err;
1333
1334 if (!data || !data[IFLA_VRF_TABLE]) {
1335 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1336 return -EINVAL;
1337 }
1338
1339 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1340 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1341 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1342 "Invalid VRF table id");
1343 return -EINVAL;
1344 }
1345
1346 dev->priv_flags |= IFF_L3MDEV_MASTER;
1347
1348 err = register_netdevice(dev);
1349 if (err)
1350 goto out;
1351
1352 net = dev_net(dev);
1353 add_fib_rules = net_generic(net, vrf_net_id);
1354 if (*add_fib_rules) {
1355 err = vrf_add_fib_rules(dev);
1356 if (err) {
1357 unregister_netdevice(dev);
1358 goto out;
1359 }
1360 *add_fib_rules = false;
1361 }
1362
1363 out:
1364 return err;
1365 }
1366
1367 static size_t vrf_nl_getsize(const struct net_device *dev)
1368 {
1369 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1370 }
1371
1372 static int vrf_fillinfo(struct sk_buff *skb,
1373 const struct net_device *dev)
1374 {
1375 struct net_vrf *vrf = netdev_priv(dev);
1376
1377 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1378 }
1379
1380 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1381 const struct net_device *slave_dev)
1382 {
1383 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1384 }
1385
1386 static int vrf_fill_slave_info(struct sk_buff *skb,
1387 const struct net_device *vrf_dev,
1388 const struct net_device *slave_dev)
1389 {
1390 struct net_vrf *vrf = netdev_priv(vrf_dev);
1391
1392 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1393 return -EMSGSIZE;
1394
1395 return 0;
1396 }
1397
1398 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1399 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1400 };
1401
1402 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1403 .kind = DRV_NAME,
1404 .priv_size = sizeof(struct net_vrf),
1405
1406 .get_size = vrf_nl_getsize,
1407 .policy = vrf_nl_policy,
1408 .validate = vrf_validate,
1409 .fill_info = vrf_fillinfo,
1410
1411 .get_slave_size = vrf_get_slave_size,
1412 .fill_slave_info = vrf_fill_slave_info,
1413
1414 .newlink = vrf_newlink,
1415 .dellink = vrf_dellink,
1416 .setup = vrf_setup,
1417 .maxtype = IFLA_VRF_MAX,
1418 };
1419
1420 static int vrf_device_event(struct notifier_block *unused,
1421 unsigned long event, void *ptr)
1422 {
1423 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1424
1425 /* only care about unregister events to drop slave references */
1426 if (event == NETDEV_UNREGISTER) {
1427 struct net_device *vrf_dev;
1428
1429 if (!netif_is_l3_slave(dev))
1430 goto out;
1431
1432 vrf_dev = netdev_master_upper_dev_get(dev);
1433 vrf_del_slave(vrf_dev, dev);
1434 }
1435 out:
1436 return NOTIFY_DONE;
1437 }
1438
1439 static struct notifier_block vrf_notifier_block __read_mostly = {
1440 .notifier_call = vrf_device_event,
1441 };
1442
1443 /* Initialize per network namespace state */
1444 static int __net_init vrf_netns_init(struct net *net)
1445 {
1446 bool *add_fib_rules = net_generic(net, vrf_net_id);
1447
1448 *add_fib_rules = true;
1449
1450 return 0;
1451 }
1452
1453 static struct pernet_operations vrf_net_ops __net_initdata = {
1454 .init = vrf_netns_init,
1455 .id = &vrf_net_id,
1456 .size = sizeof(bool),
1457 };
1458
1459 static int __init vrf_init_module(void)
1460 {
1461 int rc;
1462
1463 register_netdevice_notifier(&vrf_notifier_block);
1464
1465 rc = register_pernet_subsys(&vrf_net_ops);
1466 if (rc < 0)
1467 goto error;
1468
1469 rc = rtnl_link_register(&vrf_link_ops);
1470 if (rc < 0) {
1471 unregister_pernet_subsys(&vrf_net_ops);
1472 goto error;
1473 }
1474
1475 return 0;
1476
1477 error:
1478 unregister_netdevice_notifier(&vrf_notifier_block);
1479 return rc;
1480 }
1481
1482 module_init(vrf_init_module);
1483 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1484 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1485 MODULE_LICENSE("GPL");
1486 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1487 MODULE_VERSION(DRV_VERSION);