]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wan/fsl_ucc_hdlc.c
net/wan/fsl_ucc_hdlc: Avoid double free in ucc_hdlc_probe()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wan / fsl_ucc_hdlc.c
1 /* Freescale QUICC Engine HDLC Device Driver
2 *
3 * Copyright 2016 Freescale Semiconductor Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/hdlc.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stddef.h>
30 #include <soc/fsl/qe/qe_tdm.h>
31 #include <uapi/linux/if_arp.h>
32
33 #include "fsl_ucc_hdlc.h"
34
35 #define DRV_DESC "Freescale QE UCC HDLC Driver"
36 #define DRV_NAME "ucc_hdlc"
37
38 #define TDM_PPPOHT_SLIC_MAXIN
39
40 static struct ucc_tdm_info utdm_primary_info = {
41 .uf_info = {
42 .tsa = 0,
43 .cdp = 0,
44 .cds = 1,
45 .ctsp = 1,
46 .ctss = 1,
47 .revd = 0,
48 .urfs = 256,
49 .utfs = 256,
50 .urfet = 128,
51 .urfset = 192,
52 .utfet = 128,
53 .utftt = 0x40,
54 .ufpt = 256,
55 .mode = UCC_FAST_PROTOCOL_MODE_HDLC,
56 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
57 .tenc = UCC_FAST_TX_ENCODING_NRZ,
58 .renc = UCC_FAST_RX_ENCODING_NRZ,
59 .tcrc = UCC_FAST_16_BIT_CRC,
60 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
61 },
62
63 .si_info = {
64 #ifdef TDM_PPPOHT_SLIC_MAXIN
65 .simr_rfsd = 1,
66 .simr_tfsd = 2,
67 #else
68 .simr_rfsd = 0,
69 .simr_tfsd = 0,
70 #endif
71 .simr_crt = 0,
72 .simr_sl = 0,
73 .simr_ce = 1,
74 .simr_fe = 1,
75 .simr_gm = 0,
76 },
77 };
78
79 static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
80
81 static int uhdlc_init(struct ucc_hdlc_private *priv)
82 {
83 struct ucc_tdm_info *ut_info;
84 struct ucc_fast_info *uf_info;
85 u32 cecr_subblock;
86 u16 bd_status;
87 int ret, i;
88 void *bd_buffer;
89 dma_addr_t bd_dma_addr;
90 u32 riptr;
91 u32 tiptr;
92 u32 gumr;
93
94 ut_info = priv->ut_info;
95 uf_info = &ut_info->uf_info;
96
97 if (priv->tsa) {
98 uf_info->tsa = 1;
99 uf_info->ctsp = 1;
100 }
101
102 /* This sets HPM register in CMXUCR register which configures a
103 * open drain connected HDLC bus
104 */
105 if (priv->hdlc_bus)
106 uf_info->brkpt_support = 1;
107
108 uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
109 UCC_HDLC_UCCE_TXB) << 16);
110
111 ret = ucc_fast_init(uf_info, &priv->uccf);
112 if (ret) {
113 dev_err(priv->dev, "Failed to init uccf.");
114 return ret;
115 }
116
117 priv->uf_regs = priv->uccf->uf_regs;
118 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
119
120 /* Loopback mode */
121 if (priv->loopback) {
122 dev_info(priv->dev, "Loopback Mode\n");
123 /* use the same clock when work in loopback */
124 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
125
126 gumr = ioread32be(&priv->uf_regs->gumr);
127 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
128 UCC_FAST_GUMR_TCI);
129 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
130 iowrite32be(gumr, &priv->uf_regs->gumr);
131 }
132
133 /* Initialize SI */
134 if (priv->tsa)
135 ucc_tdm_init(priv->utdm, priv->ut_info);
136
137 /* Write to QE CECR, UCCx channel to Stop Transmission */
138 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
139 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
140 QE_CR_PROTOCOL_UNSPECIFIED, 0);
141
142 /* Set UPSMR normal mode (need fixed)*/
143 iowrite32be(0, &priv->uf_regs->upsmr);
144
145 /* hdlc_bus mode */
146 if (priv->hdlc_bus) {
147 u32 upsmr;
148
149 dev_info(priv->dev, "HDLC bus Mode\n");
150 upsmr = ioread32be(&priv->uf_regs->upsmr);
151
152 /* bus mode and retransmit enable, with collision window
153 * set to 8 bytes
154 */
155 upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
156 UCC_HDLC_UPSMR_CW8;
157 iowrite32be(upsmr, &priv->uf_regs->upsmr);
158
159 /* explicitly disable CDS & CTSP */
160 gumr = ioread32be(&priv->uf_regs->gumr);
161 gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
162 /* set automatic sync to explicitly ignore CD signal */
163 gumr |= UCC_FAST_GUMR_SYNL_AUTO;
164 iowrite32be(gumr, &priv->uf_regs->gumr);
165 }
166
167 priv->rx_ring_size = RX_BD_RING_LEN;
168 priv->tx_ring_size = TX_BD_RING_LEN;
169 /* Alloc Rx BD */
170 priv->rx_bd_base = dma_alloc_coherent(priv->dev,
171 RX_BD_RING_LEN * sizeof(struct qe_bd),
172 &priv->dma_rx_bd, GFP_KERNEL);
173
174 if (!priv->rx_bd_base) {
175 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
176 ret = -ENOMEM;
177 goto free_uccf;
178 }
179
180 /* Alloc Tx BD */
181 priv->tx_bd_base = dma_alloc_coherent(priv->dev,
182 TX_BD_RING_LEN * sizeof(struct qe_bd),
183 &priv->dma_tx_bd, GFP_KERNEL);
184
185 if (!priv->tx_bd_base) {
186 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
187 ret = -ENOMEM;
188 goto free_rx_bd;
189 }
190
191 /* Alloc parameter ram for ucc hdlc */
192 priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
193 ALIGNMENT_OF_UCC_HDLC_PRAM);
194
195 if (IS_ERR_VALUE(priv->ucc_pram_offset)) {
196 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
197 ret = -ENOMEM;
198 goto free_tx_bd;
199 }
200
201 priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
202 GFP_KERNEL);
203 if (!priv->rx_skbuff)
204 goto free_ucc_pram;
205
206 priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
207 GFP_KERNEL);
208 if (!priv->tx_skbuff)
209 goto free_rx_skbuff;
210
211 priv->skb_curtx = 0;
212 priv->skb_dirtytx = 0;
213 priv->curtx_bd = priv->tx_bd_base;
214 priv->dirty_tx = priv->tx_bd_base;
215 priv->currx_bd = priv->rx_bd_base;
216 priv->currx_bdnum = 0;
217
218 /* init parameter base */
219 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
220 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
221 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
222
223 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
224 qe_muram_addr(priv->ucc_pram_offset);
225
226 /* Zero out parameter ram */
227 memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
228
229 /* Alloc riptr, tiptr */
230 riptr = qe_muram_alloc(32, 32);
231 if (IS_ERR_VALUE(riptr)) {
232 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
233 ret = -ENOMEM;
234 goto free_tx_skbuff;
235 }
236
237 tiptr = qe_muram_alloc(32, 32);
238 if (IS_ERR_VALUE(tiptr)) {
239 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
240 ret = -ENOMEM;
241 goto free_riptr;
242 }
243
244 /* Set RIPTR, TIPTR */
245 iowrite16be(riptr, &priv->ucc_pram->riptr);
246 iowrite16be(tiptr, &priv->ucc_pram->tiptr);
247
248 /* Set MRBLR */
249 iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
250
251 /* Set RBASE, TBASE */
252 iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
253 iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
254
255 /* Set RSTATE, TSTATE */
256 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
257 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
258
259 /* Set C_MASK, C_PRES for 16bit CRC */
260 iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
261 iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
262
263 iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
264 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
265 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
266 iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
267 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
268 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
269 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
270 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
271
272 /* Get BD buffer */
273 bd_buffer = dma_alloc_coherent(priv->dev,
274 (RX_BD_RING_LEN + TX_BD_RING_LEN) *
275 MAX_RX_BUF_LENGTH,
276 &bd_dma_addr, GFP_KERNEL);
277
278 if (!bd_buffer) {
279 dev_err(priv->dev, "Could not allocate buffer descriptors\n");
280 ret = -ENOMEM;
281 goto free_tiptr;
282 }
283
284 memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
285 * MAX_RX_BUF_LENGTH);
286
287 priv->rx_buffer = bd_buffer;
288 priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
289
290 priv->dma_rx_addr = bd_dma_addr;
291 priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
292
293 for (i = 0; i < RX_BD_RING_LEN; i++) {
294 if (i < (RX_BD_RING_LEN - 1))
295 bd_status = R_E_S | R_I_S;
296 else
297 bd_status = R_E_S | R_I_S | R_W_S;
298
299 iowrite16be(bd_status, &priv->rx_bd_base[i].status);
300 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
301 &priv->rx_bd_base[i].buf);
302 }
303
304 for (i = 0; i < TX_BD_RING_LEN; i++) {
305 if (i < (TX_BD_RING_LEN - 1))
306 bd_status = T_I_S | T_TC_S;
307 else
308 bd_status = T_I_S | T_TC_S | T_W_S;
309
310 iowrite16be(bd_status, &priv->tx_bd_base[i].status);
311 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
312 &priv->tx_bd_base[i].buf);
313 }
314
315 return 0;
316
317 free_tiptr:
318 qe_muram_free(tiptr);
319 free_riptr:
320 qe_muram_free(riptr);
321 free_tx_skbuff:
322 kfree(priv->tx_skbuff);
323 free_rx_skbuff:
324 kfree(priv->rx_skbuff);
325 free_ucc_pram:
326 qe_muram_free(priv->ucc_pram_offset);
327 free_tx_bd:
328 dma_free_coherent(priv->dev,
329 TX_BD_RING_LEN * sizeof(struct qe_bd),
330 priv->tx_bd_base, priv->dma_tx_bd);
331 free_rx_bd:
332 dma_free_coherent(priv->dev,
333 RX_BD_RING_LEN * sizeof(struct qe_bd),
334 priv->rx_bd_base, priv->dma_rx_bd);
335 free_uccf:
336 ucc_fast_free(priv->uccf);
337
338 return ret;
339 }
340
341 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
342 {
343 hdlc_device *hdlc = dev_to_hdlc(dev);
344 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
345 struct qe_bd __iomem *bd;
346 u16 bd_status;
347 unsigned long flags;
348 u16 *proto_head;
349
350 switch (dev->type) {
351 case ARPHRD_RAWHDLC:
352 if (skb_headroom(skb) < HDLC_HEAD_LEN) {
353 dev->stats.tx_dropped++;
354 dev_kfree_skb(skb);
355 netdev_err(dev, "No enough space for hdlc head\n");
356 return -ENOMEM;
357 }
358
359 skb_push(skb, HDLC_HEAD_LEN);
360
361 proto_head = (u16 *)skb->data;
362 *proto_head = htons(DEFAULT_HDLC_HEAD);
363
364 dev->stats.tx_bytes += skb->len;
365 break;
366
367 case ARPHRD_PPP:
368 proto_head = (u16 *)skb->data;
369 if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
370 dev->stats.tx_dropped++;
371 dev_kfree_skb(skb);
372 netdev_err(dev, "Wrong ppp header\n");
373 return -ENOMEM;
374 }
375
376 dev->stats.tx_bytes += skb->len;
377 break;
378
379 default:
380 dev->stats.tx_dropped++;
381 dev_kfree_skb(skb);
382 return -ENOMEM;
383 }
384 spin_lock_irqsave(&priv->lock, flags);
385
386 /* Start from the next BD that should be filled */
387 bd = priv->curtx_bd;
388 bd_status = ioread16be(&bd->status);
389 /* Save the skb pointer so we can free it later */
390 priv->tx_skbuff[priv->skb_curtx] = skb;
391
392 /* Update the current skb pointer (wrapping if this was the last) */
393 priv->skb_curtx =
394 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
395
396 /* copy skb data to tx buffer for sdma processing */
397 memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
398 skb->data, skb->len);
399
400 /* set bd status and length */
401 bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
402
403 iowrite16be(skb->len, &bd->length);
404 iowrite16be(bd_status, &bd->status);
405
406 /* Move to next BD in the ring */
407 if (!(bd_status & T_W_S))
408 bd += 1;
409 else
410 bd = priv->tx_bd_base;
411
412 if (bd == priv->dirty_tx) {
413 if (!netif_queue_stopped(dev))
414 netif_stop_queue(dev);
415 }
416
417 priv->curtx_bd = bd;
418
419 spin_unlock_irqrestore(&priv->lock, flags);
420
421 return NETDEV_TX_OK;
422 }
423
424 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
425 {
426 /* Start from the next BD that should be filled */
427 struct net_device *dev = priv->ndev;
428 struct qe_bd *bd; /* BD pointer */
429 u16 bd_status;
430
431 bd = priv->dirty_tx;
432 bd_status = ioread16be(&bd->status);
433
434 /* Normal processing. */
435 while ((bd_status & T_R_S) == 0) {
436 struct sk_buff *skb;
437
438 /* BD contains already transmitted buffer. */
439 /* Handle the transmitted buffer and release */
440 /* the BD to be used with the current frame */
441
442 skb = priv->tx_skbuff[priv->skb_dirtytx];
443 if (!skb)
444 break;
445 dev->stats.tx_packets++;
446 memset(priv->tx_buffer +
447 (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
448 0, skb->len);
449 dev_kfree_skb_irq(skb);
450
451 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
452 priv->skb_dirtytx =
453 (priv->skb_dirtytx +
454 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
455
456 /* We freed a buffer, so now we can restart transmission */
457 if (netif_queue_stopped(dev))
458 netif_wake_queue(dev);
459
460 /* Advance the confirmation BD pointer */
461 if (!(bd_status & T_W_S))
462 bd += 1;
463 else
464 bd = priv->tx_bd_base;
465 bd_status = ioread16be(&bd->status);
466 }
467 priv->dirty_tx = bd;
468
469 return 0;
470 }
471
472 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
473 {
474 struct net_device *dev = priv->ndev;
475 struct sk_buff *skb = NULL;
476 hdlc_device *hdlc = dev_to_hdlc(dev);
477 struct qe_bd *bd;
478 u16 bd_status;
479 u16 length, howmany = 0;
480 u8 *bdbuffer;
481
482 bd = priv->currx_bd;
483 bd_status = ioread16be(&bd->status);
484
485 /* while there are received buffers and BD is full (~R_E) */
486 while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
487 if (bd_status & R_OV_S)
488 dev->stats.rx_over_errors++;
489 if (bd_status & R_CR_S) {
490 dev->stats.rx_crc_errors++;
491 dev->stats.rx_dropped++;
492 goto recycle;
493 }
494 bdbuffer = priv->rx_buffer +
495 (priv->currx_bdnum * MAX_RX_BUF_LENGTH);
496 length = ioread16be(&bd->length);
497
498 switch (dev->type) {
499 case ARPHRD_RAWHDLC:
500 bdbuffer += HDLC_HEAD_LEN;
501 length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
502
503 skb = dev_alloc_skb(length);
504 if (!skb) {
505 dev->stats.rx_dropped++;
506 return -ENOMEM;
507 }
508
509 skb_put(skb, length);
510 skb->len = length;
511 skb->dev = dev;
512 memcpy(skb->data, bdbuffer, length);
513 break;
514
515 case ARPHRD_PPP:
516 length -= HDLC_CRC_SIZE;
517
518 skb = dev_alloc_skb(length);
519 if (!skb) {
520 dev->stats.rx_dropped++;
521 return -ENOMEM;
522 }
523
524 skb_put(skb, length);
525 skb->len = length;
526 skb->dev = dev;
527 memcpy(skb->data, bdbuffer, length);
528 break;
529 }
530
531 dev->stats.rx_packets++;
532 dev->stats.rx_bytes += skb->len;
533 howmany++;
534 if (hdlc->proto)
535 skb->protocol = hdlc_type_trans(skb, dev);
536 netif_receive_skb(skb);
537
538 recycle:
539 iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
540
541 /* update to point at the next bd */
542 if (bd_status & R_W_S) {
543 priv->currx_bdnum = 0;
544 bd = priv->rx_bd_base;
545 } else {
546 if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
547 priv->currx_bdnum += 1;
548 else
549 priv->currx_bdnum = RX_BD_RING_LEN - 1;
550
551 bd += 1;
552 }
553
554 bd_status = ioread16be(&bd->status);
555 }
556
557 priv->currx_bd = bd;
558 return howmany;
559 }
560
561 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
562 {
563 struct ucc_hdlc_private *priv = container_of(napi,
564 struct ucc_hdlc_private,
565 napi);
566 int howmany;
567
568 /* Tx event processing */
569 spin_lock(&priv->lock);
570 hdlc_tx_done(priv);
571 spin_unlock(&priv->lock);
572
573 howmany = 0;
574 howmany += hdlc_rx_done(priv, budget - howmany);
575
576 if (howmany < budget) {
577 napi_complete_done(napi, howmany);
578 qe_setbits32(priv->uccf->p_uccm,
579 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
580 }
581
582 return howmany;
583 }
584
585 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
586 {
587 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
588 struct net_device *dev = priv->ndev;
589 struct ucc_fast_private *uccf;
590 struct ucc_tdm_info *ut_info;
591 u32 ucce;
592 u32 uccm;
593
594 ut_info = priv->ut_info;
595 uccf = priv->uccf;
596
597 ucce = ioread32be(uccf->p_ucce);
598 uccm = ioread32be(uccf->p_uccm);
599 ucce &= uccm;
600 iowrite32be(ucce, uccf->p_ucce);
601 if (!ucce)
602 return IRQ_NONE;
603
604 if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
605 if (napi_schedule_prep(&priv->napi)) {
606 uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
607 << 16);
608 iowrite32be(uccm, uccf->p_uccm);
609 __napi_schedule(&priv->napi);
610 }
611 }
612
613 /* Errors and other events */
614 if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
615 dev->stats.rx_errors++;
616 if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
617 dev->stats.tx_errors++;
618
619 return IRQ_HANDLED;
620 }
621
622 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
623 {
624 const size_t size = sizeof(te1_settings);
625 te1_settings line;
626 struct ucc_hdlc_private *priv = netdev_priv(dev);
627
628 if (cmd != SIOCWANDEV)
629 return hdlc_ioctl(dev, ifr, cmd);
630
631 switch (ifr->ifr_settings.type) {
632 case IF_GET_IFACE:
633 ifr->ifr_settings.type = IF_IFACE_E1;
634 if (ifr->ifr_settings.size < size) {
635 ifr->ifr_settings.size = size; /* data size wanted */
636 return -ENOBUFS;
637 }
638 memset(&line, 0, sizeof(line));
639 line.clock_type = priv->clocking;
640
641 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
642 return -EFAULT;
643 return 0;
644
645 default:
646 return hdlc_ioctl(dev, ifr, cmd);
647 }
648 }
649
650 static int uhdlc_open(struct net_device *dev)
651 {
652 u32 cecr_subblock;
653 hdlc_device *hdlc = dev_to_hdlc(dev);
654 struct ucc_hdlc_private *priv = hdlc->priv;
655 struct ucc_tdm *utdm = priv->utdm;
656
657 if (priv->hdlc_busy != 1) {
658 if (request_irq(priv->ut_info->uf_info.irq,
659 ucc_hdlc_irq_handler, 0, "hdlc", priv))
660 return -ENODEV;
661
662 cecr_subblock = ucc_fast_get_qe_cr_subblock(
663 priv->ut_info->uf_info.ucc_num);
664
665 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
666 QE_CR_PROTOCOL_UNSPECIFIED, 0);
667
668 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
669
670 /* Enable the TDM port */
671 if (priv->tsa)
672 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
673
674 priv->hdlc_busy = 1;
675 netif_device_attach(priv->ndev);
676 napi_enable(&priv->napi);
677 netif_start_queue(dev);
678 hdlc_open(dev);
679 }
680
681 return 0;
682 }
683
684 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
685 {
686 qe_muram_free(priv->ucc_pram->riptr);
687 qe_muram_free(priv->ucc_pram->tiptr);
688
689 if (priv->rx_bd_base) {
690 dma_free_coherent(priv->dev,
691 RX_BD_RING_LEN * sizeof(struct qe_bd),
692 priv->rx_bd_base, priv->dma_rx_bd);
693
694 priv->rx_bd_base = NULL;
695 priv->dma_rx_bd = 0;
696 }
697
698 if (priv->tx_bd_base) {
699 dma_free_coherent(priv->dev,
700 TX_BD_RING_LEN * sizeof(struct qe_bd),
701 priv->tx_bd_base, priv->dma_tx_bd);
702
703 priv->tx_bd_base = NULL;
704 priv->dma_tx_bd = 0;
705 }
706
707 if (priv->ucc_pram) {
708 qe_muram_free(priv->ucc_pram_offset);
709 priv->ucc_pram = NULL;
710 priv->ucc_pram_offset = 0;
711 }
712
713 kfree(priv->rx_skbuff);
714 priv->rx_skbuff = NULL;
715
716 kfree(priv->tx_skbuff);
717 priv->tx_skbuff = NULL;
718
719 if (priv->uf_regs) {
720 iounmap(priv->uf_regs);
721 priv->uf_regs = NULL;
722 }
723
724 if (priv->uccf) {
725 ucc_fast_free(priv->uccf);
726 priv->uccf = NULL;
727 }
728
729 if (priv->rx_buffer) {
730 dma_free_coherent(priv->dev,
731 RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
732 priv->rx_buffer, priv->dma_rx_addr);
733 priv->rx_buffer = NULL;
734 priv->dma_rx_addr = 0;
735 }
736
737 if (priv->tx_buffer) {
738 dma_free_coherent(priv->dev,
739 TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
740 priv->tx_buffer, priv->dma_tx_addr);
741 priv->tx_buffer = NULL;
742 priv->dma_tx_addr = 0;
743 }
744 }
745
746 static int uhdlc_close(struct net_device *dev)
747 {
748 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
749 struct ucc_tdm *utdm = priv->utdm;
750 u32 cecr_subblock;
751
752 napi_disable(&priv->napi);
753 cecr_subblock = ucc_fast_get_qe_cr_subblock(
754 priv->ut_info->uf_info.ucc_num);
755
756 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
757 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
758 qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
759 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
760
761 if (priv->tsa)
762 utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
763
764 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
765
766 free_irq(priv->ut_info->uf_info.irq, priv);
767 netif_stop_queue(dev);
768 priv->hdlc_busy = 0;
769
770 return 0;
771 }
772
773 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
774 unsigned short parity)
775 {
776 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
777
778 if (encoding != ENCODING_NRZ &&
779 encoding != ENCODING_NRZI)
780 return -EINVAL;
781
782 if (parity != PARITY_NONE &&
783 parity != PARITY_CRC32_PR1_CCITT &&
784 parity != PARITY_CRC16_PR1_CCITT)
785 return -EINVAL;
786
787 priv->encoding = encoding;
788 priv->parity = parity;
789
790 return 0;
791 }
792
793 #ifdef CONFIG_PM
794 static void store_clk_config(struct ucc_hdlc_private *priv)
795 {
796 struct qe_mux *qe_mux_reg = &qe_immr->qmx;
797
798 /* store si clk */
799 priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
800 priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
801
802 /* store si sync */
803 priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
804
805 /* store ucc clk */
806 memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
807 }
808
809 static void resume_clk_config(struct ucc_hdlc_private *priv)
810 {
811 struct qe_mux *qe_mux_reg = &qe_immr->qmx;
812
813 memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
814
815 iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
816 iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
817
818 iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
819 }
820
821 static int uhdlc_suspend(struct device *dev)
822 {
823 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
824 struct ucc_tdm_info *ut_info;
825 struct ucc_fast __iomem *uf_regs;
826
827 if (!priv)
828 return -EINVAL;
829
830 if (!netif_running(priv->ndev))
831 return 0;
832
833 netif_device_detach(priv->ndev);
834 napi_disable(&priv->napi);
835
836 ut_info = priv->ut_info;
837 uf_regs = priv->uf_regs;
838
839 /* backup gumr guemr*/
840 priv->gumr = ioread32be(&uf_regs->gumr);
841 priv->guemr = ioread8(&uf_regs->guemr);
842
843 priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
844 GFP_KERNEL);
845 if (!priv->ucc_pram_bak)
846 return -ENOMEM;
847
848 /* backup HDLC parameter */
849 memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
850 sizeof(struct ucc_hdlc_param));
851
852 /* store the clk configuration */
853 store_clk_config(priv);
854
855 /* save power */
856 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
857
858 return 0;
859 }
860
861 static int uhdlc_resume(struct device *dev)
862 {
863 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
864 struct ucc_tdm *utdm;
865 struct ucc_tdm_info *ut_info;
866 struct ucc_fast __iomem *uf_regs;
867 struct ucc_fast_private *uccf;
868 struct ucc_fast_info *uf_info;
869 int ret, i;
870 u32 cecr_subblock;
871 u16 bd_status;
872
873 if (!priv)
874 return -EINVAL;
875
876 if (!netif_running(priv->ndev))
877 return 0;
878
879 utdm = priv->utdm;
880 ut_info = priv->ut_info;
881 uf_info = &ut_info->uf_info;
882 uf_regs = priv->uf_regs;
883 uccf = priv->uccf;
884
885 /* restore gumr guemr */
886 iowrite8(priv->guemr, &uf_regs->guemr);
887 iowrite32be(priv->gumr, &uf_regs->gumr);
888
889 /* Set Virtual Fifo registers */
890 iowrite16be(uf_info->urfs, &uf_regs->urfs);
891 iowrite16be(uf_info->urfet, &uf_regs->urfet);
892 iowrite16be(uf_info->urfset, &uf_regs->urfset);
893 iowrite16be(uf_info->utfs, &uf_regs->utfs);
894 iowrite16be(uf_info->utfet, &uf_regs->utfet);
895 iowrite16be(uf_info->utftt, &uf_regs->utftt);
896 /* utfb, urfb are offsets from MURAM base */
897 iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
898 iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
899
900 /* Rx Tx and sync clock routing */
901 resume_clk_config(priv);
902
903 iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
904 iowrite32be(0xffffffff, &uf_regs->ucce);
905
906 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
907
908 /* rebuild SIRAM */
909 if (priv->tsa)
910 ucc_tdm_init(priv->utdm, priv->ut_info);
911
912 /* Write to QE CECR, UCCx channel to Stop Transmission */
913 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
914 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
915 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
916
917 /* Set UPSMR normal mode */
918 iowrite32be(0, &uf_regs->upsmr);
919
920 /* init parameter base */
921 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
922 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
923 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
924
925 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
926 qe_muram_addr(priv->ucc_pram_offset);
927
928 /* restore ucc parameter */
929 memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
930 sizeof(struct ucc_hdlc_param));
931 kfree(priv->ucc_pram_bak);
932
933 /* rebuild BD entry */
934 for (i = 0; i < RX_BD_RING_LEN; i++) {
935 if (i < (RX_BD_RING_LEN - 1))
936 bd_status = R_E_S | R_I_S;
937 else
938 bd_status = R_E_S | R_I_S | R_W_S;
939
940 iowrite16be(bd_status, &priv->rx_bd_base[i].status);
941 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
942 &priv->rx_bd_base[i].buf);
943 }
944
945 for (i = 0; i < TX_BD_RING_LEN; i++) {
946 if (i < (TX_BD_RING_LEN - 1))
947 bd_status = T_I_S | T_TC_S;
948 else
949 bd_status = T_I_S | T_TC_S | T_W_S;
950
951 iowrite16be(bd_status, &priv->tx_bd_base[i].status);
952 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
953 &priv->tx_bd_base[i].buf);
954 }
955
956 /* if hdlc is busy enable TX and RX */
957 if (priv->hdlc_busy == 1) {
958 cecr_subblock = ucc_fast_get_qe_cr_subblock(
959 priv->ut_info->uf_info.ucc_num);
960
961 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
962 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
963
964 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
965
966 /* Enable the TDM port */
967 if (priv->tsa)
968 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
969 }
970
971 napi_enable(&priv->napi);
972 netif_device_attach(priv->ndev);
973
974 return 0;
975 }
976
977 static const struct dev_pm_ops uhdlc_pm_ops = {
978 .suspend = uhdlc_suspend,
979 .resume = uhdlc_resume,
980 .freeze = uhdlc_suspend,
981 .thaw = uhdlc_resume,
982 };
983
984 #define HDLC_PM_OPS (&uhdlc_pm_ops)
985
986 #else
987
988 #define HDLC_PM_OPS NULL
989
990 #endif
991 static const struct net_device_ops uhdlc_ops = {
992 .ndo_open = uhdlc_open,
993 .ndo_stop = uhdlc_close,
994 .ndo_start_xmit = hdlc_start_xmit,
995 .ndo_do_ioctl = uhdlc_ioctl,
996 };
997
998 static int ucc_hdlc_probe(struct platform_device *pdev)
999 {
1000 struct device_node *np = pdev->dev.of_node;
1001 struct ucc_hdlc_private *uhdlc_priv = NULL;
1002 struct ucc_tdm_info *ut_info;
1003 struct ucc_tdm *utdm = NULL;
1004 struct resource res;
1005 struct net_device *dev;
1006 hdlc_device *hdlc;
1007 int ucc_num;
1008 const char *sprop;
1009 int ret;
1010 u32 val;
1011
1012 ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1013 if (ret) {
1014 dev_err(&pdev->dev, "Invalid ucc property\n");
1015 return -ENODEV;
1016 }
1017
1018 ucc_num = val - 1;
1019 if ((ucc_num > 3) || (ucc_num < 0)) {
1020 dev_err(&pdev->dev, ": Invalid UCC num\n");
1021 return -EINVAL;
1022 }
1023
1024 memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1025 sizeof(utdm_primary_info));
1026
1027 ut_info = &utdm_info[ucc_num];
1028 ut_info->uf_info.ucc_num = ucc_num;
1029
1030 sprop = of_get_property(np, "rx-clock-name", NULL);
1031 if (sprop) {
1032 ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1033 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1034 (ut_info->uf_info.rx_clock > QE_CLK24)) {
1035 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1036 return -EINVAL;
1037 }
1038 } else {
1039 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1040 return -EINVAL;
1041 }
1042
1043 sprop = of_get_property(np, "tx-clock-name", NULL);
1044 if (sprop) {
1045 ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1046 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1047 (ut_info->uf_info.tx_clock > QE_CLK24)) {
1048 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1049 return -EINVAL;
1050 }
1051 } else {
1052 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1053 return -EINVAL;
1054 }
1055
1056 ret = of_address_to_resource(np, 0, &res);
1057 if (ret)
1058 return -EINVAL;
1059
1060 ut_info->uf_info.regs = res.start;
1061 ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1062
1063 uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1064 if (!uhdlc_priv) {
1065 return -ENOMEM;
1066 }
1067
1068 dev_set_drvdata(&pdev->dev, uhdlc_priv);
1069 uhdlc_priv->dev = &pdev->dev;
1070 uhdlc_priv->ut_info = ut_info;
1071
1072 if (of_get_property(np, "fsl,tdm-interface", NULL))
1073 uhdlc_priv->tsa = 1;
1074
1075 if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1076 uhdlc_priv->loopback = 1;
1077
1078 if (of_get_property(np, "fsl,hdlc-bus", NULL))
1079 uhdlc_priv->hdlc_bus = 1;
1080
1081 if (uhdlc_priv->tsa == 1) {
1082 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1083 if (!utdm) {
1084 ret = -ENOMEM;
1085 dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1086 goto free_uhdlc_priv;
1087 }
1088 uhdlc_priv->utdm = utdm;
1089 ret = ucc_of_parse_tdm(np, utdm, ut_info);
1090 if (ret)
1091 goto free_utdm;
1092 }
1093
1094 ret = uhdlc_init(uhdlc_priv);
1095 if (ret) {
1096 dev_err(&pdev->dev, "Failed to init uhdlc\n");
1097 goto free_utdm;
1098 }
1099
1100 dev = alloc_hdlcdev(uhdlc_priv);
1101 if (!dev) {
1102 ret = -ENOMEM;
1103 pr_err("ucc_hdlc: unable to allocate memory\n");
1104 goto undo_uhdlc_init;
1105 }
1106
1107 uhdlc_priv->ndev = dev;
1108 hdlc = dev_to_hdlc(dev);
1109 dev->tx_queue_len = 16;
1110 dev->netdev_ops = &uhdlc_ops;
1111 hdlc->attach = ucc_hdlc_attach;
1112 hdlc->xmit = ucc_hdlc_tx;
1113 netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1114 if (register_hdlc_device(dev)) {
1115 ret = -ENOBUFS;
1116 pr_err("ucc_hdlc: unable to register hdlc device\n");
1117 goto free_dev;
1118 }
1119
1120 return 0;
1121
1122 free_dev:
1123 free_netdev(dev);
1124 undo_uhdlc_init:
1125 free_utdm:
1126 if (uhdlc_priv->tsa)
1127 kfree(utdm);
1128 free_uhdlc_priv:
1129 kfree(uhdlc_priv);
1130 return ret;
1131 }
1132
1133 static int ucc_hdlc_remove(struct platform_device *pdev)
1134 {
1135 struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1136
1137 uhdlc_memclean(priv);
1138
1139 if (priv->utdm->si_regs) {
1140 iounmap(priv->utdm->si_regs);
1141 priv->utdm->si_regs = NULL;
1142 }
1143
1144 if (priv->utdm->siram) {
1145 iounmap(priv->utdm->siram);
1146 priv->utdm->siram = NULL;
1147 }
1148 kfree(priv);
1149
1150 dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1151
1152 return 0;
1153 }
1154
1155 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1156 {
1157 .compatible = "fsl,ucc-hdlc",
1158 },
1159 {},
1160 };
1161
1162 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1163
1164 static struct platform_driver ucc_hdlc_driver = {
1165 .probe = ucc_hdlc_probe,
1166 .remove = ucc_hdlc_remove,
1167 .driver = {
1168 .name = DRV_NAME,
1169 .pm = HDLC_PM_OPS,
1170 .of_match_table = fsl_ucc_hdlc_of_match,
1171 },
1172 };
1173
1174 module_platform_driver(ucc_hdlc_driver);
1175 MODULE_LICENSE("GPL");