]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/vrf.c
Merge branch 'mlx5-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mellanox...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / vrf.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24 #include <linux/spinlock_types.h>
25
26 #include <linux/inetdevice.h>
27 #include <net/arp.h>
28 #include <net/ip.h>
29 #include <net/ip_fib.h>
30 #include <net/ip6_fib.h>
31 #include <net/ip6_route.h>
32 #include <net/route.h>
33 #include <net/addrconf.h>
34 #include <net/l3mdev.h>
35 #include <net/fib_rules.h>
36 #include <net/netns/generic.h>
37
38 #define DRV_NAME "vrf"
39 #define DRV_VERSION "1.1"
40
41 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
42
43 #define HT_MAP_BITS 4
44 #define HASH_INITVAL ((u32)0xcafef00d)
45
46 struct vrf_map {
47 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
48 spinlock_t vmap_lock;
49
50 /* shared_tables:
51 * count how many distinct tables do not comply with the strict mode
52 * requirement.
53 * shared_tables value must be 0 in order to enable the strict mode.
54 *
55 * example of the evolution of shared_tables:
56 * | time
57 * add vrf0 --> table 100 shared_tables = 0 | t0
58 * add vrf1 --> table 101 shared_tables = 0 | t1
59 * add vrf2 --> table 100 shared_tables = 1 | t2
60 * add vrf3 --> table 100 shared_tables = 1 | t3
61 * add vrf4 --> table 101 shared_tables = 2 v t4
62 *
63 * shared_tables is a "step function" (or "staircase function")
64 * and it is increased by one when the second vrf is associated to a
65 * table.
66 *
67 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
68 *
69 * at t3, another dev (vrf3) is bound to the same table 100 but the
70 * value of shared_tables is still 1.
71 * This means that no matter how many new vrfs will register on the
72 * table 100, the shared_tables will not increase (considering only
73 * table 100).
74 *
75 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
76 *
77 * Looking at the value of shared_tables we can immediately know if
78 * the strict_mode can or cannot be enforced. Indeed, strict_mode
79 * can be enforced iff shared_tables = 0.
80 *
81 * Conversely, shared_tables is decreased when a vrf is de-associated
82 * from a table with exactly two associated vrfs.
83 */
84 u32 shared_tables;
85
86 bool strict_mode;
87 };
88
89 struct vrf_map_elem {
90 struct hlist_node hnode;
91 struct list_head vrf_list; /* VRFs registered to this table */
92
93 u32 table_id;
94 int users;
95 int ifindex;
96 };
97
98 static unsigned int vrf_net_id;
99
100 /* per netns vrf data */
101 struct netns_vrf {
102 /* protected by rtnl lock */
103 bool add_fib_rules;
104
105 struct vrf_map vmap;
106 struct ctl_table_header *ctl_hdr;
107 };
108
109 struct net_vrf {
110 struct rtable __rcu *rth;
111 struct rt6_info __rcu *rt6;
112 #if IS_ENABLED(CONFIG_IPV6)
113 struct fib6_table *fib6_table;
114 #endif
115 u32 tb_id;
116
117 struct list_head me_list; /* entry in vrf_map_elem */
118 int ifindex;
119 };
120
121 struct pcpu_dstats {
122 u64 tx_pkts;
123 u64 tx_bytes;
124 u64 tx_drps;
125 u64 rx_pkts;
126 u64 rx_bytes;
127 u64 rx_drps;
128 struct u64_stats_sync syncp;
129 };
130
131 static void vrf_rx_stats(struct net_device *dev, int len)
132 {
133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
134
135 u64_stats_update_begin(&dstats->syncp);
136 dstats->rx_pkts++;
137 dstats->rx_bytes += len;
138 u64_stats_update_end(&dstats->syncp);
139 }
140
141 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
142 {
143 vrf_dev->stats.tx_errors++;
144 kfree_skb(skb);
145 }
146
147 static void vrf_get_stats64(struct net_device *dev,
148 struct rtnl_link_stats64 *stats)
149 {
150 int i;
151
152 for_each_possible_cpu(i) {
153 const struct pcpu_dstats *dstats;
154 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
155 unsigned int start;
156
157 dstats = per_cpu_ptr(dev->dstats, i);
158 do {
159 start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 tbytes = dstats->tx_bytes;
161 tpkts = dstats->tx_pkts;
162 tdrops = dstats->tx_drps;
163 rbytes = dstats->rx_bytes;
164 rpkts = dstats->rx_pkts;
165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 stats->tx_bytes += tbytes;
167 stats->tx_packets += tpkts;
168 stats->tx_dropped += tdrops;
169 stats->rx_bytes += rbytes;
170 stats->rx_packets += rpkts;
171 }
172 }
173
174 static struct vrf_map *netns_vrf_map(struct net *net)
175 {
176 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
177
178 return &nn_vrf->vmap;
179 }
180
181 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
182 {
183 return netns_vrf_map(dev_net(dev));
184 }
185
186 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
187 {
188 struct list_head *me_head = &me->vrf_list;
189 struct net_vrf *vrf;
190
191 if (list_empty(me_head))
192 return -ENODEV;
193
194 vrf = list_first_entry(me_head, struct net_vrf, me_list);
195
196 return vrf->ifindex;
197 }
198
199 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
200 {
201 struct vrf_map_elem *me;
202
203 me = kmalloc(sizeof(*me), flags);
204 if (!me)
205 return NULL;
206
207 return me;
208 }
209
210 static void vrf_map_elem_free(struct vrf_map_elem *me)
211 {
212 kfree(me);
213 }
214
215 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
216 int ifindex, int users)
217 {
218 me->table_id = table_id;
219 me->ifindex = ifindex;
220 me->users = users;
221 INIT_LIST_HEAD(&me->vrf_list);
222 }
223
224 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
225 u32 table_id)
226 {
227 struct vrf_map_elem *me;
228 u32 key;
229
230 key = jhash_1word(table_id, HASH_INITVAL);
231 hash_for_each_possible(vmap->ht, me, hnode, key) {
232 if (me->table_id == table_id)
233 return me;
234 }
235
236 return NULL;
237 }
238
239 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
240 {
241 u32 table_id = me->table_id;
242 u32 key;
243
244 key = jhash_1word(table_id, HASH_INITVAL);
245 hash_add(vmap->ht, &me->hnode, key);
246 }
247
248 static void vrf_map_del_elem(struct vrf_map_elem *me)
249 {
250 hash_del(&me->hnode);
251 }
252
253 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
254 {
255 spin_lock(&vmap->vmap_lock);
256 }
257
258 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
259 {
260 spin_unlock(&vmap->vmap_lock);
261 }
262
263 static bool vrf_strict_mode(struct vrf_map *vmap)
264 {
265 bool strict_mode;
266
267 vrf_map_lock(vmap);
268 strict_mode = vmap->strict_mode;
269 vrf_map_unlock(vmap);
270
271 return strict_mode;
272 }
273
274 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
275 {
276 bool *cur_mode;
277 int res = 0;
278
279 vrf_map_lock(vmap);
280
281 cur_mode = &vmap->strict_mode;
282 if (*cur_mode == new_mode)
283 goto unlock;
284
285 if (*cur_mode) {
286 /* disable strict mode */
287 *cur_mode = false;
288 } else {
289 if (vmap->shared_tables) {
290 /* we cannot allow strict_mode because there are some
291 * vrfs that share one or more tables.
292 */
293 res = -EBUSY;
294 goto unlock;
295 }
296
297 /* no tables are shared among vrfs, so we can go back
298 * to 1:1 association between a vrf with its table.
299 */
300 *cur_mode = true;
301 }
302
303 unlock:
304 vrf_map_unlock(vmap);
305
306 return res;
307 }
308
309 /* called with rtnl lock held */
310 static int
311 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
312 {
313 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
314 struct net_vrf *vrf = netdev_priv(dev);
315 struct vrf_map_elem *new_me, *me;
316 u32 table_id = vrf->tb_id;
317 bool free_new_me = false;
318 int users;
319 int res;
320
321 /* we pre-allocate elements used in the spin-locked section (so that we
322 * keep the spinlock as short as possibile).
323 */
324 new_me = vrf_map_elem_alloc(GFP_KERNEL);
325 if (!new_me)
326 return -ENOMEM;
327
328 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
329
330 vrf_map_lock(vmap);
331
332 me = vrf_map_lookup_elem(vmap, table_id);
333 if (!me) {
334 me = new_me;
335 vrf_map_add_elem(vmap, me);
336 goto link_vrf;
337 }
338
339 /* we already have an entry in the vrf_map, so it means there is (at
340 * least) a vrf registered on the specific table.
341 */
342 free_new_me = true;
343 if (vmap->strict_mode) {
344 /* vrfs cannot share the same table */
345 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
346 res = -EBUSY;
347 goto unlock;
348 }
349
350 link_vrf:
351 users = ++me->users;
352 if (users == 2)
353 ++vmap->shared_tables;
354
355 list_add(&vrf->me_list, &me->vrf_list);
356
357 res = 0;
358
359 unlock:
360 vrf_map_unlock(vmap);
361
362 /* clean-up, if needed */
363 if (free_new_me)
364 vrf_map_elem_free(new_me);
365
366 return res;
367 }
368
369 /* called with rtnl lock held */
370 static void vrf_map_unregister_dev(struct net_device *dev)
371 {
372 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
373 struct net_vrf *vrf = netdev_priv(dev);
374 u32 table_id = vrf->tb_id;
375 struct vrf_map_elem *me;
376 int users;
377
378 vrf_map_lock(vmap);
379
380 me = vrf_map_lookup_elem(vmap, table_id);
381 if (!me)
382 goto unlock;
383
384 list_del(&vrf->me_list);
385
386 users = --me->users;
387 if (users == 1) {
388 --vmap->shared_tables;
389 } else if (users == 0) {
390 vrf_map_del_elem(me);
391
392 /* no one will refer to this element anymore */
393 vrf_map_elem_free(me);
394 }
395
396 unlock:
397 vrf_map_unlock(vmap);
398 }
399
400 /* return the vrf device index associated with the table_id */
401 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
402 {
403 struct vrf_map *vmap = netns_vrf_map(net);
404 struct vrf_map_elem *me;
405 int ifindex;
406
407 vrf_map_lock(vmap);
408
409 if (!vmap->strict_mode) {
410 ifindex = -EPERM;
411 goto unlock;
412 }
413
414 me = vrf_map_lookup_elem(vmap, table_id);
415 if (!me) {
416 ifindex = -ENODEV;
417 goto unlock;
418 }
419
420 ifindex = vrf_map_elem_get_vrf_ifindex(me);
421
422 unlock:
423 vrf_map_unlock(vmap);
424
425 return ifindex;
426 }
427
428 /* by default VRF devices do not have a qdisc and are expected
429 * to be created with only a single queue.
430 */
431 static bool qdisc_tx_is_default(const struct net_device *dev)
432 {
433 struct netdev_queue *txq;
434 struct Qdisc *qdisc;
435
436 if (dev->num_tx_queues > 1)
437 return false;
438
439 txq = netdev_get_tx_queue(dev, 0);
440 qdisc = rcu_access_pointer(txq->qdisc);
441
442 return !qdisc->enqueue;
443 }
444
445 /* Local traffic destined to local address. Reinsert the packet to rx
446 * path, similar to loopback handling.
447 */
448 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
449 struct dst_entry *dst)
450 {
451 int len = skb->len;
452
453 skb_orphan(skb);
454
455 skb_dst_set(skb, dst);
456
457 /* set pkt_type to avoid skb hitting packet taps twice -
458 * once on Tx and again in Rx processing
459 */
460 skb->pkt_type = PACKET_LOOPBACK;
461
462 skb->protocol = eth_type_trans(skb, dev);
463
464 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
465 vrf_rx_stats(dev, len);
466 else
467 this_cpu_inc(dev->dstats->rx_drps);
468
469 return NETDEV_TX_OK;
470 }
471
472 #if IS_ENABLED(CONFIG_IPV6)
473 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
474 struct sk_buff *skb)
475 {
476 int err;
477
478 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
479 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
480
481 if (likely(err == 1))
482 err = dst_output(net, sk, skb);
483
484 return err;
485 }
486
487 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
488 struct net_device *dev)
489 {
490 const struct ipv6hdr *iph;
491 struct net *net = dev_net(skb->dev);
492 struct flowi6 fl6;
493 int ret = NET_XMIT_DROP;
494 struct dst_entry *dst;
495 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
496
497 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
498 goto err;
499
500 iph = ipv6_hdr(skb);
501
502 memset(&fl6, 0, sizeof(fl6));
503 /* needed to match OIF rule */
504 fl6.flowi6_oif = dev->ifindex;
505 fl6.flowi6_iif = LOOPBACK_IFINDEX;
506 fl6.daddr = iph->daddr;
507 fl6.saddr = iph->saddr;
508 fl6.flowlabel = ip6_flowinfo(iph);
509 fl6.flowi6_mark = skb->mark;
510 fl6.flowi6_proto = iph->nexthdr;
511 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
512
513 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
514 if (IS_ERR(dst) || dst == dst_null)
515 goto err;
516
517 skb_dst_drop(skb);
518
519 /* if dst.dev is loopback or the VRF device again this is locally
520 * originated traffic destined to a local address. Short circuit
521 * to Rx path
522 */
523 if (dst->dev == dev)
524 return vrf_local_xmit(skb, dev, dst);
525
526 skb_dst_set(skb, dst);
527
528 /* strip the ethernet header added for pass through VRF device */
529 __skb_pull(skb, skb_network_offset(skb));
530
531 ret = vrf_ip6_local_out(net, skb->sk, skb);
532 if (unlikely(net_xmit_eval(ret)))
533 dev->stats.tx_errors++;
534 else
535 ret = NET_XMIT_SUCCESS;
536
537 return ret;
538 err:
539 vrf_tx_error(dev, skb);
540 return NET_XMIT_DROP;
541 }
542 #else
543 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
544 struct net_device *dev)
545 {
546 vrf_tx_error(dev, skb);
547 return NET_XMIT_DROP;
548 }
549 #endif
550
551 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
552 static int vrf_ip_local_out(struct net *net, struct sock *sk,
553 struct sk_buff *skb)
554 {
555 int err;
556
557 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
558 skb, NULL, skb_dst(skb)->dev, dst_output);
559 if (likely(err == 1))
560 err = dst_output(net, sk, skb);
561
562 return err;
563 }
564
565 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
566 struct net_device *vrf_dev)
567 {
568 struct iphdr *ip4h;
569 int ret = NET_XMIT_DROP;
570 struct flowi4 fl4;
571 struct net *net = dev_net(vrf_dev);
572 struct rtable *rt;
573
574 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
575 goto err;
576
577 ip4h = ip_hdr(skb);
578
579 memset(&fl4, 0, sizeof(fl4));
580 /* needed to match OIF rule */
581 fl4.flowi4_oif = vrf_dev->ifindex;
582 fl4.flowi4_iif = LOOPBACK_IFINDEX;
583 fl4.flowi4_tos = RT_TOS(ip4h->tos);
584 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
585 fl4.flowi4_proto = ip4h->protocol;
586 fl4.daddr = ip4h->daddr;
587 fl4.saddr = ip4h->saddr;
588
589 rt = ip_route_output_flow(net, &fl4, NULL);
590 if (IS_ERR(rt))
591 goto err;
592
593 skb_dst_drop(skb);
594
595 /* if dst.dev is loopback or the VRF device again this is locally
596 * originated traffic destined to a local address. Short circuit
597 * to Rx path
598 */
599 if (rt->dst.dev == vrf_dev)
600 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
601
602 skb_dst_set(skb, &rt->dst);
603
604 /* strip the ethernet header added for pass through VRF device */
605 __skb_pull(skb, skb_network_offset(skb));
606
607 if (!ip4h->saddr) {
608 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
609 RT_SCOPE_LINK);
610 }
611
612 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
613 if (unlikely(net_xmit_eval(ret)))
614 vrf_dev->stats.tx_errors++;
615 else
616 ret = NET_XMIT_SUCCESS;
617
618 out:
619 return ret;
620 err:
621 vrf_tx_error(vrf_dev, skb);
622 goto out;
623 }
624
625 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
626 {
627 switch (skb->protocol) {
628 case htons(ETH_P_IP):
629 return vrf_process_v4_outbound(skb, dev);
630 case htons(ETH_P_IPV6):
631 return vrf_process_v6_outbound(skb, dev);
632 default:
633 vrf_tx_error(dev, skb);
634 return NET_XMIT_DROP;
635 }
636 }
637
638 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
639 {
640 int len = skb->len;
641 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
642
643 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
644 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
645
646 u64_stats_update_begin(&dstats->syncp);
647 dstats->tx_pkts++;
648 dstats->tx_bytes += len;
649 u64_stats_update_end(&dstats->syncp);
650 } else {
651 this_cpu_inc(dev->dstats->tx_drps);
652 }
653
654 return ret;
655 }
656
657 static int vrf_finish_direct(struct net *net, struct sock *sk,
658 struct sk_buff *skb)
659 {
660 struct net_device *vrf_dev = skb->dev;
661
662 if (!list_empty(&vrf_dev->ptype_all) &&
663 likely(skb_headroom(skb) >= ETH_HLEN)) {
664 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
665
666 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
667 eth_zero_addr(eth->h_dest);
668 eth->h_proto = skb->protocol;
669
670 rcu_read_lock_bh();
671 dev_queue_xmit_nit(skb, vrf_dev);
672 rcu_read_unlock_bh();
673
674 skb_pull(skb, ETH_HLEN);
675 }
676
677 return 1;
678 }
679
680 #if IS_ENABLED(CONFIG_IPV6)
681 /* modelled after ip6_finish_output2 */
682 static int vrf_finish_output6(struct net *net, struct sock *sk,
683 struct sk_buff *skb)
684 {
685 struct dst_entry *dst = skb_dst(skb);
686 struct net_device *dev = dst->dev;
687 const struct in6_addr *nexthop;
688 struct neighbour *neigh;
689 int ret;
690
691 nf_reset_ct(skb);
692
693 skb->protocol = htons(ETH_P_IPV6);
694 skb->dev = dev;
695
696 rcu_read_lock_bh();
697 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
698 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
699 if (unlikely(!neigh))
700 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
701 if (!IS_ERR(neigh)) {
702 sock_confirm_neigh(skb, neigh);
703 ret = neigh_output(neigh, skb, false);
704 rcu_read_unlock_bh();
705 return ret;
706 }
707 rcu_read_unlock_bh();
708
709 IP6_INC_STATS(dev_net(dst->dev),
710 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
711 kfree_skb(skb);
712 return -EINVAL;
713 }
714
715 /* modelled after ip6_output */
716 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
717 {
718 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
719 net, sk, skb, NULL, skb_dst(skb)->dev,
720 vrf_finish_output6,
721 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
722 }
723
724 /* set dst on skb to send packet to us via dev_xmit path. Allows
725 * packet to go through device based features such as qdisc, netfilter
726 * hooks and packet sockets with skb->dev set to vrf device.
727 */
728 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
729 struct sk_buff *skb)
730 {
731 struct net_vrf *vrf = netdev_priv(vrf_dev);
732 struct dst_entry *dst = NULL;
733 struct rt6_info *rt6;
734
735 rcu_read_lock();
736
737 rt6 = rcu_dereference(vrf->rt6);
738 if (likely(rt6)) {
739 dst = &rt6->dst;
740 dst_hold(dst);
741 }
742
743 rcu_read_unlock();
744
745 if (unlikely(!dst)) {
746 vrf_tx_error(vrf_dev, skb);
747 return NULL;
748 }
749
750 skb_dst_drop(skb);
751 skb_dst_set(skb, dst);
752
753 return skb;
754 }
755
756 static int vrf_output6_direct(struct net *net, struct sock *sk,
757 struct sk_buff *skb)
758 {
759 skb->protocol = htons(ETH_P_IPV6);
760
761 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
762 net, sk, skb, NULL, skb->dev,
763 vrf_finish_direct,
764 !(IPCB(skb)->flags & IPSKB_REROUTED));
765 }
766
767 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
768 struct sock *sk,
769 struct sk_buff *skb)
770 {
771 struct net *net = dev_net(vrf_dev);
772 int err;
773
774 skb->dev = vrf_dev;
775
776 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
777 skb, NULL, vrf_dev, vrf_output6_direct);
778
779 if (likely(err == 1))
780 err = vrf_output6_direct(net, sk, skb);
781
782 /* reset skb device */
783 if (likely(err == 1))
784 nf_reset_ct(skb);
785 else
786 skb = NULL;
787
788 return skb;
789 }
790
791 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
792 struct sock *sk,
793 struct sk_buff *skb)
794 {
795 /* don't divert link scope packets */
796 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
797 return skb;
798
799 if (qdisc_tx_is_default(vrf_dev) ||
800 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
801 return vrf_ip6_out_direct(vrf_dev, sk, skb);
802
803 return vrf_ip6_out_redirect(vrf_dev, skb);
804 }
805
806 /* holding rtnl */
807 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
808 {
809 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
810 struct net *net = dev_net(dev);
811 struct dst_entry *dst;
812
813 RCU_INIT_POINTER(vrf->rt6, NULL);
814 synchronize_rcu();
815
816 /* move dev in dst's to loopback so this VRF device can be deleted
817 * - based on dst_ifdown
818 */
819 if (rt6) {
820 dst = &rt6->dst;
821 dev_put(dst->dev);
822 dst->dev = net->loopback_dev;
823 dev_hold(dst->dev);
824 dst_release(dst);
825 }
826 }
827
828 static int vrf_rt6_create(struct net_device *dev)
829 {
830 int flags = DST_NOPOLICY | DST_NOXFRM;
831 struct net_vrf *vrf = netdev_priv(dev);
832 struct net *net = dev_net(dev);
833 struct rt6_info *rt6;
834 int rc = -ENOMEM;
835
836 /* IPv6 can be CONFIG enabled and then disabled runtime */
837 if (!ipv6_mod_enabled())
838 return 0;
839
840 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
841 if (!vrf->fib6_table)
842 goto out;
843
844 /* create a dst for routing packets out a VRF device */
845 rt6 = ip6_dst_alloc(net, dev, flags);
846 if (!rt6)
847 goto out;
848
849 rt6->dst.output = vrf_output6;
850
851 rcu_assign_pointer(vrf->rt6, rt6);
852
853 rc = 0;
854 out:
855 return rc;
856 }
857 #else
858 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
859 struct sock *sk,
860 struct sk_buff *skb)
861 {
862 return skb;
863 }
864
865 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
866 {
867 }
868
869 static int vrf_rt6_create(struct net_device *dev)
870 {
871 return 0;
872 }
873 #endif
874
875 /* modelled after ip_finish_output2 */
876 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
877 {
878 struct dst_entry *dst = skb_dst(skb);
879 struct rtable *rt = (struct rtable *)dst;
880 struct net_device *dev = dst->dev;
881 unsigned int hh_len = LL_RESERVED_SPACE(dev);
882 struct neighbour *neigh;
883 bool is_v6gw = false;
884 int ret = -EINVAL;
885
886 nf_reset_ct(skb);
887
888 /* Be paranoid, rather than too clever. */
889 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
890 struct sk_buff *skb2;
891
892 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
893 if (!skb2) {
894 ret = -ENOMEM;
895 goto err;
896 }
897 if (skb->sk)
898 skb_set_owner_w(skb2, skb->sk);
899
900 consume_skb(skb);
901 skb = skb2;
902 }
903
904 rcu_read_lock_bh();
905
906 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
907 if (!IS_ERR(neigh)) {
908 sock_confirm_neigh(skb, neigh);
909 /* if crossing protocols, can not use the cached header */
910 ret = neigh_output(neigh, skb, is_v6gw);
911 rcu_read_unlock_bh();
912 return ret;
913 }
914
915 rcu_read_unlock_bh();
916 err:
917 vrf_tx_error(skb->dev, skb);
918 return ret;
919 }
920
921 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
922 {
923 struct net_device *dev = skb_dst(skb)->dev;
924
925 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
926
927 skb->dev = dev;
928 skb->protocol = htons(ETH_P_IP);
929
930 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
931 net, sk, skb, NULL, dev,
932 vrf_finish_output,
933 !(IPCB(skb)->flags & IPSKB_REROUTED));
934 }
935
936 /* set dst on skb to send packet to us via dev_xmit path. Allows
937 * packet to go through device based features such as qdisc, netfilter
938 * hooks and packet sockets with skb->dev set to vrf device.
939 */
940 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
941 struct sk_buff *skb)
942 {
943 struct net_vrf *vrf = netdev_priv(vrf_dev);
944 struct dst_entry *dst = NULL;
945 struct rtable *rth;
946
947 rcu_read_lock();
948
949 rth = rcu_dereference(vrf->rth);
950 if (likely(rth)) {
951 dst = &rth->dst;
952 dst_hold(dst);
953 }
954
955 rcu_read_unlock();
956
957 if (unlikely(!dst)) {
958 vrf_tx_error(vrf_dev, skb);
959 return NULL;
960 }
961
962 skb_dst_drop(skb);
963 skb_dst_set(skb, dst);
964
965 return skb;
966 }
967
968 static int vrf_output_direct(struct net *net, struct sock *sk,
969 struct sk_buff *skb)
970 {
971 skb->protocol = htons(ETH_P_IP);
972
973 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
974 net, sk, skb, NULL, skb->dev,
975 vrf_finish_direct,
976 !(IPCB(skb)->flags & IPSKB_REROUTED));
977 }
978
979 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
980 struct sock *sk,
981 struct sk_buff *skb)
982 {
983 struct net *net = dev_net(vrf_dev);
984 int err;
985
986 skb->dev = vrf_dev;
987
988 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
989 skb, NULL, vrf_dev, vrf_output_direct);
990
991 if (likely(err == 1))
992 err = vrf_output_direct(net, sk, skb);
993
994 /* reset skb device */
995 if (likely(err == 1))
996 nf_reset_ct(skb);
997 else
998 skb = NULL;
999
1000 return skb;
1001 }
1002
1003 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004 struct sock *sk,
1005 struct sk_buff *skb)
1006 {
1007 /* don't divert multicast or local broadcast */
1008 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010 return skb;
1011
1012 if (qdisc_tx_is_default(vrf_dev) ||
1013 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1014 return vrf_ip_out_direct(vrf_dev, sk, skb);
1015
1016 return vrf_ip_out_redirect(vrf_dev, skb);
1017 }
1018
1019 /* called with rcu lock held */
1020 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1021 struct sock *sk,
1022 struct sk_buff *skb,
1023 u16 proto)
1024 {
1025 switch (proto) {
1026 case AF_INET:
1027 return vrf_ip_out(vrf_dev, sk, skb);
1028 case AF_INET6:
1029 return vrf_ip6_out(vrf_dev, sk, skb);
1030 }
1031
1032 return skb;
1033 }
1034
1035 /* holding rtnl */
1036 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1037 {
1038 struct rtable *rth = rtnl_dereference(vrf->rth);
1039 struct net *net = dev_net(dev);
1040 struct dst_entry *dst;
1041
1042 RCU_INIT_POINTER(vrf->rth, NULL);
1043 synchronize_rcu();
1044
1045 /* move dev in dst's to loopback so this VRF device can be deleted
1046 * - based on dst_ifdown
1047 */
1048 if (rth) {
1049 dst = &rth->dst;
1050 dev_put(dst->dev);
1051 dst->dev = net->loopback_dev;
1052 dev_hold(dst->dev);
1053 dst_release(dst);
1054 }
1055 }
1056
1057 static int vrf_rtable_create(struct net_device *dev)
1058 {
1059 struct net_vrf *vrf = netdev_priv(dev);
1060 struct rtable *rth;
1061
1062 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1063 return -ENOMEM;
1064
1065 /* create a dst for routing packets out through a VRF device */
1066 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1067 if (!rth)
1068 return -ENOMEM;
1069
1070 rth->dst.output = vrf_output;
1071
1072 rcu_assign_pointer(vrf->rth, rth);
1073
1074 return 0;
1075 }
1076
1077 /**************************** device handling ********************/
1078
1079 /* cycle interface to flush neighbor cache and move routes across tables */
1080 static void cycle_netdev(struct net_device *dev,
1081 struct netlink_ext_ack *extack)
1082 {
1083 unsigned int flags = dev->flags;
1084 int ret;
1085
1086 if (!netif_running(dev))
1087 return;
1088
1089 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1090 if (ret >= 0)
1091 ret = dev_change_flags(dev, flags, extack);
1092
1093 if (ret < 0) {
1094 netdev_err(dev,
1095 "Failed to cycle device %s; route tables might be wrong!\n",
1096 dev->name);
1097 }
1098 }
1099
1100 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1101 struct netlink_ext_ack *extack)
1102 {
1103 int ret;
1104
1105 /* do not allow loopback device to be enslaved to a VRF.
1106 * The vrf device acts as the loopback for the vrf.
1107 */
1108 if (port_dev == dev_net(dev)->loopback_dev) {
1109 NL_SET_ERR_MSG(extack,
1110 "Can not enslave loopback device to a VRF");
1111 return -EOPNOTSUPP;
1112 }
1113
1114 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1115 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1116 if (ret < 0)
1117 goto err;
1118
1119 cycle_netdev(port_dev, extack);
1120
1121 return 0;
1122
1123 err:
1124 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1125 return ret;
1126 }
1127
1128 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1129 struct netlink_ext_ack *extack)
1130 {
1131 if (netif_is_l3_master(port_dev)) {
1132 NL_SET_ERR_MSG(extack,
1133 "Can not enslave an L3 master device to a VRF");
1134 return -EINVAL;
1135 }
1136
1137 if (netif_is_l3_slave(port_dev))
1138 return -EINVAL;
1139
1140 return do_vrf_add_slave(dev, port_dev, extack);
1141 }
1142
1143 /* inverse of do_vrf_add_slave */
1144 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1145 {
1146 netdev_upper_dev_unlink(port_dev, dev);
1147 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1148
1149 cycle_netdev(port_dev, NULL);
1150
1151 return 0;
1152 }
1153
1154 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1155 {
1156 return do_vrf_del_slave(dev, port_dev);
1157 }
1158
1159 static void vrf_dev_uninit(struct net_device *dev)
1160 {
1161 struct net_vrf *vrf = netdev_priv(dev);
1162
1163 vrf_rtable_release(dev, vrf);
1164 vrf_rt6_release(dev, vrf);
1165
1166 free_percpu(dev->dstats);
1167 dev->dstats = NULL;
1168 }
1169
1170 static int vrf_dev_init(struct net_device *dev)
1171 {
1172 struct net_vrf *vrf = netdev_priv(dev);
1173
1174 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1175 if (!dev->dstats)
1176 goto out_nomem;
1177
1178 /* create the default dst which points back to us */
1179 if (vrf_rtable_create(dev) != 0)
1180 goto out_stats;
1181
1182 if (vrf_rt6_create(dev) != 0)
1183 goto out_rth;
1184
1185 dev->flags = IFF_MASTER | IFF_NOARP;
1186
1187 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
1188 dev->mtu = 64 * 1024;
1189
1190 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1191 dev->operstate = IF_OPER_UP;
1192 netdev_lockdep_set_classes(dev);
1193 return 0;
1194
1195 out_rth:
1196 vrf_rtable_release(dev, vrf);
1197 out_stats:
1198 free_percpu(dev->dstats);
1199 dev->dstats = NULL;
1200 out_nomem:
1201 return -ENOMEM;
1202 }
1203
1204 static const struct net_device_ops vrf_netdev_ops = {
1205 .ndo_init = vrf_dev_init,
1206 .ndo_uninit = vrf_dev_uninit,
1207 .ndo_start_xmit = vrf_xmit,
1208 .ndo_set_mac_address = eth_mac_addr,
1209 .ndo_get_stats64 = vrf_get_stats64,
1210 .ndo_add_slave = vrf_add_slave,
1211 .ndo_del_slave = vrf_del_slave,
1212 };
1213
1214 static u32 vrf_fib_table(const struct net_device *dev)
1215 {
1216 struct net_vrf *vrf = netdev_priv(dev);
1217
1218 return vrf->tb_id;
1219 }
1220
1221 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1222 {
1223 kfree_skb(skb);
1224 return 0;
1225 }
1226
1227 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1228 struct sk_buff *skb,
1229 struct net_device *dev)
1230 {
1231 struct net *net = dev_net(dev);
1232
1233 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1234 skb = NULL; /* kfree_skb(skb) handled by nf code */
1235
1236 return skb;
1237 }
1238
1239 #if IS_ENABLED(CONFIG_IPV6)
1240 /* neighbor handling is done with actual device; do not want
1241 * to flip skb->dev for those ndisc packets. This really fails
1242 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1243 * a start.
1244 */
1245 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1246 {
1247 const struct ipv6hdr *iph = ipv6_hdr(skb);
1248 bool rc = false;
1249
1250 if (iph->nexthdr == NEXTHDR_ICMP) {
1251 const struct icmp6hdr *icmph;
1252 struct icmp6hdr _icmph;
1253
1254 icmph = skb_header_pointer(skb, sizeof(*iph),
1255 sizeof(_icmph), &_icmph);
1256 if (!icmph)
1257 goto out;
1258
1259 switch (icmph->icmp6_type) {
1260 case NDISC_ROUTER_SOLICITATION:
1261 case NDISC_ROUTER_ADVERTISEMENT:
1262 case NDISC_NEIGHBOUR_SOLICITATION:
1263 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1264 case NDISC_REDIRECT:
1265 rc = true;
1266 break;
1267 }
1268 }
1269
1270 out:
1271 return rc;
1272 }
1273
1274 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1275 const struct net_device *dev,
1276 struct flowi6 *fl6,
1277 int ifindex,
1278 const struct sk_buff *skb,
1279 int flags)
1280 {
1281 struct net_vrf *vrf = netdev_priv(dev);
1282
1283 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1284 }
1285
1286 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1287 int ifindex)
1288 {
1289 const struct ipv6hdr *iph = ipv6_hdr(skb);
1290 struct flowi6 fl6 = {
1291 .flowi6_iif = ifindex,
1292 .flowi6_mark = skb->mark,
1293 .flowi6_proto = iph->nexthdr,
1294 .daddr = iph->daddr,
1295 .saddr = iph->saddr,
1296 .flowlabel = ip6_flowinfo(iph),
1297 };
1298 struct net *net = dev_net(vrf_dev);
1299 struct rt6_info *rt6;
1300
1301 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1302 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1303 if (unlikely(!rt6))
1304 return;
1305
1306 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1307 return;
1308
1309 skb_dst_set(skb, &rt6->dst);
1310 }
1311
1312 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1313 struct sk_buff *skb)
1314 {
1315 int orig_iif = skb->skb_iif;
1316 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1317 bool is_ndisc = ipv6_ndisc_frame(skb);
1318
1319 /* loopback, multicast & non-ND link-local traffic; do not push through
1320 * packet taps again. Reset pkt_type for upper layers to process skb
1321 */
1322 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1323 skb->dev = vrf_dev;
1324 skb->skb_iif = vrf_dev->ifindex;
1325 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1326 if (skb->pkt_type == PACKET_LOOPBACK)
1327 skb->pkt_type = PACKET_HOST;
1328 goto out;
1329 }
1330
1331 /* if packet is NDISC then keep the ingress interface */
1332 if (!is_ndisc) {
1333 vrf_rx_stats(vrf_dev, skb->len);
1334 skb->dev = vrf_dev;
1335 skb->skb_iif = vrf_dev->ifindex;
1336
1337 if (!list_empty(&vrf_dev->ptype_all)) {
1338 skb_push(skb, skb->mac_len);
1339 dev_queue_xmit_nit(skb, vrf_dev);
1340 skb_pull(skb, skb->mac_len);
1341 }
1342
1343 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1344 }
1345
1346 if (need_strict)
1347 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1348
1349 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1350 out:
1351 return skb;
1352 }
1353
1354 #else
1355 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1356 struct sk_buff *skb)
1357 {
1358 return skb;
1359 }
1360 #endif
1361
1362 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1363 struct sk_buff *skb)
1364 {
1365 skb->dev = vrf_dev;
1366 skb->skb_iif = vrf_dev->ifindex;
1367 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1368
1369 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1370 goto out;
1371
1372 /* loopback traffic; do not push through packet taps again.
1373 * Reset pkt_type for upper layers to process skb
1374 */
1375 if (skb->pkt_type == PACKET_LOOPBACK) {
1376 skb->pkt_type = PACKET_HOST;
1377 goto out;
1378 }
1379
1380 vrf_rx_stats(vrf_dev, skb->len);
1381
1382 if (!list_empty(&vrf_dev->ptype_all)) {
1383 skb_push(skb, skb->mac_len);
1384 dev_queue_xmit_nit(skb, vrf_dev);
1385 skb_pull(skb, skb->mac_len);
1386 }
1387
1388 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1389 out:
1390 return skb;
1391 }
1392
1393 /* called with rcu lock held */
1394 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1395 struct sk_buff *skb,
1396 u16 proto)
1397 {
1398 switch (proto) {
1399 case AF_INET:
1400 return vrf_ip_rcv(vrf_dev, skb);
1401 case AF_INET6:
1402 return vrf_ip6_rcv(vrf_dev, skb);
1403 }
1404
1405 return skb;
1406 }
1407
1408 #if IS_ENABLED(CONFIG_IPV6)
1409 /* send to link-local or multicast address via interface enslaved to
1410 * VRF device. Force lookup to VRF table without changing flow struct
1411 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1412 * is taken on the dst by this function.
1413 */
1414 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1415 struct flowi6 *fl6)
1416 {
1417 struct net *net = dev_net(dev);
1418 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1419 struct dst_entry *dst = NULL;
1420 struct rt6_info *rt;
1421
1422 /* VRF device does not have a link-local address and
1423 * sending packets to link-local or mcast addresses over
1424 * a VRF device does not make sense
1425 */
1426 if (fl6->flowi6_oif == dev->ifindex) {
1427 dst = &net->ipv6.ip6_null_entry->dst;
1428 return dst;
1429 }
1430
1431 if (!ipv6_addr_any(&fl6->saddr))
1432 flags |= RT6_LOOKUP_F_HAS_SADDR;
1433
1434 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1435 if (rt)
1436 dst = &rt->dst;
1437
1438 return dst;
1439 }
1440 #endif
1441
1442 static const struct l3mdev_ops vrf_l3mdev_ops = {
1443 .l3mdev_fib_table = vrf_fib_table,
1444 .l3mdev_l3_rcv = vrf_l3_rcv,
1445 .l3mdev_l3_out = vrf_l3_out,
1446 #if IS_ENABLED(CONFIG_IPV6)
1447 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1448 #endif
1449 };
1450
1451 static void vrf_get_drvinfo(struct net_device *dev,
1452 struct ethtool_drvinfo *info)
1453 {
1454 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1455 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1456 }
1457
1458 static const struct ethtool_ops vrf_ethtool_ops = {
1459 .get_drvinfo = vrf_get_drvinfo,
1460 };
1461
1462 static inline size_t vrf_fib_rule_nl_size(void)
1463 {
1464 size_t sz;
1465
1466 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1467 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1468 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1469 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1470
1471 return sz;
1472 }
1473
1474 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1475 {
1476 struct fib_rule_hdr *frh;
1477 struct nlmsghdr *nlh;
1478 struct sk_buff *skb;
1479 int err;
1480
1481 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1482 !ipv6_mod_enabled())
1483 return 0;
1484
1485 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1486 if (!skb)
1487 return -ENOMEM;
1488
1489 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1490 if (!nlh)
1491 goto nla_put_failure;
1492
1493 /* rule only needs to appear once */
1494 nlh->nlmsg_flags |= NLM_F_EXCL;
1495
1496 frh = nlmsg_data(nlh);
1497 memset(frh, 0, sizeof(*frh));
1498 frh->family = family;
1499 frh->action = FR_ACT_TO_TBL;
1500
1501 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1502 goto nla_put_failure;
1503
1504 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1505 goto nla_put_failure;
1506
1507 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1508 goto nla_put_failure;
1509
1510 nlmsg_end(skb, nlh);
1511
1512 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1513 skb->sk = dev_net(dev)->rtnl;
1514 if (add_it) {
1515 err = fib_nl_newrule(skb, nlh, NULL);
1516 if (err == -EEXIST)
1517 err = 0;
1518 } else {
1519 err = fib_nl_delrule(skb, nlh, NULL);
1520 if (err == -ENOENT)
1521 err = 0;
1522 }
1523 nlmsg_free(skb);
1524
1525 return err;
1526
1527 nla_put_failure:
1528 nlmsg_free(skb);
1529
1530 return -EMSGSIZE;
1531 }
1532
1533 static int vrf_add_fib_rules(const struct net_device *dev)
1534 {
1535 int err;
1536
1537 err = vrf_fib_rule(dev, AF_INET, true);
1538 if (err < 0)
1539 goto out_err;
1540
1541 err = vrf_fib_rule(dev, AF_INET6, true);
1542 if (err < 0)
1543 goto ipv6_err;
1544
1545 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1546 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1547 if (err < 0)
1548 goto ipmr_err;
1549 #endif
1550
1551 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1552 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1553 if (err < 0)
1554 goto ip6mr_err;
1555 #endif
1556
1557 return 0;
1558
1559 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1560 ip6mr_err:
1561 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1562 #endif
1563
1564 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1565 ipmr_err:
1566 vrf_fib_rule(dev, AF_INET6, false);
1567 #endif
1568
1569 ipv6_err:
1570 vrf_fib_rule(dev, AF_INET, false);
1571
1572 out_err:
1573 netdev_err(dev, "Failed to add FIB rules.\n");
1574 return err;
1575 }
1576
1577 static void vrf_setup(struct net_device *dev)
1578 {
1579 ether_setup(dev);
1580
1581 /* Initialize the device structure. */
1582 dev->netdev_ops = &vrf_netdev_ops;
1583 dev->l3mdev_ops = &vrf_l3mdev_ops;
1584 dev->ethtool_ops = &vrf_ethtool_ops;
1585 dev->needs_free_netdev = true;
1586
1587 /* Fill in device structure with ethernet-generic values. */
1588 eth_hw_addr_random(dev);
1589
1590 /* don't acquire vrf device's netif_tx_lock when transmitting */
1591 dev->features |= NETIF_F_LLTX;
1592
1593 /* don't allow vrf devices to change network namespaces. */
1594 dev->features |= NETIF_F_NETNS_LOCAL;
1595
1596 /* does not make sense for a VLAN to be added to a vrf device */
1597 dev->features |= NETIF_F_VLAN_CHALLENGED;
1598
1599 /* enable offload features */
1600 dev->features |= NETIF_F_GSO_SOFTWARE;
1601 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1602 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1603
1604 dev->hw_features = dev->features;
1605 dev->hw_enc_features = dev->features;
1606
1607 /* default to no qdisc; user can add if desired */
1608 dev->priv_flags |= IFF_NO_QUEUE;
1609 dev->priv_flags |= IFF_NO_RX_HANDLER;
1610 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1611
1612 /* VRF devices do not care about MTU, but if the MTU is set
1613 * too low then the ipv4 and ipv6 protocols are disabled
1614 * which breaks networking.
1615 */
1616 dev->min_mtu = IPV6_MIN_MTU;
1617 dev->max_mtu = ETH_MAX_MTU;
1618 }
1619
1620 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1621 struct netlink_ext_ack *extack)
1622 {
1623 if (tb[IFLA_ADDRESS]) {
1624 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1625 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1626 return -EINVAL;
1627 }
1628 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1629 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1630 return -EADDRNOTAVAIL;
1631 }
1632 }
1633 return 0;
1634 }
1635
1636 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1637 {
1638 struct net_device *port_dev;
1639 struct list_head *iter;
1640
1641 netdev_for_each_lower_dev(dev, port_dev, iter)
1642 vrf_del_slave(dev, port_dev);
1643
1644 vrf_map_unregister_dev(dev);
1645
1646 unregister_netdevice_queue(dev, head);
1647 }
1648
1649 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1650 struct nlattr *tb[], struct nlattr *data[],
1651 struct netlink_ext_ack *extack)
1652 {
1653 struct net_vrf *vrf = netdev_priv(dev);
1654 struct netns_vrf *nn_vrf;
1655 bool *add_fib_rules;
1656 struct net *net;
1657 int err;
1658
1659 if (!data || !data[IFLA_VRF_TABLE]) {
1660 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1661 return -EINVAL;
1662 }
1663
1664 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1665 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1666 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1667 "Invalid VRF table id");
1668 return -EINVAL;
1669 }
1670
1671 dev->priv_flags |= IFF_L3MDEV_MASTER;
1672
1673 err = register_netdevice(dev);
1674 if (err)
1675 goto out;
1676
1677 /* mapping between table_id and vrf;
1678 * note: such binding could not be done in the dev init function
1679 * because dev->ifindex id is not available yet.
1680 */
1681 vrf->ifindex = dev->ifindex;
1682
1683 err = vrf_map_register_dev(dev, extack);
1684 if (err) {
1685 unregister_netdevice(dev);
1686 goto out;
1687 }
1688
1689 net = dev_net(dev);
1690 nn_vrf = net_generic(net, vrf_net_id);
1691
1692 add_fib_rules = &nn_vrf->add_fib_rules;
1693 if (*add_fib_rules) {
1694 err = vrf_add_fib_rules(dev);
1695 if (err) {
1696 vrf_map_unregister_dev(dev);
1697 unregister_netdevice(dev);
1698 goto out;
1699 }
1700 *add_fib_rules = false;
1701 }
1702
1703 out:
1704 return err;
1705 }
1706
1707 static size_t vrf_nl_getsize(const struct net_device *dev)
1708 {
1709 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1710 }
1711
1712 static int vrf_fillinfo(struct sk_buff *skb,
1713 const struct net_device *dev)
1714 {
1715 struct net_vrf *vrf = netdev_priv(dev);
1716
1717 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1718 }
1719
1720 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1721 const struct net_device *slave_dev)
1722 {
1723 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1724 }
1725
1726 static int vrf_fill_slave_info(struct sk_buff *skb,
1727 const struct net_device *vrf_dev,
1728 const struct net_device *slave_dev)
1729 {
1730 struct net_vrf *vrf = netdev_priv(vrf_dev);
1731
1732 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1733 return -EMSGSIZE;
1734
1735 return 0;
1736 }
1737
1738 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1739 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1740 };
1741
1742 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1743 .kind = DRV_NAME,
1744 .priv_size = sizeof(struct net_vrf),
1745
1746 .get_size = vrf_nl_getsize,
1747 .policy = vrf_nl_policy,
1748 .validate = vrf_validate,
1749 .fill_info = vrf_fillinfo,
1750
1751 .get_slave_size = vrf_get_slave_size,
1752 .fill_slave_info = vrf_fill_slave_info,
1753
1754 .newlink = vrf_newlink,
1755 .dellink = vrf_dellink,
1756 .setup = vrf_setup,
1757 .maxtype = IFLA_VRF_MAX,
1758 };
1759
1760 static int vrf_device_event(struct notifier_block *unused,
1761 unsigned long event, void *ptr)
1762 {
1763 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1764
1765 /* only care about unregister events to drop slave references */
1766 if (event == NETDEV_UNREGISTER) {
1767 struct net_device *vrf_dev;
1768
1769 if (!netif_is_l3_slave(dev))
1770 goto out;
1771
1772 vrf_dev = netdev_master_upper_dev_get(dev);
1773 vrf_del_slave(vrf_dev, dev);
1774 }
1775 out:
1776 return NOTIFY_DONE;
1777 }
1778
1779 static struct notifier_block vrf_notifier_block __read_mostly = {
1780 .notifier_call = vrf_device_event,
1781 };
1782
1783 static int vrf_map_init(struct vrf_map *vmap)
1784 {
1785 spin_lock_init(&vmap->vmap_lock);
1786 hash_init(vmap->ht);
1787
1788 vmap->strict_mode = false;
1789
1790 return 0;
1791 }
1792
1793 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1794 void *buffer, size_t *lenp, loff_t *ppos)
1795 {
1796 struct net *net = (struct net *)table->extra1;
1797 struct vrf_map *vmap = netns_vrf_map(net);
1798 int proc_strict_mode = 0;
1799 struct ctl_table tmp = {
1800 .procname = table->procname,
1801 .data = &proc_strict_mode,
1802 .maxlen = sizeof(int),
1803 .mode = table->mode,
1804 .extra1 = SYSCTL_ZERO,
1805 .extra2 = SYSCTL_ONE,
1806 };
1807 int ret;
1808
1809 if (!write)
1810 proc_strict_mode = vrf_strict_mode(vmap);
1811
1812 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1813
1814 if (write && ret == 0)
1815 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1816
1817 return ret;
1818 }
1819
1820 static const struct ctl_table vrf_table[] = {
1821 {
1822 .procname = "strict_mode",
1823 .data = NULL,
1824 .maxlen = sizeof(int),
1825 .mode = 0644,
1826 .proc_handler = vrf_shared_table_handler,
1827 /* set by the vrf_netns_init */
1828 .extra1 = NULL,
1829 },
1830 { },
1831 };
1832
1833 /* Initialize per network namespace state */
1834 static int __net_init vrf_netns_init(struct net *net)
1835 {
1836 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1837 struct ctl_table *table;
1838 int res;
1839
1840 nn_vrf->add_fib_rules = true;
1841 vrf_map_init(&nn_vrf->vmap);
1842
1843 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1844 if (!table)
1845 return -ENOMEM;
1846
1847 /* init the extra1 parameter with the reference to current netns */
1848 table[0].extra1 = net;
1849
1850 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1851 if (!nn_vrf->ctl_hdr) {
1852 res = -ENOMEM;
1853 goto free_table;
1854 }
1855
1856 return 0;
1857
1858 free_table:
1859 kfree(table);
1860
1861 return res;
1862 }
1863
1864 static void __net_exit vrf_netns_exit(struct net *net)
1865 {
1866 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1867 struct ctl_table *table;
1868
1869 table = nn_vrf->ctl_hdr->ctl_table_arg;
1870 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1871 kfree(table);
1872 }
1873
1874 static struct pernet_operations vrf_net_ops __net_initdata = {
1875 .init = vrf_netns_init,
1876 .exit = vrf_netns_exit,
1877 .id = &vrf_net_id,
1878 .size = sizeof(struct netns_vrf),
1879 };
1880
1881 static int __init vrf_init_module(void)
1882 {
1883 int rc;
1884
1885 register_netdevice_notifier(&vrf_notifier_block);
1886
1887 rc = register_pernet_subsys(&vrf_net_ops);
1888 if (rc < 0)
1889 goto error;
1890
1891 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1892 vrf_ifindex_lookup_by_table_id);
1893 if (rc < 0)
1894 goto unreg_pernet;
1895
1896 rc = rtnl_link_register(&vrf_link_ops);
1897 if (rc < 0)
1898 goto table_lookup_unreg;
1899
1900 return 0;
1901
1902 table_lookup_unreg:
1903 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1904 vrf_ifindex_lookup_by_table_id);
1905
1906 unreg_pernet:
1907 unregister_pernet_subsys(&vrf_net_ops);
1908
1909 error:
1910 unregister_netdevice_notifier(&vrf_notifier_block);
1911 return rc;
1912 }
1913
1914 module_init(vrf_init_module);
1915 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1916 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1917 MODULE_LICENSE("GPL");
1918 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1919 MODULE_VERSION(DRV_VERSION);