]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wan/dscc4.c
Merge branch 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wan / dscc4.c
1 /*
2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3 *
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
6 *
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
9 *
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
12 *
13 *
14 * Theory of Operation
15 *
16 * I. Board Compatibility
17 *
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27 * driver.
28 * Sample code (2 revisions) is available at Infineon.
29 *
30 * II. Board-specific settings
31 *
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
36 *
37 * Sharing of the PCI interrupt line for this board is possible.
38 *
39 * III. Driver operation
40 *
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
46 *
47 * Tx direction
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
51 *
52 * Rx direction
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
55 *
56 * IV. Notes
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mystery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
66 *
67 * TODO:
68 * - test X25.
69 * - use polling at high irq/s,
70 * - performance analysis,
71 * - endianness.
72 *
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
75 *
76 * 2002/01 Ueimor
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
80 * - misc crapectomy.
81 */
82
83 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
84
85 #include <linux/module.h>
86 #include <linux/sched.h>
87 #include <linux/types.h>
88 #include <linux/errno.h>
89 #include <linux/list.h>
90 #include <linux/ioport.h>
91 #include <linux/pci.h>
92 #include <linux/kernel.h>
93 #include <linux/mm.h>
94 #include <linux/slab.h>
95
96 #include <asm/cache.h>
97 #include <asm/byteorder.h>
98 #include <linux/uaccess.h>
99 #include <asm/io.h>
100 #include <asm/irq.h>
101
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/string.h>
105
106 #include <linux/if_arp.h>
107 #include <linux/netdevice.h>
108 #include <linux/skbuff.h>
109 #include <linux/delay.h>
110 #include <linux/hdlc.h>
111 #include <linux/mutex.h>
112
113 /* Version */
114 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
115 static int debug;
116 static int quartz;
117
118 #ifdef CONFIG_DSCC4_PCI_RST
119 static DEFINE_MUTEX(dscc4_mutex);
120 static u32 dscc4_pci_config_store[16];
121 #endif
122
123 #define DRV_NAME "dscc4"
124
125 #undef DSCC4_POLLING
126
127 /* Module parameters */
128
129 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
130 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
131 MODULE_LICENSE("GPL");
132 module_param(debug, int, 0);
133 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
134 module_param(quartz, int, 0);
135 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
136
137 /* Structures */
138
139 struct thingie {
140 int define;
141 u32 bits;
142 };
143
144 struct TxFD {
145 __le32 state;
146 __le32 next;
147 __le32 data;
148 __le32 complete;
149 u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
150 /* FWIW, datasheet calls that "dummy" and says that card
151 * never looks at it; neither does the driver */
152 };
153
154 struct RxFD {
155 __le32 state1;
156 __le32 next;
157 __le32 data;
158 __le32 state2;
159 __le32 end;
160 };
161
162 #define DUMMY_SKB_SIZE 64
163 #define TX_LOW 8
164 #define TX_RING_SIZE 32
165 #define RX_RING_SIZE 32
166 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
167 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
168 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
169 #define TX_TIMEOUT (HZ/10)
170 #define DSCC4_HZ_MAX 33000000
171 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
172 #define dev_per_card 4
173 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
174
175 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
176 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
177
178 /*
179 * Given the operating range of Linux HDLC, the 2 defines below could be
180 * made simpler. However they are a fine reminder for the limitations of
181 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
182 */
183 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
184 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
185 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
186 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
187
188 struct dscc4_pci_priv {
189 __le32 *iqcfg;
190 int cfg_cur;
191 spinlock_t lock;
192 struct pci_dev *pdev;
193
194 struct dscc4_dev_priv *root;
195 dma_addr_t iqcfg_dma;
196 u32 xtal_hz;
197 };
198
199 struct dscc4_dev_priv {
200 struct sk_buff *rx_skbuff[RX_RING_SIZE];
201 struct sk_buff *tx_skbuff[TX_RING_SIZE];
202
203 struct RxFD *rx_fd;
204 struct TxFD *tx_fd;
205 __le32 *iqrx;
206 __le32 *iqtx;
207
208 /* FIXME: check all the volatile are required */
209 volatile u32 tx_current;
210 u32 rx_current;
211 u32 iqtx_current;
212 u32 iqrx_current;
213
214 volatile u32 tx_dirty;
215 volatile u32 ltda;
216 u32 rx_dirty;
217 u32 lrda;
218
219 dma_addr_t tx_fd_dma;
220 dma_addr_t rx_fd_dma;
221 dma_addr_t iqtx_dma;
222 dma_addr_t iqrx_dma;
223
224 u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
225
226 struct timer_list timer;
227
228 struct dscc4_pci_priv *pci_priv;
229 spinlock_t lock;
230
231 int dev_id;
232 volatile u32 flags;
233 u32 timer_help;
234
235 unsigned short encoding;
236 unsigned short parity;
237 struct net_device *dev;
238 sync_serial_settings settings;
239 void __iomem *base_addr;
240 u32 __pad __attribute__ ((aligned (4)));
241 };
242
243 /* GLOBAL registers definitions */
244 #define GCMDR 0x00
245 #define GSTAR 0x04
246 #define GMODE 0x08
247 #define IQLENR0 0x0C
248 #define IQLENR1 0x10
249 #define IQRX0 0x14
250 #define IQTX0 0x24
251 #define IQCFG 0x3c
252 #define FIFOCR1 0x44
253 #define FIFOCR2 0x48
254 #define FIFOCR3 0x4c
255 #define FIFOCR4 0x34
256 #define CH0CFG 0x50
257 #define CH0BRDA 0x54
258 #define CH0BTDA 0x58
259 #define CH0FRDA 0x98
260 #define CH0FTDA 0xb0
261 #define CH0LRDA 0xc8
262 #define CH0LTDA 0xe0
263
264 /* SCC registers definitions */
265 #define SCC_START 0x0100
266 #define SCC_OFFSET 0x80
267 #define CMDR 0x00
268 #define STAR 0x04
269 #define CCR0 0x08
270 #define CCR1 0x0c
271 #define CCR2 0x10
272 #define BRR 0x2C
273 #define RLCR 0x40
274 #define IMR 0x54
275 #define ISR 0x58
276
277 #define GPDIR 0x0400
278 #define GPDATA 0x0404
279 #define GPIM 0x0408
280
281 /* Bit masks */
282 #define EncodingMask 0x00700000
283 #define CrcMask 0x00000003
284
285 #define IntRxScc0 0x10000000
286 #define IntTxScc0 0x01000000
287
288 #define TxPollCmd 0x00000400
289 #define RxActivate 0x08000000
290 #define MTFi 0x04000000
291 #define Rdr 0x00400000
292 #define Rdt 0x00200000
293 #define Idr 0x00100000
294 #define Idt 0x00080000
295 #define TxSccRes 0x01000000
296 #define RxSccRes 0x00010000
297 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
298 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
299
300 #define Ccr0ClockMask 0x0000003f
301 #define Ccr1LoopMask 0x00000200
302 #define IsrMask 0x000fffff
303 #define BrrExpMask 0x00000f00
304 #define BrrMultMask 0x0000003f
305 #define EncodingMask 0x00700000
306 #define Hold cpu_to_le32(0x40000000)
307 #define SccBusy 0x10000000
308 #define PowerUp 0x80000000
309 #define Vis 0x00001000
310 #define FrameOk (FrameVfr | FrameCrc)
311 #define FrameVfr 0x80
312 #define FrameRdo 0x40
313 #define FrameCrc 0x20
314 #define FrameRab 0x10
315 #define FrameAborted cpu_to_le32(0x00000200)
316 #define FrameEnd cpu_to_le32(0x80000000)
317 #define DataComplete cpu_to_le32(0x40000000)
318 #define LengthCheck 0x00008000
319 #define SccEvt 0x02000000
320 #define NoAck 0x00000200
321 #define Action 0x00000001
322 #define HiDesc cpu_to_le32(0x20000000)
323
324 /* SCC events */
325 #define RxEvt 0xf0000000
326 #define TxEvt 0x0f000000
327 #define Alls 0x00040000
328 #define Xdu 0x00010000
329 #define Cts 0x00004000
330 #define Xmr 0x00002000
331 #define Xpr 0x00001000
332 #define Rdo 0x00000080
333 #define Rfs 0x00000040
334 #define Cd 0x00000004
335 #define Rfo 0x00000002
336 #define Flex 0x00000001
337
338 /* DMA core events */
339 #define Cfg 0x00200000
340 #define Hi 0x00040000
341 #define Fi 0x00020000
342 #define Err 0x00010000
343 #define Arf 0x00000002
344 #define ArAck 0x00000001
345
346 /* State flags */
347 #define Ready 0x00000000
348 #define NeedIDR 0x00000001
349 #define NeedIDT 0x00000002
350 #define RdoSet 0x00000004
351 #define FakeReset 0x00000008
352
353 /* Don't mask RDO. Ever. */
354 #ifdef DSCC4_POLLING
355 #define EventsMask 0xfffeef7f
356 #else
357 #define EventsMask 0xfffa8f7a
358 #endif
359
360 /* Functions prototypes */
361 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
362 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
363 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
364 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
365 static int dscc4_open(struct net_device *);
366 static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
367 struct net_device *);
368 static int dscc4_close(struct net_device *);
369 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
370 static int dscc4_init_ring(struct net_device *);
371 static void dscc4_release_ring(struct dscc4_dev_priv *);
372 static void dscc4_timer(unsigned long);
373 static void dscc4_tx_timeout(struct net_device *);
374 static irqreturn_t dscc4_irq(int irq, void *dev_id);
375 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
376 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
377 #ifdef DSCC4_POLLING
378 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
379 #endif
380
381 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
382 {
383 return dev_to_hdlc(dev)->priv;
384 }
385
386 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
387 {
388 return p->dev;
389 }
390
391 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
392 struct net_device *dev, int offset)
393 {
394 u32 state;
395
396 /* Cf scc_writel for concern regarding thread-safety */
397 state = dpriv->scc_regs[offset >> 2];
398 state &= ~mask;
399 state |= value;
400 dpriv->scc_regs[offset >> 2] = state;
401 writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
402 }
403
404 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
405 struct net_device *dev, int offset)
406 {
407 /*
408 * Thread-UNsafe.
409 * As of 2002/02/16, there are no thread racing for access.
410 */
411 dpriv->scc_regs[offset >> 2] = bits;
412 writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
413 }
414
415 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
416 {
417 return dpriv->scc_regs[offset >> 2];
418 }
419
420 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
421 {
422 /* Cf errata DS5 p.4 */
423 readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
424 return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
425 }
426
427 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
428 struct net_device *dev)
429 {
430 dpriv->ltda = dpriv->tx_fd_dma +
431 ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
432 writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
433 /* Flush posted writes *NOW* */
434 readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
435 }
436
437 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
438 struct net_device *dev)
439 {
440 dpriv->lrda = dpriv->rx_fd_dma +
441 ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
442 writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
443 }
444
445 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
446 {
447 return dpriv->tx_current == dpriv->tx_dirty;
448 }
449
450 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
451 struct net_device *dev)
452 {
453 return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
454 }
455
456 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
457 struct net_device *dev, const char *msg)
458 {
459 int ret = 0;
460
461 if (debug > 1) {
462 if (SOURCE_ID(state) != dpriv->dev_id) {
463 printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
464 dev->name, msg, SOURCE_ID(state), state );
465 ret = -1;
466 }
467 if (state & 0x0df80c00) {
468 printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
469 dev->name, msg, state);
470 ret = -1;
471 }
472 }
473 return ret;
474 }
475
476 static void dscc4_tx_print(struct net_device *dev,
477 struct dscc4_dev_priv *dpriv,
478 char *msg)
479 {
480 printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
481 dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
482 }
483
484 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
485 {
486 struct pci_dev *pdev = dpriv->pci_priv->pdev;
487 struct TxFD *tx_fd = dpriv->tx_fd;
488 struct RxFD *rx_fd = dpriv->rx_fd;
489 struct sk_buff **skbuff;
490 int i;
491
492 pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
493 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
494
495 skbuff = dpriv->tx_skbuff;
496 for (i = 0; i < TX_RING_SIZE; i++) {
497 if (*skbuff) {
498 pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
499 (*skbuff)->len, PCI_DMA_TODEVICE);
500 dev_kfree_skb(*skbuff);
501 }
502 skbuff++;
503 tx_fd++;
504 }
505
506 skbuff = dpriv->rx_skbuff;
507 for (i = 0; i < RX_RING_SIZE; i++) {
508 if (*skbuff) {
509 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
510 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
511 dev_kfree_skb(*skbuff);
512 }
513 skbuff++;
514 rx_fd++;
515 }
516 }
517
518 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
519 struct net_device *dev)
520 {
521 unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
522 struct RxFD *rx_fd = dpriv->rx_fd + dirty;
523 const int len = RX_MAX(HDLC_MAX_MRU);
524 struct sk_buff *skb;
525 int ret = 0;
526
527 skb = dev_alloc_skb(len);
528 dpriv->rx_skbuff[dirty] = skb;
529 if (skb) {
530 skb->protocol = hdlc_type_trans(skb, dev);
531 rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
532 skb->data, len, PCI_DMA_FROMDEVICE));
533 } else {
534 rx_fd->data = 0;
535 ret = -1;
536 }
537 return ret;
538 }
539
540 /*
541 * IRQ/thread/whatever safe
542 */
543 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
544 struct net_device *dev, char *msg)
545 {
546 s8 i = 0;
547
548 do {
549 if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
550 printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
551 msg, i);
552 goto done;
553 }
554 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
555 rmb();
556 } while (++i > 0);
557 netdev_err(dev, "%s timeout\n", msg);
558 done:
559 return (i >= 0) ? i : -EAGAIN;
560 }
561
562 static int dscc4_do_action(struct net_device *dev, char *msg)
563 {
564 void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
565 s16 i = 0;
566
567 writel(Action, ioaddr + GCMDR);
568 ioaddr += GSTAR;
569 do {
570 u32 state = readl(ioaddr);
571
572 if (state & ArAck) {
573 netdev_dbg(dev, "%s ack\n", msg);
574 writel(ArAck, ioaddr);
575 goto done;
576 } else if (state & Arf) {
577 netdev_err(dev, "%s failed\n", msg);
578 writel(Arf, ioaddr);
579 i = -1;
580 goto done;
581 }
582 rmb();
583 } while (++i > 0);
584 netdev_err(dev, "%s timeout\n", msg);
585 done:
586 return i;
587 }
588
589 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
590 {
591 int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
592 s8 i = 0;
593
594 do {
595 if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
596 (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
597 break;
598 smp_rmb();
599 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
600 } while (++i > 0);
601
602 return (i >= 0 ) ? i : -EAGAIN;
603 }
604
605 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
606 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
607 {
608 unsigned long flags;
609
610 spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
611 /* Cf errata DS5 p.6 */
612 writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
613 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
614 readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
615 writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
616 writel(Action, dpriv->base_addr + GCMDR);
617 spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
618 }
619
620 #endif
621
622 #if 0
623 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
624 {
625 u16 i = 0;
626
627 /* Cf errata DS5 p.7 */
628 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
629 scc_writel(0x00050000, dpriv, dev, CCR2);
630 /*
631 * Must be longer than the time required to fill the fifo.
632 */
633 while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
634 udelay(1);
635 wmb();
636 }
637
638 writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
639 if (dscc4_do_action(dev, "Rdt") < 0)
640 netdev_err(dev, "Tx reset failed\n");
641 }
642 #endif
643
644 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
645 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
646 struct net_device *dev)
647 {
648 struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
649 struct pci_dev *pdev = dpriv->pci_priv->pdev;
650 struct sk_buff *skb;
651 int pkt_len;
652
653 skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
654 if (!skb) {
655 printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
656 goto refill;
657 }
658 pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
659 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
660 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
661 if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
662 dev->stats.rx_packets++;
663 dev->stats.rx_bytes += pkt_len;
664 skb_put(skb, pkt_len);
665 if (netif_running(dev))
666 skb->protocol = hdlc_type_trans(skb, dev);
667 netif_rx(skb);
668 } else {
669 if (skb->data[pkt_len] & FrameRdo)
670 dev->stats.rx_fifo_errors++;
671 else if (!(skb->data[pkt_len] & FrameCrc))
672 dev->stats.rx_crc_errors++;
673 else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
674 (FrameVfr | FrameRab))
675 dev->stats.rx_length_errors++;
676 dev->stats.rx_errors++;
677 dev_kfree_skb_irq(skb);
678 }
679 refill:
680 while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
681 if (try_get_rx_skb(dpriv, dev) < 0)
682 break;
683 dpriv->rx_dirty++;
684 }
685 dscc4_rx_update(dpriv, dev);
686 rx_fd->state2 = 0x00000000;
687 rx_fd->end = cpu_to_le32(0xbabeface);
688 }
689
690 static void dscc4_free1(struct pci_dev *pdev)
691 {
692 struct dscc4_pci_priv *ppriv;
693 struct dscc4_dev_priv *root;
694 int i;
695
696 ppriv = pci_get_drvdata(pdev);
697 root = ppriv->root;
698
699 for (i = 0; i < dev_per_card; i++)
700 unregister_hdlc_device(dscc4_to_dev(root + i));
701
702 for (i = 0; i < dev_per_card; i++)
703 free_netdev(root[i].dev);
704 kfree(root);
705 kfree(ppriv);
706 }
707
708 static int dscc4_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
709 {
710 struct dscc4_pci_priv *priv;
711 struct dscc4_dev_priv *dpriv;
712 void __iomem *ioaddr;
713 int i, rc;
714
715 printk(KERN_DEBUG "%s", version);
716
717 rc = pci_enable_device(pdev);
718 if (rc < 0)
719 goto out;
720
721 rc = pci_request_region(pdev, 0, "registers");
722 if (rc < 0) {
723 pr_err("can't reserve MMIO region (regs)\n");
724 goto err_disable_0;
725 }
726 rc = pci_request_region(pdev, 1, "LBI interface");
727 if (rc < 0) {
728 pr_err("can't reserve MMIO region (lbi)\n");
729 goto err_free_mmio_region_1;
730 }
731
732 ioaddr = pci_ioremap_bar(pdev, 0);
733 if (!ioaddr) {
734 pr_err("cannot remap MMIO region %llx @ %llx\n",
735 (unsigned long long)pci_resource_len(pdev, 0),
736 (unsigned long long)pci_resource_start(pdev, 0));
737 rc = -EIO;
738 goto err_free_mmio_regions_2;
739 }
740 printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
741 (unsigned long long)pci_resource_start(pdev, 0),
742 (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
743
744 /* Cf errata DS5 p.2 */
745 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
746 pci_set_master(pdev);
747
748 rc = dscc4_found1(pdev, ioaddr);
749 if (rc < 0)
750 goto err_iounmap_3;
751
752 priv = pci_get_drvdata(pdev);
753
754 rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
755 if (rc < 0) {
756 pr_warn("IRQ %d busy\n", pdev->irq);
757 goto err_release_4;
758 }
759
760 /* power up/little endian/dma core controlled via lrda/ltda */
761 writel(0x00000001, ioaddr + GMODE);
762 /* Shared interrupt queue */
763 {
764 u32 bits;
765
766 bits = (IRQ_RING_SIZE >> 5) - 1;
767 bits |= bits << 4;
768 bits |= bits << 8;
769 bits |= bits << 16;
770 writel(bits, ioaddr + IQLENR0);
771 }
772 /* Global interrupt queue */
773 writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
774
775 rc = -ENOMEM;
776
777 priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
778 IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
779 if (!priv->iqcfg)
780 goto err_free_irq_5;
781 writel(priv->iqcfg_dma, ioaddr + IQCFG);
782
783 /*
784 * SCC 0-3 private rx/tx irq structures
785 * IQRX/TXi needs to be set soon. Learned it the hard way...
786 */
787 for (i = 0; i < dev_per_card; i++) {
788 dpriv = priv->root + i;
789 dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
790 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
791 if (!dpriv->iqtx)
792 goto err_free_iqtx_6;
793 writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
794 }
795 for (i = 0; i < dev_per_card; i++) {
796 dpriv = priv->root + i;
797 dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
798 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
799 if (!dpriv->iqrx)
800 goto err_free_iqrx_7;
801 writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
802 }
803
804 /* Cf application hint. Beware of hard-lock condition on threshold. */
805 writel(0x42104000, ioaddr + FIFOCR1);
806 //writel(0x9ce69800, ioaddr + FIFOCR2);
807 writel(0xdef6d800, ioaddr + FIFOCR2);
808 //writel(0x11111111, ioaddr + FIFOCR4);
809 writel(0x18181818, ioaddr + FIFOCR4);
810 // FIXME: should depend on the chipset revision
811 writel(0x0000000e, ioaddr + FIFOCR3);
812
813 writel(0xff200001, ioaddr + GCMDR);
814
815 rc = 0;
816 out:
817 return rc;
818
819 err_free_iqrx_7:
820 while (--i >= 0) {
821 dpriv = priv->root + i;
822 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
823 dpriv->iqrx, dpriv->iqrx_dma);
824 }
825 i = dev_per_card;
826 err_free_iqtx_6:
827 while (--i >= 0) {
828 dpriv = priv->root + i;
829 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
830 dpriv->iqtx, dpriv->iqtx_dma);
831 }
832 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
833 priv->iqcfg_dma);
834 err_free_irq_5:
835 free_irq(pdev->irq, priv->root);
836 err_release_4:
837 dscc4_free1(pdev);
838 err_iounmap_3:
839 iounmap (ioaddr);
840 err_free_mmio_regions_2:
841 pci_release_region(pdev, 1);
842 err_free_mmio_region_1:
843 pci_release_region(pdev, 0);
844 err_disable_0:
845 pci_disable_device(pdev);
846 goto out;
847 };
848
849 /*
850 * Let's hope the default values are decent enough to protect my
851 * feet from the user's gun - Ueimor
852 */
853 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
854 struct net_device *dev)
855 {
856 /* No interrupts, SCC core disabled. Let's relax */
857 scc_writel(0x00000000, dpriv, dev, CCR0);
858
859 scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
860
861 /*
862 * No address recognition/crc-CCITT/cts enabled
863 * Shared flags transmission disabled - cf errata DS5 p.11
864 * Carrier detect disabled - cf errata p.14
865 * FIXME: carrier detection/polarity may be handled more gracefully.
866 */
867 scc_writel(0x02408000, dpriv, dev, CCR1);
868
869 /* crc not forwarded - Cf errata DS5 p.11 */
870 scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
871 // crc forwarded
872 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
873 }
874
875 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
876 {
877 int ret = 0;
878
879 if ((hz < 0) || (hz > DSCC4_HZ_MAX))
880 ret = -EOPNOTSUPP;
881 else
882 dpriv->pci_priv->xtal_hz = hz;
883
884 return ret;
885 }
886
887 static const struct net_device_ops dscc4_ops = {
888 .ndo_open = dscc4_open,
889 .ndo_stop = dscc4_close,
890 .ndo_start_xmit = hdlc_start_xmit,
891 .ndo_do_ioctl = dscc4_ioctl,
892 .ndo_tx_timeout = dscc4_tx_timeout,
893 };
894
895 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
896 {
897 struct dscc4_pci_priv *ppriv;
898 struct dscc4_dev_priv *root;
899 int i, ret = -ENOMEM;
900
901 root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
902 if (!root)
903 goto err_out;
904
905 for (i = 0; i < dev_per_card; i++) {
906 root[i].dev = alloc_hdlcdev(root + i);
907 if (!root[i].dev)
908 goto err_free_dev;
909 }
910
911 ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
912 if (!ppriv)
913 goto err_free_dev;
914
915 ppriv->root = root;
916 spin_lock_init(&ppriv->lock);
917
918 for (i = 0; i < dev_per_card; i++) {
919 struct dscc4_dev_priv *dpriv = root + i;
920 struct net_device *d = dscc4_to_dev(dpriv);
921 hdlc_device *hdlc = dev_to_hdlc(d);
922
923 d->base_addr = (unsigned long)ioaddr;
924 d->irq = pdev->irq;
925 d->netdev_ops = &dscc4_ops;
926 d->watchdog_timeo = TX_TIMEOUT;
927 SET_NETDEV_DEV(d, &pdev->dev);
928
929 dpriv->dev_id = i;
930 dpriv->pci_priv = ppriv;
931 dpriv->base_addr = ioaddr;
932 spin_lock_init(&dpriv->lock);
933
934 hdlc->xmit = dscc4_start_xmit;
935 hdlc->attach = dscc4_hdlc_attach;
936
937 dscc4_init_registers(dpriv, d);
938 dpriv->parity = PARITY_CRC16_PR0_CCITT;
939 dpriv->encoding = ENCODING_NRZ;
940
941 ret = dscc4_init_ring(d);
942 if (ret < 0)
943 goto err_unregister;
944
945 ret = register_hdlc_device(d);
946 if (ret < 0) {
947 pr_err("unable to register\n");
948 dscc4_release_ring(dpriv);
949 goto err_unregister;
950 }
951 }
952
953 ret = dscc4_set_quartz(root, quartz);
954 if (ret < 0)
955 goto err_unregister;
956
957 pci_set_drvdata(pdev, ppriv);
958 return ret;
959
960 err_unregister:
961 while (i-- > 0) {
962 dscc4_release_ring(root + i);
963 unregister_hdlc_device(dscc4_to_dev(root + i));
964 }
965 kfree(ppriv);
966 i = dev_per_card;
967 err_free_dev:
968 while (i-- > 0)
969 free_netdev(root[i].dev);
970 kfree(root);
971 err_out:
972 return ret;
973 };
974
975 /* FIXME: get rid of the unneeded code */
976 static void dscc4_timer(unsigned long data)
977 {
978 struct net_device *dev = (struct net_device *)data;
979 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
980 // struct dscc4_pci_priv *ppriv;
981
982 goto done;
983 done:
984 dpriv->timer.expires = jiffies + TX_TIMEOUT;
985 add_timer(&dpriv->timer);
986 }
987
988 static void dscc4_tx_timeout(struct net_device *dev)
989 {
990 /* FIXME: something is missing there */
991 }
992
993 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
994 {
995 sync_serial_settings *settings = &dpriv->settings;
996
997 if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
998 struct net_device *dev = dscc4_to_dev(dpriv);
999
1000 netdev_info(dev, "loopback requires clock\n");
1001 return -1;
1002 }
1003 return 0;
1004 }
1005
1006 #ifdef CONFIG_DSCC4_PCI_RST
1007 /*
1008 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1009 * so as to provide a safe way to reset the asic while not the whole machine
1010 * rebooting.
1011 *
1012 * This code doesn't need to be efficient. Keep It Simple
1013 */
1014 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1015 {
1016 int i;
1017
1018 mutex_lock(&dscc4_mutex);
1019 for (i = 0; i < 16; i++)
1020 pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1021
1022 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1023 writel(0x001c0000, ioaddr + GMODE);
1024 /* Configure GPIO port as output */
1025 writel(0x0000ffff, ioaddr + GPDIR);
1026 /* Disable interruption */
1027 writel(0x0000ffff, ioaddr + GPIM);
1028
1029 writel(0x0000ffff, ioaddr + GPDATA);
1030 writel(0x00000000, ioaddr + GPDATA);
1031
1032 /* Flush posted writes */
1033 readl(ioaddr + GSTAR);
1034
1035 schedule_timeout_uninterruptible(msecs_to_jiffies(100));
1036
1037 for (i = 0; i < 16; i++)
1038 pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1039 mutex_unlock(&dscc4_mutex);
1040 }
1041 #else
1042 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1043 #endif /* CONFIG_DSCC4_PCI_RST */
1044
1045 static int dscc4_open(struct net_device *dev)
1046 {
1047 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1048 int ret = -EAGAIN;
1049
1050 if ((dscc4_loopback_check(dpriv) < 0))
1051 goto err;
1052
1053 if ((ret = hdlc_open(dev)))
1054 goto err;
1055
1056 /*
1057 * Due to various bugs, there is no way to reliably reset a
1058 * specific port (manufacturer's dependent special PCI #RST wiring
1059 * apart: it affects all ports). Thus the device goes in the best
1060 * silent mode possible at dscc4_close() time and simply claims to
1061 * be up if it's opened again. It still isn't possible to change
1062 * the HDLC configuration without rebooting but at least the ports
1063 * can be up/down ifconfig'ed without killing the host.
1064 */
1065 if (dpriv->flags & FakeReset) {
1066 dpriv->flags &= ~FakeReset;
1067 scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1068 scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1069 scc_writel(EventsMask, dpriv, dev, IMR);
1070 netdev_info(dev, "up again\n");
1071 goto done;
1072 }
1073
1074 /* IDT+IDR during XPR */
1075 dpriv->flags = NeedIDR | NeedIDT;
1076
1077 scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1078
1079 /*
1080 * The following is a bit paranoid...
1081 *
1082 * NB: the datasheet "...CEC will stay active if the SCC is in
1083 * power-down mode or..." and CCR2.RAC = 1 are two different
1084 * situations.
1085 */
1086 if (scc_readl_star(dpriv, dev) & SccBusy) {
1087 netdev_err(dev, "busy - try later\n");
1088 ret = -EAGAIN;
1089 goto err_out;
1090 } else
1091 netdev_info(dev, "available - good\n");
1092
1093 scc_writel(EventsMask, dpriv, dev, IMR);
1094
1095 /* Posted write is flushed in the wait_ack loop */
1096 scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1097
1098 if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1099 goto err_disable_scc_events;
1100
1101 /*
1102 * I would expect XPR near CE completion (before ? after ?).
1103 * At worst, this code won't see a late XPR and people
1104 * will have to re-issue an ifconfig (this is harmless).
1105 * WARNING, a really missing XPR usually means a hardware
1106 * reset is needed. Suggestions anyone ?
1107 */
1108 if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1109 pr_err("XPR timeout\n");
1110 goto err_disable_scc_events;
1111 }
1112
1113 if (debug > 2)
1114 dscc4_tx_print(dev, dpriv, "Open");
1115
1116 done:
1117 netif_start_queue(dev);
1118
1119 init_timer(&dpriv->timer);
1120 dpriv->timer.expires = jiffies + 10*HZ;
1121 dpriv->timer.data = (unsigned long)dev;
1122 dpriv->timer.function = dscc4_timer;
1123 add_timer(&dpriv->timer);
1124 netif_carrier_on(dev);
1125
1126 return 0;
1127
1128 err_disable_scc_events:
1129 scc_writel(0xffffffff, dpriv, dev, IMR);
1130 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1131 err_out:
1132 hdlc_close(dev);
1133 err:
1134 return ret;
1135 }
1136
1137 #ifdef DSCC4_POLLING
1138 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1139 {
1140 /* FIXME: it's gonna be easy (TM), for sure */
1141 }
1142 #endif /* DSCC4_POLLING */
1143
1144 static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1145 struct net_device *dev)
1146 {
1147 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1148 struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1149 struct TxFD *tx_fd;
1150 int next;
1151
1152 next = dpriv->tx_current%TX_RING_SIZE;
1153 dpriv->tx_skbuff[next] = skb;
1154 tx_fd = dpriv->tx_fd + next;
1155 tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1156 tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1157 PCI_DMA_TODEVICE));
1158 tx_fd->complete = 0x00000000;
1159 tx_fd->jiffies = jiffies;
1160 mb();
1161
1162 #ifdef DSCC4_POLLING
1163 spin_lock(&dpriv->lock);
1164 while (dscc4_tx_poll(dpriv, dev));
1165 spin_unlock(&dpriv->lock);
1166 #endif
1167
1168 if (debug > 2)
1169 dscc4_tx_print(dev, dpriv, "Xmit");
1170 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1171 if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1172 netif_stop_queue(dev);
1173
1174 if (dscc4_tx_quiescent(dpriv, dev))
1175 dscc4_do_tx(dpriv, dev);
1176
1177 return NETDEV_TX_OK;
1178 }
1179
1180 static int dscc4_close(struct net_device *dev)
1181 {
1182 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1183
1184 del_timer_sync(&dpriv->timer);
1185 netif_stop_queue(dev);
1186
1187 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1188 scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1189 scc_writel(0xffffffff, dpriv, dev, IMR);
1190
1191 dpriv->flags |= FakeReset;
1192
1193 hdlc_close(dev);
1194
1195 return 0;
1196 }
1197
1198 static inline int dscc4_check_clock_ability(int port)
1199 {
1200 int ret = 0;
1201
1202 #ifdef CONFIG_DSCC4_PCISYNC
1203 if (port >= 2)
1204 ret = -1;
1205 #endif
1206 return ret;
1207 }
1208
1209 /*
1210 * DS1 p.137: "There are a total of 13 different clocking modes..."
1211 * ^^
1212 * Design choices:
1213 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1214 * Clock mode 3b _should_ work but the testing seems to make this point
1215 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1216 * This is supposed to provide least surprise "DTE like" behavior.
1217 * - if line rate is specified, clocks are assumed to be locally generated.
1218 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1219 * between these it automagically done according on the required frequency
1220 * scaling. Of course some rounding may take place.
1221 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1222 * appropriate external clocking device for testing.
1223 * - no time-slot/clock mode 5: shameless laziness.
1224 *
1225 * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1226 *
1227 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1228 * won't pass the init sequence. For example, straight back-to-back DTE without
1229 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1230 * called.
1231 *
1232 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1233 * DS0 for example)
1234 *
1235 * Clock mode related bits of CCR0:
1236 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1237 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1238 * | | +-------- High Speed: say 0
1239 * | | | +-+-+-- Clock Mode: 0..7
1240 * | | | | | |
1241 * -+-+-+-+-+-+-+-+
1242 * x|x|5|4|3|2|1|0| lower bits
1243 *
1244 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1245 * +-+-+-+------------------ M (0..15)
1246 * | | | | +-+-+-+-+-+-- N (0..63)
1247 * 0 0 0 0 | | | | 0 0 | | | | | |
1248 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1249 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1250 *
1251 */
1252 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1253 {
1254 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1255 int ret = -1;
1256 u32 brr;
1257
1258 *state &= ~Ccr0ClockMask;
1259 if (*bps) { /* Clock generated - required for DCE */
1260 u32 n = 0, m = 0, divider;
1261 int xtal;
1262
1263 xtal = dpriv->pci_priv->xtal_hz;
1264 if (!xtal)
1265 goto done;
1266 if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1267 goto done;
1268 divider = xtal / *bps;
1269 if (divider > BRR_DIVIDER_MAX) {
1270 divider >>= 4;
1271 *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1272 } else
1273 *state |= 0x00000037; /* Clock mode 7b (BRG) */
1274 if (divider >> 22) {
1275 n = 63;
1276 m = 15;
1277 } else if (divider) {
1278 /* Extraction of the 6 highest weighted bits */
1279 m = 0;
1280 while (0xffffffc0 & divider) {
1281 m++;
1282 divider >>= 1;
1283 }
1284 n = divider;
1285 }
1286 brr = (m << 8) | n;
1287 divider = n << m;
1288 if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1289 divider <<= 4;
1290 *bps = xtal / divider;
1291 } else {
1292 /*
1293 * External clock - DTE
1294 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1295 * Nothing more to be done
1296 */
1297 brr = 0;
1298 }
1299 scc_writel(brr, dpriv, dev, BRR);
1300 ret = 0;
1301 done:
1302 return ret;
1303 }
1304
1305 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1306 {
1307 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1308 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1309 const size_t size = sizeof(dpriv->settings);
1310 int ret = 0;
1311
1312 if (dev->flags & IFF_UP)
1313 return -EBUSY;
1314
1315 if (cmd != SIOCWANDEV)
1316 return -EOPNOTSUPP;
1317
1318 switch(ifr->ifr_settings.type) {
1319 case IF_GET_IFACE:
1320 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1321 if (ifr->ifr_settings.size < size) {
1322 ifr->ifr_settings.size = size; /* data size wanted */
1323 return -ENOBUFS;
1324 }
1325 if (copy_to_user(line, &dpriv->settings, size))
1326 return -EFAULT;
1327 break;
1328
1329 case IF_IFACE_SYNC_SERIAL:
1330 if (!capable(CAP_NET_ADMIN))
1331 return -EPERM;
1332
1333 if (dpriv->flags & FakeReset) {
1334 netdev_info(dev, "please reset the device before this command\n");
1335 return -EPERM;
1336 }
1337 if (copy_from_user(&dpriv->settings, line, size))
1338 return -EFAULT;
1339 ret = dscc4_set_iface(dpriv, dev);
1340 break;
1341
1342 default:
1343 ret = hdlc_ioctl(dev, ifr, cmd);
1344 break;
1345 }
1346
1347 return ret;
1348 }
1349
1350 static int dscc4_match(const struct thingie *p, int value)
1351 {
1352 int i;
1353
1354 for (i = 0; p[i].define != -1; i++) {
1355 if (value == p[i].define)
1356 break;
1357 }
1358 if (p[i].define == -1)
1359 return -1;
1360 else
1361 return i;
1362 }
1363
1364 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1365 struct net_device *dev)
1366 {
1367 sync_serial_settings *settings = &dpriv->settings;
1368 int ret = -EOPNOTSUPP;
1369 u32 bps, state;
1370
1371 bps = settings->clock_rate;
1372 state = scc_readl(dpriv, CCR0);
1373 if (dscc4_set_clock(dev, &bps, &state) < 0)
1374 goto done;
1375 if (bps) { /* DCE */
1376 printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1377 if (settings->clock_rate != bps) {
1378 printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1379 dev->name, settings->clock_rate, bps);
1380 settings->clock_rate = bps;
1381 }
1382 } else { /* DTE */
1383 state |= PowerUp | Vis;
1384 printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1385 }
1386 scc_writel(state, dpriv, dev, CCR0);
1387 ret = 0;
1388 done:
1389 return ret;
1390 }
1391
1392 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1393 struct net_device *dev)
1394 {
1395 static const struct thingie encoding[] = {
1396 { ENCODING_NRZ, 0x00000000 },
1397 { ENCODING_NRZI, 0x00200000 },
1398 { ENCODING_FM_MARK, 0x00400000 },
1399 { ENCODING_FM_SPACE, 0x00500000 },
1400 { ENCODING_MANCHESTER, 0x00600000 },
1401 { -1, 0}
1402 };
1403 int i, ret = 0;
1404
1405 i = dscc4_match(encoding, dpriv->encoding);
1406 if (i >= 0)
1407 scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1408 else
1409 ret = -EOPNOTSUPP;
1410 return ret;
1411 }
1412
1413 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1414 struct net_device *dev)
1415 {
1416 sync_serial_settings *settings = &dpriv->settings;
1417 u32 state;
1418
1419 state = scc_readl(dpriv, CCR1);
1420 if (settings->loopback) {
1421 printk(KERN_DEBUG "%s: loopback\n", dev->name);
1422 state |= 0x00000100;
1423 } else {
1424 printk(KERN_DEBUG "%s: normal\n", dev->name);
1425 state &= ~0x00000100;
1426 }
1427 scc_writel(state, dpriv, dev, CCR1);
1428 return 0;
1429 }
1430
1431 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1432 struct net_device *dev)
1433 {
1434 static const struct thingie crc[] = {
1435 { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1436 { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1437 { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1438 { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1439 };
1440 int i, ret = 0;
1441
1442 i = dscc4_match(crc, dpriv->parity);
1443 if (i >= 0)
1444 scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1445 else
1446 ret = -EOPNOTSUPP;
1447 return ret;
1448 }
1449
1450 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1451 {
1452 struct {
1453 int (*action)(struct dscc4_dev_priv *, struct net_device *);
1454 } *p, do_setting[] = {
1455 { dscc4_encoding_setting },
1456 { dscc4_clock_setting },
1457 { dscc4_loopback_setting },
1458 { dscc4_crc_setting },
1459 { NULL }
1460 };
1461 int ret = 0;
1462
1463 for (p = do_setting; p->action; p++) {
1464 if ((ret = p->action(dpriv, dev)) < 0)
1465 break;
1466 }
1467 return ret;
1468 }
1469
1470 static irqreturn_t dscc4_irq(int irq, void *token)
1471 {
1472 struct dscc4_dev_priv *root = token;
1473 struct dscc4_pci_priv *priv;
1474 struct net_device *dev;
1475 void __iomem *ioaddr;
1476 u32 state;
1477 unsigned long flags;
1478 int i, handled = 1;
1479
1480 priv = root->pci_priv;
1481 dev = dscc4_to_dev(root);
1482
1483 spin_lock_irqsave(&priv->lock, flags);
1484
1485 ioaddr = root->base_addr;
1486
1487 state = readl(ioaddr + GSTAR);
1488 if (!state) {
1489 handled = 0;
1490 goto out;
1491 }
1492 if (debug > 3)
1493 printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1494 writel(state, ioaddr + GSTAR);
1495
1496 if (state & Arf) {
1497 netdev_err(dev, "failure (Arf). Harass the maintainer\n");
1498 goto out;
1499 }
1500 state &= ~ArAck;
1501 if (state & Cfg) {
1502 if (debug > 0)
1503 printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1504 if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1505 netdev_err(dev, "CFG failed\n");
1506 if (!(state &= ~Cfg))
1507 goto out;
1508 }
1509 if (state & RxEvt) {
1510 i = dev_per_card - 1;
1511 do {
1512 dscc4_rx_irq(priv, root + i);
1513 } while (--i >= 0);
1514 state &= ~RxEvt;
1515 }
1516 if (state & TxEvt) {
1517 i = dev_per_card - 1;
1518 do {
1519 dscc4_tx_irq(priv, root + i);
1520 } while (--i >= 0);
1521 state &= ~TxEvt;
1522 }
1523 out:
1524 spin_unlock_irqrestore(&priv->lock, flags);
1525 return IRQ_RETVAL(handled);
1526 }
1527
1528 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1529 struct dscc4_dev_priv *dpriv)
1530 {
1531 struct net_device *dev = dscc4_to_dev(dpriv);
1532 u32 state;
1533 int cur, loop = 0;
1534
1535 try:
1536 cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1537 state = le32_to_cpu(dpriv->iqtx[cur]);
1538 if (!state) {
1539 if (debug > 4)
1540 printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1541 state);
1542 if ((debug > 1) && (loop > 1))
1543 printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1544 if (loop && netif_queue_stopped(dev))
1545 if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1546 netif_wake_queue(dev);
1547
1548 if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1549 !dscc4_tx_done(dpriv))
1550 dscc4_do_tx(dpriv, dev);
1551 return;
1552 }
1553 loop++;
1554 dpriv->iqtx[cur] = 0;
1555 dpriv->iqtx_current++;
1556
1557 if (state_check(state, dpriv, dev, "Tx") < 0)
1558 return;
1559
1560 if (state & SccEvt) {
1561 if (state & Alls) {
1562 struct sk_buff *skb;
1563 struct TxFD *tx_fd;
1564
1565 if (debug > 2)
1566 dscc4_tx_print(dev, dpriv, "Alls");
1567 /*
1568 * DataComplete can't be trusted for Tx completion.
1569 * Cf errata DS5 p.8
1570 */
1571 cur = dpriv->tx_dirty%TX_RING_SIZE;
1572 tx_fd = dpriv->tx_fd + cur;
1573 skb = dpriv->tx_skbuff[cur];
1574 if (skb) {
1575 pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1576 skb->len, PCI_DMA_TODEVICE);
1577 if (tx_fd->state & FrameEnd) {
1578 dev->stats.tx_packets++;
1579 dev->stats.tx_bytes += skb->len;
1580 }
1581 dev_kfree_skb_irq(skb);
1582 dpriv->tx_skbuff[cur] = NULL;
1583 ++dpriv->tx_dirty;
1584 } else {
1585 if (debug > 1)
1586 netdev_err(dev, "Tx: NULL skb %d\n",
1587 cur);
1588 }
1589 /*
1590 * If the driver ends sending crap on the wire, it
1591 * will be way easier to diagnose than the (not so)
1592 * random freeze induced by null sized tx frames.
1593 */
1594 tx_fd->data = tx_fd->next;
1595 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1596 tx_fd->complete = 0x00000000;
1597 tx_fd->jiffies = 0;
1598
1599 if (!(state &= ~Alls))
1600 goto try;
1601 }
1602 /*
1603 * Transmit Data Underrun
1604 */
1605 if (state & Xdu) {
1606 netdev_err(dev, "Tx Data Underrun. Ask maintainer\n");
1607 dpriv->flags = NeedIDT;
1608 /* Tx reset */
1609 writel(MTFi | Rdt,
1610 dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1611 writel(Action, dpriv->base_addr + GCMDR);
1612 return;
1613 }
1614 if (state & Cts) {
1615 netdev_info(dev, "CTS transition\n");
1616 if (!(state &= ~Cts)) /* DEBUG */
1617 goto try;
1618 }
1619 if (state & Xmr) {
1620 /* Frame needs to be sent again - FIXME */
1621 netdev_err(dev, "Tx ReTx. Ask maintainer\n");
1622 if (!(state &= ~Xmr)) /* DEBUG */
1623 goto try;
1624 }
1625 if (state & Xpr) {
1626 void __iomem *scc_addr;
1627 unsigned long ring;
1628 unsigned int i;
1629
1630 /*
1631 * - the busy condition happens (sometimes);
1632 * - it doesn't seem to make the handler unreliable.
1633 */
1634 for (i = 1; i; i <<= 1) {
1635 if (!(scc_readl_star(dpriv, dev) & SccBusy))
1636 break;
1637 }
1638 if (!i)
1639 netdev_info(dev, "busy in irq\n");
1640
1641 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1642 /* Keep this order: IDT before IDR */
1643 if (dpriv->flags & NeedIDT) {
1644 if (debug > 2)
1645 dscc4_tx_print(dev, dpriv, "Xpr");
1646 ring = dpriv->tx_fd_dma +
1647 (dpriv->tx_dirty%TX_RING_SIZE)*
1648 sizeof(struct TxFD);
1649 writel(ring, scc_addr + CH0BTDA);
1650 dscc4_do_tx(dpriv, dev);
1651 writel(MTFi | Idt, scc_addr + CH0CFG);
1652 if (dscc4_do_action(dev, "IDT") < 0)
1653 goto err_xpr;
1654 dpriv->flags &= ~NeedIDT;
1655 }
1656 if (dpriv->flags & NeedIDR) {
1657 ring = dpriv->rx_fd_dma +
1658 (dpriv->rx_current%RX_RING_SIZE)*
1659 sizeof(struct RxFD);
1660 writel(ring, scc_addr + CH0BRDA);
1661 dscc4_rx_update(dpriv, dev);
1662 writel(MTFi | Idr, scc_addr + CH0CFG);
1663 if (dscc4_do_action(dev, "IDR") < 0)
1664 goto err_xpr;
1665 dpriv->flags &= ~NeedIDR;
1666 smp_wmb();
1667 /* Activate receiver and misc */
1668 scc_writel(0x08050008, dpriv, dev, CCR2);
1669 }
1670 err_xpr:
1671 if (!(state &= ~Xpr))
1672 goto try;
1673 }
1674 if (state & Cd) {
1675 if (debug > 0)
1676 netdev_info(dev, "CD transition\n");
1677 if (!(state &= ~Cd)) /* DEBUG */
1678 goto try;
1679 }
1680 } else { /* ! SccEvt */
1681 if (state & Hi) {
1682 #ifdef DSCC4_POLLING
1683 while (!dscc4_tx_poll(dpriv, dev));
1684 #endif
1685 netdev_info(dev, "Tx Hi\n");
1686 state &= ~Hi;
1687 }
1688 if (state & Err) {
1689 netdev_info(dev, "Tx ERR\n");
1690 dev->stats.tx_errors++;
1691 state &= ~Err;
1692 }
1693 }
1694 goto try;
1695 }
1696
1697 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1698 struct dscc4_dev_priv *dpriv)
1699 {
1700 struct net_device *dev = dscc4_to_dev(dpriv);
1701 u32 state;
1702 int cur;
1703
1704 try:
1705 cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1706 state = le32_to_cpu(dpriv->iqrx[cur]);
1707 if (!state)
1708 return;
1709 dpriv->iqrx[cur] = 0;
1710 dpriv->iqrx_current++;
1711
1712 if (state_check(state, dpriv, dev, "Rx") < 0)
1713 return;
1714
1715 if (!(state & SccEvt)){
1716 struct RxFD *rx_fd;
1717
1718 if (debug > 4)
1719 printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1720 state);
1721 state &= 0x00ffffff;
1722 if (state & Err) { /* Hold or reset */
1723 printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1724 cur = dpriv->rx_current%RX_RING_SIZE;
1725 rx_fd = dpriv->rx_fd + cur;
1726 /*
1727 * Presume we're not facing a DMAC receiver reset.
1728 * As We use the rx size-filtering feature of the
1729 * DSCC4, the beginning of a new frame is waiting in
1730 * the rx fifo. I bet a Receive Data Overflow will
1731 * happen most of time but let's try and avoid it.
1732 * Btw (as for RDO) if one experiences ERR whereas
1733 * the system looks rather idle, there may be a
1734 * problem with latency. In this case, increasing
1735 * RX_RING_SIZE may help.
1736 */
1737 //while (dpriv->rx_needs_refill) {
1738 while (!(rx_fd->state1 & Hold)) {
1739 rx_fd++;
1740 cur++;
1741 if (!(cur = cur%RX_RING_SIZE))
1742 rx_fd = dpriv->rx_fd;
1743 }
1744 //dpriv->rx_needs_refill--;
1745 try_get_rx_skb(dpriv, dev);
1746 if (!rx_fd->data)
1747 goto try;
1748 rx_fd->state1 &= ~Hold;
1749 rx_fd->state2 = 0x00000000;
1750 rx_fd->end = cpu_to_le32(0xbabeface);
1751 //}
1752 goto try;
1753 }
1754 if (state & Fi) {
1755 dscc4_rx_skb(dpriv, dev);
1756 goto try;
1757 }
1758 if (state & Hi ) { /* HI bit */
1759 netdev_info(dev, "Rx Hi\n");
1760 state &= ~Hi;
1761 goto try;
1762 }
1763 } else { /* SccEvt */
1764 if (debug > 1) {
1765 //FIXME: verifier la presence de tous les evenements
1766 static struct {
1767 u32 mask;
1768 const char *irq_name;
1769 } evts[] = {
1770 { 0x00008000, "TIN"},
1771 { 0x00000020, "RSC"},
1772 { 0x00000010, "PCE"},
1773 { 0x00000008, "PLLA"},
1774 { 0, NULL}
1775 }, *evt;
1776
1777 for (evt = evts; evt->irq_name; evt++) {
1778 if (state & evt->mask) {
1779 printk(KERN_DEBUG "%s: %s\n",
1780 dev->name, evt->irq_name);
1781 if (!(state &= ~evt->mask))
1782 goto try;
1783 }
1784 }
1785 } else {
1786 if (!(state &= ~0x0000c03c))
1787 goto try;
1788 }
1789 if (state & Cts) {
1790 netdev_info(dev, "CTS transition\n");
1791 if (!(state &= ~Cts)) /* DEBUG */
1792 goto try;
1793 }
1794 /*
1795 * Receive Data Overflow (FIXME: fscked)
1796 */
1797 if (state & Rdo) {
1798 struct RxFD *rx_fd;
1799 void __iomem *scc_addr;
1800 int cur;
1801
1802 //if (debug)
1803 // dscc4_rx_dump(dpriv);
1804 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1805
1806 scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1807 /*
1808 * This has no effect. Why ?
1809 * ORed with TxSccRes, one sees the CFG ack (for
1810 * the TX part only).
1811 */
1812 scc_writel(RxSccRes, dpriv, dev, CMDR);
1813 dpriv->flags |= RdoSet;
1814
1815 /*
1816 * Let's try and save something in the received data.
1817 * rx_current must be incremented at least once to
1818 * avoid HOLD in the BRDA-to-be-pointed desc.
1819 */
1820 do {
1821 cur = dpriv->rx_current++%RX_RING_SIZE;
1822 rx_fd = dpriv->rx_fd + cur;
1823 if (!(rx_fd->state2 & DataComplete))
1824 break;
1825 if (rx_fd->state2 & FrameAborted) {
1826 dev->stats.rx_over_errors++;
1827 rx_fd->state1 |= Hold;
1828 rx_fd->state2 = 0x00000000;
1829 rx_fd->end = cpu_to_le32(0xbabeface);
1830 } else
1831 dscc4_rx_skb(dpriv, dev);
1832 } while (1);
1833
1834 if (debug > 0) {
1835 if (dpriv->flags & RdoSet)
1836 printk(KERN_DEBUG
1837 "%s: no RDO in Rx data\n", DRV_NAME);
1838 }
1839 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1840 /*
1841 * FIXME: must the reset be this violent ?
1842 */
1843 #warning "FIXME: CH0BRDA"
1844 writel(dpriv->rx_fd_dma +
1845 (dpriv->rx_current%RX_RING_SIZE)*
1846 sizeof(struct RxFD), scc_addr + CH0BRDA);
1847 writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1848 if (dscc4_do_action(dev, "RDR") < 0) {
1849 netdev_err(dev, "RDO recovery failed(RDR)\n");
1850 goto rdo_end;
1851 }
1852 writel(MTFi|Idr, scc_addr + CH0CFG);
1853 if (dscc4_do_action(dev, "IDR") < 0) {
1854 netdev_err(dev, "RDO recovery failed(IDR)\n");
1855 goto rdo_end;
1856 }
1857 rdo_end:
1858 #endif
1859 scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1860 goto try;
1861 }
1862 if (state & Cd) {
1863 netdev_info(dev, "CD transition\n");
1864 if (!(state &= ~Cd)) /* DEBUG */
1865 goto try;
1866 }
1867 if (state & Flex) {
1868 printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1869 if (!(state &= ~Flex))
1870 goto try;
1871 }
1872 }
1873 }
1874
1875 /*
1876 * I had expected the following to work for the first descriptor
1877 * (tx_fd->state = 0xc0000000)
1878 * - Hold=1 (don't try and branch to the next descripto);
1879 * - No=0 (I want an empty data section, i.e. size=0);
1880 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1881 * It failed and locked solid. Thus the introduction of a dummy skb.
1882 * Problem is acknowledged in errata sheet DS5. Joy :o/
1883 */
1884 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1885 {
1886 struct sk_buff *skb;
1887
1888 skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1889 if (skb) {
1890 int last = dpriv->tx_dirty%TX_RING_SIZE;
1891 struct TxFD *tx_fd = dpriv->tx_fd + last;
1892
1893 skb->len = DUMMY_SKB_SIZE;
1894 skb_copy_to_linear_data(skb, version,
1895 strlen(version) % DUMMY_SKB_SIZE);
1896 tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1897 tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1898 skb->data, DUMMY_SKB_SIZE,
1899 PCI_DMA_TODEVICE));
1900 dpriv->tx_skbuff[last] = skb;
1901 }
1902 return skb;
1903 }
1904
1905 static int dscc4_init_ring(struct net_device *dev)
1906 {
1907 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1908 struct pci_dev *pdev = dpriv->pci_priv->pdev;
1909 struct TxFD *tx_fd;
1910 struct RxFD *rx_fd;
1911 void *ring;
1912 int i;
1913
1914 ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1915 if (!ring)
1916 goto err_out;
1917 dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1918
1919 ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1920 if (!ring)
1921 goto err_free_dma_rx;
1922 dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1923
1924 memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1925 dpriv->tx_dirty = 0xffffffff;
1926 i = dpriv->tx_current = 0;
1927 do {
1928 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1929 tx_fd->complete = 0x00000000;
1930 /* FIXME: NULL should be ok - to be tried */
1931 tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1932 (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1933 (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1934 } while (i < TX_RING_SIZE);
1935
1936 if (!dscc4_init_dummy_skb(dpriv))
1937 goto err_free_dma_tx;
1938
1939 memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1940 i = dpriv->rx_dirty = dpriv->rx_current = 0;
1941 do {
1942 /* size set by the host. Multiple of 4 bytes please */
1943 rx_fd->state1 = HiDesc;
1944 rx_fd->state2 = 0x00000000;
1945 rx_fd->end = cpu_to_le32(0xbabeface);
1946 rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1947 // FIXME: return value verifiee mais traitement suspect
1948 if (try_get_rx_skb(dpriv, dev) >= 0)
1949 dpriv->rx_dirty++;
1950 (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1951 (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1952 } while (i < RX_RING_SIZE);
1953
1954 return 0;
1955
1956 err_free_dma_tx:
1957 pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1958 err_free_dma_rx:
1959 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1960 err_out:
1961 return -ENOMEM;
1962 }
1963
1964 static void dscc4_remove_one(struct pci_dev *pdev)
1965 {
1966 struct dscc4_pci_priv *ppriv;
1967 struct dscc4_dev_priv *root;
1968 void __iomem *ioaddr;
1969 int i;
1970
1971 ppriv = pci_get_drvdata(pdev);
1972 root = ppriv->root;
1973
1974 ioaddr = root->base_addr;
1975
1976 dscc4_pci_reset(pdev, ioaddr);
1977
1978 free_irq(pdev->irq, root);
1979 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1980 ppriv->iqcfg_dma);
1981 for (i = 0; i < dev_per_card; i++) {
1982 struct dscc4_dev_priv *dpriv = root + i;
1983
1984 dscc4_release_ring(dpriv);
1985 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1986 dpriv->iqrx, dpriv->iqrx_dma);
1987 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1988 dpriv->iqtx, dpriv->iqtx_dma);
1989 }
1990
1991 dscc4_free1(pdev);
1992
1993 iounmap(ioaddr);
1994
1995 pci_release_region(pdev, 1);
1996 pci_release_region(pdev, 0);
1997
1998 pci_disable_device(pdev);
1999 }
2000
2001 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2002 unsigned short parity)
2003 {
2004 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2005
2006 if (encoding != ENCODING_NRZ &&
2007 encoding != ENCODING_NRZI &&
2008 encoding != ENCODING_FM_MARK &&
2009 encoding != ENCODING_FM_SPACE &&
2010 encoding != ENCODING_MANCHESTER)
2011 return -EINVAL;
2012
2013 if (parity != PARITY_NONE &&
2014 parity != PARITY_CRC16_PR0_CCITT &&
2015 parity != PARITY_CRC16_PR1_CCITT &&
2016 parity != PARITY_CRC32_PR0_CCITT &&
2017 parity != PARITY_CRC32_PR1_CCITT)
2018 return -EINVAL;
2019
2020 dpriv->encoding = encoding;
2021 dpriv->parity = parity;
2022 return 0;
2023 }
2024
2025 #ifndef MODULE
2026 static int __init dscc4_setup(char *str)
2027 {
2028 int *args[] = { &debug, &quartz, NULL }, **p = args;
2029
2030 while (*p && (get_option(&str, *p) == 2))
2031 p++;
2032 return 1;
2033 }
2034
2035 __setup("dscc4.setup=", dscc4_setup);
2036 #endif
2037
2038 static const struct pci_device_id dscc4_pci_tbl[] = {
2039 { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2040 PCI_ANY_ID, PCI_ANY_ID, },
2041 { 0,}
2042 };
2043 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2044
2045 static struct pci_driver dscc4_driver = {
2046 .name = DRV_NAME,
2047 .id_table = dscc4_pci_tbl,
2048 .probe = dscc4_init_one,
2049 .remove = dscc4_remove_one,
2050 };
2051
2052 module_pci_driver(dscc4_driver);