]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/wan/farsync.c
Merge tag 'pm-4.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wan / farsync.c
1 /*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <linux/if.h>
31 #include <linux/hdlc.h>
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34
35 #include "farsync.h"
36
37 /*
38 * Module info
39 */
40 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
41 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
42 MODULE_LICENSE("GPL");
43
44 /* Driver configuration and global parameters
45 * ==========================================
46 */
47
48 /* Number of ports (per card) and cards supported
49 */
50 #define FST_MAX_PORTS 4
51 #define FST_MAX_CARDS 32
52
53 /* Default parameters for the link
54 */
55 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
56 * useful */
57 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
58 * of frames on the way down to the card
59 * so that we can keep the card busy
60 * and maximise throughput
61 */
62 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
63 * network layer */
64 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
65 * control from network layer */
66 #define FST_MAX_MTU 8000 /* Huge but possible */
67 #define FST_DEF_MTU 1500 /* Common sane value */
68
69 #define FST_TX_TIMEOUT (2*HZ)
70
71 #ifdef ARPHRD_RAWHDLC
72 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
73 #else
74 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
75 #endif
76
77 /*
78 * Modules parameters and associated variables
79 */
80 static int fst_txq_low = FST_LOW_WATER_MARK;
81 static int fst_txq_high = FST_HIGH_WATER_MARK;
82 static int fst_max_reads = 7;
83 static int fst_excluded_cards = 0;
84 static int fst_excluded_list[FST_MAX_CARDS];
85
86 module_param(fst_txq_low, int, 0);
87 module_param(fst_txq_high, int, 0);
88 module_param(fst_max_reads, int, 0);
89 module_param(fst_excluded_cards, int, 0);
90 module_param_array(fst_excluded_list, int, NULL, 0);
91
92 /* Card shared memory layout
93 * =========================
94 */
95 #pragma pack(1)
96
97 /* This information is derived in part from the FarSite FarSync Smc.h
98 * file. Unfortunately various name clashes and the non-portability of the
99 * bit field declarations in that file have meant that I have chosen to
100 * recreate the information here.
101 *
102 * The SMC (Shared Memory Configuration) has a version number that is
103 * incremented every time there is a significant change. This number can
104 * be used to check that we have not got out of step with the firmware
105 * contained in the .CDE files.
106 */
107 #define SMC_VERSION 24
108
109 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
110
111 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
112 * configuration structure */
113 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
114 * buffers */
115
116 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
117 #define LEN_RX_BUFFER 8192
118
119 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
120 #define LEN_SMALL_RX_BUFFER 256
121
122 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
123 #define NUM_RX_BUFFER 8
124
125 /* Interrupt retry time in milliseconds */
126 #define INT_RETRY_TIME 2
127
128 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
129 * of buffer descriptors. The structure is almost identical to that used
130 * in the LANCE Ethernet controllers. Details available as PDF from the
131 * AMD web site: http://www.amd.com/products/epd/processors/\
132 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
133 */
134 struct txdesc { /* Transmit descriptor */
135 volatile u16 ladr; /* Low order address of packet. This is a
136 * linear address in the Am186 memory space
137 */
138 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
139 * bits must be zero
140 */
141 volatile u8 bits; /* Status and config */
142 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
143 * Transmit terminal count interrupt enable in
144 * top bit.
145 */
146 u16 unused; /* Not used in Tx */
147 };
148
149 struct rxdesc { /* Receive descriptor */
150 volatile u16 ladr; /* Low order address of packet */
151 volatile u8 hadr; /* High order address */
152 volatile u8 bits; /* Status and config */
153 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
154 * Receive terminal count interrupt enable in
155 * top bit.
156 */
157 volatile u16 mcnt; /* Message byte count (15 bits) */
158 };
159
160 /* Convert a length into the 15 bit 2's complement */
161 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
162 /* Since we need to set the high bit to enable the completion interrupt this
163 * can be made a lot simpler
164 */
165 #define cnv_bcnt(len) (-(len))
166
167 /* Status and config bits for the above */
168 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
169 #define TX_STP 0x02 /* Tx: start of packet */
170 #define TX_ENP 0x01 /* Tx: end of packet */
171 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
172 #define RX_FRAM 0x20 /* Rx: framing error */
173 #define RX_OFLO 0x10 /* Rx: overflow error */
174 #define RX_CRC 0x08 /* Rx: CRC error */
175 #define RX_HBUF 0x04 /* Rx: buffer error */
176 #define RX_STP 0x02 /* Rx: start of packet */
177 #define RX_ENP 0x01 /* Rx: end of packet */
178
179 /* Interrupts from the card are caused by various events which are presented
180 * in a circular buffer as several events may be processed on one physical int
181 */
182 #define MAX_CIRBUFF 32
183
184 struct cirbuff {
185 u8 rdindex; /* read, then increment and wrap */
186 u8 wrindex; /* write, then increment and wrap */
187 u8 evntbuff[MAX_CIRBUFF];
188 };
189
190 /* Interrupt event codes.
191 * Where appropriate the two low order bits indicate the port number
192 */
193 #define CTLA_CHG 0x18 /* Control signal changed */
194 #define CTLB_CHG 0x19
195 #define CTLC_CHG 0x1A
196 #define CTLD_CHG 0x1B
197
198 #define INIT_CPLT 0x20 /* Initialisation complete */
199 #define INIT_FAIL 0x21 /* Initialisation failed */
200
201 #define ABTA_SENT 0x24 /* Abort sent */
202 #define ABTB_SENT 0x25
203 #define ABTC_SENT 0x26
204 #define ABTD_SENT 0x27
205
206 #define TXA_UNDF 0x28 /* Transmission underflow */
207 #define TXB_UNDF 0x29
208 #define TXC_UNDF 0x2A
209 #define TXD_UNDF 0x2B
210
211 #define F56_INT 0x2C
212 #define M32_INT 0x2D
213
214 #define TE1_ALMA 0x30
215
216 /* Port physical configuration. See farsync.h for field values */
217 struct port_cfg {
218 u16 lineInterface; /* Physical interface type */
219 u8 x25op; /* Unused at present */
220 u8 internalClock; /* 1 => internal clock, 0 => external */
221 u8 transparentMode; /* 1 => on, 0 => off */
222 u8 invertClock; /* 0 => normal, 1 => inverted */
223 u8 padBytes[6]; /* Padding */
224 u32 lineSpeed; /* Speed in bps */
225 };
226
227 /* TE1 port physical configuration */
228 struct su_config {
229 u32 dataRate;
230 u8 clocking;
231 u8 framing;
232 u8 structure;
233 u8 interface;
234 u8 coding;
235 u8 lineBuildOut;
236 u8 equalizer;
237 u8 transparentMode;
238 u8 loopMode;
239 u8 range;
240 u8 txBufferMode;
241 u8 rxBufferMode;
242 u8 startingSlot;
243 u8 losThreshold;
244 u8 enableIdleCode;
245 u8 idleCode;
246 u8 spare[44];
247 };
248
249 /* TE1 Status */
250 struct su_status {
251 u32 receiveBufferDelay;
252 u32 framingErrorCount;
253 u32 codeViolationCount;
254 u32 crcErrorCount;
255 u32 lineAttenuation;
256 u8 portStarted;
257 u8 lossOfSignal;
258 u8 receiveRemoteAlarm;
259 u8 alarmIndicationSignal;
260 u8 spare[40];
261 };
262
263 /* Finally sling all the above together into the shared memory structure.
264 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
265 * evolving under NT for some time so I guess we're stuck with it.
266 * The structure starts at offset SMC_BASE.
267 * See farsync.h for some field values.
268 */
269 struct fst_shared {
270 /* DMA descriptor rings */
271 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
272 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
273
274 /* Obsolete small buffers */
275 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
276 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
277
278 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
279 * 0xFF => halted
280 */
281
282 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
283 * set to 0xEE by host to acknowledge interrupt
284 */
285
286 u16 smcVersion; /* Must match SMC_VERSION */
287
288 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
289 * version, RR = revision and BB = build
290 */
291
292 u16 txa_done; /* Obsolete completion flags */
293 u16 rxa_done;
294 u16 txb_done;
295 u16 rxb_done;
296 u16 txc_done;
297 u16 rxc_done;
298 u16 txd_done;
299 u16 rxd_done;
300
301 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
302
303 struct cirbuff interruptEvent; /* interrupt causes */
304
305 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
306 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
307
308 struct port_cfg portConfig[FST_MAX_PORTS];
309
310 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
311
312 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
313
314 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
315 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
316
317 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
318 u16 cardMailbox[4]; /* Not used */
319
320 /* Number of times the card thinks the host has
321 * missed an interrupt by not acknowledging
322 * within 2mS (I guess NT has problems)
323 */
324 u32 interruptRetryCount;
325
326 /* Driver private data used as an ID. We'll not
327 * use this as I'd rather keep such things
328 * in main memory rather than on the PCI bus
329 */
330 u32 portHandle[FST_MAX_PORTS];
331
332 /* Count of Tx underflows for stats */
333 u32 transmitBufferUnderflow[FST_MAX_PORTS];
334
335 /* Debounced V.24 control input status */
336 u32 v24DebouncedSts[FST_MAX_PORTS];
337
338 /* Adapter debounce timers. Don't touch */
339 u32 ctsTimer[FST_MAX_PORTS];
340 u32 ctsTimerRun[FST_MAX_PORTS];
341 u32 dcdTimer[FST_MAX_PORTS];
342 u32 dcdTimerRun[FST_MAX_PORTS];
343
344 u32 numberOfPorts; /* Number of ports detected at startup */
345
346 u16 _reserved[64];
347
348 u16 cardMode; /* Bit-mask to enable features:
349 * Bit 0: 1 enables LED identify mode
350 */
351
352 u16 portScheduleOffset;
353
354 struct su_config suConfig; /* TE1 Bits */
355 struct su_status suStatus;
356
357 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
358 * the structure and marks the end of shared
359 * memory. Adapter code initializes it as
360 * END_SIG.
361 */
362 };
363
364 /* endOfSmcSignature value */
365 #define END_SIG 0x12345678
366
367 /* Mailbox values. (portMailbox) */
368 #define NOP 0 /* No operation */
369 #define ACK 1 /* Positive acknowledgement to PC driver */
370 #define NAK 2 /* Negative acknowledgement to PC driver */
371 #define STARTPORT 3 /* Start an HDLC port */
372 #define STOPPORT 4 /* Stop an HDLC port */
373 #define ABORTTX 5 /* Abort the transmitter for a port */
374 #define SETV24O 6 /* Set V24 outputs */
375
376 /* PLX Chip Register Offsets */
377 #define CNTRL_9052 0x50 /* Control Register */
378 #define CNTRL_9054 0x6c /* Control Register */
379
380 #define INTCSR_9052 0x4c /* Interrupt control/status register */
381 #define INTCSR_9054 0x68 /* Interrupt control/status register */
382
383 /* 9054 DMA Registers */
384 /*
385 * Note that we will be using DMA Channel 0 for copying rx data
386 * and Channel 1 for copying tx data
387 */
388 #define DMAMODE0 0x80
389 #define DMAPADR0 0x84
390 #define DMALADR0 0x88
391 #define DMASIZ0 0x8c
392 #define DMADPR0 0x90
393 #define DMAMODE1 0x94
394 #define DMAPADR1 0x98
395 #define DMALADR1 0x9c
396 #define DMASIZ1 0xa0
397 #define DMADPR1 0xa4
398 #define DMACSR0 0xa8
399 #define DMACSR1 0xa9
400 #define DMAARB 0xac
401 #define DMATHR 0xb0
402 #define DMADAC0 0xb4
403 #define DMADAC1 0xb8
404 #define DMAMARBR 0xac
405
406 #define FST_MIN_DMA_LEN 64
407 #define FST_RX_DMA_INT 0x01
408 #define FST_TX_DMA_INT 0x02
409 #define FST_CARD_INT 0x04
410
411 /* Larger buffers are positioned in memory at offset BFM_BASE */
412 struct buf_window {
413 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
414 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
415 };
416
417 /* Calculate offset of a buffer object within the shared memory window */
418 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
419
420 #pragma pack()
421
422 /* Device driver private information
423 * =================================
424 */
425 /* Per port (line or channel) information
426 */
427 struct fst_port_info {
428 struct net_device *dev; /* Device struct - must be first */
429 struct fst_card_info *card; /* Card we're associated with */
430 int index; /* Port index on the card */
431 int hwif; /* Line hardware (lineInterface copy) */
432 int run; /* Port is running */
433 int mode; /* Normal or FarSync raw */
434 int rxpos; /* Next Rx buffer to use */
435 int txpos; /* Next Tx buffer to use */
436 int txipos; /* Next Tx buffer to check for free */
437 int start; /* Indication of start/stop to network */
438 /*
439 * A sixteen entry transmit queue
440 */
441 int txqs; /* index to get next buffer to tx */
442 int txqe; /* index to queue next packet */
443 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
444 int rxqdepth;
445 };
446
447 /* Per card information
448 */
449 struct fst_card_info {
450 char __iomem *mem; /* Card memory mapped to kernel space */
451 char __iomem *ctlmem; /* Control memory for PCI cards */
452 unsigned int phys_mem; /* Physical memory window address */
453 unsigned int phys_ctlmem; /* Physical control memory address */
454 unsigned int irq; /* Interrupt request line number */
455 unsigned int nports; /* Number of serial ports */
456 unsigned int type; /* Type index of card */
457 unsigned int state; /* State of card */
458 spinlock_t card_lock; /* Lock for SMP access */
459 unsigned short pci_conf; /* PCI card config in I/O space */
460 /* Per port info */
461 struct fst_port_info ports[FST_MAX_PORTS];
462 struct pci_dev *device; /* Information about the pci device */
463 int card_no; /* Inst of the card on the system */
464 int family; /* TxP or TxU */
465 int dmarx_in_progress;
466 int dmatx_in_progress;
467 unsigned long int_count;
468 unsigned long int_time_ave;
469 void *rx_dma_handle_host;
470 dma_addr_t rx_dma_handle_card;
471 void *tx_dma_handle_host;
472 dma_addr_t tx_dma_handle_card;
473 struct sk_buff *dma_skb_rx;
474 struct fst_port_info *dma_port_rx;
475 struct fst_port_info *dma_port_tx;
476 int dma_len_rx;
477 int dma_len_tx;
478 int dma_txpos;
479 int dma_rxpos;
480 };
481
482 /* Convert an HDLC device pointer into a port info pointer and similar */
483 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
484 #define port_to_dev(P) ((P)->dev)
485
486
487 /*
488 * Shared memory window access macros
489 *
490 * We have a nice memory based structure above, which could be directly
491 * mapped on i386 but might not work on other architectures unless we use
492 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
493 * physical offsets so we have to convert. The only saving grace is that
494 * this should all collapse back to a simple indirection eventually.
495 */
496 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
497
498 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
500 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
501
502 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
504 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
505
506 /*
507 * Debug support
508 */
509 #if FST_DEBUG
510
511 static int fst_debug_mask = { FST_DEBUG };
512
513 /* Most common debug activity is to print something if the corresponding bit
514 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
515 * support variable numbers of macro parameters. The inverted if prevents us
516 * eating someone else's else clause.
517 */
518 #define dbg(F, fmt, args...) \
519 do { \
520 if (fst_debug_mask & (F)) \
521 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
522 } while (0)
523 #else
524 #define dbg(F, fmt, args...) \
525 do { \
526 if (0) \
527 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
528 } while (0)
529 #endif
530
531 /*
532 * PCI ID lookup table
533 */
534 static const struct pci_device_id fst_pci_dev_id[] = {
535 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
536 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
537
538 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
539 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
540
541 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
542 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
543
544 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
545 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
546
547 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
548 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
549
550 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
551 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
552
553 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
554 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
555 {0,} /* End */
556 };
557
558 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
559
560 /*
561 * Device Driver Work Queues
562 *
563 * So that we don't spend too much time processing events in the
564 * Interrupt Service routine, we will declare a work queue per Card
565 * and make the ISR schedule a task in the queue for later execution.
566 * In the 2.4 Kernel we used to use the immediate queue for BH's
567 * Now that they are gone, tasklets seem to be much better than work
568 * queues.
569 */
570
571 static void do_bottom_half_tx(struct fst_card_info *card);
572 static void do_bottom_half_rx(struct fst_card_info *card);
573 static void fst_process_tx_work_q(unsigned long work_q);
574 static void fst_process_int_work_q(unsigned long work_q);
575
576 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
577 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
578
579 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
580 static spinlock_t fst_work_q_lock;
581 static u64 fst_work_txq;
582 static u64 fst_work_intq;
583
584 static void
585 fst_q_work_item(u64 * queue, int card_index)
586 {
587 unsigned long flags;
588 u64 mask;
589
590 /*
591 * Grab the queue exclusively
592 */
593 spin_lock_irqsave(&fst_work_q_lock, flags);
594
595 /*
596 * Making an entry in the queue is simply a matter of setting
597 * a bit for the card indicating that there is work to do in the
598 * bottom half for the card. Note the limitation of 64 cards.
599 * That ought to be enough
600 */
601 mask = (u64)1 << card_index;
602 *queue |= mask;
603 spin_unlock_irqrestore(&fst_work_q_lock, flags);
604 }
605
606 static void
607 fst_process_tx_work_q(unsigned long /*void **/work_q)
608 {
609 unsigned long flags;
610 u64 work_txq;
611 int i;
612
613 /*
614 * Grab the queue exclusively
615 */
616 dbg(DBG_TX, "fst_process_tx_work_q\n");
617 spin_lock_irqsave(&fst_work_q_lock, flags);
618 work_txq = fst_work_txq;
619 fst_work_txq = 0;
620 spin_unlock_irqrestore(&fst_work_q_lock, flags);
621
622 /*
623 * Call the bottom half for each card with work waiting
624 */
625 for (i = 0; i < FST_MAX_CARDS; i++) {
626 if (work_txq & 0x01) {
627 if (fst_card_array[i] != NULL) {
628 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
629 do_bottom_half_tx(fst_card_array[i]);
630 }
631 }
632 work_txq = work_txq >> 1;
633 }
634 }
635
636 static void
637 fst_process_int_work_q(unsigned long /*void **/work_q)
638 {
639 unsigned long flags;
640 u64 work_intq;
641 int i;
642
643 /*
644 * Grab the queue exclusively
645 */
646 dbg(DBG_INTR, "fst_process_int_work_q\n");
647 spin_lock_irqsave(&fst_work_q_lock, flags);
648 work_intq = fst_work_intq;
649 fst_work_intq = 0;
650 spin_unlock_irqrestore(&fst_work_q_lock, flags);
651
652 /*
653 * Call the bottom half for each card with work waiting
654 */
655 for (i = 0; i < FST_MAX_CARDS; i++) {
656 if (work_intq & 0x01) {
657 if (fst_card_array[i] != NULL) {
658 dbg(DBG_INTR,
659 "Calling rx & tx bh for card %d\n", i);
660 do_bottom_half_rx(fst_card_array[i]);
661 do_bottom_half_tx(fst_card_array[i]);
662 }
663 }
664 work_intq = work_intq >> 1;
665 }
666 }
667
668 /* Card control functions
669 * ======================
670 */
671 /* Place the processor in reset state
672 *
673 * Used to be a simple write to card control space but a glitch in the latest
674 * AMD Am186CH processor means that we now have to do it by asserting and de-
675 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
676 * at offset 9052_CNTRL. Note the updates for the TXU.
677 */
678 static inline void
679 fst_cpureset(struct fst_card_info *card)
680 {
681 unsigned char interrupt_line_register;
682 unsigned int regval;
683
684 if (card->family == FST_FAMILY_TXU) {
685 if (pci_read_config_byte
686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 dbg(DBG_ASS,
688 "Error in reading interrupt line register\n");
689 }
690 /*
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
693 */
694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 /*
697 * We are delaying here to allow the 9054 to reset itself
698 */
699 usleep_range(10, 20);
700 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
701 /*
702 * We are delaying here to allow the 9054 to reload its eeprom
703 */
704 usleep_range(10, 20);
705 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
706
707 if (pci_write_config_byte
708 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
709 dbg(DBG_ASS,
710 "Error in writing interrupt line register\n");
711 }
712
713 } else {
714 regval = inl(card->pci_conf + CNTRL_9052);
715
716 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
717 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
718 }
719 }
720
721 /* Release the processor from reset
722 */
723 static inline void
724 fst_cpurelease(struct fst_card_info *card)
725 {
726 if (card->family == FST_FAMILY_TXU) {
727 /*
728 * Force posted writes to complete
729 */
730 (void) readb(card->mem);
731
732 /*
733 * Release LRESET DO = 1
734 * Then release Local Hold, DO = 1
735 */
736 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
737 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
738 } else {
739 (void) readb(card->ctlmem);
740 }
741 }
742
743 /* Clear the cards interrupt flag
744 */
745 static inline void
746 fst_clear_intr(struct fst_card_info *card)
747 {
748 if (card->family == FST_FAMILY_TXU) {
749 (void) readb(card->ctlmem);
750 } else {
751 /* Poke the appropriate PLX chip register (same as enabling interrupts)
752 */
753 outw(0x0543, card->pci_conf + INTCSR_9052);
754 }
755 }
756
757 /* Enable card interrupts
758 */
759 static inline void
760 fst_enable_intr(struct fst_card_info *card)
761 {
762 if (card->family == FST_FAMILY_TXU) {
763 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
764 } else {
765 outw(0x0543, card->pci_conf + INTCSR_9052);
766 }
767 }
768
769 /* Disable card interrupts
770 */
771 static inline void
772 fst_disable_intr(struct fst_card_info *card)
773 {
774 if (card->family == FST_FAMILY_TXU) {
775 outl(0x00000000, card->pci_conf + INTCSR_9054);
776 } else {
777 outw(0x0000, card->pci_conf + INTCSR_9052);
778 }
779 }
780
781 /* Process the result of trying to pass a received frame up the stack
782 */
783 static void
784 fst_process_rx_status(int rx_status, char *name)
785 {
786 switch (rx_status) {
787 case NET_RX_SUCCESS:
788 {
789 /*
790 * Nothing to do here
791 */
792 break;
793 }
794 case NET_RX_DROP:
795 {
796 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
797 break;
798 }
799 }
800 }
801
802 /* Initilaise DMA for PLX 9054
803 */
804 static inline void
805 fst_init_dma(struct fst_card_info *card)
806 {
807 /*
808 * This is only required for the PLX 9054
809 */
810 if (card->family == FST_FAMILY_TXU) {
811 pci_set_master(card->device);
812 outl(0x00020441, card->pci_conf + DMAMODE0);
813 outl(0x00020441, card->pci_conf + DMAMODE1);
814 outl(0x0, card->pci_conf + DMATHR);
815 }
816 }
817
818 /* Tx dma complete interrupt
819 */
820 static void
821 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
822 int len, int txpos)
823 {
824 struct net_device *dev = port_to_dev(port);
825
826 /*
827 * Everything is now set, just tell the card to go
828 */
829 dbg(DBG_TX, "fst_tx_dma_complete\n");
830 FST_WRB(card, txDescrRing[port->index][txpos].bits,
831 DMA_OWN | TX_STP | TX_ENP);
832 dev->stats.tx_packets++;
833 dev->stats.tx_bytes += len;
834 netif_trans_update(dev);
835 }
836
837 /*
838 * Mark it for our own raw sockets interface
839 */
840 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
841 {
842 skb->dev = dev;
843 skb_reset_mac_header(skb);
844 skb->pkt_type = PACKET_HOST;
845 return htons(ETH_P_CUST);
846 }
847
848 /* Rx dma complete interrupt
849 */
850 static void
851 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
852 int len, struct sk_buff *skb, int rxp)
853 {
854 struct net_device *dev = port_to_dev(port);
855 int pi;
856 int rx_status;
857
858 dbg(DBG_TX, "fst_rx_dma_complete\n");
859 pi = port->index;
860 skb_put_data(skb, card->rx_dma_handle_host, len);
861
862 /* Reset buffer descriptor */
863 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
864
865 /* Update stats */
866 dev->stats.rx_packets++;
867 dev->stats.rx_bytes += len;
868
869 /* Push upstream */
870 dbg(DBG_RX, "Pushing the frame up the stack\n");
871 if (port->mode == FST_RAW)
872 skb->protocol = farsync_type_trans(skb, dev);
873 else
874 skb->protocol = hdlc_type_trans(skb, dev);
875 rx_status = netif_rx(skb);
876 fst_process_rx_status(rx_status, port_to_dev(port)->name);
877 if (rx_status == NET_RX_DROP)
878 dev->stats.rx_dropped++;
879 }
880
881 /*
882 * Receive a frame through the DMA
883 */
884 static inline void
885 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
886 {
887 /*
888 * This routine will setup the DMA and start it
889 */
890
891 dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
892 if (card->dmarx_in_progress) {
893 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
894 }
895
896 outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */
897 outl(mem, card->pci_conf + DMALADR0); /* from here */
898 outl(len, card->pci_conf + DMASIZ0); /* for this length */
899 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
900
901 /*
902 * We use the dmarx_in_progress flag to flag the channel as busy
903 */
904 card->dmarx_in_progress = 1;
905 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
906 }
907
908 /*
909 * Send a frame through the DMA
910 */
911 static inline void
912 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
913 {
914 /*
915 * This routine will setup the DMA and start it.
916 */
917
918 dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
919 if (card->dmatx_in_progress) {
920 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
921 }
922
923 outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */
924 outl(mem, card->pci_conf + DMALADR1); /* to here */
925 outl(len, card->pci_conf + DMASIZ1); /* for this length */
926 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
927
928 /*
929 * We use the dmatx_in_progress to flag the channel as busy
930 */
931 card->dmatx_in_progress = 1;
932 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
933 }
934
935 /* Issue a Mailbox command for a port.
936 * Note we issue them on a fire and forget basis, not expecting to see an
937 * error and not waiting for completion.
938 */
939 static void
940 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
941 {
942 struct fst_card_info *card;
943 unsigned short mbval;
944 unsigned long flags;
945 int safety;
946
947 card = port->card;
948 spin_lock_irqsave(&card->card_lock, flags);
949 mbval = FST_RDW(card, portMailbox[port->index][0]);
950
951 safety = 0;
952 /* Wait for any previous command to complete */
953 while (mbval > NAK) {
954 spin_unlock_irqrestore(&card->card_lock, flags);
955 schedule_timeout_uninterruptible(1);
956 spin_lock_irqsave(&card->card_lock, flags);
957
958 if (++safety > 2000) {
959 pr_err("Mailbox safety timeout\n");
960 break;
961 }
962
963 mbval = FST_RDW(card, portMailbox[port->index][0]);
964 }
965 if (safety > 0) {
966 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
967 }
968 if (mbval == NAK) {
969 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
970 }
971
972 FST_WRW(card, portMailbox[port->index][0], cmd);
973
974 if (cmd == ABORTTX || cmd == STARTPORT) {
975 port->txpos = 0;
976 port->txipos = 0;
977 port->start = 0;
978 }
979
980 spin_unlock_irqrestore(&card->card_lock, flags);
981 }
982
983 /* Port output signals control
984 */
985 static inline void
986 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
987 {
988 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
989 FST_WRL(port->card, v24OpSts[port->index], outputs);
990
991 if (port->run)
992 fst_issue_cmd(port, SETV24O);
993 }
994
995 static inline void
996 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
997 {
998 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
999 FST_WRL(port->card, v24OpSts[port->index], outputs);
1000
1001 if (port->run)
1002 fst_issue_cmd(port, SETV24O);
1003 }
1004
1005 /*
1006 * Setup port Rx buffers
1007 */
1008 static void
1009 fst_rx_config(struct fst_port_info *port)
1010 {
1011 int i;
1012 int pi;
1013 unsigned int offset;
1014 unsigned long flags;
1015 struct fst_card_info *card;
1016
1017 pi = port->index;
1018 card = port->card;
1019 spin_lock_irqsave(&card->card_lock, flags);
1020 for (i = 0; i < NUM_RX_BUFFER; i++) {
1021 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1022
1023 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1024 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1025 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1026 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1027 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1028 }
1029 port->rxpos = 0;
1030 spin_unlock_irqrestore(&card->card_lock, flags);
1031 }
1032
1033 /*
1034 * Setup port Tx buffers
1035 */
1036 static void
1037 fst_tx_config(struct fst_port_info *port)
1038 {
1039 int i;
1040 int pi;
1041 unsigned int offset;
1042 unsigned long flags;
1043 struct fst_card_info *card;
1044
1045 pi = port->index;
1046 card = port->card;
1047 spin_lock_irqsave(&card->card_lock, flags);
1048 for (i = 0; i < NUM_TX_BUFFER; i++) {
1049 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1050
1051 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1052 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1053 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1054 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1055 }
1056 port->txpos = 0;
1057 port->txipos = 0;
1058 port->start = 0;
1059 spin_unlock_irqrestore(&card->card_lock, flags);
1060 }
1061
1062 /* TE1 Alarm change interrupt event
1063 */
1064 static void
1065 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1066 {
1067 u8 los;
1068 u8 rra;
1069 u8 ais;
1070
1071 los = FST_RDB(card, suStatus.lossOfSignal);
1072 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1073 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1074
1075 if (los) {
1076 /*
1077 * Lost the link
1078 */
1079 if (netif_carrier_ok(port_to_dev(port))) {
1080 dbg(DBG_INTR, "Net carrier off\n");
1081 netif_carrier_off(port_to_dev(port));
1082 }
1083 } else {
1084 /*
1085 * Link available
1086 */
1087 if (!netif_carrier_ok(port_to_dev(port))) {
1088 dbg(DBG_INTR, "Net carrier on\n");
1089 netif_carrier_on(port_to_dev(port));
1090 }
1091 }
1092
1093 if (los)
1094 dbg(DBG_INTR, "Assert LOS Alarm\n");
1095 else
1096 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1097 if (rra)
1098 dbg(DBG_INTR, "Assert RRA Alarm\n");
1099 else
1100 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1101
1102 if (ais)
1103 dbg(DBG_INTR, "Assert AIS Alarm\n");
1104 else
1105 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1106 }
1107
1108 /* Control signal change interrupt event
1109 */
1110 static void
1111 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1112 {
1113 int signals;
1114
1115 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1116
1117 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1118 ? IPSTS_INDICATE : IPSTS_DCD)) {
1119 if (!netif_carrier_ok(port_to_dev(port))) {
1120 dbg(DBG_INTR, "DCD active\n");
1121 netif_carrier_on(port_to_dev(port));
1122 }
1123 } else {
1124 if (netif_carrier_ok(port_to_dev(port))) {
1125 dbg(DBG_INTR, "DCD lost\n");
1126 netif_carrier_off(port_to_dev(port));
1127 }
1128 }
1129 }
1130
1131 /* Log Rx Errors
1132 */
1133 static void
1134 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1135 unsigned char dmabits, int rxp, unsigned short len)
1136 {
1137 struct net_device *dev = port_to_dev(port);
1138
1139 /*
1140 * Increment the appropriate error counter
1141 */
1142 dev->stats.rx_errors++;
1143 if (dmabits & RX_OFLO) {
1144 dev->stats.rx_fifo_errors++;
1145 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1146 card->card_no, port->index, rxp);
1147 }
1148 if (dmabits & RX_CRC) {
1149 dev->stats.rx_crc_errors++;
1150 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1151 card->card_no, port->index);
1152 }
1153 if (dmabits & RX_FRAM) {
1154 dev->stats.rx_frame_errors++;
1155 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1156 card->card_no, port->index);
1157 }
1158 if (dmabits == (RX_STP | RX_ENP)) {
1159 dev->stats.rx_length_errors++;
1160 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1161 len, card->card_no, port->index);
1162 }
1163 }
1164
1165 /* Rx Error Recovery
1166 */
1167 static void
1168 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1169 unsigned char dmabits, int rxp, unsigned short len)
1170 {
1171 int i;
1172 int pi;
1173
1174 pi = port->index;
1175 /*
1176 * Discard buffer descriptors until we see the start of the
1177 * next frame. Note that for long frames this could be in
1178 * a subsequent interrupt.
1179 */
1180 i = 0;
1181 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1182 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1183 rxp = (rxp+1) % NUM_RX_BUFFER;
1184 if (++i > NUM_RX_BUFFER) {
1185 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1186 " than we have\n");
1187 break;
1188 }
1189 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1190 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1191 }
1192 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1193
1194 /* Discard the terminal buffer */
1195 if (!(dmabits & DMA_OWN)) {
1196 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1197 rxp = (rxp+1) % NUM_RX_BUFFER;
1198 }
1199 port->rxpos = rxp;
1200 return;
1201
1202 }
1203
1204 /* Rx complete interrupt
1205 */
1206 static void
1207 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1208 {
1209 unsigned char dmabits;
1210 int pi;
1211 int rxp;
1212 int rx_status;
1213 unsigned short len;
1214 struct sk_buff *skb;
1215 struct net_device *dev = port_to_dev(port);
1216
1217 /* Check we have a buffer to process */
1218 pi = port->index;
1219 rxp = port->rxpos;
1220 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1221 if (dmabits & DMA_OWN) {
1222 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1223 pi, rxp);
1224 return;
1225 }
1226 if (card->dmarx_in_progress) {
1227 return;
1228 }
1229
1230 /* Get buffer length */
1231 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1232 /* Discard the CRC */
1233 len -= 2;
1234 if (len == 0) {
1235 /*
1236 * This seems to happen on the TE1 interface sometimes
1237 * so throw the frame away and log the event.
1238 */
1239 pr_err("Frame received with 0 length. Card %d Port %d\n",
1240 card->card_no, port->index);
1241 /* Return descriptor to card */
1242 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1243
1244 rxp = (rxp+1) % NUM_RX_BUFFER;
1245 port->rxpos = rxp;
1246 return;
1247 }
1248
1249 /* Check buffer length and for other errors. We insist on one packet
1250 * in one buffer. This simplifies things greatly and since we've
1251 * allocated 8K it shouldn't be a real world limitation
1252 */
1253 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1254 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1255 fst_log_rx_error(card, port, dmabits, rxp, len);
1256 fst_recover_rx_error(card, port, dmabits, rxp, len);
1257 return;
1258 }
1259
1260 /* Allocate SKB */
1261 if ((skb = dev_alloc_skb(len)) == NULL) {
1262 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1263
1264 dev->stats.rx_dropped++;
1265
1266 /* Return descriptor to card */
1267 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1268
1269 rxp = (rxp+1) % NUM_RX_BUFFER;
1270 port->rxpos = rxp;
1271 return;
1272 }
1273
1274 /*
1275 * We know the length we need to receive, len.
1276 * It's not worth using the DMA for reads of less than
1277 * FST_MIN_DMA_LEN
1278 */
1279
1280 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1281 memcpy_fromio(skb_put(skb, len),
1282 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1283 len);
1284
1285 /* Reset buffer descriptor */
1286 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1287
1288 /* Update stats */
1289 dev->stats.rx_packets++;
1290 dev->stats.rx_bytes += len;
1291
1292 /* Push upstream */
1293 dbg(DBG_RX, "Pushing frame up the stack\n");
1294 if (port->mode == FST_RAW)
1295 skb->protocol = farsync_type_trans(skb, dev);
1296 else
1297 skb->protocol = hdlc_type_trans(skb, dev);
1298 rx_status = netif_rx(skb);
1299 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1300 if (rx_status == NET_RX_DROP)
1301 dev->stats.rx_dropped++;
1302 } else {
1303 card->dma_skb_rx = skb;
1304 card->dma_port_rx = port;
1305 card->dma_len_rx = len;
1306 card->dma_rxpos = rxp;
1307 fst_rx_dma(card, card->rx_dma_handle_card,
1308 BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1309 }
1310 if (rxp != port->rxpos) {
1311 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1312 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1313 }
1314 rxp = (rxp+1) % NUM_RX_BUFFER;
1315 port->rxpos = rxp;
1316 }
1317
1318 /*
1319 * The bottom halfs to the ISR
1320 *
1321 */
1322
1323 static void
1324 do_bottom_half_tx(struct fst_card_info *card)
1325 {
1326 struct fst_port_info *port;
1327 int pi;
1328 int txq_length;
1329 struct sk_buff *skb;
1330 unsigned long flags;
1331 struct net_device *dev;
1332
1333 /*
1334 * Find a free buffer for the transmit
1335 * Step through each port on this card
1336 */
1337
1338 dbg(DBG_TX, "do_bottom_half_tx\n");
1339 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1340 if (!port->run)
1341 continue;
1342
1343 dev = port_to_dev(port);
1344 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1345 DMA_OWN) &&
1346 !(card->dmatx_in_progress)) {
1347 /*
1348 * There doesn't seem to be a txdone event per-se
1349 * We seem to have to deduce it, by checking the DMA_OWN
1350 * bit on the next buffer we think we can use
1351 */
1352 spin_lock_irqsave(&card->card_lock, flags);
1353 if ((txq_length = port->txqe - port->txqs) < 0) {
1354 /*
1355 * This is the case where one has wrapped and the
1356 * maths gives us a negative number
1357 */
1358 txq_length = txq_length + FST_TXQ_DEPTH;
1359 }
1360 spin_unlock_irqrestore(&card->card_lock, flags);
1361 if (txq_length > 0) {
1362 /*
1363 * There is something to send
1364 */
1365 spin_lock_irqsave(&card->card_lock, flags);
1366 skb = port->txq[port->txqs];
1367 port->txqs++;
1368 if (port->txqs == FST_TXQ_DEPTH) {
1369 port->txqs = 0;
1370 }
1371 spin_unlock_irqrestore(&card->card_lock, flags);
1372 /*
1373 * copy the data and set the required indicators on the
1374 * card.
1375 */
1376 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1377 cnv_bcnt(skb->len));
1378 if ((skb->len < FST_MIN_DMA_LEN) ||
1379 (card->family == FST_FAMILY_TXP)) {
1380 /* Enqueue the packet with normal io */
1381 memcpy_toio(card->mem +
1382 BUF_OFFSET(txBuffer[pi]
1383 [port->
1384 txpos][0]),
1385 skb->data, skb->len);
1386 FST_WRB(card,
1387 txDescrRing[pi][port->txpos].
1388 bits,
1389 DMA_OWN | TX_STP | TX_ENP);
1390 dev->stats.tx_packets++;
1391 dev->stats.tx_bytes += skb->len;
1392 netif_trans_update(dev);
1393 } else {
1394 /* Or do it through dma */
1395 memcpy(card->tx_dma_handle_host,
1396 skb->data, skb->len);
1397 card->dma_port_tx = port;
1398 card->dma_len_tx = skb->len;
1399 card->dma_txpos = port->txpos;
1400 fst_tx_dma(card,
1401 card->tx_dma_handle_card,
1402 BUF_OFFSET(txBuffer[pi]
1403 [port->txpos][0]),
1404 skb->len);
1405 }
1406 if (++port->txpos >= NUM_TX_BUFFER)
1407 port->txpos = 0;
1408 /*
1409 * If we have flow control on, can we now release it?
1410 */
1411 if (port->start) {
1412 if (txq_length < fst_txq_low) {
1413 netif_wake_queue(port_to_dev
1414 (port));
1415 port->start = 0;
1416 }
1417 }
1418 dev_kfree_skb(skb);
1419 } else {
1420 /*
1421 * Nothing to send so break out of the while loop
1422 */
1423 break;
1424 }
1425 }
1426 }
1427 }
1428
1429 static void
1430 do_bottom_half_rx(struct fst_card_info *card)
1431 {
1432 struct fst_port_info *port;
1433 int pi;
1434 int rx_count = 0;
1435
1436 /* Check for rx completions on all ports on this card */
1437 dbg(DBG_RX, "do_bottom_half_rx\n");
1438 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1439 if (!port->run)
1440 continue;
1441
1442 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1443 & DMA_OWN) && !(card->dmarx_in_progress)) {
1444 if (rx_count > fst_max_reads) {
1445 /*
1446 * Don't spend forever in receive processing
1447 * Schedule another event
1448 */
1449 fst_q_work_item(&fst_work_intq, card->card_no);
1450 tasklet_schedule(&fst_int_task);
1451 break; /* Leave the loop */
1452 }
1453 fst_intr_rx(card, port);
1454 rx_count++;
1455 }
1456 }
1457 }
1458
1459 /*
1460 * The interrupt service routine
1461 * Dev_id is our fst_card_info pointer
1462 */
1463 static irqreturn_t
1464 fst_intr(int dummy, void *dev_id)
1465 {
1466 struct fst_card_info *card = dev_id;
1467 struct fst_port_info *port;
1468 int rdidx; /* Event buffer indices */
1469 int wridx;
1470 int event; /* Actual event for processing */
1471 unsigned int dma_intcsr = 0;
1472 unsigned int do_card_interrupt;
1473 unsigned int int_retry_count;
1474
1475 /*
1476 * Check to see if the interrupt was for this card
1477 * return if not
1478 * Note that the call to clear the interrupt is important
1479 */
1480 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1481 if (card->state != FST_RUNNING) {
1482 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1483 card->card_no, card->state);
1484
1485 /*
1486 * It is possible to really be running, i.e. we have re-loaded
1487 * a running card
1488 * Clear and reprime the interrupt source
1489 */
1490 fst_clear_intr(card);
1491 return IRQ_HANDLED;
1492 }
1493
1494 /* Clear and reprime the interrupt source */
1495 fst_clear_intr(card);
1496
1497 /*
1498 * Is the interrupt for this card (handshake == 1)
1499 */
1500 do_card_interrupt = 0;
1501 if (FST_RDB(card, interruptHandshake) == 1) {
1502 do_card_interrupt += FST_CARD_INT;
1503 /* Set the software acknowledge */
1504 FST_WRB(card, interruptHandshake, 0xEE);
1505 }
1506 if (card->family == FST_FAMILY_TXU) {
1507 /*
1508 * Is it a DMA Interrupt
1509 */
1510 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1511 if (dma_intcsr & 0x00200000) {
1512 /*
1513 * DMA Channel 0 (Rx transfer complete)
1514 */
1515 dbg(DBG_RX, "DMA Rx xfer complete\n");
1516 outb(0x8, card->pci_conf + DMACSR0);
1517 fst_rx_dma_complete(card, card->dma_port_rx,
1518 card->dma_len_rx, card->dma_skb_rx,
1519 card->dma_rxpos);
1520 card->dmarx_in_progress = 0;
1521 do_card_interrupt += FST_RX_DMA_INT;
1522 }
1523 if (dma_intcsr & 0x00400000) {
1524 /*
1525 * DMA Channel 1 (Tx transfer complete)
1526 */
1527 dbg(DBG_TX, "DMA Tx xfer complete\n");
1528 outb(0x8, card->pci_conf + DMACSR1);
1529 fst_tx_dma_complete(card, card->dma_port_tx,
1530 card->dma_len_tx, card->dma_txpos);
1531 card->dmatx_in_progress = 0;
1532 do_card_interrupt += FST_TX_DMA_INT;
1533 }
1534 }
1535
1536 /*
1537 * Have we been missing Interrupts
1538 */
1539 int_retry_count = FST_RDL(card, interruptRetryCount);
1540 if (int_retry_count) {
1541 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1542 card->card_no, int_retry_count);
1543 FST_WRL(card, interruptRetryCount, 0);
1544 }
1545
1546 if (!do_card_interrupt) {
1547 return IRQ_HANDLED;
1548 }
1549
1550 /* Scehdule the bottom half of the ISR */
1551 fst_q_work_item(&fst_work_intq, card->card_no);
1552 tasklet_schedule(&fst_int_task);
1553
1554 /* Drain the event queue */
1555 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1556 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1557 while (rdidx != wridx) {
1558 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1559 port = &card->ports[event & 0x03];
1560
1561 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1562
1563 switch (event) {
1564 case TE1_ALMA:
1565 dbg(DBG_INTR, "TE1 Alarm intr\n");
1566 if (port->run)
1567 fst_intr_te1_alarm(card, port);
1568 break;
1569
1570 case CTLA_CHG:
1571 case CTLB_CHG:
1572 case CTLC_CHG:
1573 case CTLD_CHG:
1574 if (port->run)
1575 fst_intr_ctlchg(card, port);
1576 break;
1577
1578 case ABTA_SENT:
1579 case ABTB_SENT:
1580 case ABTC_SENT:
1581 case ABTD_SENT:
1582 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1583 break;
1584
1585 case TXA_UNDF:
1586 case TXB_UNDF:
1587 case TXC_UNDF:
1588 case TXD_UNDF:
1589 /* Difficult to see how we'd get this given that we
1590 * always load up the entire packet for DMA.
1591 */
1592 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1593 port_to_dev(port)->stats.tx_errors++;
1594 port_to_dev(port)->stats.tx_fifo_errors++;
1595 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1596 card->card_no, port->index);
1597 break;
1598
1599 case INIT_CPLT:
1600 dbg(DBG_INIT, "Card init OK intr\n");
1601 break;
1602
1603 case INIT_FAIL:
1604 dbg(DBG_INIT, "Card init FAILED intr\n");
1605 card->state = FST_IFAILED;
1606 break;
1607
1608 default:
1609 pr_err("intr: unknown card event %d. ignored\n", event);
1610 break;
1611 }
1612
1613 /* Bump and wrap the index */
1614 if (++rdidx >= MAX_CIRBUFF)
1615 rdidx = 0;
1616 }
1617 FST_WRB(card, interruptEvent.rdindex, rdidx);
1618 return IRQ_HANDLED;
1619 }
1620
1621 /* Check that the shared memory configuration is one that we can handle
1622 * and that some basic parameters are correct
1623 */
1624 static void
1625 check_started_ok(struct fst_card_info *card)
1626 {
1627 int i;
1628
1629 /* Check structure version and end marker */
1630 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1631 pr_err("Bad shared memory version %d expected %d\n",
1632 FST_RDW(card, smcVersion), SMC_VERSION);
1633 card->state = FST_BADVERSION;
1634 return;
1635 }
1636 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1637 pr_err("Missing shared memory signature\n");
1638 card->state = FST_BADVERSION;
1639 return;
1640 }
1641 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1642 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1643 card->state = FST_RUNNING;
1644 } else if (i == 0xFF) {
1645 pr_err("Firmware initialisation failed. Card halted\n");
1646 card->state = FST_HALTED;
1647 return;
1648 } else if (i != 0x00) {
1649 pr_err("Unknown firmware status 0x%x\n", i);
1650 card->state = FST_HALTED;
1651 return;
1652 }
1653
1654 /* Finally check the number of ports reported by firmware against the
1655 * number we assumed at card detection. Should never happen with
1656 * existing firmware etc so we just report it for the moment.
1657 */
1658 if (FST_RDL(card, numberOfPorts) != card->nports) {
1659 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1660 card->card_no,
1661 FST_RDL(card, numberOfPorts), card->nports);
1662 }
1663 }
1664
1665 static int
1666 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1667 struct fstioc_info *info)
1668 {
1669 int err;
1670 unsigned char my_framing;
1671
1672 /* Set things according to the user set valid flags
1673 * Several of the old options have been invalidated/replaced by the
1674 * generic hdlc package.
1675 */
1676 err = 0;
1677 if (info->valid & FSTVAL_PROTO) {
1678 if (info->proto == FST_RAW)
1679 port->mode = FST_RAW;
1680 else
1681 port->mode = FST_GEN_HDLC;
1682 }
1683
1684 if (info->valid & FSTVAL_CABLE)
1685 err = -EINVAL;
1686
1687 if (info->valid & FSTVAL_SPEED)
1688 err = -EINVAL;
1689
1690 if (info->valid & FSTVAL_PHASE)
1691 FST_WRB(card, portConfig[port->index].invertClock,
1692 info->invertClock);
1693 if (info->valid & FSTVAL_MODE)
1694 FST_WRW(card, cardMode, info->cardMode);
1695 if (info->valid & FSTVAL_TE1) {
1696 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1697 FST_WRB(card, suConfig.clocking, info->clockSource);
1698 my_framing = FRAMING_E1;
1699 if (info->framing == E1)
1700 my_framing = FRAMING_E1;
1701 if (info->framing == T1)
1702 my_framing = FRAMING_T1;
1703 if (info->framing == J1)
1704 my_framing = FRAMING_J1;
1705 FST_WRB(card, suConfig.framing, my_framing);
1706 FST_WRB(card, suConfig.structure, info->structure);
1707 FST_WRB(card, suConfig.interface, info->interface);
1708 FST_WRB(card, suConfig.coding, info->coding);
1709 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1710 FST_WRB(card, suConfig.equalizer, info->equalizer);
1711 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1712 FST_WRB(card, suConfig.loopMode, info->loopMode);
1713 FST_WRB(card, suConfig.range, info->range);
1714 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1715 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1716 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1717 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1718 if (info->idleCode)
1719 FST_WRB(card, suConfig.enableIdleCode, 1);
1720 else
1721 FST_WRB(card, suConfig.enableIdleCode, 0);
1722 FST_WRB(card, suConfig.idleCode, info->idleCode);
1723 #if FST_DEBUG
1724 if (info->valid & FSTVAL_TE1) {
1725 printk("Setting TE1 data\n");
1726 printk("Line Speed = %d\n", info->lineSpeed);
1727 printk("Start slot = %d\n", info->startingSlot);
1728 printk("Clock source = %d\n", info->clockSource);
1729 printk("Framing = %d\n", my_framing);
1730 printk("Structure = %d\n", info->structure);
1731 printk("interface = %d\n", info->interface);
1732 printk("Coding = %d\n", info->coding);
1733 printk("Line build out = %d\n", info->lineBuildOut);
1734 printk("Equaliser = %d\n", info->equalizer);
1735 printk("Transparent mode = %d\n",
1736 info->transparentMode);
1737 printk("Loop mode = %d\n", info->loopMode);
1738 printk("Range = %d\n", info->range);
1739 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1740 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1741 printk("LOS Threshold = %d\n", info->losThreshold);
1742 printk("Idle Code = %d\n", info->idleCode);
1743 }
1744 #endif
1745 }
1746 #if FST_DEBUG
1747 if (info->valid & FSTVAL_DEBUG) {
1748 fst_debug_mask = info->debug;
1749 }
1750 #endif
1751
1752 return err;
1753 }
1754
1755 static void
1756 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1757 struct fstioc_info *info)
1758 {
1759 int i;
1760
1761 memset(info, 0, sizeof (struct fstioc_info));
1762
1763 i = port->index;
1764 info->kernelVersion = LINUX_VERSION_CODE;
1765 info->nports = card->nports;
1766 info->type = card->type;
1767 info->state = card->state;
1768 info->proto = FST_GEN_HDLC;
1769 info->index = i;
1770 #if FST_DEBUG
1771 info->debug = fst_debug_mask;
1772 #endif
1773
1774 /* Only mark information as valid if card is running.
1775 * Copy the data anyway in case it is useful for diagnostics
1776 */
1777 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1778 #if FST_DEBUG
1779 | FSTVAL_DEBUG
1780 #endif
1781 ;
1782
1783 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1784 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1785 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1786 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1787 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1788 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1789 info->clockStatus = FST_RDW(card, clockStatus[i]);
1790 info->cableStatus = FST_RDW(card, cableStatus);
1791 info->cardMode = FST_RDW(card, cardMode);
1792 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1793
1794 /*
1795 * The T2U can report cable presence for both A or B
1796 * in bits 0 and 1 of cableStatus. See which port we are and
1797 * do the mapping.
1798 */
1799 if (card->family == FST_FAMILY_TXU) {
1800 if (port->index == 0) {
1801 /*
1802 * Port A
1803 */
1804 info->cableStatus = info->cableStatus & 1;
1805 } else {
1806 /*
1807 * Port B
1808 */
1809 info->cableStatus = info->cableStatus >> 1;
1810 info->cableStatus = info->cableStatus & 1;
1811 }
1812 }
1813 /*
1814 * Some additional bits if we are TE1
1815 */
1816 if (card->type == FST_TYPE_TE1) {
1817 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1818 info->clockSource = FST_RDB(card, suConfig.clocking);
1819 info->framing = FST_RDB(card, suConfig.framing);
1820 info->structure = FST_RDB(card, suConfig.structure);
1821 info->interface = FST_RDB(card, suConfig.interface);
1822 info->coding = FST_RDB(card, suConfig.coding);
1823 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1824 info->equalizer = FST_RDB(card, suConfig.equalizer);
1825 info->loopMode = FST_RDB(card, suConfig.loopMode);
1826 info->range = FST_RDB(card, suConfig.range);
1827 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1828 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1829 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1830 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1831 if (FST_RDB(card, suConfig.enableIdleCode))
1832 info->idleCode = FST_RDB(card, suConfig.idleCode);
1833 else
1834 info->idleCode = 0;
1835 info->receiveBufferDelay =
1836 FST_RDL(card, suStatus.receiveBufferDelay);
1837 info->framingErrorCount =
1838 FST_RDL(card, suStatus.framingErrorCount);
1839 info->codeViolationCount =
1840 FST_RDL(card, suStatus.codeViolationCount);
1841 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1842 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1843 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1844 info->receiveRemoteAlarm =
1845 FST_RDB(card, suStatus.receiveRemoteAlarm);
1846 info->alarmIndicationSignal =
1847 FST_RDB(card, suStatus.alarmIndicationSignal);
1848 }
1849 }
1850
1851 static int
1852 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1853 struct ifreq *ifr)
1854 {
1855 sync_serial_settings sync;
1856 int i;
1857
1858 if (ifr->ifr_settings.size != sizeof (sync)) {
1859 return -ENOMEM;
1860 }
1861
1862 if (copy_from_user
1863 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1864 return -EFAULT;
1865 }
1866
1867 if (sync.loopback)
1868 return -EINVAL;
1869
1870 i = port->index;
1871
1872 switch (ifr->ifr_settings.type) {
1873 case IF_IFACE_V35:
1874 FST_WRW(card, portConfig[i].lineInterface, V35);
1875 port->hwif = V35;
1876 break;
1877
1878 case IF_IFACE_V24:
1879 FST_WRW(card, portConfig[i].lineInterface, V24);
1880 port->hwif = V24;
1881 break;
1882
1883 case IF_IFACE_X21:
1884 FST_WRW(card, portConfig[i].lineInterface, X21);
1885 port->hwif = X21;
1886 break;
1887
1888 case IF_IFACE_X21D:
1889 FST_WRW(card, portConfig[i].lineInterface, X21D);
1890 port->hwif = X21D;
1891 break;
1892
1893 case IF_IFACE_T1:
1894 FST_WRW(card, portConfig[i].lineInterface, T1);
1895 port->hwif = T1;
1896 break;
1897
1898 case IF_IFACE_E1:
1899 FST_WRW(card, portConfig[i].lineInterface, E1);
1900 port->hwif = E1;
1901 break;
1902
1903 case IF_IFACE_SYNC_SERIAL:
1904 break;
1905
1906 default:
1907 return -EINVAL;
1908 }
1909
1910 switch (sync.clock_type) {
1911 case CLOCK_EXT:
1912 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1913 break;
1914
1915 case CLOCK_INT:
1916 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1917 break;
1918
1919 default:
1920 return -EINVAL;
1921 }
1922 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1923 return 0;
1924 }
1925
1926 static int
1927 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1928 struct ifreq *ifr)
1929 {
1930 sync_serial_settings sync;
1931 int i;
1932
1933 /* First check what line type is set, we'll default to reporting X.21
1934 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1935 * changed
1936 */
1937 switch (port->hwif) {
1938 case E1:
1939 ifr->ifr_settings.type = IF_IFACE_E1;
1940 break;
1941 case T1:
1942 ifr->ifr_settings.type = IF_IFACE_T1;
1943 break;
1944 case V35:
1945 ifr->ifr_settings.type = IF_IFACE_V35;
1946 break;
1947 case V24:
1948 ifr->ifr_settings.type = IF_IFACE_V24;
1949 break;
1950 case X21D:
1951 ifr->ifr_settings.type = IF_IFACE_X21D;
1952 break;
1953 case X21:
1954 default:
1955 ifr->ifr_settings.type = IF_IFACE_X21;
1956 break;
1957 }
1958 if (ifr->ifr_settings.size == 0) {
1959 return 0; /* only type requested */
1960 }
1961 if (ifr->ifr_settings.size < sizeof (sync)) {
1962 return -ENOMEM;
1963 }
1964
1965 i = port->index;
1966 memset(&sync, 0, sizeof(sync));
1967 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1968 /* Lucky card and linux use same encoding here */
1969 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1970 INTCLK ? CLOCK_INT : CLOCK_EXT;
1971 sync.loopback = 0;
1972
1973 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1974 return -EFAULT;
1975 }
1976
1977 ifr->ifr_settings.size = sizeof (sync);
1978 return 0;
1979 }
1980
1981 static int
1982 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1983 {
1984 struct fst_card_info *card;
1985 struct fst_port_info *port;
1986 struct fstioc_write wrthdr;
1987 struct fstioc_info info;
1988 unsigned long flags;
1989 void *buf;
1990
1991 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1992
1993 port = dev_to_port(dev);
1994 card = port->card;
1995
1996 if (!capable(CAP_NET_ADMIN))
1997 return -EPERM;
1998
1999 switch (cmd) {
2000 case FSTCPURESET:
2001 fst_cpureset(card);
2002 card->state = FST_RESET;
2003 return 0;
2004
2005 case FSTCPURELEASE:
2006 fst_cpurelease(card);
2007 card->state = FST_STARTING;
2008 return 0;
2009
2010 case FSTWRITE: /* Code write (download) */
2011
2012 /* First copy in the header with the length and offset of data
2013 * to write
2014 */
2015 if (ifr->ifr_data == NULL) {
2016 return -EINVAL;
2017 }
2018 if (copy_from_user(&wrthdr, ifr->ifr_data,
2019 sizeof (struct fstioc_write))) {
2020 return -EFAULT;
2021 }
2022
2023 /* Sanity check the parameters. We don't support partial writes
2024 * when going over the top
2025 */
2026 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2027 wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2028 return -ENXIO;
2029 }
2030
2031 /* Now copy the data to the card. */
2032
2033 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2034 wrthdr.size);
2035 if (IS_ERR(buf))
2036 return PTR_ERR(buf);
2037
2038 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2039 kfree(buf);
2040
2041 /* Writes to the memory of a card in the reset state constitute
2042 * a download
2043 */
2044 if (card->state == FST_RESET) {
2045 card->state = FST_DOWNLOAD;
2046 }
2047 return 0;
2048
2049 case FSTGETCONF:
2050
2051 /* If card has just been started check the shared memory config
2052 * version and marker
2053 */
2054 if (card->state == FST_STARTING) {
2055 check_started_ok(card);
2056
2057 /* If everything checked out enable card interrupts */
2058 if (card->state == FST_RUNNING) {
2059 spin_lock_irqsave(&card->card_lock, flags);
2060 fst_enable_intr(card);
2061 FST_WRB(card, interruptHandshake, 0xEE);
2062 spin_unlock_irqrestore(&card->card_lock, flags);
2063 }
2064 }
2065
2066 if (ifr->ifr_data == NULL) {
2067 return -EINVAL;
2068 }
2069
2070 gather_conf_info(card, port, &info);
2071
2072 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2073 return -EFAULT;
2074 }
2075 return 0;
2076
2077 case FSTSETCONF:
2078
2079 /*
2080 * Most of the settings have been moved to the generic ioctls
2081 * this just covers debug and board ident now
2082 */
2083
2084 if (card->state != FST_RUNNING) {
2085 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2086 card->card_no, card->state);
2087 return -EIO;
2088 }
2089 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2090 return -EFAULT;
2091 }
2092
2093 return set_conf_from_info(card, port, &info);
2094
2095 case SIOCWANDEV:
2096 switch (ifr->ifr_settings.type) {
2097 case IF_GET_IFACE:
2098 return fst_get_iface(card, port, ifr);
2099
2100 case IF_IFACE_SYNC_SERIAL:
2101 case IF_IFACE_V35:
2102 case IF_IFACE_V24:
2103 case IF_IFACE_X21:
2104 case IF_IFACE_X21D:
2105 case IF_IFACE_T1:
2106 case IF_IFACE_E1:
2107 return fst_set_iface(card, port, ifr);
2108
2109 case IF_PROTO_RAW:
2110 port->mode = FST_RAW;
2111 return 0;
2112
2113 case IF_GET_PROTO:
2114 if (port->mode == FST_RAW) {
2115 ifr->ifr_settings.type = IF_PROTO_RAW;
2116 return 0;
2117 }
2118 return hdlc_ioctl(dev, ifr, cmd);
2119
2120 default:
2121 port->mode = FST_GEN_HDLC;
2122 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2123 ifr->ifr_settings.type);
2124 return hdlc_ioctl(dev, ifr, cmd);
2125 }
2126
2127 default:
2128 /* Not one of ours. Pass through to HDLC package */
2129 return hdlc_ioctl(dev, ifr, cmd);
2130 }
2131 }
2132
2133 static void
2134 fst_openport(struct fst_port_info *port)
2135 {
2136 int signals;
2137
2138 /* Only init things if card is actually running. This allows open to
2139 * succeed for downloads etc.
2140 */
2141 if (port->card->state == FST_RUNNING) {
2142 if (port->run) {
2143 dbg(DBG_OPEN, "open: found port already running\n");
2144
2145 fst_issue_cmd(port, STOPPORT);
2146 port->run = 0;
2147 }
2148
2149 fst_rx_config(port);
2150 fst_tx_config(port);
2151 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2152
2153 fst_issue_cmd(port, STARTPORT);
2154 port->run = 1;
2155
2156 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2157 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2158 ? IPSTS_INDICATE : IPSTS_DCD))
2159 netif_carrier_on(port_to_dev(port));
2160 else
2161 netif_carrier_off(port_to_dev(port));
2162
2163 port->txqe = 0;
2164 port->txqs = 0;
2165 }
2166
2167 }
2168
2169 static void
2170 fst_closeport(struct fst_port_info *port)
2171 {
2172 if (port->card->state == FST_RUNNING) {
2173 if (port->run) {
2174 port->run = 0;
2175 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2176
2177 fst_issue_cmd(port, STOPPORT);
2178 } else {
2179 dbg(DBG_OPEN, "close: port not running\n");
2180 }
2181 }
2182 }
2183
2184 static int
2185 fst_open(struct net_device *dev)
2186 {
2187 int err;
2188 struct fst_port_info *port;
2189
2190 port = dev_to_port(dev);
2191 if (!try_module_get(THIS_MODULE))
2192 return -EBUSY;
2193
2194 if (port->mode != FST_RAW) {
2195 err = hdlc_open(dev);
2196 if (err) {
2197 module_put(THIS_MODULE);
2198 return err;
2199 }
2200 }
2201
2202 fst_openport(port);
2203 netif_wake_queue(dev);
2204 return 0;
2205 }
2206
2207 static int
2208 fst_close(struct net_device *dev)
2209 {
2210 struct fst_port_info *port;
2211 struct fst_card_info *card;
2212 unsigned char tx_dma_done;
2213 unsigned char rx_dma_done;
2214
2215 port = dev_to_port(dev);
2216 card = port->card;
2217
2218 tx_dma_done = inb(card->pci_conf + DMACSR1);
2219 rx_dma_done = inb(card->pci_conf + DMACSR0);
2220 dbg(DBG_OPEN,
2221 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2222 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2223 rx_dma_done);
2224
2225 netif_stop_queue(dev);
2226 fst_closeport(dev_to_port(dev));
2227 if (port->mode != FST_RAW) {
2228 hdlc_close(dev);
2229 }
2230 module_put(THIS_MODULE);
2231 return 0;
2232 }
2233
2234 static int
2235 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2236 {
2237 /*
2238 * Setting currently fixed in FarSync card so we check and forget
2239 */
2240 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2241 return -EINVAL;
2242 return 0;
2243 }
2244
2245 static void
2246 fst_tx_timeout(struct net_device *dev)
2247 {
2248 struct fst_port_info *port;
2249 struct fst_card_info *card;
2250
2251 port = dev_to_port(dev);
2252 card = port->card;
2253 dev->stats.tx_errors++;
2254 dev->stats.tx_aborted_errors++;
2255 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2256 card->card_no, port->index);
2257 fst_issue_cmd(port, ABORTTX);
2258
2259 netif_trans_update(dev);
2260 netif_wake_queue(dev);
2261 port->start = 0;
2262 }
2263
2264 static netdev_tx_t
2265 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2266 {
2267 struct fst_card_info *card;
2268 struct fst_port_info *port;
2269 unsigned long flags;
2270 int txq_length;
2271
2272 port = dev_to_port(dev);
2273 card = port->card;
2274 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2275
2276 /* Drop packet with error if we don't have carrier */
2277 if (!netif_carrier_ok(dev)) {
2278 dev_kfree_skb(skb);
2279 dev->stats.tx_errors++;
2280 dev->stats.tx_carrier_errors++;
2281 dbg(DBG_ASS,
2282 "Tried to transmit but no carrier on card %d port %d\n",
2283 card->card_no, port->index);
2284 return NETDEV_TX_OK;
2285 }
2286
2287 /* Drop it if it's too big! MTU failure ? */
2288 if (skb->len > LEN_TX_BUFFER) {
2289 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2290 LEN_TX_BUFFER);
2291 dev_kfree_skb(skb);
2292 dev->stats.tx_errors++;
2293 return NETDEV_TX_OK;
2294 }
2295
2296 /*
2297 * We are always going to queue the packet
2298 * so that the bottom half is the only place we tx from
2299 * Check there is room in the port txq
2300 */
2301 spin_lock_irqsave(&card->card_lock, flags);
2302 if ((txq_length = port->txqe - port->txqs) < 0) {
2303 /*
2304 * This is the case where the next free has wrapped but the
2305 * last used hasn't
2306 */
2307 txq_length = txq_length + FST_TXQ_DEPTH;
2308 }
2309 spin_unlock_irqrestore(&card->card_lock, flags);
2310 if (txq_length > fst_txq_high) {
2311 /*
2312 * We have got enough buffers in the pipeline. Ask the network
2313 * layer to stop sending frames down
2314 */
2315 netif_stop_queue(dev);
2316 port->start = 1; /* I'm using this to signal stop sent up */
2317 }
2318
2319 if (txq_length == FST_TXQ_DEPTH - 1) {
2320 /*
2321 * This shouldn't have happened but such is life
2322 */
2323 dev_kfree_skb(skb);
2324 dev->stats.tx_errors++;
2325 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2326 card->card_no, port->index);
2327 return NETDEV_TX_OK;
2328 }
2329
2330 /*
2331 * queue the buffer
2332 */
2333 spin_lock_irqsave(&card->card_lock, flags);
2334 port->txq[port->txqe] = skb;
2335 port->txqe++;
2336 if (port->txqe == FST_TXQ_DEPTH)
2337 port->txqe = 0;
2338 spin_unlock_irqrestore(&card->card_lock, flags);
2339
2340 /* Scehdule the bottom half which now does transmit processing */
2341 fst_q_work_item(&fst_work_txq, card->card_no);
2342 tasklet_schedule(&fst_tx_task);
2343
2344 return NETDEV_TX_OK;
2345 }
2346
2347 /*
2348 * Card setup having checked hardware resources.
2349 * Should be pretty bizarre if we get an error here (kernel memory
2350 * exhaustion is one possibility). If we do see a problem we report it
2351 * via a printk and leave the corresponding interface and all that follow
2352 * disabled.
2353 */
2354 static char *type_strings[] = {
2355 "no hardware", /* Should never be seen */
2356 "FarSync T2P",
2357 "FarSync T4P",
2358 "FarSync T1U",
2359 "FarSync T2U",
2360 "FarSync T4U",
2361 "FarSync TE1"
2362 };
2363
2364 static int
2365 fst_init_card(struct fst_card_info *card)
2366 {
2367 int i;
2368 int err;
2369
2370 /* We're working on a number of ports based on the card ID. If the
2371 * firmware detects something different later (should never happen)
2372 * we'll have to revise it in some way then.
2373 */
2374 for (i = 0; i < card->nports; i++) {
2375 err = register_hdlc_device(card->ports[i].dev);
2376 if (err < 0) {
2377 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2378 i, -err);
2379 while (i--)
2380 unregister_hdlc_device(card->ports[i].dev);
2381 return err;
2382 }
2383 }
2384
2385 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2386 port_to_dev(&card->ports[0])->name,
2387 port_to_dev(&card->ports[card->nports - 1])->name,
2388 type_strings[card->type], card->irq, card->nports);
2389 return 0;
2390 }
2391
2392 static const struct net_device_ops fst_ops = {
2393 .ndo_open = fst_open,
2394 .ndo_stop = fst_close,
2395 .ndo_start_xmit = hdlc_start_xmit,
2396 .ndo_do_ioctl = fst_ioctl,
2397 .ndo_tx_timeout = fst_tx_timeout,
2398 };
2399
2400 /*
2401 * Initialise card when detected.
2402 * Returns 0 to indicate success, or errno otherwise.
2403 */
2404 static int
2405 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2406 {
2407 static int no_of_cards_added = 0;
2408 struct fst_card_info *card;
2409 int err = 0;
2410 int i;
2411
2412 printk_once(KERN_INFO
2413 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2414 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2415 #if FST_DEBUG
2416 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2417 #endif
2418 /*
2419 * We are going to be clever and allow certain cards not to be
2420 * configured. An exclude list can be provided in /etc/modules.conf
2421 */
2422 if (fst_excluded_cards != 0) {
2423 /*
2424 * There are cards to exclude
2425 *
2426 */
2427 for (i = 0; i < fst_excluded_cards; i++) {
2428 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2429 pr_info("FarSync PCI device %d not assigned\n",
2430 (pdev->devfn) >> 3);
2431 return -EBUSY;
2432 }
2433 }
2434 }
2435
2436 /* Allocate driver private data */
2437 card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2438 if (card == NULL)
2439 return -ENOMEM;
2440
2441 /* Try to enable the device */
2442 if ((err = pci_enable_device(pdev)) != 0) {
2443 pr_err("Failed to enable card. Err %d\n", -err);
2444 goto enable_fail;
2445 }
2446
2447 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2448 pr_err("Failed to allocate regions. Err %d\n", -err);
2449 goto regions_fail;
2450 }
2451
2452 /* Get virtual addresses of memory regions */
2453 card->pci_conf = pci_resource_start(pdev, 1);
2454 card->phys_mem = pci_resource_start(pdev, 2);
2455 card->phys_ctlmem = pci_resource_start(pdev, 3);
2456 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2457 pr_err("Physical memory remap failed\n");
2458 err = -ENODEV;
2459 goto ioremap_physmem_fail;
2460 }
2461 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2462 pr_err("Control memory remap failed\n");
2463 err = -ENODEV;
2464 goto ioremap_ctlmem_fail;
2465 }
2466 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2467
2468 /* Register the interrupt handler */
2469 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2470 pr_err("Unable to register interrupt %d\n", card->irq);
2471 err = -ENODEV;
2472 goto irq_fail;
2473 }
2474
2475 /* Record info we need */
2476 card->irq = pdev->irq;
2477 card->type = ent->driver_data;
2478 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2479 (ent->driver_data == FST_TYPE_T4P))
2480 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2481 if ((ent->driver_data == FST_TYPE_T1U) ||
2482 (ent->driver_data == FST_TYPE_TE1))
2483 card->nports = 1;
2484 else
2485 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2486 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2487
2488 card->state = FST_UNINIT;
2489 spin_lock_init ( &card->card_lock );
2490
2491 for ( i = 0 ; i < card->nports ; i++ ) {
2492 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2493 hdlc_device *hdlc;
2494 if (!dev) {
2495 while (i--)
2496 free_netdev(card->ports[i].dev);
2497 pr_err("FarSync: out of memory\n");
2498 err = -ENOMEM;
2499 goto hdlcdev_fail;
2500 }
2501 card->ports[i].dev = dev;
2502 card->ports[i].card = card;
2503 card->ports[i].index = i;
2504 card->ports[i].run = 0;
2505
2506 hdlc = dev_to_hdlc(dev);
2507
2508 /* Fill in the net device info */
2509 /* Since this is a PCI setup this is purely
2510 * informational. Give them the buffer addresses
2511 * and basic card I/O.
2512 */
2513 dev->mem_start = card->phys_mem
2514 + BUF_OFFSET ( txBuffer[i][0][0]);
2515 dev->mem_end = card->phys_mem
2516 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2517 dev->base_addr = card->pci_conf;
2518 dev->irq = card->irq;
2519
2520 dev->netdev_ops = &fst_ops;
2521 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2522 dev->watchdog_timeo = FST_TX_TIMEOUT;
2523 hdlc->attach = fst_attach;
2524 hdlc->xmit = fst_start_xmit;
2525 }
2526
2527 card->device = pdev;
2528
2529 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2530 card->nports, card->irq);
2531 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2532 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2533
2534 /* Reset the card's processor */
2535 fst_cpureset(card);
2536 card->state = FST_RESET;
2537
2538 /* Initialise DMA (if required) */
2539 fst_init_dma(card);
2540
2541 /* Record driver data for later use */
2542 pci_set_drvdata(pdev, card);
2543
2544 /* Remainder of card setup */
2545 if (no_of_cards_added >= FST_MAX_CARDS) {
2546 pr_err("FarSync: too many cards\n");
2547 err = -ENOMEM;
2548 goto card_array_fail;
2549 }
2550 fst_card_array[no_of_cards_added] = card;
2551 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2552 err = fst_init_card(card);
2553 if (err)
2554 goto init_card_fail;
2555 if (card->family == FST_FAMILY_TXU) {
2556 /*
2557 * Allocate a dma buffer for transmit and receives
2558 */
2559 card->rx_dma_handle_host =
2560 pci_alloc_consistent(card->device, FST_MAX_MTU,
2561 &card->rx_dma_handle_card);
2562 if (card->rx_dma_handle_host == NULL) {
2563 pr_err("Could not allocate rx dma buffer\n");
2564 err = -ENOMEM;
2565 goto rx_dma_fail;
2566 }
2567 card->tx_dma_handle_host =
2568 pci_alloc_consistent(card->device, FST_MAX_MTU,
2569 &card->tx_dma_handle_card);
2570 if (card->tx_dma_handle_host == NULL) {
2571 pr_err("Could not allocate tx dma buffer\n");
2572 err = -ENOMEM;
2573 goto tx_dma_fail;
2574 }
2575 }
2576 return 0; /* Success */
2577
2578 tx_dma_fail:
2579 pci_free_consistent(card->device, FST_MAX_MTU,
2580 card->rx_dma_handle_host,
2581 card->rx_dma_handle_card);
2582 rx_dma_fail:
2583 fst_disable_intr(card);
2584 for (i = 0 ; i < card->nports ; i++)
2585 unregister_hdlc_device(card->ports[i].dev);
2586 init_card_fail:
2587 fst_card_array[card->card_no] = NULL;
2588 card_array_fail:
2589 for (i = 0 ; i < card->nports ; i++)
2590 free_netdev(card->ports[i].dev);
2591 hdlcdev_fail:
2592 free_irq(card->irq, card);
2593 irq_fail:
2594 iounmap(card->ctlmem);
2595 ioremap_ctlmem_fail:
2596 iounmap(card->mem);
2597 ioremap_physmem_fail:
2598 pci_release_regions(pdev);
2599 regions_fail:
2600 pci_disable_device(pdev);
2601 enable_fail:
2602 kfree(card);
2603 return err;
2604 }
2605
2606 /*
2607 * Cleanup and close down a card
2608 */
2609 static void
2610 fst_remove_one(struct pci_dev *pdev)
2611 {
2612 struct fst_card_info *card;
2613 int i;
2614
2615 card = pci_get_drvdata(pdev);
2616
2617 for (i = 0; i < card->nports; i++) {
2618 struct net_device *dev = port_to_dev(&card->ports[i]);
2619 unregister_hdlc_device(dev);
2620 }
2621
2622 fst_disable_intr(card);
2623 free_irq(card->irq, card);
2624
2625 iounmap(card->ctlmem);
2626 iounmap(card->mem);
2627 pci_release_regions(pdev);
2628 if (card->family == FST_FAMILY_TXU) {
2629 /*
2630 * Free dma buffers
2631 */
2632 pci_free_consistent(card->device, FST_MAX_MTU,
2633 card->rx_dma_handle_host,
2634 card->rx_dma_handle_card);
2635 pci_free_consistent(card->device, FST_MAX_MTU,
2636 card->tx_dma_handle_host,
2637 card->tx_dma_handle_card);
2638 }
2639 fst_card_array[card->card_no] = NULL;
2640 }
2641
2642 static struct pci_driver fst_driver = {
2643 .name = FST_NAME,
2644 .id_table = fst_pci_dev_id,
2645 .probe = fst_add_one,
2646 .remove = fst_remove_one,
2647 .suspend = NULL,
2648 .resume = NULL,
2649 };
2650
2651 static int __init
2652 fst_init(void)
2653 {
2654 int i;
2655
2656 for (i = 0; i < FST_MAX_CARDS; i++)
2657 fst_card_array[i] = NULL;
2658 spin_lock_init(&fst_work_q_lock);
2659 return pci_register_driver(&fst_driver);
2660 }
2661
2662 static void __exit
2663 fst_cleanup_module(void)
2664 {
2665 pr_info("FarSync WAN driver unloading\n");
2666 pci_unregister_driver(&fst_driver);
2667 }
2668
2669 module_init(fst_init);
2670 module_exit(fst_cleanup_module);